
1

Just-In-Time Obsolete Comment
Detection and Update

Zhongxin Liu, Xin Xia, David Lo, Meng Yan, Shanping Li

Abstract—Comments are valuable resources for the development, comprehension and maintenance of software. However, while
changing code, developers sometimes neglect the evolution of the corresponding comments, resulting in obsolete comments. Such
obsolete comments can mislead developers and introduce bugs in the future, and are therefore detrimental. We notice that by
detecting and updating obsolete comments in time with code changes, obsolete comments can be effectively reduced and even
avoided. We refer to this task as Just-In-Time (JIT) Obsolete Comment Detection and Update. In this work, we propose a two-stage
framework named CUP2 (Two-stage Comment UPdater) to automate this task. CUP2 consists two components, i.e., an Obsolete
Comment Detector named OCD and a Comment UPdater named CUP, each of which relies on a distinct neural network model to
perform detection (updates). Specifically, given a code change and a corresponding comment, CUP2 first leverages OCD to predict
whether this comment should be updated. If the answer is yes, CUP will be used to generate the new version of the comment
automatically. To evaluate CUP2, we build a large-scale dataset with over 4 million code-comment change samples. Our dataset
focuses on method-level code changes and updates on method header comments considering the importance and widespread use of
such comments. Evaluation results show that 1) both OCD and CUP outperform their baselines by significant margins, and 2) CUP2

performs better than a rule-based baseline. Specifically, the comments generated by CUP2 are identical to the ground truth for 41.8%
of the samples that are predicted to be positive by OCD. We believe CUP2 can help developers detect obsolete comments, better
understand where and how to update obsolete comments and reduce their edits on obsolete comment updates.

Index Terms—code-comment co-evolution, obsolete comment detection, comment update

F

1 INTRODUCTION

CODE comments are invaluable assets to software
projects. Various information of code, such as why and

how a function is implemented, how to use an API, what
is the relation between two code snippets, and how a code
segment evolves [1], [2], [3] is recorded in code comments.
Such information can help understand source code and
facilitate the communication between developers [4], [5],
and can therefore help software development and mainte-
nance. As shown by a prior study [6], besides source code,
developers regard comments as the most essential artifacts
for understanding and maintaining a software system [6].

As important references for source code, comments need
to co-evolve with the corresponding code snippets. How-
ever, in practice, developers may neglect updating com-
ments while changing source code, resulting in obsolete
comments. For example, Table 1 presents an obsolete com-
ment collected from Apache Kafka [7]. We can see that the

• Zhongxin Liu is with the College of Computer Science and Technology and
Ningbo Research Institute, Zhejiang University, China, and PengCheng
Laboratory, China.
E-mail: liu zx@zju.edu.cn

• Xin Xia is with the Software Engineering Application Technology Lab,
Huawei, China.
E-mail: xin.xia@acm.org

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore
E-mail: davidlo@smu.edu.sg

• Meng Yan is with the School of Big Data and Software Engineering,
Chongqing University, China.
E-mail: mengy@cqu.edu.cn

• Shanping Li is with the College of Computer Science and Technology,
Zhejiang Univeristy, China.
E-mail: shan@zju.edu.cn

• Xin Xia is the corresponding author.

TABLE 1
A obsolete comment example

public Map<MetricName, ? extends Metric> metrics() {
...
for (final StreamThread thread : threads) {

result.putAll(thread.producerMetrics());
result.putAll(thread.consumerMetrics());
result.putAll(thread.adminClientMetrics());

}
...}

Method Comment: Get read-only handle on global metrics registry,
including streams client’s own metrics plus its embedded consumer
clients’ metrics.
Updated Comment: Get read-only handle on global metrics registry,
including streams client’s own metrics plus its embedded producer,
consumer and admin clients’ metrics.

method in Table 1 registers the metrics of the producer,
consumer, and admin clients. However, only the consumer
clients are recorded in the corresponding comment, which
means this comment needs to be updated and is an obsolete
comment. This obsolete comment had existed in the code
base for eight months before being fixed. During this period,
such comments can mislead developers, complicate code
reviews, lead to the introduction of bugs, and have negative
effects on the robustness of the software system [8], [9], [10],
[11], [12]. Therefore, it is necessary to fix obsolete comments
in time or even avoid their introduction.

To gain more insights about obsolete comments, we
further check the change history of the method in Table 1.
The change history “tells” us that when the comment was
first introduced, the code only registered the consumer

2

clients’ metrics and the code and comment were consis-
tent. However, two following changes added more metrics
without updating the comment and made this comment an
obsolete one. This finding inspires us that when developers
make code changes, if a tool can automatically detect the
associated comments requiring updates and update such
comments correspondingly, it is possible to reduce and even
avoid the introduction of obsolete comments. We refer to
this task as Just-In-Time (JIT) obsolete comment detection
and update.

Researchers have investigated the detection of obsolete
comments. But most of them [8], [9], [11], [13], [14] only
focus on the comments related to specific topics, such as lock
mechanism and function calls [9] or a special comment type,
e.g., TODO comments [14], instead of general comments.
Others rely on manually crafted rules or features to perform
obsolete comment detection [15], [16]. On the other hand,
no approach has been proposed to automatically update
comments with code changes. Moreover, there is a lack
of effort to combine the detection and update of obsolete
comments as a whole and perform automatic end-to-end
obsolete comment repair.

To fill these gaps and help developers handle obsolete
comments, in this work, we propose a two-stage framework
named CUP2 (Two-stage Comment UPdater) to automate
the JIT obsolete comment detection and update. CUP2 con-
sists of two components: an Obsolete Comment Detector
named OCD and a Comment UPdater named CUP. When a
developer changes a code snippet, OCD can predict whether
an associated comment should be updated. For detected ob-
solete comments, CUP will be further used to automatically
generate their updated versions.

To automate obsolete comment detection and update, an
intuitive way is manually summarizing and implementing
detection features and update rules of obsolete comments.
However, comments are free-form texts written in natural
languages, which are inherently ambiguous and unstruc-
tured. Thus, it is difficult and time-consuming to craft such
features and update rules. The idea behind CUP2 is to
leverage neural network models to automatically learn the
patterns of obsolete comments and comment updates from
large-scale code changes, which can be extracted from mas-
sive code repositories. Specifically, we first propose a novel
neural encoder to represent a code change and an associated
comment as feature vectors, simultaneously. Then, OCD is
composed of the neural encoder and an attention-based
output layer to predict the probability that the associated
comment should be updated. CUP also leverages the en-
coder for input representation but connects it with an RNN-
based decoder to generate updated comments.

Compared to existing obsolete comment detectors [8],
[9], [11], [13], [14], [15], [16], OCD targets at general com-
ments and do not require manual efforts to craft rules or
features. CUP is a neural sequence-to-sequence (seq2seq)
model. Different from existing neural seq2seq models de-
signed for other software engineering (SE) tasks [17], [18],
[19], CUP takes as input both code changes and their associ-
ated comments, learns the representations of code changes
and comments simultaneously, and can effectively capture
the relationships between code changes and comments with
the help of a unified vocabulary, the pre-trained fastText

embeddings and a novel co-attention mechanism in the en-
coder. Also, two pointer generators are used in the decoder
of CUP to deal with out-of-vocabulary (OOV) words and
ease the generation of updated comments. CUP2 combines
OCD and CUP to automate JIT obsolete comment detection
and update.

To evaluate the effectiveness of CUP2 and its two com-
ponents, we build a large dataset with over 4 million code-
comment change samples from 1,496 popular engineered
Java projects. For now, our dataset focuses on method-level
code changes and updates on method header comments,
because Java methods can be precisely associated with their
header comments and such comments are an important
type of documents that are often referred to by developers.
Evaluation results show that: 1) OCD significantly outper-
forms its two baselines by over 17.1% in terms of Precision,
Recall and F1-Score. 2) CUP performs better than its three
baselines in terms of Accuracy, Recall@5, GLEU [20] and two
metrics proposed by us named Average Edit Distance (AED)
and Relative Edit Distance (RED) by significant margins. It
replicates perfectly developer-performed comment updates
in 10 times more cases than the best-performing baseline. 3)
CUP2 also outperforms a rule-based baseline by significant
margins in terms of both detection and update metrics. The
comments generated by CUP2 are identical to the ground
truth for 41.8% of the samples that are predicted to be
positive by OCD. In addition, CUP2 achieves a RED of
0.843, which means it can help developers better understand
where and how to perform obsolete comment updates and
reduce developers’ edits on updating obsolete comments.

In summary, this paper makes the following contribu-
tions:

• We build a dataset with over 4 million code-comment
change samples for the JIT obsolete comment detec-
tion and update task. To the best of our knowledge,
so far, this is the largest dataset for this task.

• We propose a novel two-stage approach named
CUP2, which consists of a neural detector OCD and
a neural updater CUP, to automate the JIT detection
and update of obsolete comments. OCD and CUP
leverage novel neural network models to automat-
ically learn the patterns of obsolete comments and
comment updates from large-scale code-comment
change samples. They use the same encoder archi-
tecture which can represent code changes and com-
ments simultaneously and capture the relationships
between them with the help of a unified vocabulary,
the pre-trained fastText embeddings and a novel co-
attention mechanism. CUP also adopts pointer gen-
erators to deal with out-of-vocabulary (OOV) words
and ease the generation of updated comments. As
the first attempt for JIT obsolete comment detection
and update, CUP2 lays a good foundation and can
inspire other researchers to tackle this important and
interesting task.

• We extensively evaluate CUP2 as well as OCD and
CUP, on the constructed dataset. Evaluation results
show that OCD and CUP are effective and signif-
icantly outperform their own baselines. CUP2 can
correctly update comments for 41.8% of the samples

3

that are predicted to be positive by OCD, help devel-
opers better understand where and how to update
obsolete comments and reduce their edits on obsolete
comment updates.

• We share our replication package, which includes
dataset, source code and trained models, publicly at
https://github.com/Tbabm/CUP2 to facilitate repli-
cation and support follow-up works.

As an extended version of our previous work [21],
which proposed and evaluated CUP, this paper significantly
extended our previous work in the following ways:

• We extend the evaluation in our original study with
a new evaluation metric GLEU. GLEU is widely used
to evaluate Grammatical Error Correction (GEC) sys-
tems in the natural language processing (NLP) field
[22], [23], [24]. It is more flexible than Accuracy
and Recall@5 and is shown to highly correlate with
human judgments on GEC tasks [25]. We borrow this
metric from the NLP field to measure the overall
quality of the updated comments and complement
Accuracy and Recall@5.

• We propose a neural detector named OCD to per-
form JIT obsolete comment prediction.

• We integrate OCD with CUP and build a two-stage
approach named CUP2 to automate the JIT detection
and update of obsolete comments.

• The dataset built in our previous work only con-
tains positive code-comment change samples, i.e., the
samples where the comments get updated. In this
work, we further collect a large number of negative
samples from the same repositories used in our pre-
vious work, integrate them with the samples in our
previous dataset, and build a large-scale dataset with
over 4 million code-comment change samples for the
JIT obsolete comment detection and update task.

• We evaluate the performance of the proposed detec-
tor and the two-stage approach on the built dataset.
The evaluation results demonstrate their effective-
ness.

The remainder of this paper is organized as follows:
Section 2 formulates the problem and describes the usage
scenarios of our approach. After a review of related work
in Section 3, we present the details of our approach, includ-
ing its overall framework, how we flatten code-comment
change samples as sequences and the neural network mod-
els used in OCD and CUP in Section 4. Section 5 illustrates
how we build datasets for training and evaluating CUP2 and
its two components. We describe the setup of our evaluation
in Section 6 and present our evaluation results in Section 7.
In Section 8, we discuss the errors that CUP2 may encounter,
our exploration to alleviate the class imbalance problem of
the dataset, our exploration on the synergy between OCD
and CUP, and the threats to the validity of this work. We
conclude this work and point out some potential future
directions in Section 9.

2 PROBLEM AND USAGE SCENARIO

2.1 Problem Formulation
This work aims to predict and update obsolete comments
given a code change. Formally, given the pre-change and
post-change versions of a code snippet, namely t and t′,
and the pre-change and desired post-change versions of one
of its associated comments, namely x and y, our goal is to
find a method detect and a method update, so that:

detect(t, t′,x) =

{
1, if x 6= y
0, otherwise

(1)

and if x 6= y:
update(t, t′,x) = y

For convenience, we refer to t, t′, x and y as old code,
new code, old comment and new comment. y is the desired
post-change comment, and is not available when adopting
detect and update in practice. Since we target at updating
existing old comments instead of generating new comments
from scratch, keeping the format of old comments and the
corresponding new comments consistent is regarded as an
essential requirement for update.

CUP2 leverages two neural network models, i.e., OCD
and CUP, to approximate detect and update, respectively. It
requires a training set with true ys for training. Based on
the true ys, each sample in the training set can be labeled as
positive (i.e., x 6= y) or negative (i.e., x = y). The detect
model (i.e., OCD) will be trained on the whole training
set, i.e., using both positive and negative samples, and the
updatemodel (i.e., CUP) is going to be trained on the dataset
with only positive samples.

2.2 Usage Scenario
The usage scenarios of CUP2 are as follows:

First, CUP2 can assist developers in finding, under-
standing and fixing obsolete method comments given code
changes. In detail, when a developer makes a code change,
CUP2 can first predict whether the method comments as-
sociated with the changed methods should be updated and
warn the developer of the introduced obsolete comments.
For each detected obsolete comment, CUP2 can future pro-
vide an update suggestion for it. If such suggestion is correct
or partially correct, it can help developers quickly under-
stand where and how to update comments and reduce their
edits required for JIT comment update. Therefore, CUP2 can
improve the productivity of developers in avoiding obsolete
comments.

CUP2 can also help developers locate, understand and
fix existing obsolete comments. For example, given a soft-
ware repository, developers can first use CUP2 to detect the
comments requiring updates in each historical change. For
those detected obsolete comments, CUP2 can further gener-
ate their new versions automatically. In this way, developers
can effectively identify, understand and fix existing obsolete
comments instead of manually finding and modifying them.

3 RELATED WORK

This section discusses related work concerning code-
comment co-evolution, obsolete comment detection and
update, and comment generation.

https://github.com/Tbabm/CUP2

4

3.1 Code-Comment Co-Evolution
Prior studies have investigated the co-evolution between
source code and code comments from different perspec-
tives [12], [26], [27], [28], [29], [30]. For example, Jiang and
Hassan [26] found the percentage of commented functions
in PostgreSQL remains stable over time. Fluri et al. [27],
[28] studied how source code and comments co-evolved and
found that over 97% of the comment changes triggered by
code changes were done in the same revisions as the asso-
ciated code changes. They also highlighted that API com-
ments are often adapted retroactively. In addition, Ibrahim
et al. [12] investigated the relationship between comment
update practice and software bugs in three open-source
systems and found abnormal comment update behavior is a
good indicator for predicting future bugs. Linares-Vásquez
et al. [29] studied how developers document database us-
ages in method comments and pointed out that the com-
ments of database-related methods are less frequently up-
dated than source code. Recently, Wen et al. [30] conducted a
large-scale empirical study, which analyzed the chances that
different code change types trigger comment updates and
defined a taxonomy of the code-comment inconsistencies
fixed by developers.

Different from these studies, our work aims to automat-
ically detect and update the comments requiring updates
with code changes. The empirical findings presented by pre-
vious work motivate our work to facilitate the co-evolution
of code and comments and shed light into the JIT detection
and update of obsolete comments.

3.2 Obsolete Comment Detection and Update
Researchers have studied the detection of obsolete com-
ments. Most of them focused on the comments related to
specific code properties or of specific types [8], [9], [11],
[13], [14], [31]. Tan et al. [8], [9], [13] proposed a series of
approaches to detect code-comment inconsistencies related
to specific programming concepts, such as lock mecha-
nisms [8], [9], function calls [9] and interrupts [13], using
manually defined rules, NLP techniques and static program
analysis. @TCOMMENT, an approach devised by Tan et
al. [11], leverages heuristics and automatic test generation
to check inconsistencies between Java methods and their
Javadocs in terms of method parameters’ tolerance to null
values. Sridhara et al. [14] proposed a technique to identify
obsolete TODO comments based on information retrieval,
linguistics and semantics. Several studies targeted at general
comments and took code changes into consideration [15],
[16], [32]. For instance, Ratol and Robillard [15] proposed
a rule-based approach named Fraco to detect fragile com-
ments with respect to identifier renaming. Malik et al. [32]
empirically investigated the rationale of updating the com-
ment of a modified function from three dimensions, i.e.,
characteristics of the changed function, the change itself,
and the time as well as code ownership. Liu et al. [16]
leveraged the Random Forest algorithm and 64 manually-
crafted features derived from code, comments and code-
comment relationships to check whether to update a block-
/line comment when its associated code snippet is changed.

The differences between these techniques and the detec-
tion stage of our approach, i.e., OCD, are three folds. First,

OCD aims to detect obsolete comments with code changes,
and takes as input a code change instead of only one version
of code. Second, OCD is not limited to specific comment
types and can handle diverse code changes. Last but not
least, OCD does not require manual efforts to summarize
and implement rules or features. It automatically learns how
to represent code changes and comments simultaneously
from massive code-comment change samples.

There are few works focusing on automatic obsolete
comment update. In our previous work [21], we proposed
CUP, which is used as the update stage of CUP2, to automate
JIT comment update. In a parallel work, Panthaplackel et
al. [33] proposed an edit-based seq2seq model to learn to
update the “@return” tags in method comments with code
changes. Their model represents each code change as an
XML-like edit sequence and generates similar XML-like edit
sequences for comment updates. They also adopted several
manually-derived features in the model, some of which are
specific to the “@return” tags. Different from their work,
first, CUP targets at the description sections in method
comments, which are orthogonal to the “@return” tags.
Second, CUP represents code changes as token-level edit
sequences, generates new comments directly, and does not
rely on manually-crafted features. In addition, the dataset
used to evaluate CUP (with over 100K positive samples) is
much larger than the one used in Panthaplackel et al.’ work
(with less than 10K samples).

This work combines the detection and update of obsolete
comments together to provide an end-to-end solution for
avoiding obsolete comments, which, to the best of our
knowledge, is the first attempt in this direction.

3.3 Comment Generation

Automatic comment generation techniques may also help
developers update comments by directly generating new
comments from changed methods. Many previous works
proposed to generate code comments using rule-based and
IR-based methods [34], [35], [36], [37], [38]. For example,
Sridhara et al. [34] proposed an approach to generate com-
ments for Java methods using summary information ex-
tracted from source code and manually-defined templates.
To generate a comment for a code snippet, ColCom [37] first
finds similar code snippets from open source projects and
then reuses and tailors their comments as output. Recently,
more and more researchers leveraged probabilistic models
to perform comment generation [17], [39], [40], [41], [42],
[43]. For example, Iyer et al. [39] proposed a neural attention
model named CODE-NN to generate summaries for C# and
SQL code snippets. DeepCom, an approach proposed by Hu
et al. [17], uses a structure-based traversal (SBT) method
to flatten ASTs and combines such flattened sequences
with an encoder-decoder model to generate comments for
Java methods. In their follow-up work, Hu et al. [42] de-
vised Hybrid-DeepCom to enhance DeepCom by combining
source code and the SBT sequences together to generate
comments. In a parallel work, LeClair et al. [41] proposed
a similar model, which also encodes code texts and the
SBT sequences using two distinct encoders, for comment
generation. Chen et al. [44] proposed an ensemble approach
that integrates different comment generation techniques ac-

5

cording to the information intention of the to-be-generated
comment.

We believe the JIT comment update problem and the
comment generation problem are different, because the for-
mer focuses on updating pre-existing comments instead of
generating comments from scratch, and it considers both the
old comment and the corresponding code change instead
of only the new code. Also, the goal of this work is to
combine obsolete comment detection and update, instead
of generating comments.

4 APPROACH

The overall framework of our approach, namely CUP2, is
illustrated in Figure 1. It consists of three phases, i.e., data
flattening, model training, and comment update. Specifi-
cally, we first flatten the code-comment change samples
extracted from source code repositories as sequences. Each
sample contains an old code, the corresponding new code,
an associated old comment and the corresponding new
comment. Based on whether the old and the new comments
are identical, we label each sample as positive (old comment
is obsolete) or negative (old comment is not obsolete). Then,
a detector named OCD and an updater named CUP are
trained using the flattened data. Both of them take as input
the old code, new code and old comment. The label is used
to guide the training of OCD, while CUP only uses positive
samples for training and considers the new comment as
ground truth. Finally, given a code change and its associated
old comment, CUP2 first leverages the trained OCD to
predict whether the old comment needs to be updated. If
the answer is yes, the trained CUP will be used to generate
a new comment to replace the old one.

OCD and CUP use the same encoder architecture to learn
the representation of code changes and old comments, but
they connect their encoders with different output compo-
nents to perform prediction and generation, respectively.
They are also trained separately to focus on different aspects
of code changes and comments.

In this section, we first describe the data flattening phase.
Then we elaborate on the two neural network models in
CUP2, i.e., OCD and CUP, by presenting the common en-
coder and the different output components used by them.

4.1 Data Flattening

In this phase, we convert code changes and comments into
sequences so that they can be processed by OCD and CUP.

4.1.1 Tokenization
For comments, we first tokenize them by spaces and punctu-
ation marks. Spaces are removed while punctuation marks
are kept. Then, compound words, which refer to the tokens
constructed by concatenating multiple vocabulary words
according to camel or snake conventions, are split into
multiple tokens to reduce OOV words. After that, if two
adjacent tokens are not split by space, we insert a special
token “〈con〉” between them to mark they are concatenated.

As for code changes, each of them is composed of an old
code snippet and a new code snippet. The two snippets are
first tokenized into words using a lexer. Inner comments

and white spaces are removed. Each identifier is further
tokenized into tokens based on camel casing and snake
casing, and “〈con〉” is also inserted to join the tokens. String
literals are tokenized like comments.

The key issue in software artifact tokenization is how to
deal with compound words. In the literature, the common
ways include: not changing compound words [19], splitting
them [17] and adding a special symbol “〈/t〉” at the end
of each token before splitting [45] (e.g., “inputBuffer” →
“inputBuffer〈/t〉”→ “input Buffer〈/t〉”). However, the first
way cannot reduce OOV words. The second way may lose
format information, i.e., a token sequence may fail to be
recovered to its original sentence. The third way cannot
handle the situation where a subtoken of a compound word
is generated as an independent token. For example, “input”
cannot be generated as an independent word if it is copied
from “inputBuffer”, since it does not end with “〈/t〉”. Com-
pared to these methods, our tokenizer can be regarded as
“asking” the neural model to also learn format information
by inserting “〈con〉” to mark concatenation. Simple is it, it
can effectively keep comment format consistent. Also, to
preserve format information, we do not lowercase tokens
in both code and comments.

4.1.2 Code Change Representation
After tokenization, each code change is converted to two
token sequences. We can simply use two encoders to encode
them, which, however, makes it hard to capture fine-grained
modifications between them. To better represent each code
change, we first align its two code snippets at the token level
using a diff tool and some heuristics, and then construct an
edit sequence based on the alignment, similar to [46], as its
representation, as shown in Figure 2. Each element in an
edit sequence is a triple 〈ti, t′i, ai〉 and is named as an edit. ti
is a token in the old code and t′i is a token in the new code.
ai is the edit action that converts ti to t′i, which can be insert,
delete, equal or replace. If ai is insert (delete), ti (t′i) will be the
empty token ∅. Such edit sequences can not only preserve
the information of the old code and the new code, but also
highlight the fine-grained changes between them.

It is worth mentioning that aligning two code snippets
at the token level is not so straightforward even with a diff
tool. The core task of this step can be described as: given
two sequences of elements (e.g., words or tokens), get their
proper element-level alignment. To tackle this challenge, we
use a Python diff tool named SequenceMatcher. Unfortu-
nately, the alignment computed by SequenceMatcher is at
the subsequence level instead of element level. Therefore we
further use some heuristics to refine such subsequence-level
alignment. For a subsequence match marked as insert, delete
or equal, converting it into one or more element matches is
straightforward. For a replace subsequence match, the tokens
between the two subsequences are all different, and we
leverage the procedure presented in Algorithm 1 to convert
it into element match(es). Specifically, given subsequence
A = [A1, · · · , Ai] and subsequence B = [B1, · · · , Bj]
matched by SequenceMatcher as replace, we first compute
the similarity s1 between A1 and B1 and the similarity sn
between Ai and Bj using the quick ratio method provided
by SequenceMatcher (Lines 3-4). i and j are the lengths of A
and B, and they may not be equal. sn refers to the similarity

6

Old Code

New Code

Old
Comment

New
Comment

Edit Seq

Token Seq

Token Seq

d

Two Attentions

LSTM-based
Decoder

Two Pointers

Decoder

Code Change
Sub-Encoder

Comment
Sub-Encoder

Encoder

CUP

Label

Code Change
Sub-Encoder

Comment
Sub-Encoder

Encoder

d
Attention

Dense + Softmax

Classifier

Old Code Old
Comment

Model TrainingData Flattening Comment Update

NewCode New
Comment

Trained
OCD

Trained
CUP

Positive

OCD

Code
Repositories

Commits

Fig. 1. The overall framework of CUP2

ti

t′i

ai

m

m

equal

Files

Files

equal

∅
Info

insert

.

.

equal

remove

remove

equal

All

∅
delete

(

(

equal

files

id

replace

)

)

equal

mFilesInfo.remove(id);

mFiles.removeAll(files);

an edit

Fig. 2. Converting a code change to an edit sequence.

Algorithm 1: Compute the element-level alignment
between two subsequences matched as replace

input : Two subsequences A = [A1, · · · , Ai] and
B = [B1, · · · , Bj] where A ∩B = ∅

output: The alignment align between A and B

1 align← [];
2 delta← [“′′] ∗ |i− j|;
3 s1 ← similarity(A1, B1);
4 sn ← similarity(Ai, Bj);
5 if s1 ≥ sn then
6 if i > j then
7 B ← B + delta;
8 else
9 A← A+ delta;

10 else
11 if i > j then
12 B ← delta+B;
13 else
14 A← delta+A;

15 for idx← 1 to max(i, j) do
16 if Aidx = “′′ then
17 align.append([Aidx, Bidx, “insert′′]);
18 else if Bidx = “′′ then
19 align.append([Aidx, Bidx, “delete′′]);
20 else
21 align.append([Aidx, Bidx, “replace′′]);

between the last elements of A and B. If s1 ≥ sn, we align
A and B from the beginning to the end to get the element-
level alignment, and if sn > s1, we compute the alignment
from the opposite direction (Lines 5-21).

With the procedure mentioned above, given a code

LSTM

et′1et1 ea1

t1 t′1
a1

h′
1

LSTM

et′2et2 ea2

t2 t′2
a2

h′
2

LSTM

et′3et3 ea3

t3 t′3
a3

h′
3

LSTM

ex1

x1

h1

LSTM

ex2

x2

h2

LSTM

ex3

x3

h3

Co-Attention

LSTM

h1
g1

LSTM

h2
g2

LSTM

h3
g3

LSTM LSTM LSTM

h′
1

g′
1 h′

2
g′
2 h′

3
g′
3

u′
1 u′

2 u′
3 u1 u2 u3

Contextual

Embed Layer

Embedding

Layer

Co-Attention

Layer

Modeling

Layer

Code Change Sub-Encoder Comment Sub-Encoder

Fig. 3. The encoder architecture used by OCD and CUP.

change, we can convert it into a token-level alignment as
follows: 1) We tokenize its two code snippets into two
word sequences using a lexer, and compute its word-level
alignment using the procedure. 2) Each computed word
match is converted into two token sequences using the
tokenizer described in Section 4.1.1, and the token-level
alignment of this word match can also be computed using
the aforementioned procedure. 3) All the token matches
computed from the word-level alignment are concatenated
as the token-level alignment of the code change.

4.2 Encoder

OCD and CUP use the same encoder architecture to learn
the representations of code changes and old comments,
which is presented in Figure 3. The encoder takes as input
an edit sequence E = [〈t1, t′1, a1〉, · · · , 〈|tn, t′n, an〉] and
an old comment x = [x1, · · · , x|x|], and aims to convert
each edit and each comment token into feature vectors
that capture enough contextual information for obsolete
comment prediction or new comment generation. In detail,
the encoder consists of two distinct sub-encoders, i.e., Code
Change Sub-Encoder and Comment Sub-Encoder, to encode
the edit sequence and the old comment, respectively. The
two sub-encoders are nearly the same in structure. Each of
them is composed of four ordered layers: an embedding
layer, a contextual embed layer, a co-attention layer and a
modeling layer.

4.2.1 The Embedding Layer
This layer is responsible for mapping the three kinds of
tokens, i.e., code tokens, comment tokens, and edit actions,

7

into embeddings. There are only four edit actions, so we
randomly initialize an embedding matrix for them and
update it during training. For code and comment tokens,
we first build a unified vocabulary from all training code
and comment tokens. Then we use a pre-trained fastText
model [47] to obtain the word embedding of each token.
Instead of two distinct vocabularies for code and comments,
we prefer a unified one. Because with its help, we can
map code tokens and comment tokens into one shared
vector space, which can ensure the same tokens in code and
comments have the same embeddings and ease the capture
of code-comment references. Pre-trained word embeddings
are used for providing accurate syntactic and semantic
information. In addition, we choose fastText instead of other
pre-trained models because the word embeddings learned
by fastText contain subtoken information and it can effec-
tively map subtokens (e.g., the tokens split from compound
words) into embeddings, which are very suitable for this
task.

4.2.2 The Contextual Embed Layer
For each encoder, we place a distinct Bi-LSTM (Bidirectional
LSTM) on the top of the embedding layer to model the
temporal interactions between edits (comment tokens) and
represent each edit (comment token) as a contextual vector.
For Code Change Sub-Encoder, the three embeddings, i.e.,
eti , et′i and eai , of each edit Ei are first concatenated
horizontally, and then input to the Bi-LSTM, as follows:

h′i = Bi-LSTM(h′i−1,h
′
i+1, [eti ; et′i ; eai])

where h′i is the contextual vector of this edit. Comment
Sub-Encoder computes the contextual vector hi of each
comment token xi in a similar way:

hi = Bi-LSTM(hi−1,hi+1, exi
)

where exi
is the embedding of xi. For convenience, the

contextual vectors of the old comment and the code change
can be stacked as matrices H ∈ R2d×|x| and H ′ ∈ R2d×n,
respectively.

4.2.3 The Co-Attention Layer
So far, the code change and the old comment are represented
independently. However, to capture relationships between
them, it is necessary to link and fuse their information. This
layer is used to address this need and is shared by the
two sub-encoders. It takes as input the contextual vectors,
i.e., H and H ′, and outputs a comment-aware (edit-aware)
feature vector for each edit (comment token) along with the
original contextual vector of this edit (comment token) to
the consequent layer.

In detail, each X-aware feature vector is indeed a con-
text vector computed by the dot-product attention mech-
anism [48]. Formally, the edit-aware feature vector gi of
comment token xi is calculated by:

gi =H
′βi (2)

βi = softmax(H ′>Wβhi) (3)

βi is the attention weights of xi on all edits and measures
how important each edit is with respect to xi.Wβ ∈ R2d×2d

is the trainable parameters. The comment-aware feature

Code Change Sub-Encoder Comment Sub-Encoder

t′1t1 a1 t′2t2 a2 t′3t3 a3 x1 x2 x3

Code Change Attention Comment Attention

u′
1 u1u′

2 u2u′
3 u3

q′ q

Dense + Softmax

v′ v

P

Fig. 4. The architecture of OCD

vector g′i of edit Ei is computed in nearly the same way
except that the attentions are derived oppositely, i.e., from
edits to comment tokens, as follows:

g′i =Hβ
′
i

β′i = softmax(H>W>
β h
′
i)

We can see that gi signifies and captures the information
related to comment token xi from the whole code change.
Meanwhile, g′i highlights and keeps the information related
to edit Ei from the whole old comment. These X-aware
feature vectors provide a foundation for capturing relation-
ships between code and comments.

4.2.4 The Modeling Layer
This layer produces the final representation of each edit
(comment token) based on its contextual vector and
comment-aware (edit-aware) feature vector. The two sub-
encoders use two distinct Bi-LSTMs to learn such repre-
sentations. In detail, given a comment token xi, its final
representation ui is calculated as follows:

ui = Bi-LSTM(ui−1,ui+1, [gi;hi])

The final representation u′i of an edit Ei is calculated
similarly:

u′i = Bi-LSTM(u′i−1,u
′
i+1, [g

′
i;h
′
i])

ui (u′i) is expected to contain the contextual information of
xi (Ei) with respect to both the code change and the old
comment. For convenience, we refer to the stacked matrices
of all ui and all u′i as U ∈ R2d×|x| and U ′ ∈ R2d×n,
respectively.

4.3 Obsolete Comment Detector (OCD)

OCD in CUP2 is responsible for predicting obsolete com-
ments. It takes as input a code change and an associated old
comment, and outputs the probability that this comment
should be updated with this code change. Figure 4 presents
the architecture of OCD. The encoder mentioned above
is first used by OCD to encode the code change and the
comment into sequences of feature vectors, i.e., U and U ′,
simultaneously. Then, the dot-product attention mechanism
is adopted to compute a single feature vector for the whole
old comment and the whole code change, respectively:

v = Uω

ω = softmax(U>Wωq)

8

Code Change Sub-Encoder Comment Sub-Encoder

t′1t1 a1 t′2t2 a2 t′3t3 a3 x1 x2 x3

Code Change Attention Comment Attention

u′
1 u1u′

2 u2u′
3 u3

LSTM

eŷ1

<s>

LSTM

eŷ2

ŷ2

LSTM

eŷ3

ŷ3

·u′
3

u3

Dense + Softmax

s1 s2 s3

y1 y2
Weighted Sum

P vocab
3

y3

c′3

c3

P code
3 P cmt

3

Decoder
Encoder

Fig. 5. The architecture of CUP

v′ = U ′ω′

ω′ = softmax(U ′>Wω′q′)

ω and ω′ are attention weights, q ∈ R2d and q′ ∈ R2d are
learnable query vectors used to guide the “attentions” of v
and v′ to U and U ′. Wω ∈ R2d×2d and Wω ∈ R2d×2d are
trainable parameters. We expect such attention mechanism
can learn to effectively focus on and select the information
that is important for obsolete comment prediction.
v and v′ are then concatenated and passed through two

linear layers with activation to calculate the probability of
each label, as follows:

vo = tanh(Vb[v;v
′]])

P = softmax(V ′bvo + b)

where P is the probability distribution. Vb ∈ Rd×4d , V ′b ∈
R2×d and b are trainable weights or biases.

4.4 Obsolete Comment Updater (CUP)

After prediction, CUP2 uses CUP to generate the new
version of each predicted obsolete comment with respect
to the corresponding code change. CUP also leverages the
aforementioned encoder to learn the representations of code
changes and comments. But different from OCD, the output
component of CUP is an LSTM-based decoder responsible
for the generation of new comments.

Figure 5 illustrates the architecture of CUP and how
a comment token is generated using the decoder. With
the feature matrices U and U ′ output by the encoder as
input, the decoder of CUP produces the new comment by
sequentially generating its tokens. The initial state s0 of
the decoder’s LSTM is constructed by concatenating the
last feature vectors of U and U ′. At each decoding step
j, the input ŷj is first mapped into an embedding eŷj

using Comment Sub-Encoder’s embedding layer. ŷj is the
previous reference token when training or the previously
generated token when testing. Then, the hidden state sj of
this step is computed based on eŷj , the previous hidden
state sj−1 and the previous output vector oj−1 (computed
by Equation 4), as follows:

sj = LSTM(sj−1, [eŷj ;oj−1])

The decoder also adopts the dot-product attention mech-
anism, which derives a context vector at each time step as
the representation of the encoder’s input. There are two sub-
encoders, so the decoder calculates two context vectors, i.e.,

cj from the old comment and c′j from the code change,
following Equation 2 and 3.

Then, cj , c′j and sj are concatenated to calculate an
output vector oj ∈ Rl and a vocabulary distribution P vocba

j :

oj = tanh(Vc[cj ; c
′
j ; sj]) (4)

P vocab
j = softmax(V ′coj)

Vc ∈ Rl×(4d+l) and V ′c ∈ Rv×l are learnable parameters
and v is the size of the unified vocabulary. P vocab

j can be
directly used to generate the target token. For example, we
can choose the token with the highest probability as the
output of time step j.

Out-of-vocabulary (OOV) words are pervasive in soft-
ware artifacts. The decoder cannot generate OOV words if it
only chooses tokens from a fixed vocabulary. We observed
that an OOV word in a new comment usually can be found
in its corresponding old comment and/or new code. There-
fore, we also adopt the pointer generator [49] to alleviate
the OOV problem following Liu et al. [19]. In addition, by
copying from the old comment, the pointer generator can
ease the generation of the new comment and help keep the
format of the old and new comments consistent. Specifically,
two pointer generators are used to copy tokens from the old
comment and the new code, respectively:

P cmt
j (yj) =

∑
k:xk=yj

αjk

P code
j (yj) =

∑
k:t′k=yj

α′jk

P cmt
j (yj) and P code

j (yj) are the probabilities of copying yj
from the old comment and the new code. αjk and α′jk are
the attention weights of xk andEk with respect to time step
j, and are calculated with the context vectors cj and c′j .

At last, the conditional probability of producing yj at
time step j is computed by combining P vocab

j , P cmt
j and

P code
j :

p(yj |y<j ,x,E) = γjP
vocab
j (yj)+

(1− γj)(θjP cmt
j (yj) + (1− θj)P code

j (yj))
(5)

γj and θj measure the probabilities of generating yj by
selecting from the vocabulary and copying from the old
comment, respectively. Each of them is modeled by a single-
layer feed-forward neural network jointly trained with the
decoder, as follows:

γj = σ(w>γ oj + bγ)

θj = σ(w>θ oj + bθ)

where wγ ,wθ ∈ Rl and bγ , bθ ∈ R are trainable parameters,
and σ is the sigmoid function.

5 DATA PREPARATION

We build a large-scale dataset for training and evaluating
CUP2. This dataset is constructed from Java programs. How-
ever, our approach is language-agnostic and we believe it
can be easily adapted for other languages. We concentrate
on the modified methods in code changes and their header
comments (method comments), because 1) Java methods

9

can be precisely associated with their header comments,
while it is non-trivial to accurately link comments and
code of other granularity, e.g., a statement and 2) Method
comments are an important type of comments. They are
often referred to by developers for program comprehension,
and can be used to construct API reference documentation
[50]. Also, our approach detects and updates obsolete com-
ments at the sentence level, i.e., processes one comment
sentence at a time. The reasons behind this choice are: 1) it is
relatively easy to recognize patterns at a small but coherent
granularity [46] and 2) a method comment with multiple
sentences can also be processed and updated iteratively.
In addition, our approach focuses on updating comments,
and we regard deleting, adding and rewriting comments as
separate problems. For convenience, in this section we use
comment to refer to a comment sentence and doc for a whole
method comment.

This section describes how we extract method-doc
change instances, i.e., 〈old code, new code, old doc, new doc〉,
from code repositories, how we convert qualified instances
into method-comment change samples, i.e., 〈old code, new
code, old comment, new comment〉, and how we build the
datasets for training OCD and CUP and evaluating CUP2,
respectively. Note that old doc and new doc above can be
identical; similarly old comment and new comment above can
also be identical.

5.1 Data Collection

Wen et al. [30] collected 1,500 Java repositories from GitHub
for studying code-comment inconsistencies. All the repos-
itories were selected based on a rigorous procedure, have
no less than 500 commits, and were manually verified
by Wen et al. to be popular engineered projects. We also
collect data from these projects. In detail, we first cloned
the 1,500 repositories from GitHub. However, we found
two repositories, i.e., pig4cloud/pig and wyouflf/xUtils, had
been removed from GitHub and two other repositories,
i.e., liferay/liferay-portal and JetBrains/MPS, were too large to
be cloned in reasonable time. Therefore, 1,496 repositories
were successfully cloned. Then, we constructed method-
doc change instances by extracting modified methods and
their corresponding docs from each non-merge commit of
every repository. Methods and docs were associated using
JavaParser [51]. We obtained 6,106K method-doc change
instances after filtering out the instances with empty old doc
or empty new doc. Different from our previous work [21],
we do not remove the instances where the old and new docs
are identical, because such instances are needed for extract-
ing negative method-comment change samples, which are
necessary for training and evaluating OCD.

5.2 Modified Method Extraction

It is non-trivial to extract modified methods from a commit,
since developers may change method signatures. To do
this, we first leveraged GumTree [52] to calculate method
mappings between two revisions. Then, based on such
mappings, we compared the ASTs of each old method and
its new version to identify and extract modified methods.
Comments were ignored for AST comparisons.

However, GumTree is not designed for matching meth-
ods and we found that for short methods and methods
with similar bodies, the method mappings extracted by
GumTree are not always accurate. To alleviate this problem,
we customized GumTree’s matching algorithm to better
extract method mappings. In detail, GumTree’s matching
algorithm takes two trees T1 and T2 as input and contains
two ordered phases: the top-down phase and the bottom-
up phase. The top-down phase matches isomorphic subtrees
between the two trees and the bottom-up phase tries to find
additional mappings in a bottom-up way. We customized
GumTree by adding an additional phase named method-
matching phase between the two phases.

This method-matching phase is based on our observa-
tion that if method mi in T1 and method mj in T2 have
the same signature, they usually should be matched. In
addition, if mi’s signature is different from that of mj

but they have the same name and no other methods in
both T1 and T2 use this name, it is very likely that mj

is modified from mi. Specifically, this phase first collects
unmatched MethodDeclaration nodes M1 and M2 from T1
and T2, respectively. Then, for each method mi in M1, if
only one method mj in M2 has the same signature as it,
mi and mj are matched and removed from M1 and M2.
After checking method signatures and updating M1 and
M2, this phase continues to match the remaining methods
in M1 and M2 with respect to method names in a similar
way.

It took over 290 hours to extract modified methods from
the 1,496 repositories using 40 cores of Intel Xeon 2.7GHz
CPU.

5.3 Data Preprocessing

After obtained the 6,106K method-doc change instances, we
preprocessed them as follows:

5.3.1 Filter Out Unqualified Method-Doc Change Instances
This step aims to reduce unrelated information in docs and
filter out the instances of which the docs are not method
descriptions or the methods are mismatched. We observed
that if a doc is a line comment (i.e., a comment starting with
“//”) instead of a Javadoc or a block comment, it is usually
a commented Java annotation (e.g., “//@Override”) instead
of a method description. So, we first removed the instances
with line comments as docs. A doc can consist of a free-form
description section and a tag section. The description section
usually contains “what”, “why” and “how” information of
the associated method, while the tag section describes the
parameters and return value of the method. Compared to
the description section, the tag section is more formal and
structured, and can be well handled using rule-based meth-
ods. Therefore, we focused on the description section and
deleted the tag section in each doc. Next, “@inheritDoc”,
code snippets and HTML tags were removed from each doc
to reduce noise in comments. Then, the docs containing the
phrase “(non-Javadoc)” were filtered out, because we no-
ticed that such docs always provide no description of their
associated methods and only consist of one or more “@see”
tags referring to other methods. The docs with non-ASCII
characters were also deleted. After these operations, empty

10

docs may appear and we further removed the instances
with empty docs. Finally, according to our inspection of
the method mappings computed by GumTree, GumTree
often produces inaccurate mappings for abstract methods.
Therefore, the instances containing abstract methods were
also deleted to reduce method mismatching. After this step,
we obtained 4,357K qualified method-doc change instances.

5.3.2 Construct Method-Comment Change Samples
A doc may contain multiple sentences. This step is respon-
sible for further processing docs and matching sentences
between each old doc and its new doc to construct method-
comment change samples. Before sentence matching, we
first replaced emails, URLs, references (e.g., “#123”) and
versions (e.g., “1.2.3”) in docs with “EMAIL”, “URL”, “REF”
and “VERSION”, respectively, to reduce noise. Next, we
split each doc into sentences using NLTK [53], removed
the sentences with only punctuation marks, and tokenized
the remaining sentences using the tokenizer described in
Section 4.1.1. Then, given a pair of docs, we calculated the
word-level Levenshtein distance [54], which is the mini-
mum word edits (insertions, deletions and substitutions)
required to change a sentence into the other, between each
old sentence and each new sentence, and constructed a
distance matrix. Based on this matrix, the old and new
sentences are matched in a best-fit way. If the distance of
a matched pair is larger than the old sentence’s length,
this pair should be regarded as a rewrite instead of an
update. We notice that some old sentences are very short,
e.g., “get Element”, and some updates on such short old
sentences, e.g., updating “get Element” to “get a list of
Element”, may be mistakenly regarded as rewrites. We used
a threshold to mitigate such mistakes, and regarded the
matched pairs of which the distances are larger than both
the corresponding old sentences’ lengths and the thresh-
old as rewrites. After manually inspecting 100 randomly
selected matched pairs with non-zero distances, we found
that when the threshold is set to 5, there was no mistakenly
identified rewrite pair. Therefore, we identified rewrite pairs
with 5 as the threshold and filtered out rewrite pairs after
sentence matching. Finally, each remaining matched pair
was used to construct a method-comment change sample,
i.e., 〈old code, new code, old comment, new comment〉. We can
see that one method-doc change instance can be split into
multiple method-comment change samples, which share the
code change but have their own sentence pairs. As a result,
we constructed 5,352K method-comment change samples,
which belong to 3,282K method-doc change instances. If
the old and new comments of a sample are different after
removing punctuations, we regard the old comment as
an obsolete comment and label this sample as a positive
sample. Otherwise, this sample is labeled as a negative
sample.

5.3.3 Set Max Length and Max Distance
Due to the limited memory of GPU and to reduce the
training time, we set the max lengths of code edit sequences,
old comments, and new comments to be 500, 50, and 50, re-
spectively. More than 95% of the processed comments have
less than 50 tokens. In addition, a comment change is very
likely to be a rewrite instead of an update if the absolute or

relative edit distance between the old and new comments
is large. The relative edit distance is defined as the absolute
distance divided by the old comment’s length. We find that
the absolute and relative edit distances of 80% positive sam-
ples are no more than 12 and 0.67, respectively. To reduce
comment-rewrite samples, we filtered out the samples of
which the absolute or relative distances is larger than 12
or 0.67. At last, we obtained 4,206K method-comment co-
change samples, which come from 2,693K method-doc co-
change instances.

5.4 Data Splitting

The 4,206K method-comment change samples are extracted
from 707K commits. Since developers may perform system-
atic or recurring code changes in one commit [55], [56], a
commit may contain duplicate change samples. So, before
splitting the data, for every duplicate sample set within each
commit, we only kept one sample and removed the others
in it to avoid duplicate samples inflate the performance of
the evaluated approaches. For each project, we sorted its
commits in the ascending order of commit creation time,
put the first 80% commits into the training set, shuffled
the remaining 20% commits, and evenly split them into
the validation and test set. In this way, we ensure all
changes in the training set happened before those in the
validation and test sets. We also noticed that git operations
like “cherry-pick”, “rebase” and “squash” can introduce
duplicate samples among different commits. Therefore, after
splitting, duplicate samples between the test (validation)
and training sets were also filtered out by us. As a result, our
final training, validation and test sets consist of 3,194K, 437K
and 454K method-comment change samples, respectively.

Such training and validation sets are used to train and
validate OCD, and the evaluations of CUP2 and OCD are
conducted on the test set. For convenience, we refer to this
dataset as Whole dataset. Different from OCD, CUP only
focuses on the positive samples, i.e., the samples where the
old comments require updates. To learn the update patterns
of comments, we need to train and evaluate CUP on a
dataset with only positive samples. Therefore, we extracted
the positive samples from the training, validation and test
sets of the Whole dataset, respectively, to construct a sub-
dataset named Update dataset. The training, validation and
test sets of the Update dataset contain 85.4K, 9.8K and 9.6K
method-comment change samples, respectively.

Please note that the Whole dataset is highly imbalanced
and the ratio of the positive samples to the negative samples
in it is about 1/38. The possible reasons for this phe-
nomenon are: 1) comment updates are less frequent than
method changes; 2) the Whole dataset targets at comment
sentences and when developers update a comment, usually
only part of its sentences are updated; 3) there may exist
some mislabeled negative samples, i.e., some samples ac-
tually need to be updated but developers have not update
them yet.

Another thing worth mentioning is the Update dataset
and the dataset built in our previous work [21], namely the
Original dataset, are split in different ways. The Update
dataset is split according to the commit creation time of all
change samples, while the Original dataset only considers

11

the positive samples. Therefore, the training, validation and
test sets of the Update and the Original datasets consist of
different sets of samples, respectively.

6 EVALUATION SETUP

In this section, we first present the baselines and the
evaluation metrics used to assess the performance of CUP2

and its two components. Then, we describe our experiment
settings used for evaluation.

6.1 Baselines
To evaluate the effectiveness of CUP2 as well as its two
components, i.e., OCD and CUP, we choose the following
baselines:

6.1.1 Baselines for CUP2

There is little work focusing on combining the detection and
update of obsolete comments. The tool that is most related
to CUP2 is Fraco [15], so we use it as the baseline:

Fraco is a rule-based tool proposed by Ratol and Ro-
billard to detect fragile comments with respect to rename
refactorings and is shown to perform better than Eclipse’s
refactoring tool. Although the paper proposing Fraco only
presents Fraco’s ability to detect fragile comments and does
not claim that Fraco can update fragile comments with
rename refactorings, we find the implementation of Fraco
provides a quick-fix feature to fix detected fragile comments.
When developers conduct a rename refactoring, Fraco will
be triggered to identify the references between comment
phrases and the renamed identifier. If any fragile comment
phrase is detected, the quick-fix feature can be used to
automatically replace such phrase with the new identifier
name based on heuristic rules. We manually extract the
detection algorithm and the quick-fix feature from Fraco’s
source code, wrap them as an offline tool, and use this
tool to conduct experiments. Given a code change and a
corresponding old comment, the offline Fraco first leverages
RefactoringMiner [57] to detect rename refactorings from
the code change. Then, for each detected rename refactoring,
it uses Fraco’s detection algorithm to identify fragile com-
ment phrases in the old comment. Finally, Fraco’s quick-fix
feature is applied to fix detected fragile phrases.

6.1.2 Baselines for OCD
To assess the effectiveness of OCD, we compare it with
two baselines, namely FracoDetector and RandomForest, for
evaluation:

FracoDetector is the detection component of the of-
fline Fraco mentioned above, and is used as a rule-based
baseline for OCD. Specifically, given a code change and a
corresponding old comment, it performs rename refactor-
ing extraction and fragile phrase detection. If there is no
rename refactoring extracted or no fragile comment phrase
identified, FracoDetector predicts this sample as negative.
Otherwise, this sample is regarded as positive.

RandomForest is a machine-learning-based approach
proposed by Liu et al. [16] to detect outdated block or
line comments during code changes. Specifically, Liu et
al. manually crafted 64 features related to code, old com-
ments and the relationship between them, and employed

a random forest for prediction. Unfortunately, they did
not provide the implementation of their approach. There-
fore, we re-implement their approach using JavaParser [51],
GumTree [52], RefactoringMiner [57] and scikit-learn [58]
and use this re-implementation as a baseline for OCD.
Different from Liu et al. [16], this work takes the change of a
single method as input. Therefore, some features requiring
the context beyond a single method’s change are not suitable
for this work and cannot be extracted from our dataset.
Such features include 2 class-level code features (changes on
class attributes, class attribute related), 4 refactoring features
(extract method, inline method, encapsulate field, replace
exception with test) and 1 class-level comment feature (the
ratio of comment lines to the class). In addition, since this
work focuses on method comments, two comment features,
i.e., the ratios of comment lines to the method and to the
code snippet, are the same and should be merged into one.
Due to these considerations, our re-implementation uses
the remaining 56 features instead of all 64 features and a
random forest for obsolete comment detection. For conve-
nience, we refer to our re-implementation as RandomForest.

6.1.3 Baselines for CUP
We use three baselines belonging to different types for
evaluating CUP, i.e., Origin, FracoUpdater and NNUpdater.

Origin is a special baseline for CUP. Given a code change
and a corresponding old comment requiring updates, it di-
rectly outputs the old comment as the result. By comparing
CUP with Origin, we can know whether the comments
generated by CUP are closer to the new comments than the
old comments.

NNUpdater, short for Nearest-Neighbor-based com-
ment Updater, is an IR-based baseline proposed by us. Like
NNGen [59] for commit message generation, the hypoth-
esis behind NNUpdater is that similar code changes may
lead to similar or even the same comment changes. Given
a test sample, i.e., a code change and its old comment
requiring updates, NNUpdater first finds its most similar
training sample and then reuses the new comment of the
nearest neighbor as output. Specifically, to measure the
similarity simchg between two code changes, NNUpdater
converts each of them to a unified diff file, represents diff
files as tf-idf vectors, and calculates the cosine similarity
between such vectors. The similarity simcmt between two
old comments are calculated in the same way. The final
similarity sim between two samples is then defined as:
sim = α · simchg + (1− α) · simcom, 0 ≤ α ≤ 1. α is tuned
using the validation set.

FracoUpdater is the update component of the offline
Fraco mentioned in Section 6.1.1. Given a code change
and a corresponding obsolete comment, it performs rename
refactoring extraction, fragile phrase detection and fragile
phrase fixes in order. For those samples where no rename
refactoring is extracted or no fragile comment phrase is
identified, FracoUpdater outputs the old comments as the
results. FracoUpdater is used as a rule-based baseline.

6.1.4 Variants of OCD and CUP
In the encoder architecture used by both OCD and CUP, we
adopt a co-attention mechanism, build a unified vocabulary,
and use the fastText word embeddings to better capture the

12

relationships between code changes and old comments. In
addition, the decoder of CUP leverages pointer generators
to generate OOV words and preserve comment format. To
understand the effects of these components on the perfor-
mance of OCD and CUP, we construct several variants of
OCD and CUP, namely OCD-co-attn, OCD-uni-vocab, OCD-
fastText, CUP-co-attn, CUP-uni-vocab, CUP-fastText, CUP-
pointer:

OCD-co-attn and CUP-co-attn remove the co-attention
layer from their encoders and keeps other components the
same as OCD and CUP, respectively.

OCD-uni-vocab and CUP-uni-vocab both use two dis-
tinct vocabularies, instead of a unified one, for code and
comment tokens. Specifically, in the encoder, a vocabulary
built from the code snippets in the training set, namely
code vocabulary, is used to encode code tokens by the Code
Change Sub-Encoder; a vocabulary built from the comments
in the training set, namely comment vocabulary, is used to
encode old comment tokens by the Comment Sub-Encoder.
The decoder of CUP-uni-vocab also uses the comment vo-
cabulary for generating comment tokens and encoding the
tokens generated previously.

OCD-fastText and CUP-fastText do not use the fastText
pre-trained word embeddings but learn word embeddings
during training.

CUP-pointer removes the pointer generators used in
the decoder and keeps other components consistent with
CUP. In other words, it produces comment tokens only by
selecting them from the vocabulary.

6.2 Evaluation Metrics
The metrics used to evaluate OCD, CUP and CUP2 are as
follows:

6.2.1 Evaluation Metrics for OCD
The detection of obsolete comments is a binary classification
problem. OCD is actually a binary classifier. So we use Preci-
sion, Recall and F1-Score, which are well-known metrics for
binary classification, to measure the performance of OCD.

6.2.2 Evaluation Metrics for CUP
Given a code-comment change sample, CUP aims at gener-
ating a new comment to replace the old comment based on
the code change. We use Accuracy, Recall@5, GLEU [20],
[25] and two evaluation metrics proposed by us for the JIT
comment update task, namely Average Edit Distance (AED)
and Relative Edit Distance (RED), to evaluate CUP and the
corresponding baselines.

Accuracy and Recall@5 are used to present to what
extent a comment update approach can generate correct
comments. We use correct comments to refer to the generated
comments which are identical to the reference comments if
we ignore the punctuation marks at the end of the com-
ments. In detail, Accuracy is the percentage of the test sam-
ples where correct comments are generated on the first tries.
Recall@5 is similar to Accuracy, but it allows an approach
to generate 5 candidates for each test sample and if any
generated candidate is a correct comment, it considers that
this approach can successfully update this sample. For each
test sample, CUP can generate multiple candidates through

beam search. Specifically, on each decoding step, CUP keeps
trace of the k most probable partial comments generated so
far based on the probabilities computed by Equation 5. K
is the beam size. Hence, CUP can produce 5 candidates at
the end of decoding by setting k to 5. NNUpdater is able
to produce 5 candidates from the 5 most similar training
samples. However, Origin and FracoUpdater only generate
one candidate for each sample, so their Recall@5 will be
marked as “N/A”.

GLEU is an automatic metric originally proposed to
evaluate Grammatical Error Correction (GEC) systems in
the natural language processing field. It measures how close
a generated sentence (ŷ) is to its reference (y) with respect
to its source sentence (x) based on n-gram overlaps among
these sentences. GLEU is more flexible than Accuracy and
Recall@5 and is shown to highly correlate with human
judgments on GEC tasks [25].

In our case, given a test sample, ŷ refers to the comment
generated by a comment updater, y is the new comment
written by developers, and x refers to the old comment of
this sample. In detail, GLEU deviates from BLEU [60] and
is also computed as the geometric mean of the modified n-
gram precision scores (pn), multiplied by a brevity penalty
(BP), as follows:

GLEU(x,y, ŷ) = BP · exp(
N∑
n=1

wn log pn) (6)

BP =

{
1, if |ŷ| > |y|
e1−|y|/|ŷ|, otherwise

(7)

wherewn is the weight of pn. To capture the quality of ŷ and
highlight the differences between x and y, pn is defined to
reward the n-gram overlaps between ŷ and y and penalize
the n-grams in x that should have been updated but are not,
as follows:

pn =

∑
ng∈{ŷ∩y}

Cntŷ,y(ng)−Missx,y,ŷ(ng)∑
ng∈{ŷ}

Cntŷ(ng)

Missx,y,ŷ(ng) =
∑

ng∈{ŷ∩x}
max[0,Cntŷ,x(ng)−Cntŷ,y(ng)]

where ng refers to an n-gram, Cntŷ(ng) denotes the count
of ng in ŷ and Cnta,b(ng) calculates the minimum count of
ng in a and b. In Equation 6, BP is used to penalize short
generated comments and control for recall. According to the
common practice in the GEC literature, wn is set to 1

N and
N is set to 4.

GLEU is computed at the corpus level and is usually
reported as a percentage value between 0 and 100. The
higher the GLEU score is, the closer the generated comments
are to the references.

AED and RED measure the edits developers need to
perform to perfectly update comments after using a JIT
comment updater. AED is the average edit distance between
the generated comments and their references. RED is similar
to AED but measures the average of relative edit distances.

13

Formally, given a test set with M samples, a comment
updater’s AED and RED calculated as follows:

AED =
1

M

M∑
k=1

edit distance(ŷ(k),y(k))

RED =
1

M

M∑
k=1

edit distance(ŷ(k),y(k))

edit distance(x(k),y(k))

where edit distance is the word-level Levenshtein distance.
ŷ(k) refers to the comment generated for the kth sample.
AED and RED can measure and compare the performance
of different comment update approaches in more detail.
If an approach’s RED is less than 1, we can expect that
this approach can help developers understand where and
how to update comments and reduce developers’ edits on
updating comments.

6.2.3 Evaluation Metrics for CUP2

CUP2 is the combination of OCD and CUP. We evaluate the
performance of CUP2 and its baseline in terms of all the
evaluation metrics for OCD, i.e., Precision, Recall and F1-
Score, and part of the evaluation metrics for CUP, including
AED and RED. Accuracy, Recall@5 and GLEU are not
used. Because the predictions of different obsolete comment
detectors are usually different, which means the sets of test
samples fed to the comment updaters of CUP2 and its base-
line can also be different. Under this situation, Accuracy,
Recall@5 and GLEU would not produce fair estimates of the
performance of comment updaters.

In addition, two other metrics named #TPC/#TP and
#FPC/#FP proposed by us are reported. #TP and #FP refer
to the numbers of true positive (TP) samples and false
positive samples, respectively. #TPC refers to the number of
TP samples that are correctly updated by an approach. #FPC
denotes the number of FP samples that are not updated by
an approach, i.e., the generated comments are the same as
the corresponding old comments.

6.3 Experiment Setup

We use 300-dimensional word embeddings for edit actions,
code tokens and comment tokens. The fastText model is pre-
trained on Common Crawl and Wikipedia [61], and the pre-
trained word embeddings are frozen during training. The
hidden states of the Bi-LSTMs and the LSTMs are 256 and
512 dimensions (i.e., d=256 and l=512), respectively. All the
LSTMs have only one layer. The dimensions of the query
vectors used in OCD are set to 512, i.e., 2d. The unified
vocabularies used by OCD and CUP are built separately. For
OCD, the vocabulary size is limited to 100,000 considering
efficiency and the limited GPU memory. The vocabulary
used by CUP only keeps the tokens appearing more than
once, and its size turns out to be 44K.

OCD and CUP are trained separately and do not share
their encoders. The training procedures of OCD and CUP
are similar. They are both trained to minimize the cross
entropy. Adam [62] with learning rate 0.001 is used as the
optimizers, and the gradient norm is clipped by 5. The batch
sizes are set to 192 and 24 for OCD and CUP, respectively.
The size of the CUP model is bigger than that of the OCD

model, and the largest batch sizes for OCD and CUP are
approximately 384 and 64 under the limitation of our GPU
memory. We trained OCD with batch sizes of [64, 128, 192,
256, 320, 384] and CUP using batch sizes from 8 to 64 with
step size of 8, and found OCD performs best on the Whole
validation set with batch size 192 and CUP achieves the best
performance on the Update validation set with batch size
24. In addition, since OCD and CUP are trained separately,
it is not necessary to make the ratio of CUP’s batch size to
OCD’s batch size in line with the ratio of positive samples
to all samples in the Whole dataset.

OCD and CUP are validated every 1,300 and 500 batches
on their validation sets using cross entropy and perplexity,
respectively. To improve the efficiency of training OCD,
we randomly selected 100K samples from its validation set
for conducting validation during training. For both OCD
and CUP, the learning rate is decayed by a factor of 0.5 if
the validation metric does not improve for 5 validations
and we call this a trial. We stop training after 5 trials.
The models with the best validation scores are used for
evaluation. In addition, a dropout rate of 0.2 is used for all
LSTM layers and the dense layer before computing P vocab

j

in CUP to avoid overfitting. We do not use dropout when
training OCD since its training set is large enough. When
testing CUP, beam search of width 5 is used to generate
comments, and the maximum decoding step is set to 100.
To reduce random error, OCD, CUP and CUP2 are trained
and evaluated 10 times and their average performance is
reported as the evaluation results.

For RandomForest, to make our re-implementation re-
liable and our comparison fair, we keep its settings and
hyper-parameters the same as the ones used by Liu et
al. [16]. Specifically, RandomForest uses 100 Classification
and Regression Trees (CART) as the base estimators. It
considers 7 (the sqrt root of the number of all used features)
features and adopts Gini function for searching the best
split.

For NNUpdater, we tune its α on the validation set
through grid search with 0.1 as the step size and find that
the model with α = 0.7 can achieve the best Accuracy. So,
we set the α in NNUpdater to 0.7.

In addition, when comparing OCD, CUP and CUP2

with their corresponding baselines and variants, Wilcoxon
signed-rank tests [63] at the 95% confidence level and Cliff’s
delta [64] are used and computed respectively to check the
significance and measure the effect sizes of the performance
differences. Specifically, for each comparison, we conduct
the statistical tests based on the 10 observations correspond-
ing to the 10 times of model training and evaluation.

7 EVALUATION RESULTS

In this study, we want to investigate the following research
questions (RQs):
RQ1: How effective is OCD on JIT obsolete comment detec-
tion?
RQ2: What are the impacts of the co-attention layer, the
unified vocabulary and the fastText pre-trained word em-
beddings on OCD’s performance?
RQ3: How effective is CUP on JIT obsolete comment up-
date?

14

TABLE 2
Comparisons of OCD with two baselines

Approach Precision Recall F1-Score

FracoDetector 21.7% 14.6% 17.4%
RandomForest 52.3% 10.5% 17.5%

OCD 64.0% 17.1% 27.0%

Imp.FracoDetector 194.9%∗∗∗∗(L) 17.1%∗∗∗∗(L) 55.2%∗∗∗∗(L)
Imp.RandomForest 22.4%∗∗∗∗(L) 62.9%∗∗∗∗(L) 54.3%∗∗∗∗(L)

**Imp indicates the improvement ratio of OCD over the baseline.
*, **, *** and **** refer that the corresponding p-value is less than 0.05,
0.01, 0.005 and 0.001.
N, S, M and L mean the corresponding effectiveness level is Negligi-
ble, Small, Medium and Large according to the Cliff’s Delta.

TABLE 3
Detector test sample 1

Code Change:

- public String getData() {
- return String.format("data:image/+ public byte[]

getData() {
+ return data;
}

Old Comment: Gets a data URI for this image.
New Comment: Gets the raw data of the image.
Label: True

RQ4: What are the impacts of the co-attention layer, the uni-
fied vocabulary, the fastText pre-trained word embeddings
and the pointer generators on CUP’s performance?
RQ5: Can CUP2 effectively detect and update obsolete com-
ments given code changes?

7.1 RQ1: The effectiveness of OCD
Motivation: We want to know how well OCD can detect
obsolete comments with code changes.
Approach: To answer this research question, we evalu-
ate OCD, FracoDetector and RandomForest on the Whole
dataset in terms of Precision, Recall and F1-Score.
Results: Table 2 presents the evaluation results. We can
see that OCD achieves a Precision of 64.0% and a Recall
of 17.1%. Although such performance is not perfect, we
think it is reasonable because: 1) The precision of OCD is
not bad; OCD outperforms the two baselines in terms of all
metrics by at least 17.1%, and the improvements achieved by
OCD over the baselines are all statistically significant with
large effect sizes. These results indicate that compared to the
baselines, OCD can detect more obsolete comments more
accurately. 2) The detection of obsolete comments is not an
easy task considering the difficulty of “understanding” code
changes and comments, and the high-level of class imbal-
ance of the Whole dataset. 3) OCD is the first attempt to
automatically predict obsolete comments with code changes
using carefully-crafted neural networks, which we hope can
inspire and facilitate future research in this direction.

To figure out the possible reasons for OCD’s better
performance, we manually inspect some randomly selected
test samples and review the predictions made by OCD and
the baselines for them. According to the inspection, we
owe OCD’s better Recall to its two advantages: 1) Thanks
to the specially designed neural network model, OCD can
automatically handle more diverse code changes than the

TABLE 4
Detector test sample 2

Code Change:

- public Response<SecretBase> updateSecretWithResponse(
SecretBase secret, Context context) {

- return client.updateSecretWithResponse(secret,
context).block();

+ public Response<SecretProperties>
updateSecretPropertiesWithResponse(SecretProperties
secretProperties, Context context) {

+ return client.updateSecretPropertiesWithResponse(
secretProperties, context).block();

}

Old Comment: Gets the latest version of the secret, changes its
expiry time and the updates the secret in the key vault.
New Comment: Gets the latest version of the secret, changes its
expiry time and the updates the secret in the key vault.
Label: False

two baselines by learning from massive code-comment
change data. In contrast, FracoDetector only focuses on code
changes related to identifier renaming. The code features
used by RandomForest only capture limited code change
types, and many of them are coarse-grained. 2) Based on
the special components, e.g., the co-attention layer, in the
encoder, OCD is capable of capturing both lexical references
and semantic relevance between code changes and com-
ments. However, FracoDetector can hardly identify seman-
tic code-comment relevance due to its dependence on token
matching. Because of the coarse-grained code features, Ran-
domForest is not so effective in capturing lexical references.
Also, the relationship features used by RandomForest only
include similarity scores between code and old comments
as well as the distances of the similarities, which are also
coarse-grained compared to the representations learned by
the neural layers of OCD.

Table 3 presents a test sample. In this sample, the be-
havior of the method was modified, which made the old
comment inconsistent with the code. Since there is no iden-
tifier renaming, FracoDetector fails to identify this obsolete
comment. RandomForest also makes the wrong prediction.
In contrast, OCD successfully predicts this sample to be
positive, which demonstrates its effectiveness in capturing
code-comment references.

The higher Precision of OCD reflects that OCD is more
accurate than the two baselines in capturing references
between code changes and comments. This is reasonable
because the rules used by FracoDetector makes it difficult
to precisely capture semantic code-comment relevance, and
the coarse-grained features used by RandomForest hinder
it from accurately capturing lexical references between code
changes and comments. By comparison, the LSTM layers in
OCD can help it learn tokens’ contextual information. The
special components, e.g., the co-attention layer, in OCD are
useful for accurate token matching and effective capture of
semantic code-comment relevance.

Table 4 presents a negative sample in the test set. In
the commit where this sample is extracted, class “Secret-
Base” was renamed to “SecretProperties” and the method
in this sample was modified to align with this renaming.
FracoDetector is triggered by the renaming of parameter
“secret” and matches this “secret” with the “secret” in the
comment. Therefore, it predicts that this old comment needs

15

TABLE 5
Comparisons of OCD with three variants

Approach Precision Recall F1-Score

OCD-co-attn 62.2% 16.0% 25.5%
OCD-uni-vocab 63.5% 16.6% 26.2%
OCD-fastText 61.5% 12.5% 20.7%

OCD 64.0% 17.1% 27.0%

Imp.OCD-co-attn 2.9%∗∗(M) 6.9%−(M) 5.9%∗(L)
Imp.OCD-uni-vocab 0.8%−(N) 3.0%−(S) 3.1%−(S)
Imp.OCD-fastText 4.1%∗(L) 36.8%∗∗∗∗(L) 30.4%∗∗∗∗(L)

-, *, **, *** and **** refer that the corresponding p-value > 0.05,
< 0.05, < 0.01, < 0.005, < 0.001
N, S, M and L mean the corresponding effectiveness level is Negli-
gible, Small, Medium and Large according to the Cliff’s Delta.

to be updated. RandomForest also predicts this sample to be
positive. Only OCD distinguishes the meanings of the two
“secret” and makes the correct prediction.

In summary, OCD achieves a Precision of 64.0% and a
Recall of 17.1% on the Whole dataset and outperforms
the two baselines by significant margins.

7.2 RQ2: The Effects of Main Components in OCD

Motivation: The key to JIT obsolete comment detection and
update is to effectively capture the references and relation-
ships between code changes and comments. To meet this
need, in OCD and CUP, we adopt a co-attention mechanism,
build a unified vocabulary, and use the word embeddings
pre-trained by fastText for better representing, linking and
fusing the information in code changes and comments. In
this research question, we aim to understand the effects of
the three components on OCD’s performance. Besides, the
encoder of OCD also adopts a special tokenizer for preserv-
ing comment format. We do not investigate its impact since
we believe that it is indispensable for this task.
Approach: We compare OCD with its three variants, i.e.,
OCD-co-attn, OCD-uni-vocab and OCD-fastText. The per-
formance differences between OCD and these variants can
highlight the impacts of the three components.
Results: Table 5 shows the results of our comparisons. We
can see that OCD outperforms all variants in terms of all
metrics. Specifically, the improvements achieved by OCD
over OCD-fastText are statistically significant and have large
effect sizes in terms of all metrics, and OCD also signifi-
cantly outperforms OCD-co-attn with at least medium effect
sizes in terms of Precision and F1-Score. These results mean
both the co-attention layer and the fastText pre-trained word
embeddings are useful for obsolete comment detection. It
can be seen that the performance improvement of OCD over
OCD-co-attn in Recall is not significant. One possible reason
for this is that sometimes the code-comment relationships
captured by the co-attention layer may be too strict and
explicit, resulting in the decrease of Recall. In addition,
although the average performance of OCD is better than
that of OCD-uni-vocab, our statistical analysis shows the
performance differences between them are not significant.
This is because we freeze the pre-trained word embeddings
in OCD, which already ensures the same token in code and
comments has the same embedding and makes the unified

TABLE 6
Comparisons of CUP with three baselines

Approach Accuracy Recall@5 GLEU AED RED

Origin 0.0% (0) N/A 49.3 3.59 1.000
NNUpdater 1.0% (98) 1.4% 10.7 17.69 8.544
FracoUpdater 1.7% (162) N/A 50.4 3.62 1.019

CUP 18.1% (1747) 26.1% 58.9 3.43 0.964

*The numbers in brackets are the numbers of generated correct
comments.

TABLE 7
P-Value and Cliff’s Delta of CUP compared with the baselines

Approach Accuracy Recall@5 GLEU AED RED

Imp.Origin ****(L) N/A ****(L) ****(L) ***(L)
Imp.NNUpdater ****(L) ****(L) ****(L) ****(L) ****(L)
Imp.FracoUpdater ****(L) N/A ****(L) ****(L) ****(L)

vocabulary somehow unnecessary for OCD. We still choose
to use a unified vocabulary instead of two separate ones
in OCD because a unified vocabulary can be helpful when
the word embeddings are not frozen and we prefer to use
the same encoder in OCD and CUP. Also, as we will see
in Section 7.4, this component has positive effects on CUP’s
performance.

In summary, the co-attention layer and the fastText pre-
trained word embeddings can boost the effectiveness of
OCD.

7.3 RQ3: The Effectiveness of CUP
Motivation: We want to investigate the effectiveness of CUP
on JIT comment update.
Approach: We evaluate and compare CUP and its baselines
on the Update dataset in terms of Accuracy, Recall@5,
GLEU, AED, and RED.
Results: The evaluation results are shown in Table 6 and
Table 7. We can see that CUP significantly outperforms all
the baselines in terms of all evaluation metrics with large
effect sizes. On average, it can correctly update comments in
1747 (18.1%) cases on the first tries, 10 times more than the
best-performing baseline, and can generate correct comments
for 26.1% of the test samples within 5 attempts.

Large improvements are achieved by CUP over NNUp-
dater in terms of all metrics. When compared to Origin
and FracoUpdater, CUP performs much better on Accuracy,
Recall@5 and GLEU, and also outperforms them in terms
of AED and RED by substantial margins. These results
indicate CUP can update comments more effectively and
accurately than the three baselines. In addition, CUP is the
only approach of which the AED is less than Origin’s AED
and the RED is less than 1. This highlights that CUP can
be expected to help developers better understand where
and how to update comments and reduce their edits on JIT
comment updates.

To further figure out the reasons for CUP’s better per-
formance, we manually inspect the test results. Based on
our inspection, we find that compared to NNUpdater and
FracoUpdater, CUP has two major advantages:

First, CUP can learn and apply diverse comment update
patterns automatically, while NNUpdater and FracoUp-
dater are limited to specific types of comment updates.

16

TABLE 8
Updater test sample 1

Code Change:

- public Document getUsersInRole(String role) throws
ServletException, IOException {

+ public List<String> getUsersInRole(String role) {
IUserRoleListService service = PentahoSystem.get(

IUserRoleListService.class);
- Element rootElement = new DefaultElement("users");
- Document doc = DocumentHelper.createDocument(

rootElement);
- if (service != null) {
- List<String> users = service.getUsersInRole(null,

role);
- for (Iterator<String> usersIterator = users.

iterator(); usersIterator.hasNext();) {
- String username = usersIterator.next().toString()

;
- if ((null != username) && (username.length() > 0)

) {
- rootElement.addElement("user").setText(username

);
- } } }
- return doc;
+ return service.getUsersInRole(null, role);
}

Old Comment: Returns XML for list of Users for a given Role.
New Comment: Returns a list of Users for a given Role.
NNUpdater: Finds the role associated to the given name.
FracoUpdater: Returns XML for list of Users for a given Role.
CUP-co-attn: Returns XML for list of Users for a given Role.
CUP-uni-vocab: Returns XML for list of Users for a given Role.
CUP-fastText: Returns XML for list of Users for a given list.
CUP-pointer: Returns a list of Users for a given Role.
CUP: Returns a list of Users for a given Role.

Specifically, NNUpdater relies on repeating new comments
between test and training samples to generate correct com-
ments. It may work well on some specific cases but lacks
the generalization ability. FracoUpdater is based on man-
ually summarized rules. It can obtain accurate results on
identifier-renaming-related comment updates, but cannot
handle other types of updates, e.g., updates related to type
changes. In contrast, CUP leverages a probabilistic model to
learn common patterns of JIT comment updates from extant
code-comment co-changes. The patterns learned by CUP are
more diverse than those of NNUpdater and FracoUpdater,
and can cover more samples. For example, Table 8 presents
a test sample in the Update dataset. In this sample, the
developer changed the behavior of this method to directly
return a list of Users instead of constructing and returning
an XML document. The old comment of this sample should
be updated accordingly to reflect the change of the return
value. Considering the lack of explicit reference to “Doc-
ument” in the old comment, it is non-trivial to design and
implement rules for this kind of cases. Both NNUpdater and
FracoUpdater fail to perform the correct update, while CUP
succeeds.

Second, CUP can update semantic references between
code and comments. NNUpdater does not take code-
comment relationships into consideration. FracoUpdater
can detect some semantic matching between renamed iden-
tifiers and comment phrases, but its quick-fix rules can-
not correctly update such matching. Different from them,
CUP explicitly adopts some components, such as the co-

TABLE 9
Updater test sample 2

Code Change:

- public ResourceResponse<Document> readMetadata(BlobId
blobId) throws DocumentClientException {

+ ResourceResponse<Document> readMetadata(BlobId blobId)
throws DocumentClientException {

String docLink = getDocumentLink(blobId.getID());
RequestOptions options = getRequestOptions(blobId.

getPartition().toPathString());
- return retryOperationWithThrottling(() ->

documentClient.readDocument(docLink, options),
+ return executeCosmosAction(() -> asyncDocumentClient.

readDocument(docLink, options).toBlocking().single()
,

azureMetrics.documentReadTime);
}

Old Comment: Read the blob metadata document in the CosmosDB
collection, retrying as necessary.
New Comment: Read the blob metadata document in the CosmosDB
collection.
NNUpdater: Deletes the blob from the specific bucket
FracoUpdater: Read the blob metadata document in the CosmosDB
collection, retrying as necessary.
CUP-co-attn: Read the blob metadata document in the CosmosDB
collection, retrying as necessary.
CUP-uni-vocab: Read the blob metadata document in the CosmosDB
collection, retrying as necessary.
CUP-fastText: Read the blob metadata document in the async collec-
tion, retrying as necessary.
CUP-pointer: Read the blob metadata document in the TachyonDB
collection, attempting as necessary.
CUP: Read the blob metadata document in the CosmosDB collection.

attention mechanism and the unified vocabulary, to enable
our seq2seq model to effectively capture the relationships
between code and comments. Based on our manual in-
spection, CUP can update not only lexical but also some
semantic code-comment references with code changes. Ta-
ble 9 presents an example. We can see that the devel-
oper used “executeCosmosAction” instead of “retryOper-
ationWithThrottling” to wrap and execute the “readDoc-
ument” function. Therefore, there was no retry and the
corresponding description in the old comment should be
removed. NNUpdater and FracoUpdater fail to handle this
case, but CUP accurately identifies such description and
removes it when generating the new comment.

To the best of our knowledge, CUP is the first approach
dedicated to JIT obsolete comment update using carefully-
crafted neural network models. We hope it can inspire and
facilitate follow-up works in this direction.

In summary, CUP significantly outperforms the three
baselines with large effect sizes, and can be expected
to help developers better understand where and how
to update obsolete comments and reduce their edits on
JIT comment updates.

7.4 RQ4: The Effects of Main Components in CUP

Motivation: Following RQ2, we also want to know how the
co-attention layer, the unified vocabulary and the fastText
pre-trained word embeddings affect CUP’s performance. In
addition, the decoder of CUP adopts pointer generators to
handle OOV words, ease the generation of new comments

17

TABLE 10
Comparisons of CUP with four variants

Approach Accuracy Recall@5 GLEU AED RED

CUP-co-attn 14.3% (1384) 23.7% 56.6 3.55 1.024
CUP-uni-vocab 17.1% (1645) 25.2% 58.3 3.49 1.001
CUP-fastText 14.7% (1416) 22.6% 57.0 3.64 1.077
CUP-pointer 6.9% (662) 12.8% 53.3 4.32 1.381

CUP 18.1% (1747) 26.1% 58.9 3.43 0.964

*The numbers in brackets are the numbers of generated correct
comments.

TABLE 11
P-Value and Cliff’s Delta of CUP compared with the variants

Approach Accuracy Recall@5 GLEU AED RED

Imp.CUP-co-attn ****(L) ****(L) ****(L) ****(L) ****(L)
Imp.CUP-uni-vocab **(L) **(L) ***(L) *(L) *(L)
Imp.CUP-fastText ****(L) ****(L) ****(L) ****(L) ****(L)
Imp.CUP-pointer ****(L) ****(L) ****(L) ****(L) ****(L)

and preserve comment format. We also want to investigate
their impacts.
Approach: Similar to RQ2, we compare CUP with its four
variants, i.e., CUP-co-attn, CUP-uni-vocab, CUP-fastText
and CUP-pointer.
Results: The results of our comparisons are presented in
Table 10 and Table 11. We can see that CUP performs
better than the four variants in terms of all metrics. The
performance improvements achieved by CUP are all statis-
tically significant with large effect sizes. For Accuracy, the
improvements achieved by CUP range from 5.8% to 162%,
and CUP can generate at least 102 more correct comments
than the variants. These results indicate that the co-attention
mechanism, the unified vocabulary, the fastText embeddings
and the pointer generators are all useful and effective for JIT
obsolete comment update. In addition, as we mentioned in
Section 7.2, the frozen pre-trained word embeddings make
the unified vocabulary less useful for OCD. However, the
unified vocabulary plays an important role in CUP, because
it makes the decoder of CUP able to represent and generate,
instead of only copy, code-only tokens.

To better understand these performance differences, we
manually inspect the test results of the four variants. We find
that without the four components, CUP will capture more
incorrect code-comment references, may more frequently
miss updating comments, perform inaccurate updates on
the right references, or fail to generate the tokens which are
rare or can not be found in the training set but appear in
the input. For example, in the samples presented in Table 8
and Table 9, both CUP-co-attn and CUP-uni-vocab fail to
predict the proper updates and regard modifying nothing
as the best solution. CUP-fastText builds incorrect references
for the two samples. It builds a reference between “Role”
and “List” in Sample 1, links “CosmosDB” with “async”
in Sample 2, and performs incorrect comment updates.
Although CUP-pointer correctly updates the comment for
Sample 1, it fails to generate “CosmosDB” and performs an
inaccurate update on the right reference (i.e., “retrying as
necessary”) in Sample 2. These results demonstrate that the
four components all play important roles in capturing and
updating code-comment references.

TABLE 12
Comparisons of CUP2with the baseline

Appr P R F1 #TPC/#TP #FPC/#FP AED RED

Fraco 21.7% 14.6% 17.4% 162/1406 1602/5076 2.58 (0.61) 2.182

CUP2 64.0% 17.1% 27.0% 698/1650 381/932 1.86 (1.95) 0.842

Imp ****(L) ****(L) ****(L) ****(L) ***(L) ****(L) ****(L)

*Appr, P, R and F1 refer to Approach, Precision, Recall and F1-Score,
respectively.
*#TP and #FP refer to the numbers of true positive samples and false

positive samples, respectively.
*The numbers in the brackets of the AED column are the AEDs

between the old comments and the new comments.

In summary, the co-attention mechanism, the uni-
fied vocabulary, the fastText embeddings and the
pointer generators are helpful for capturing and up-
dating code-comment references and can improve the
effectiveness of CUP.

7.5 RQ5: The Effectiveness of CUP2

Motivation: We want to investigate how effective CUP2 can
be after combining the detection and the update of obsolete
comments.
Approach: We evaluate and compare CUP2 and its base-
line, i.e., Fraco, on the Whole dataset described in Sec-
tion 5.4 in terms of Detection Precision, Recall and F1-Score,
#TPC/#TP, #FPC/#FP, AED and RED.
Results: Table 12 presents the evaluation results. Each num-
ber in the bracket is the AED between the old comments and
the new comments of the samples detected by an approach.
For convenience, we refer to such numbers as Origin AEDs.
Because the sets of samples detected by FracoDetector and
OCD are different, the Origin AEDs of Fraco and CUP2 are
also different.

We can see that CUP2 outperforms Fraco in terms of all
metrics but #FPC by substantial margins. The performance
improvements of CUP2 over Fraco in terms Precision, Re-
call, F1-Score, #TPC/#TP, #FPC/#FP, AED and RED are all
statistically significant and have large effect sizes. At the
detection stage, CUP2 detects more obsolete comments with
higher precision, as we discussed in RQ1. At the update
stage, CUP2 updates both TP samples and FP samples with
higher accuracy than Fraco. In detail, the #TPC of CUP2 is
about 4.3 times of Fraco, and CUP2 achieves an accuracy of
42.3% (698/1650) on its TP samples, much better than that
accuracy of Fraco (11.5%). Fraco’s #FPC is greater than that
of CUP2. However, the accuracy of CUP2 on its FP samples
is 41.0%, still better than that of Fraco (31.6%). Furthermore,
the overall accuracy, i.e., (#TPC+#FPC)/(#TP+#FP), of CUP2

(41.8%) is much higher than that of Fraco (27.2%). As for
AED and RED, Fraco’s AED is much higher than its Origin
AED, which is only 0.61 since Fraco detects many false
positive samples, and Fraco’s RED is greater than 1. In
contrast, the AED of CUP2 is lower than its Origin AED,
and its RED is less than 1.

We admit that the performance of CUP2 is not perfect,
but we argue that CUP2 is still useful for developers and
researchers, because: First, although the Recall of CUP2’s
detection stage is 17.1%, its Precision is 64.0%, which is
reasonable. We believe that for obsolete comment detection

18

TABLE 13
A false negative sample

Code Change:

@@ -1,5 +1,6 @@
- private MountPointInfo getMountPointInfo(MountInfo

mountInfo) {
- MountPointInfo info = mountInfo.toMountPointInfo();
+ private MountPointInfo getMountPointInfoInternal(

MountInfo mountInfo, boolean useDisplayValues) {
+ MountPointInfo info = useDisplayValues
+ ? mountInfo.toDisplayMountPointInfo() : mountInfo

.toMountPointInfo();
try (CloseableResource<UnderFileSystem> ufsResource =

mUfsManager.get(mountInfo.getMountId()).
acquireUfsResource()) {

UnderFileSystem ufs = ufsResource.get();
...

Old Comment: Gets the mount point information from a mount
information.
New Comment: Gets the mount point information for display from
a mount information.

and update, Precision is more important than Recall. Since
even if an approach only predicts one comment, if the result
is correct, this approach can be helpful for developers. In
contrast, if an approach achieves 100% Recall but to find one
obsolete comment developers need to inspect 10 candidates,
developers may not be happy to use it. Second, we argue
that the overall accuracy of 41.8% with RED of 0.842 indi-
cates that CUP2 can help developers to quickly understand
the specific locations and operations of comment updates
and reduce their edits on updating comments. Third, to the
best of our knowledge, CUP2 is the first work focusing on
JIT obsolete comment detection and update. The task itself
is not easy considering the difficulties of “understanding”
and “linking” code changes and comments, and CUP2 has
outperformed the baseline in all metrics by significant mar-
gins. Based on these facts, we believe CUP2 can promote
the development of this research direction and inspire other
researchers to tackle this important task.

In summary, CUP2 outperforms the rule-based base-
line in terms of almost all metrics by significant mar-
gins. It can be useful for developers in identifying obso-
lete comments, understanding the specific locations and
operations of obsolete comment updates and reducing
their edits on JIT comment updates.

8 DISCUSSION

8.1 When Does CUP2 Fail

The test set of the Whole dataset contains 454K samples.
According to our evaluation results presented in Section 7.5,
at the detection stage, CUP2 produces 1,650 true positive
(TP) samples, 932 FP samples, 7,997 false negative (FN)
samples and 443K true negative (TN) samples. All TN
samples are correctly handled by CUP2. However, for the
other three kinds of samples, the two-stage procedure of
CUP2 results in three types of errors that hinder it from
performing perfect obsolete comment repair.

First, CUP2 will not perform updates for the 7997 FN
samples. Table 13 presents an example. In this sample, a
flag was added to this method’s parameter list to control

TABLE 14
A false positive sample

Code Change:

- public static String join(Collection collection, String
separator) {

- return collection == null ? null : join(collection.
iterator(), separator);

+ public static String join(Iterable iterable, String
separator) {

+ return iterable == null ? null : join(iterable.
iterator(), separator);

}

Old Comment: Joins the elements of the provided into a single String
containing the provided elements.
New Comment: Joins the elements of the provided into a single
String containing the provided elements.
2CUP: Joins the elements of the provided into a single String con-
taining the provided iterable.

TABLE 15
A failed true positive sample

Code Change:

- protected UIInputListener createUIInputListener ()
+ protected ButtonInputListener<C>

createButtonInputListener ()
{

- return new WButtonListener ();
+ return new WButtonInputListener<C, WButtonUI<C>> ();
}

Old Comment: Returns {@link UIInputListener} for the button.
New Comment: Returns {@link ButtonInputListener} for the {@link
AbstractButton}.
2CUP: Returns {@link ButtonInputListener} for the button.

the type of the returned information, i.e., either display
info or raw info. The comment was updated to explicitly
mention “display”. OCD predicts that the old comment
does not need to be updated. Although the prediction is
wrong, we think it is excusable because there is no obvious
inconsistency between the new code and the old comment,
and the comment update performed by developers can
somehow be considered as an optimization of language and
expression.

Second, for FP samples, the comments generated at the
update stage of CUP2 may be different from the correspond-
ing old comments. This type includes 551 samples, one of
which is presented in Table 14. In this sample, the developer
changed the first parameter of this method, replacing the
“Collection” with an “Iterable”. The comment was still
consistent with the code, hence it did not require updates.
However, CUP2 predicts this sample to be positive and
updates the old comment by replacing the “elements” with
“iterable”. The possible reason for these incorrect behaviors
is that CUP2 links the “elements” in the comment with the
“collection” in the code, which is correct, but fails to capture
the semantic equivalence of “elements” and “iterable” in
this context.

Third, at the update stage, CUP2 may fail to correctly
update TP samples, namely failed TP samples. 952 test
samples belong to this type. Table 15 presents an example.
In this example, the developer changed the behavior of
this method to create a “ButtonInputListener” instead of a
“UIInputListener”, and made the corresponding update on

19

TABLE 16
The effectiveness of the three ways to tackle class imbalance

Approach Precision Recall F1-Score

OCDbalanced 11.4% 67.3% 19.5%
OCDsample 10.5% 68.5% 18.2%
OCDfocal-loss 71.6% 5.7% 10.5%

OCD 64.0% 17.1% 27.0%

the comment. In addition, the developer also optimized the
old comment by replacing “button” with “AbstractButton”,
which is the base class of “C”. CUP successfully replaces
the “UIInputListener” in the comment with “ButtonInput-
Listener”. However, because “AbstractButton” cannot be
inferred from the method change and the old comment,
CUP fails to update the “button” in the comment.

Section 7.5 has shown that CUP2 is effective in JIT ob-
solete comment detection and update. We believe devising
more advanced obsolete comment detectors and updaters
to reduce the aforementioned errors is an interesting and
promising direction for future work.

8.2 Class Imbalance of the Whole Dataset

As we mentioned in Section 5.4, the Whole dataset is highly
class imbalanced (the ratio of the positive samples to the
negative samples is about 1/38). Therefore, we also explore
some commonly-used ways to alleviate the class imbalance
problem and construct several variants for OCD:

OCDbalanced: We build a balanced training set by select-
ing all positive samples and sampling the same number of
negative samples from the training set of the Whole dataset.
The architecture of OCDbalanced is the same as OCD, but it is
trained on this balanced training set.

OCDsample: While the architecture of OCDsample is also
identical to OCD, when training, OCDsample constructs each
batch by sampling half a batch of positive samples and
selecting half a batch of negative samples from the training
set of the Whole dataset. It can be seen that for OCDsample,
the number of available negative samples during training is
much larger than that for OCDbalanced.

OCDfocal-loss: The only difference between OCDfocal-loss
and OCD is that OCDfocal-loss uses focal loss [65] instead of
cross entropy as the loss function. Focal loss is originally
designed to tackle the severe class imbalance in the image
object detection task, and is shown to be effective for many
classification tasks [66], [67], [68]. Its core idea is to pay more
attention to hard samples and less attention to easy samples
during training. It is computed as follows:

FL(pt) = −αt(1− pt)γ log(pt)

For each sample, pt and αt are respectively the probability
estimated by a model and the weighting factor for its
ground truth class, and γ is the focusing parameter which
controls the strength of the modulation. The original paper
of focal loss [65] showed that setting γ to 2.0 and αt to 0.25
and 0.75 for the positive and the negative classes makes
focal loss work best. We follow [65] and use the same
parameters. OCDfocal-loss is trained on the Whole dataset.

All three variants are validated and evaluated on the
Whole dataset. Table 16 presents the evaluation results. It

TABLE 17
The effectiveness of the synergy between OCD and CUP

Approach Accuracy Recall@5 GLEU AED RED

+OCD.vocab 17.6% (1697) 26.1% 58.6 3.40 0.954
+OCD.encoder 15.9% (1531) 24.1% 57.6 3.51 1.010

CUP 18.1% (1747) 26.1% 58.9 3.43 0.964

*+OCD.vocab and +OCD.encoder refer to CUP+OCD.vocab and
CUP+OCD.encoder, respectively.

can be seen that the Recalls of OCDbalanced and OCDsample are
much better than that of OCD, but their Precisions are much
worse and OCD also outperforms them in terms of F1-score
by substantial margins. Although OCDfocal-loss performs bet-
ter than OCD in terms of Precision, its Recall and F1-Score
are only 5.7% and 10.5%, far lower than those of OCD. These
results indicate that the three common ways to alleviate the
class imbalance problem, i.e., training on a balanced dataset,
sampling balanced batches during training and using focal
loss, can not improve OCD. One possible explanation is that
the primary obstacle of the obsolete comment detection task
is the inherent difficulty of “understanding” code changes
and comments. Based on these results, CUP2 uses OCD,
instead of the three variants, for detection. That being said,
the class imbalance problem is still an important challenge
for obsolete comment detection and it calls for investigation
and design of more advanced techniques in future studies.

8.3 Synergy Between OCD and CUP
Considering that OCD and CUP share the same encoder
architecture, we also investigate the potential synergy be-
tween OCD and CUP. Specifically, we construct two variants
CUP+OCD.vocab and CUP+OCD.encoder for CUP and one
variant CUP2

combined for CUP2:
CUP+OCD.vocab uses the same architecture as CUP but

with the unified vocabulary built from the Whole dataset
instead of the Update dataset.

CUP+OCD.encoder reuses the encoder learned by OCD
before training, also uses the vocabulary built from the
Whole dataset, and keeps other parts identical to CUP.

CUP2
combined is a single model that contains only one

encoder but both the output components of OCD and CUP.
Given a batch of code-comment change samples, when
training, CUP2

combined first encodes each sample into feature
vectors, and then predicts the probability that the old com-
ment should be updated and generates a new comment
for it. The training loss of a batch is the average of all
samples’ classification losses and the generation losses of
the samples whose label is positive. When inferring, after
encoding each sample, CUP2

combined first detects positive
samples using OCD’s output component and only generates
new comments for those samples predicted to be positive.

CUP’s variants are trained and tested on the Update
dataset. Experimental results are shown in Table 17. We
can see that the performance of CUP, CUP+OCD.vocab
and CUP+OCD.encoder is close. CUP+OCD.vocab slightly
outperforms CUP in terms of AED and RED, behind which
the rationale is that OCD’s large vocabulary reduces the
number of OOV words and eases the generation of some
rare words. However, CUP achieves better Accuracy and
GLEU than and equal Recall to CUP+OCD.vocab, and

20

TABLE 18
The effectiveness of the combined model CUP2

combined

Appr P R F1 #TPC/#TP #FPC/#FP AED RED

Comb 55.8% 18.9% 28.3% 363/1826 829/1449 2.17 (1.73) 1.011

CUP2 64.0% 17.1% 27.0% 698/1650 381/932 1.86 (1.95) 0.842

*Comb refers to CUP2
combined.

performs better than CUP+OCD.encoder in all metrics.
In addition, on our server, it takes 120 mins, 189 mins
and 168 mins, respectively, to train CUP, CUP+OCD.vocab
and CUP+OCD.encoder once, which means transferring
knowledge from OCD to CUP increases CUP’s training
time substantially. One possible reason for the decreases
in performance and efficiency is that OCD and CUP have
related but different focuses. For example, OCD may care
more about the differences between the overall similarity of
<old comment, old code> and that of <old comment, new
code>, while CUP may focus on specific references between
the old comment and the code change in order to perform
accurate comment updates. If we transfer the knowledge
learned by OCD to CUP, CUP may be confused and it may
take more time for CUP to correct such knowledge than
to learn from scratch. To sum up, using the vocabulary
and transferring the encoder of OCD do not improve the
effectiveness or the efficiency of CUP.

CUP2
combined is trained and tested on the Whole dataset.

Table 18 presents the evaluation results. We can see
that compared to CUP2, for obsolete comment detection,
CUP2

combined obtains a slightly better Recall and F1-score,
but worse Precision. As we discussed in Section 7.5, we
argue Precision is more important than Recall for this
task. For comment update, the #FPC and the #FPC/#FP
of CUP2

combined are better than those of CUP2, which means
CUP2

combined is more accurate on FP samples. However, CUP2

outperforms CUP2
combined in terms of all other metrics, i.e,

#TPC, #TPC/#TP, AED and RED. Specifically, CUP2’s #TPC
(698) and #TPC/#TP (42.3%) are over 1.9 times of those of
CUP2 (363 and 19.9%), respectively, and its RED is less than
1 while CUP2

combined’s RED is not. Moreover, it takes about
18 hours to train CUP2 but 78 hours to train CUP2

combined. We
think the possible rationales behind these phenomenons are:
First, as we mentioned above, OCD and CUP have related
but different focuses. Therefore, combining OCD and CUP
in a single model may confuse each other, resulting in no
significant performance improvement and a heavy increase
in training time. Second, the model size of CUP2

combined is
larger than CUP and we can only train it with the batch
size of at most 28 under the limitation of our GPU memory.
With the limited batch size and the highly imbalanced data,
CUP2

combined may sometimes be trained on a batch with only
negative samples, which may hinder the learning process.
Based on these results, we do not combine OCD and CUP
as a single model.

In summary, our attempts, i.e., CUP+OCD.vocab,
CUP+OCD.encoder and CUP2

combined, fail to bring either per-
formance or efficiency improvements. However, this does
not mean the synergy between the detection and the update
of obsolete comments and advanced multi-task models are
not helpful for this task. We believe further investigations of
such synergy and advanced multi-task models/frameworks

for this task can be interesting and promising directions for
future work.

8.4 Threats to Validity
First, our dataset is built only from Java projects and focuses
on method comments, which may not be representative of
all programming languages and comment types. However,
Java is one of the most popular programming languages.
Method comments are an important type of comments and
are often referred to by developers for program comprehen-
sion. Besides, OCD and CUP are independent of program-
ming languages and comment types. After being trained on
proper datasets, they can be applied to process code changes
of other programming languages and generate other types
of comments.

The second threat is related to the method mappings we
build from commits. Before extracting modified methods
from a commit, we use GumTree to match the methods
in the two revisions. However, some method mappings
identified by GumTree are suboptimal. We mitigate this
threat by 1) adding a new phase in GumTree to improve its
accuracy in method matching, 2) filtering the samples with
abstract methods, which are often mismatched. Also, we
manually checked 200 samples in the test set and only found
one suboptimal method mapping. Therefore, we believe this
threat is limited.

Another threat is about the hyper-parameter choices
for RandomForest. To reliably re-implement Liu et al.’s
approach [16] and fairly compare OCD with it, we keep the
settings and hyper-parameters of RandomForest the same as
those used by Liu et al. Such settings and hyper-parameters
might not be the best for this work. However, firstly, this
work targets at a very similar task to Liu et al.’s work.
Secondly, all the settings and hyper-parameters used in Liu
et al.’s work is in line with the default ones recommended by
the widely-used machine learning library scikit-learn [58].
Thus, we believe the hyper-parameters choices of Random-
Forest are reasonable.

Besides, due to the existence of obsolete comments in
software repositories, the Whole dataset may contain a
few mislabeled samples, i.e., the samples where the old
comments should be updated with the code changes but
were not. Prior studies [27] have shown that over 97% of
comment changes are performed with the corresponding
code changes. We also manually checked 200 samples that
were randomly selected from the test set of the Whole
dataset and did not find any mislabeled sample. Therefore,
we believe that this threat is minimal. It is worth mentioning
that the limited number of noisy samples in our dataset does
not mean CUP2 is not useful. As shown by prior work,
the introduced obsolete comments can result in bugs in
the future and are harmful to the robustness of a software
system [8], [9], [10], [11], [12]. In addition, CUP2 can be in-
tegrated into IDEs and provide recommendations just after
developers edit code. Even if developers know that they
should update comments before committing code changes,
it takes time for them to identify the comments requiring
update, the sentences and the specific phrases that should
be updated, and figure out how to update. By predicting
obsolete comments and recommending specific update op-
erations, CUP2 and other obsolete comment detection and

21

TABLE 19
A valid comment generated by CUP

Code Change:

- public RecordingCatchUpSupplier
recordingCatchUpSupplier()

+ public LogCatchUpSupplier logCatchUpSupplier()
{

- return recordingCatchUpSupplier;
+ return logCatchUpSupplier;

}

Old Comment: The {@link RecordingCatchUpSupplier} to use for
catching up recordings.
New Comment: The {@link LogCatchUpSupplier} to use for catch-
ing up log recordings.
CUP: The {{@link LogCatchUpSupplier} to use for catching up
recordings.

TABLE 20
A valid comment generated by CUP2

Code Change:

- public ZonedDateTime plus(TemporalAdder adder) {
- return (ZonedDateTime) adder.addTo(this);
+ public ZonedDateTime plus(TemporalAmount amount) {
+ return (ZonedDateTime) amount.addTo(this);

}

Old Comment: Returns a copy of this date-time with the specified
period added.
New Comment: Returns a copy of this date-time with the specified
period added.
CUP2: Returns a copy of this date-time with the specified amount
added.

update approaches can help developers quickly identify ob-
solete comments and understand where and how to perform
comment updates. Considering that CUP2 achieves a RED
of 0.842 and applying recommended comment updates only
requires a single click by developers, we believe CUP2 can
also reduce developers’ edits on obsolete comment updates.
In addition, a recent study [69] also confirmed that it is
hard for developers to manually identify obsolete comments
hidden in a large code base and developers appreciate the
tools and efforts to detect and fix obsolete comments.

It is also worth noting that the Accuracy metric for CUP
and CUP2 is strict, because it only rewards the generated
comments identical to the ground truth. Since there may
exist some generated comments that are different from the
ground truth but also valid, the Accuracy metric in fact
measures the performance lower bound instead of the real-
world accuracy. Unfortunately, there is no automatic way
to evaluate the real-world accuracy of comment updaters.
To mitigate this threat, first, we also use the GLEU met-
ric, which is widely used to evaluate Grammatical Error
Correction (GEC) systems and is more flexible than Ac-
curacy, to evaluate CUP. According to Section 7.3, CUP
also outperforms all the baselines in terms of GLEU. Then,
we manually inspect the results of CUP, NNUpdater and
FracoUpdater on 100 randomly selected test samples and
the update results of CUP2 and Fraco on 100 test samples
that are predicted to be positive by their own detectors
and are randomly selected. Specifically, given a selected test
sample, we carefully read its code change, old comment and
new comment. If the comment generated by an approach
is not the same as the new comment (i.e., not correct), we

read it and compare it with the new comment to decide
whether it is valid (i.e., semantically identical to the new
comment). We find that CUP, NNUpdater and FracoUp-
date generate 3, 1 and 0 valid comments, respectively.
Table 19 presents a valid comment generated by CUP. We
can see that CUP successfully replaces “RecordingCatchUp-
Supplier” with “LogCatchUpSupplier”, but fails to insert
“log”. However, since one can know the “recordings” are
“log recordings” according to “LogCatchUpSupplier”, this
generated comment is semantically identical to the new
comment, i.e., is a valid comment. For CUP2 and Fraco,
the numbers of generated valid comments are 10 and 8.
Table 20 shows a valid comment generated by CUP2. In
this sample, developers did not update the comment with
the code change. But OCD predicts this comment to be
obsolete and CUP replaces “period” in the comment with
“amount”. Since “period” and “amount” are synonymous in
the context of “ZonedDateTime”, the comment generated by
CUP2 is a valid comment. Those results indicate that valid
comments do exist and can make the real-world accuracy of
CUP and CUP2 better than their Accuracy values, but we
believe such valid comments do not affect the conclusions
of our evaluation, i.e., CUP and CUP2 significantly outper-
forms their own baselines.

9 CONCLUSION AND FUTURE WORK

To reduce and avoid obsolete comments in source code, this
work proposes to detect and update obsolete comments in
time with code changes. We propose a two-stage framework
named CUP2 to automate this task. CUP2 takes as input
code changes and their associated comments, leverages a
detector named OCD to predict whether each comment
requires updates, and then updates predicted obsolete com-
ments using a comment updater named CUP. OCD (CUP)
adopts a distinct neural network model to learn the features
of obsolete comments (the patterns of comment updates)
from massive code-comment change samples and perform
obsolete comment prediction (update) automatically. Com-
prehensive experiments on a large dataset with over 4 mil-
lion code-comment change samples show that: 1) OCD, CUP
and CUP2 outperform their own baselines by significant
margins, and 2) CUP2 can help developers detect obsolete
comments, understand where and how to update obsolete
comments and reduce their edits on comment updates.

In the future, we plan to conduct an in-field study to
investigate the usefulness of CUP2 within an industrial set-
ting. We also plan to adapt CUP2 to other code granularity,
such as statements, and other comment types, e.g., inner
comments of methods, with more context, such as the fields
and the other methods of the corresponding classes, con-
sidered. In addition, as the first attempt on the JIT obsolete
comment detection and update task, CUP2, including both
OCD and CUP, is not perfect and there is still much space
for improvements. On the one hand, due to the limitation
of LSTM, CUP2 may not be able to well handle the sam-
ples of which the code changes are long and complicated.
Thus, it would be interesting and promising to propose
more advanced obsolete comment detectors and updaters
to improve CUP2’s effectiveness further. On the other hand,
designing advanced multi-task learning methods to enhance

22

the synergy between OCD and CUP is also a potential way
towards better performance.
Replication Package: https://github.com/Tbabm/CUP2

REFERENCES

[1] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers
taxonomies and characteristics of comments in operating system
code,” in Proceedings of the 31st International Conference on Software
Engineering, 2009, pp. 331–341.

[2] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in Proceedings of the 21st International Conference
on Program Comprehension, 2013, pp. 83–92.

[3] L. Pascarella, M. Bruntink, and A. Bacchelli, “Classifying code
comments in java software systems,” Empirical Software Engineer-
ing, pp. 1–39, 2019.

[4] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of
modularization and comments on program comprehension,” in
Proceedings of the 5th International Conference on Software Engineer-
ing, 1981, pp. 215–223.

[5] A. T. Ying, J. L. Wright, and S. Abrams, “Source code that talks:
an exploration of eclipse task comments and their implication to
repository mining,” in Proceedings of the International Workshop on
Mining Software Repositories, 2005, pp. 1–5.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A
study of the documentation essential to software maintenance,”
in Proceedings of the 23rd annual International Conference on Design of
Communication: Documenting & Designing for Pervasive Information,
2005, pp. 68–75.

[7] “A commit in apache kafka,” https://github.com/apache/kafka/
commit/9dc76f8872b862ca008562cdcf8cf50524e2eaa3, 2020.

[8] L. Tan, D. Yuan, and Y. Zhou, “Hotcomments: how to make pro-
gram comments more useful?” in Proceedings of the 11th USENIX
Workshop on Hot Topics in Operating Systems, 2007, pp. 1–6.

[9] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs
or bad comments?*,” in Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007, pp. 145–158.

[10] D. L. Parnas, “Precise documentation: The key to better software,”
in The Future of Software Engineering. Springer, 2011, pp. 125–148.

[11] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment:
Testing javadoc comments to detect comment-code inconsisten-
cies,” in Proceedings of the 5th International Conference on Software
Testing, Verification and Validation, 2012, pp. 260–269.

[12] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software
bugs,” Journal of Systems and Software, vol. 85, no. 10, pp. 2293–
2304, 2012.

[13] L. Tan, Y. Zhou, and Y. Padioleau, “acomment: mining annotations
from comments and code to detect interrupt related concurrency
bugs,” in Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 11–20.

[14] G. Sridhara, “Automatically detecting the up-to-date status of todo
comments in java programs,” in Proceedings of the 9th India Software
Engineering Conference, 2016, pp. 16–25.

[15] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, 2017, pp. 112–122.

[16] Z. Liu, H. Chen, X. Chen, X. Luo, and F. Zhou, “Automatic detec-
tion of outdated comments during code changes,” in Proceedings
of the 42nd Annual Computer Software and Applications Conference,
vol. 1, 2018, pp. 154–163.

[17] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th International Conference on
Program Comprehension, 2018, pp. 200–210.

[18] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshy-
vanyk, “On learning meaningful code changes via neural machine
translation,” in Proceedings of the 41st International Conference on
Software Engineering, 2019, pp. 25–36.

[19] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, 2019, pp.
176–188.

[20] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “Gleu without
tuning,” arXiv preprint arXiv:1605.02592, 2016.

[21] Z. Liu, X. Xia, Y. Meng, and S. Li, “Automating just-in-time com-
ment updating,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 713–725.

[22] C. Chen, Z. Xing, and Y. Liu, “By the community & for the com-
munity: a deep learning approach to assist collaborative editing in
q&a sites,” Proceedings of the ACM on Human-Computer Interaction,
vol. 1, no. CSCW, pp. 1–21, 2017.

[23] T. Ge, F. Wei, and M. Zhou, “Fluency boost learning and inference
for neural grammatical error correction,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018, pp. 1055–1065.

[24] S. Chollampatt and H. T. Ng, “A multilayer convolutional
encoder-decoder neural network for grammatical error correc-
tion,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[25] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “Ground truth
for grammatical error correction metrics,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), 2015, pp. 588–593.

[26] Z. M. Jiang and A. E. Hassan, “Examining the evolution of
code comments in postgresql,” in Proceedings of the International
Workshop on Mining Software Repositories, 2006, pp. 179–180.

[27] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments
co-evolve? on the relation between source code and comment
changes,” in Proceedings of the 14th Working Conference on Reverse
Engineering, 2007, pp. 70–79.

[28] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367–394, 2009.

[29] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk,
“How do developers document database usages in source code?”
in Proceedings of the 30th International Conference on Automated
Software Engineering, 2015, pp. 36–41.

[30] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in Proceedings of the 27th
International Conference on Program Comprehension, 2019, pp. 53–64.

[31] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive de-
fects,” in Proceedings of the 39th International Conference on Software
Engineering, 2017, pp. 27–37.

[32] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E.
Hassan, “Understanding the rationale for updating a function’s
comment,” in Proceedings of the International Conference on Software
Maintenance, 2008, pp. 167–176.

[33] S. Panthaplackel, P. Nie, M. Gligoric, J. J. Li, and R. J. Mooney,
“Learning to update natural language comments based on code
changes,” arXiv preprint arXiv:2004.12169, 2020.

[34] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for java methods,” in Proceedings of the International Conference on
Automated Software Engineering, 2010, pp. 43–52.

[35] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language sum-
maries for java classes,” in Proceedings of the 21st International
Conference on Program Comprehension, 2013, pp. 23–32.

[36] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in Proceedings of the 17th Working Conference on Reverse
Engineering, 2010, pp. 35–44.

[37] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source
code for automatic comment generation,” in Proceedings of the
22nd International Conference on Software Analysis, Evolution, and
Reengineering, 2015, pp. 380–389.

[38] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts:
A literature review,” Journal of Computer Science and Technology,
vol. 31, no. 5, pp. 883–909, 2016.

[39] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics,
2016, pp. 2073–2083.

[40] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving automatic source code summarization via deep
reinforcement learning,” in Proceedings of the 33rd International
Conference on Automated Software Engineering, 2018, pp. 397–407.

[41] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gen-
erating natural language summaries of program subroutines,” in
Proceedings of the 41st International Conference on Software Engineer-
ing, 2019, pp. 795–806.

https://github.com/Tbabm/CUP2
https://github.com/apache/kafka/commit/9dc76f8872b862ca008562cdcf8cf50524e2eaa3
https://github.com/apache/kafka/commit/9dc76f8872b862ca008562cdcf8cf50524e2eaa3

23

[42] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gen-
eration with hybrid lexical and syntactical information,” Empirical
Software Engineering, pp. 1–39, 2019.

[43] Y. Zhou, X. Yan, W. Yang, T. Chen, and Z. Huang, “Augmenting
java method comments generation with context information based
on neural networks,” Journal of Systems and Software, vol. 156, pp.
328–340, 2019.

[44] C. Qiuyuan, X. Xin, H. Han, L. David, and L. Shanping, “Why
my code summarization model does not work: code comment
improvement with category prediction,” ACM Transactions on Soft-
ware Engineering and Methodology, 2020.

[45] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,
“Big code!= big vocabulary: Open-vocabulary models for source
code,” in Proceedings of the 42nd IEEE/ACM International Conference
on Software Engineering, 2020, pp. 1073–1085.

[46] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L.
Gaunt, “Learning to represent edits,” in Proceedings of the 7th
International Conference on Learning Representations, 2018.

[47] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
“Learning word vectors for 157 languages,” in Proceedings of the
International Conference on Language Resources and Evaluation, 2018.

[48] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[49] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summariza-
tion with pointer-generator networks,” in Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2017, pp.
1073–1083.

[50] D. Kramer, “API documentation from source code comments: A
case study of Javadoc,” in Proceedings of the 17th Annual Interna-
tional Conference on Computer Documentation, 1999, pp. 147–153.

[51] “Javaparser,” https://javaparser.org/, 2020.
[52] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-

perrus, “Fine-grained and accurate source code differencing,” in
Proceedings of the 29th International Conference on Automated Software
Engineering, 2014, pp. 313–324.

[53] “Natural language toolkit nltk 3.5 documentation,” http://www.
nltk.org/, 2020.

[54] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet Physics Doklady, vol. 10, no. 8,
1966, pp. 707–710.

[55] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference on
Software Engineering, 2009, pp. 309–319.

[56] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in

Proceedings of the 32nd International Conference on Software Engineer-
ing, 2010, pp. 315–324.

[57] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and
D. Dig, “Accurate and efficient refactoring detection in commit
history,” in Proceedings of the 40th International Conference on Soft-
ware Engineering, 2018, pp. 483–494.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[59] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang,
“Neural-machine-translation-based commit message generation:
how far are we?” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 373–384.

[60] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting of the Association for Computational Linguis-
tics, 2002, pp. 311–318.

[61] “Word vectors for 157 languages,” https://fasttext.cc/docs/en/
crawl-vectors.html, 2020.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2015.

[63] F. Wilcoxon, “Individual comparisons by ranking methods,” in
Breakthroughs in Statistics. Springer, 1992, pp. 196–202.

[64] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[65] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[66] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict
intention from raw sensor data,” in Conference on Robot Learning,
2018, pp. 947–956.

[67] W. Wang, C. Wu, and M. Yan, “Multi-granularity hierarchical
attention fusion networks for reading comprehension and ques-
tion answering,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, Volume 1: Long Papers,
2018, pp. 1705–1714.

[68] W. Chen and J. Hays, “Sketchygan: Towards diverse and realistic
sketch to image synthesis,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 9416–9425.

[69] Z. Gao, X. Xia, D. Lo, J. Grundy, and T. Zimmermann,
“Automating the removal of obsolete todo comments,” in
Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1–12. [Online]. Available: https://arxiv.org/abs/2108.
05846

https://javaparser.org/
http://www.nltk.org/
http://www.nltk.org/
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://arxiv.org/abs/2108.05846
https://arxiv.org/abs/2108.05846

	Introduction
	Problem and Usage Scenario
	Problem Formulation
	Usage Scenario

	Related Work
	Code-Comment Co-Evolution
	Obsolete Comment Detection and Update
	Comment Generation

	Approach
	Data Flattening
	Tokenization
	Code Change Representation

	Encoder
	The Embedding Layer
	The Contextual Embed Layer
	The Co-Attention Layer
	The Modeling Layer

	Obsolete Comment Detector (OCD)
	Obsolete Comment Updater (CUP)

	Data Preparation
	Data Collection
	Modified Method Extraction
	Data Preprocessing
	Filter Out Unqualified Method-Doc Change Instances
	Construct Method-Comment Change Samples
	Set Max Length and Max Distance

	Data Splitting

	Evaluation Setup
	Baselines
	Baselines for CUP2
	Baselines for OCD
	Baselines for CUP
	Variants of OCD and CUP

	Evaluation Metrics
	Evaluation Metrics for OCD
	Evaluation Metrics for CUP
	Evaluation Metrics for CUP2

	Experiment Setup

	Evaluation Results
	RQ1: The effectiveness of OCD
	RQ2: The Effects of Main Components in OCD
	RQ3: The Effectiveness of CUP
	RQ4: The Effects of Main Components in CUP
	RQ5: The Effectiveness of CUP2

	Discussion
	When Does CUP2 Fail
	Class Imbalance of the Whole Dataset
	Synergy Between OCD and CUP
	Threats to Validity

	Conclusion and Future Work
	References

