
1

Post2Vec: Learning Distributed Representations
of Stack Overflow Posts

Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, and David Lo

Abstract—Past studies have proposed solutions that analyze Stack Overflow content to help users find desired information or aid
various downstream software engineering tasks. A common step performed by those solutions is to extract suitable representations of
posts; typically, in the form of meaningful vectors. These vectors are then used for different tasks, for example, tag recommendation,
relatedness prediction, post classification, and API recommendation. Intuitively, the quality of the vector representations of posts
determines the effectiveness of the solutions in performing the respective tasks. In this work, to aid existing studies that analyze Stack
Overflow posts, we propose a specialized deep learning architecture Post2Vec which extracts distributed representations of Stack
Overflow posts. Post2Vec is aware of different types of content present in Stack Overflow posts, i.e., title, description, and code
snippets, and integrates them seamlessly to learn post representations. Tags provided by Stack Overflow users that serve as a
common vocabulary that captures the semantics of posts are used to guide Post2Vec in its task. To evaluate the quality of Post2Vec’s
deep learning architecture, we first investigate its end-to-end effectiveness in tag recommendation task. The results are compared to
those of state-of-the-art tag recommendation approaches that also employ deep neural networks. We observe that Post2Vec achieves
15-25% improvement in terms of F1-score@5 at a lower computational cost. Moreover, to evaluate the value of representations
learned by Post2Vec, we use them for three other tasks, i.e., relatedness prediction, post classification, and API recommendation. We
demonstrate that the representations can be used to boost the effectiveness of state-of-the-art solutions for the three tasks by
substantial margins (by 10%, 7%, and 10% in terms of F1-score, F1-score, and correctness, respectively). We release our replication
package at https://github.com/maxxbw/Post2Vec.

F

1 INTRODUCTION

P resently, software question and answer (SQA) sites are
an essential part of developers’ day-to-day work for

problem-solving and self-learning. A SQA site (such as Stack
Overflow) is a collection of posts where a post contains
several components, e.g., title, body, and tags as illustrated
in Figure 1. To help developers navigate SQA sites and
find relevant information efficiently, many solutions have
been proposed. They address concrete tasks such as recom-
mending tags to posts (aka. tag recommendation) [1], [2],
[3], identification of related posts (aka. relatedness predic-
tion) [4], [5], [6], [7], post classification [8], [9], [10], and
many more. A common step in previous works is to extract
a suitable vector to represent a post for further processing.
Intuitively, following “garbage in, garbage out” principle,
the quality of a post’s vector representation plays a major
role in determining the eventual outcomes.

In this work, to boost the effectiveness of existing so-
lutions that analyze SQA site contents, we want to learn
distributed representations of posts that can be used for
a number of downstream tasks. We propose a new deep
learning architecture named Post2Vec that can effectively
embed posts in a space where the distance between similar
posts is small. Specifically, considering the nature of tags,
i.e., semantic labels provided by developers and shared by

• Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, David Lo
are with the School of Computing and Information Systems, Singapore
Management University, Singapore.
E-mail:{bowenxu.2017, vdthoang.2016, abhisheksh.2014, cryang,
davidlo} @smu.edu.sg.

• Xin Xia is with the Software Engineering Application Technology Lab,
Huawei, China.
E-mail: xin.xia@acm.org.

Title

Tags

Body

Description

Code

Description

Fig. 1: Example of a Stack Overflow Post ID=12309269

many posts, we utilize them to supervise the learning of
post representations.

Intuitively, this problem is challenging because it re-
quires learning a correspondence between the entire content
of a post and only a few semantic labels among hundreds
of thousands of candidates. That is, it requires associating
contents from different components of a post, which typi-
cally include hundreds of words and several pieces of code
snippets, into a few descriptive labels. Moreover, to develop
a robust and useful post representation, Post2Vec needs to
address the following three limitations of prior works:
• Posts from a particular SQA site typically follow a stan-

dard structure, which consists of different components
(e.g., title and body) carrying information at different
levels of detail. The title summarizes a specific problem,
while the body expands the title with more details.
However, we found that many prior studies, e.g., [3],

2

[4], simply treated the different components equally
and represented a post by concatenating the content of
the various components together into one single piece
of text.

• Many previous works, e.g., [11], [12], [13], have re-
moved code snippets during the preprocessing step due
to these code snippets are short, have poor structure,
and are written in different programming languages.
However, from Figure 1 we can see that if we consider
the code snippets, it becomes effortless to identify that
the post is Python related even though the user does
not mention Python in the title and description. Thus,
intuitively, code snippets should be considered while
learning an effective post representation. Moreover, we
found that for more than 70% of posts in the Stack
Overflow data dump (dated September 5, 2018), their
body contained at least one code snippet. In other
words, code snippets are vital sources of information
if they can be properly captured while learning repre-
sentations of posts.

• Early attempts [1], [2] focused only on extracting text
from posts and then used the text to create well known
but simplistic representations such as bag-of-words
(BOW). A BOW representation of a post is a multi-set of
words that appear in the post. However, BOW ignores
the semantic relation between words.

Post2Vec uses Word2Vec [14] to map words with similar
meaning to vectors with small distances between them. Ad-
ditionally, Post2Vec leverages not only the natural language
content (i.e., title and description) presented in the post but
also the code snippets. Individually, title, description, and
code snippets are considered as three components and they
are fed into three different neural network models to pro-
duce three fixed length feature vectors. Finally, considering
the nature of tags, we utilize them to supervise the learning
of post representations from the three feature vectors. More
specifically, Post2Vec optimizes the vector representations
of posts to predict appropriate tags that are assigned to the
respective posts by learning the relationship between the
vectors and tags.

Once the post representations are learned, they can be
used to boost the effectiveness of many supervised learn-
ing tasks, especially those rely only on a limited set of
labeled data. Although Stack Overflow data is vast, many
prior studies only made use of a subset of posts that are
labeled [4], [10]. By using the learned post representations,
in effect, we are using the power of vast unlabeled data
to help in a particular supervised learning task (aka. semi-
supervised learning). Additionally, many prior approaches,
e.g., [6], [15], proposed handcrafted features for a specific
task and represented a post by a low dimensional feature
vector. The effectiveness of those approaches may benefit
from the post representations that are pre-trained based on a
large dataset. Such representations can be used to embellish
the low dimensional feature vector to boost effectiveness
potentially.

The closest work to ours is by Zhou et al. [3], who
proposed a deep neural network architecture to predict tags
that are assigned to SQA posts. Our work is different from
them in the following aspects. First, the main goal of our
work and theirs differ; Zhou et al. aim to improve tag

recommendation, while we aim to produce representations
of posts that can be used for multiple downstream tasks.
Second, the components considered in our work and theirs
differ; Zhou et al. only utilize title and description while
we consider code snippets as well. Consider many tasks
(e.g., tag prediction [2], [3], similar post detection [5], [6],
etc) are expected to be performed as soon as the post
is created, hence our approach is designed to construct
vector representations of newly created posts, i.e., those
without answers and comments. With this design, we can
immediately infer the vector representations of posts once
they are created, and directly use the representations for
other tasks. Third, the way the components are processed
differ too; Zhou et al. concatenate title and description to a
piece of text in the data preprocessing step while we feed
different components to different models separately. An-
other closely related work is Doc2Vec [16] that generates a
vector representation for textual documents; however, there
are significant differences between “flat” textual documents
considered in Doc2Vec and posts. We consider a post as
a structured document with three components (i.e., title,
description, and code snippets). Moreover, different from
Doc2Vec, we use tags as guides in the generation of post
representations.

To evaluate Post2Vec, we first investigate the effective-
ness of our approach in the tag recommendation task and
compare it with the state-of-the-art approach [3]. Post2Vec
achieves 15-25% improvement in terms of F1-score@5. More-
over, we further evaluate the value of the representation
learned by Post2Vec in three other tasks, i.e., relatedness
prediction [4], post classification [10], and API recommenda-
tion [17]. We found that these state-of-the-art approaches are
improved by integrating our post representation, i.e., 10%,
7%, and 10% for relatedness prediction, post classification,
and API recommendation, respectively.

The main contributions of this work are as follows:
• We propose a specialized deep learning architecture

Post2Vec that learns vector representations of SQA
posts. To the best of our knowledge, this work is the
first to explore the learning of generic representation of
SQA posts. We focus on Stack Overflow posts, but the
solution presented here can be easily adapted for posts
from other SQA sites.

• We empirically compare end-to-end Post2Vec with the
state-of-the-art neural network based approach for tag
recommendation task based on a 10 million posts
dataset, and demonstrate that Post2Vec can achieve
15-25% improvements and also complete the learning
process by up to 1.5 days faster.

• We empirically investigate the benefit of design deci-
sion from three aspects. For each aspect, we implement
and compare pairs of Post2Vec variants. The experi-
mental results show that, (1) CNN-based Post2Vec out-
perform LSTM-based Post2Vec significantly and con-
sumes fewer computing resources during model train-
ing, (2) consideration of code snippets can boost ef-
fectiveness but consumes more computing resources
during model training, (3) considers different post
components separately significantly boosts the perfor-
mance but consumes more computing resources than
considers different components together during model

3

training.
• We empirically investigate the value of integrating the

post vectors generated by Post2Vec and feature vectors
used by the state-of-the-art approaches of three tasks
(relatedness prediction, post classification, and API rec-
ommendation) and demonstrate substantial improve-
ments.

The rest of this paper is organized as follows. Section
2 elaborates the design of our approach Post2Vec. Section
3 presents our experiments that compare Post2Vec with
the state-of-the-art tag recommendation approach and their
results. Section 4 investigates the value of our learned
post representations to aid in the three downstream tasks
(relatedness prediction, post classification, and API recom-
mendation). Section 5 presents a qualitative study and some
threats to validity. Section 6 describes related prior studies.
We conclude and mention future work in Section 7.

2 PROPOSED APPROACH

2.1 Framework Overview

CodeTitle Description

a Stack Overflow post

Encoding Encoding Encoding

NN!"!#$ NN%$&'(")!"*+ NN'*%$

Post vector

Fully connected layer for mapping
the post vector to a tag vector

Preprocessing

Input layer

Feature
extraction

layers

Tag prediction
layer

A tag vector for the
Stack Overflow post

Feature
fusion layer

Fig. 2: The overall framework of Post2Vec. Neural network
architecture is used to construct the embedding vectors for
title, description, and code snippets included in a Stack
Overflow post. These embedding vectors are then concate-
nated to build a vector representation for the post (post vec-
tor). The post vector is learned by minimizing an objective
function of the tag prediction layer.

Figure 2 illustrates the overall framework of Post2Vec
that takes Stack Overflow (SO) posts as input and outputs
their distributed representations in the form of post vectors.
More specifically, Post2Vec consists of four parts:

• Preprocessing: This part extracts three pieces of informa-
tion from a SO post (i.e., title, description, and code
snippets), cleans them, and represents each of them as
a sequence of tokens.

• Input layer: This part encodes the sequences of tokens
corresponding to the title, description, and code snip-
pets of posts into two-dimensional matrices as inputs
to the NNs in the feature extraction layers.

• Feature extraction layers: This part extracts the embed-
ding vectors (aka. features) of the title, description,
and code snippets. These embedding vectors are then
concatenated to form the post vector representation of
the input SO post.

• Feature fusion and tag prediction layers: This part maps
the post vector to a tag vector; the tag vector indicates
the probabilities of various tags being assigned to the
SO post.

Post2Vec leverages the tags assigned to SO posts to guide
the learning of suitable post vectors. And then, the learned
vectors are used as the distributed representations of SO
posts. We use tags as a guide since they are semantic
labels provided by developers and shared by many posts.
Specifically, we define a learning task to construct prediction
function f : P → Y , where yi ∈ Y indicates a list of tags of
the post pi ∈ P . The prediction function f is learned by
minimizing the differences between predicted and actual
tags assigned to posts. After the prediction function f is
learned, for each post, we can obtain its post vector from
the intermediate output between the feature extraction and
feature fusion layers (see Figure 2). We explain the details of
each part of Post2Vec in the following subsections.

2.2 Preprocessing

We process the title, description, and code snippets of each
post by the following four steps that are applied one after
the other:

1) Separate description and code snippets from
the body. Code snippets in the body of a
post are enclosed in HTML tags 〈pre〉〈code〉 and
〈\code〉〈\pre〉 [4], [15]. Hence, we use a regular ex-
pression “〈pre〉〈code〉([\s\S]*?)〈\\code〉〈\\pre〉” to ex-
tract those code snippets. We concatenate all code snip-
pets in a post into one document, and the remaining
parts of the post into another document.

2) Remove HTML tags. We remove HTML tags that
appear in the extracted code snippets and description
documents. These HTML tags typically correspond to
formatting instructions that may not carry much se-
mantic meaning [4]. To achieve this, we utilize a popu-
lar HTML parser Beautiful Soup1.

3) Tokenize title, description, and code snippets. At this
step, we would like to split each title, description, and
code snippet into a sequence of tokens. To do this
step, we employ a popular tool named NLTK2. More
precisely, the function word tokenize was used in our
implementation.

1. Beautiful Soup, https://www.crummy.com/software/
BeautifulSoup.

2. NLTK Tokenizer, https://www.nltk.org/api/nltk.tokenize.html.

4

4) Construct component-specific vocabulary. Based on
the posts in training data, we build three vocabularies
VT, VD, VC; each vocabulary corresponds to a set of
tokens along with their occurrence frequencies in the
collection of title, description, and code snippet, respec-
tively. A common practice for constructing a vocabulary
from large scale data is to discard the tokens that occur
less than k times [14]. In this work, we set k equals to
50 which is a common threshold used in prior works,
e.g., [18].

At the end of the preprocessing steps, title, description,
and code snippets of each post are extracted as three se-
quences of tokens. These sequences are fed to the input layer
of our proposed framework for further processing.

2.3 Input Layer
The input layer performs three main steps:

1) Indexing and padding. We convert each component
of a post output by the preprocessing step (which is
a sequence of tokens of arbitrary length) to a fixed
length sequence of token indices. To achieve this, we first
replace each token in each sequence by its index in the
corresponding vocabulary (if it exists in the vocabulary;
otherwise we skip the token). For example, given a title
as a sequence of tokens T = [w1, . . . , w|T|], we convert
it to [index1, . . . , index|T|], where |T| is a length of the
sequence of tokens and indexi is the index of wi in VT.
Since components of different posts contain different
numbers of tokens, and NN often requires each input
to be represented in the same way for the purpose
of parallelization, we perform padding or truncating
which is a standard solution. Specifically, we set three
parameters LT , LD, and LC to be the target length of
the sequence of tokens in the title, description, and code
snippets respectively. For each sequence belonging to a
component (i.e., title, description, or code snippets), if
its length is smaller than the predefined length (i.e., LT ,
LD , or LC), we add a special token3 (one or more times)
so that all sequences have the same length. If the length
of a sequence belonging to a component is longer than
the predefined length, we truncate it to only its first
LT , LD, or LC tokens. We calculate the distribution of
the number of tokens from each component among all
posts. And we found that by setting the value of LT ,
LD , LC as 100, 1,000, and 1,000, we can preserve more
than 95% of the original tokens for each component. In
other words, more than 95% of posts’ title, description,
and code length are smaller than 100, 1,000, and, 1,000.
Thus only a minimal loss of data is incurred while
keeping the representation to a smaller size, for a boost
in performance (esp. training time).

2) Token representation. We represent each token as a
vector of d values. By default, we set d to be 128.
We initialize the d values randomly and they will be
updated and learned during the training process.

3) Component representation. We encode the title, de-
scription, and code snippets of a post as two-
dimensional matrices (i.e., X T, XD, and X C). For exam-
ple, given a title as a sequence of tokens T, we construct

3. We use zero as the padded token.

zT

zD

zC

z
Tag prediction

layer

Fully connected

layer
Post vector

Tag 1

Tag 2

Tag 3

Tag 4

Tag n-3

Tag vector

Tag n-2

Tag n-1

Tag n

Fig. 3: The details of the red dashed box in Figure 2. zT, zD,
and zC are the embedding vectors of the title, description,
and code snippet, respectively. z is the post vector and is
fed to a fully-connected layer (FC) to produce the tag vector
(i.e., the probability distribution over tags).

its matrix representation X T ∈ RL
T×d, where d is the

dimension of the token representation. At the end, the
input layer outputs X T, XD, and X C and these matrices
are used as an input to the feature extraction layers.

2.4 Feature Extraction Layers
Under the framework of Post2Vec, we utilize NN models
to extract feature from posts. Specifically, we input X T, XD,
and X C, which are the encoded data of the title, description,
and code snippets, for each Stack Overflow (SO) post to
three independent NN models. The NN models produce
embedding vectors zT, zD, and zC, which represent the
features extracted from each component of the SO post,
respectively. Considering code snippets in Stack Overflow
are short, have poor structure, and are written in different
programming languages [11], [12], [13], the existing code
representation techniques are unable to be applied as they
are applicable for either a single type of program language
(e.g., [19], [20]) or the code should be at least a complete
function or method (e.g., [20], [21]). Hence, Post2Vec pro-
cesses code snippets and other two textual components (i.e.,
title and description) in the same way. Noted that different
types of NN models can be used as feature extractors. By
default, we use CNN as the feature extractor. The reason is
that CNN is considered a promising solution for a classifica-
tion task when class labels are usually determined by some
key phrases [22]. In our case (i.e., in the context of software
question and answer data), it is reasonable to choose CNN
since the semantics of posts are usually determined by some
key phrases containing technical terms. For example, CNN
can effectively identify the posts containing key phrases
like “throws IOException” as Java-related and recommend
the tag ‘Java’ for them. Moreover, we also investigate the
performance of another widely used NN model, i.e., LSTM,
in our experiment. We describe the hyperparameters of the
two considered NNs in Section 3.3 and the result of their
comparison in Section 3.6.

2.5 Feature Fusion and Tag Prediction Layers
Figure 3 shows the details of the part of the architecture
shown inside the red dashed box in Figure 2. The inputs of
this part are the three embedding vectors (i.e., zT, zD, and

5

zC) which represent the features extracted from the title,
description, and code snippets respectively. These embed-
ding vectors are concatenated to construct a new embedding
vector representing a Stack Overflow post.

We put the embedding vector z into a fully connected
(FC) layer to produce a vector h:

h = α(wh · z + bh) (1)

where wh is the weight matrix used to connect the embed-
ding vector z with the FC layer, · is the dot product between
wh and z, and bh is the bias value. Finally, the vector h is
passed to a tag prediction layer to produce the following:

t = −h ·wt (2)

where wt is the weight matrix between the FC layer and the
tag prediction layer, and t ∈ RT×1 (T is a total number of
tags). We then apply the sigmoid function [23] to get the
probability distribution over tags as follows:

p(ti|pi) =
exp(ti)

exp(ti) + 1
(3)

where ti ∈ t is the score of the ith tag and pi is the post for
which we want to recommend tags to.

2.6 Parameters Learning
Post2Vec aims to learn the following parameters: the em-
bedding matrices of the title, description, and code snippets
of each SO post, the convolutional layers’ matrices, and
the weights matrices and bias values of the fully connected
layer and the tag prediction layer. After these parameters are
learned, the post vector of each SO post can be determined.
These parameters of Post2Vec are learned by minimizing the
following objective function:

O =
∑
yi∈y

yi × (− log(p(ti|pi))) + (1− yi)

× (− log(1− p(ti|pi))) +
λ

2
‖θ‖22

(4)

where p(ti|pi) is the predicted tag probability defined in
Equation 3, yi = {0, 1} indicates whether the ith tag is
assigned to the post pi, and θ contains all parameters
our model. The term λ

2 ‖θ‖
2
2 is used to prevent overfitting

in the training process [24]. The dropout technique [25]
is employed to improve the robustness of Post2Vec. We
use Adam [26] to minimize the objective function since
Adam has been shown to be computationally efficient and
it requires low memory consumption as compared to other
optimization techniques [26], [27], [28]. We also use back-
propagation [29], a simple implementation of the chain
rule of partial derivatives, to efficiently compute parameter
updates during the training process.

3 POST2VEC FOR TAG RECOMMENDATION

To evaluate Post2Vec’s performance, we investigate its per-
formance for tag recommendation task. The problem formu-
lation of tag recommendation task is as follows: given a set
of existing software posts that are labeled with tags, how
to automatically predict a set of appropriate tags for a new

unseen software post. Arguably, if Post2Vec can learn good
embeddings, its end-to-end performance for the task of
learning suitable tags to be assigned to Stack Overflow posts
should be high. In this section, we conduct experiments to
mainly answer the following three research questions:
RQ1: Compared with the state-of-the-art approach, how effective
and efficient is Post2Vec in tag recommendation?
Recently, Zhou et al. [3] proposed deep learning based tag
recommendation approaches. To demonstrate the value of
Post2Vec for tag recommendation task, we compare our
approach with theirs.
RQ2: What is the impact of different types of NNs as feature
extractors?
One of the novelties of Post2Vec over the state-of-the-art tag
recommendation approaches is the NNs used for extracting
features can be replaced by other types. Here, we want
to investigate the impact of different types of NNs on the
performance of Post2Vec.
RQ3: Does Post2Vec benefit from code snippets?
One novelty of Post2Vec over the state-of-the-art tag recom-
mendation approaches is the consideration of code snippets.
Considering the fact that code snippets in Stack Overflow
are incomplete, have poor structure, and are written in
different programming languages [30], it is unclear if their
consideration can be a net benefit to Post2Vec. Furthermore,
many previous works, e.g., [11], [13], remove the code
snippets when analyzing posts. In this research question,
we want to investigate if code snippets boost (or harm)
Post2Vec performance.
RQ4: What is the impact of handling post components separately
rather than combining them?
Another novelty of Post2Vec over the state-of-the-art tag
recommendation approaches is the deep learning architec-
ture that considers different post components (title, descrip-
tion, and code snippets) separately using three different
NN models (i.e., NNtitle, NNdescription, and NNcode). Here,
we would like to investigate if handling post components
separately can boost the performance of Post2Vec.

3.1 Baseline Approaches

To answer RQ1, we compare the Post2Vec with the state-of-
the-art tag recommendation approach proposed by Zhou et
al. [3]. In particular, they proposed four types of neural net-
work based approaches, TagCNN, TagRNN, TagHAN, and
TagRCNN, which were based on convolutional neural net-
work (CNN) [31], recurrent neural network (RNN) [32], hi-
erarchical attention network (HAN) [33], and recurrent con-
volutional neural network (RCNN) [34], respectively. More-
over, they also compared the four proposed approaches with
the three traditional approaches, EnTagRec [35], TagMul-
Rec [36], and FastTagRec [37]. Their experimental results
showed that TagCNN and TagRCNN were the top-2 best
performers in terms of effectiveness. Moreover, Zhou et al.
also concluded that TagCNN and TagRCNN are practical
for use on the various-scale datasets. Thus, we use both
TagCNN and TagRCNN as our baseline approaches. To
replicate Zhou et al.’s approach, we carefully use their
released source code4.

4. https://pan.baidu.com/s/1pKCpodP.

6

TABLE 1: Differences between Variants of Post2Vec

Approach Used NN Model Considered Components ArchitectureTitle Description Code Snippets
Post2VecLSTM,All,Sep BiLSTM X X X Multiple LSTMs for different components
Post2VecCNN,−Code,Sep CNN X X Multiple CNNs for different components
Post2VecCNN,All,Com CNN X X X Single CNN model
Post2VecCNN,All,Sep CNN X X X Multiple CNNs for different components

Moreover, we raise three research questions (i.e., RQ2,
RQ3, RQ4) evaluating the impact of Post2Vec design deci-
sions: RQ2 investigates the impact of using different types
of NN models in Post2Vec. RQ3 investigates the impact of
inclusion or exclusion of code snippets in the post compo-
nents considered by Post2Vec. RQ4 investigates the impact
of concatenating or separating different post components.
To answer these three research questions, we implement
four variants of Post2Vec. Table 1 summarizes the differ-
ences between all investigated variants considering three
perspectives: used NN models, used components, and ar-
chitecture. To answer RQ2, we compare the performance of
pairs of variants that are only different on used NN mod-
els, i.e., Post2VecLSTM,All,Sep and Post2VecCNN,All,Sep. We
consider two kinds of NNs to serve as feature extractors, i.e.,
convolutional neural network (CNN) and bidirectional long
short term memory (BiLSTM). We pick these two because
the effectiveness of both CNN [3], [4] and BiLSTM [38], [39]
have been demonstrated in prior works on processing Stack
Overflow textual data. Thus, we investigate these two types
of NN models in our experiment. Noted that they can be
replaced by other NN models and we leave it for future
work. To answer RQ2, we compare the performance of a pair
of variants that are only different on used NN models, i.e.,
Post2VecCNN,All,Sep and Post2VecLSTM,All,Sep. Similarly,
to answer RQ3 and RQ4, we implement and compare pairs
of variants of Post2Vec that are only different in terms
of considered components (with or without code snippets,
i.e., Post2VecCNN,All,Sep and Post2VecCNN,−Code,Sep) and
architecture (single NN model or multiple NN models
with different components, i.e., Post2VecCNN,All,Com and
Post2VecCNN,All,Sep).

3.2 Dataset
In this work, we use a snapshot from the Stack Overflow
data dump following prior studies [40], [41], [42]. Zhou et
al. [3] also use this dataset in the evaluation of their deep
learning solutions. However, after careful investigation, we
find that the dataset used by Zhou et al. has some limita-
tions:

1) Zhou et al. only used the posts before July 1, 2014. How-
ever, this dataset is too old (more than four years ago)
to demonstrate the effectiveness of tag recommendation
approaches on the recent posts, especially due to the
rapid growth of Stack Overflow in recent years.

2) In the experiments performed by Zhou et al., posts in
test data were randomly selected from the whole Stack
Overflow dataset without consideration of when the
posts were made. In other words, some of the newer
posts were used to train the model while some older
posts were used in the test dataset which introduced
bias for evaluation.

3) While millions of posts were considered by Zhou et
al. in their experiments, only 10,000 (i.e., less than
0.1%) of them were selected to form the test set. Thus,
the proportion of test data may not be representative
enough to evaluate the approaches properly.

To address these limitations, we construct a more com-
prehensive dataset in this work. To address the first lim-
itation, we use the version of Stack Overflow data dump
released on September 5, 20185. A commonly used first data
preprocessing step in tag recommendation studies [1], [2],
[3] is to identify the rare tags. A tag is rare if it appears
less or equal to a predefined threshold ts. Rare tags are less
important and less useful to serve as representative tags to
be recommended to users [1]. Following the same setting
as Zhou et al., we set the value to the threshold ts as 50.
Using this setting, we identify 29,357 rare tags. We also
obtain 10,379,014 posts after removing the posts that only
contain rare tags. To address the second limitation, we sort
all the posts by the attribute creation date. To avoid the bias,
we use the latest posts as test data and the earlier posts
as training data. Lastly, to address the third limitation, the
latest 100,000 posts are selected as test data which is 20 times
larger than the size of test data considered by Zhou et al. In
this way, we build a new dataset; it has 10,279,014 posts
as training data, and 100,000 posts as test data. Moreover,
in the preprocessing step mentioned in Section 2.2, we also
construct a vocabulary for each component. They are, VT

(title’s vocabulary), VD (description’s vocabulary), and VC

(code snippets’ vocabulary) that include 28,213, 119,190, and
502,466 unique tokens respectively.

3.3 NNs and Hyperparameter Setting
We employ independent NN models (i.e., NNtitle,
NNdescription, and NNcode in Figure 2) to extract features
from the title, description, and code snippets. In our exper-
iment, we investigate two types of NN models, i.e., CNN
and BiLSTM. For a fair comparison, both CNN and BiLSTM
represent posts in the same dimension. Moreover, we use
Adam as the optimization algorithm [26] and shuffled mini-
batches to train them [43]. Inspired by [44], we investigate
the number of epochs from 10 to 20. And we observe that
the performance becomes stable after the number of epochs
equals 16. Hence, we fix the number of epochs to 16. The
parameter setting is widely used in many deep learning
based approaches for software engineering tasks, e.g., [45],
[46], [47]. Next, we describe the specific hyperparameter
settings for both CNN- and BiLSTM-based Post2Vec.
Convolutional Neural Network (CNN) based Post2Vec.
Each CNN model includes a convolutional layer with mul-
tiple filters and a non-linear activation function (i.e., RELU).

5. https://archive.org/download/stackexchange.

7

Each filter, followed by a RELU activation function, is
employed to a window of k tokens to extract the corre-
sponding features of this window. We apply a max pooling
operation [48] to obtain the highest feature value of this
window. Post2Vec uses multiple filters (with K different
window sizes) to obtain features from each component.
Following prior works (e.g., [45]), we follow a parameter
tuning step to estimate good values of these parameters.
We set aside 10% of the training data as a validation set
(10%), while the remainder of the data is used by Post2Vec
to learn post representation. We use the validation set for the
parameter tuning procedure. Specifically, we vary different
values of the parameters and measure the corresponding
performance on the validation set. Take the learning rate
as an example; we try setting it as 0.01, 0.001, or 0.0001.
And then, we measure the performance of our models with
different learning rates and find that Post2Vec achieves the
best performance when the training rate is set to 0.0001.
Similarly, we identify the optimal values of some other
parameters. As a result of this parameter tuning step, we
set the learning rate as 0.0001, the batch size as 128, and the
number of filters as 100 for each of the CNN models [31].
We set window sizes (K) as 1, 2, 3 for title and description
and 2, 3, 4 for code snippets (see Section 2.4). In this way,
Post2Vec represents each component (i.e., title, description,
or code snippets) of a post as a 300-dimensional (3 × 100)
vector, while each post is represented as a 900-dimensional
vector.
Bidirectional Long Short Term Memory (BiLSTM) based
Post2Vec. Each BiLSTM model includes a recurrent layer
with a hidden state. We set the number of features in
the hidden state to 300. As a result, each component is
represented as a 300-dimensional vector while each post is
represented as a 900-dimensional vector.

3.4 Evaluation Metrics

To evaluate the performance of their proposed approaches,
Zhou et al. [3] used Precision@k, Recall@k, and F1-score@k.
The 3 metrics are defined as the averages of Precision@ki,
Recall@ki, and F1-score@ki for each post pi respectively. The
latter metrics are defined below:
Precision@ki is the percentage of a post’s ground truth tags
GTi that are in the top-k recommended list TRki , formally
defined as:

Precision@ki =

∣∣TRki ∩GTi∣∣
k

(5)

Recall@ki is the percentage of tags in the top-k recommended
list TRki that are among the set of ground truth tags GTi.
However, Recall@ki value disfavors small k [3], [37]. For
example, for a post pi with 2 ground truth tags, even if the
first 2 recommended tags are correct, the Recall@1i value
is still 50% (i.e., 1/2). Hence, we follow the definition of
Recall@ki that was used to evaluate the state-of-the-art tag
recommendation approach by Zhou et al. [3]. In Zhou et al.’s
work, if the number of ground truth tags of a post is larger
than k, the value of Recall@ki is computed using the same
formula as Precision@ki. In this way, for the aforementioned
example, Recall@1i will be 100%. This perfect score better

reflects the correctness of the recommended tags at top-
1 position (as it is the best result possible). Zhou et al.’s
Recall@ki is formally defined as:

Recall @ki =


|TRk

i ∩GTi|
k , |GTi| > k

|TRk
i ∩GTi|
|GTi| , |GTi| ≤ k

(6)

F1-score@ki is a harmonic mean of Precision@ki and
Recall@ki, and it is formally defined as:

F1-score@ki = 2× Precision@ki × Recall@ki
Precision@ki +Recall@ki

(7)

Note that, based on the definition of Precision@k (Equa-
tion 5), Recall@k (Equation 6), and F1-score@k (Equation 7),
their values will always be the same when k equals 1; this is
the case because each post is labeled by at least one tag, and
thus |GTi| = k, when k = 1. Moreover, the value of Zhou
et al.’s Recall@ki formula may not always increase with an
increase in the value of k because of the second subformula
in Equation (6).

Zhou et al. [3] used Precision@k, Recall@k, and F1-
score@k, where k ∈ {5, 10}. However, we find that Stack
Overflow only allows users to assign at most 5 tags for each
post. Thus, in this work, we use more proper settings of
k, i.e., k ∈ {1, 2, 3, 4, 5}. Similar to Zhou et al.’s work, we
regard F1-score@k as the main evaluation metric as it takes
into consideration both Precision@k and Recall@k6.

3.5 Experimental Result

Effectiveness Comparison Table 2 shows a compari-
son in terms of effectiveness. The results show that
Post2VecCNN,All,Sep achieves the best performance among
all variants and baselines on all evaluation metrics.
Post2VecLSTM,All,Sep achieves the second best perfor-
mance, while TagRCNN performs the worst. Specifically,
Post2VecCNN,All,Sep outperforms Post2VecLSTM,All,Sep,
Post2VecCNN,−Code,Sep, Post2VecCNN,All,Com, TagCNN,
and TagRCNN by 2%, 7%, 5%, 15%, and 25% in terms of
F1-score@5, respectively.
Efficiency Comparison For a fair comparison, all the ap-
proaches were run on the same machine: a 64-bit, 14.04.4
LTS GPU server with Tesla P100-SXM2-16GB7. Table 3
shows the comparison in terms of training time cost;
we observed that all approaches cost more than 5 days
to train the model due to the large dataset. Specifically,
TagRCNN requires 8.5 days, TagCNN requires 7.1 days,
Post2VecCNN,All,Sep requires 7 days, Post2VecLSTM,All,Sep

requires 12.7 days, Post2VecCNN,−Code,Sep requires 6.9
days, and Post2VecCNN,All,Com requires 5.4 days. Although
the training time takes days, the time these approaches take
to recommend a set of tags to a post (i.e., model application
time) is very fast. It took each approach 0.08 seconds per
post on average. Note that training can be done once in a
long while.

6. In this work, by default, we use the evaluation metrics that were
used to evaluate the state-of-the-art approach [3]. We have also consid-
ered other evaluation metrics. They are described in the Appendix A
that we include as a supplementary material.

7. https://www.nvidia.com/en-us/data-center/tesla-p100.

8

TABLE 2: Effectiveness of Post2Vec and its baselines

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5
TagRCNN 0.68 0.53 0.42 0.34 0.29
TagCNN 0.70 0.56 0.45 0.37 0.32

Post2VecLSTM,All,Sep 0.78 0.62 0.50 0.41 0.35
Post2VecCNN,−Code,Sep 0.74 0.59 0.48 0.40 0.34

Post2VecCNN,All,Com 0.77 0.62 0.50 0.41 0.35
Post2VecCNN,All,Sep 0.79 0.63 0.51 0.42 0.36

Recall@1 Recall@2 Recall@3 Recall@4 Recall@5
TagRCNN 0.68 0.57 0.53 0.52 0.54
TagCNN 0.70 0.60 0.56 0.56 0.58

Post2VecLSTM,All,Sep 0.78 0.67 0.62 0.63 0.65
Post2VecCNN,−Code,Sep 0.74 0.64 0.60 0.61 0.63

Post2VecCNN,All,Com 0.77 0.66 0.62 0.63 0.65
Post2VecCNN,All,Sep 0.79 0.68 0.64 0.64 0.66

F1-score@1 F1-score@2 F1-score@3 F1-score@4 F1-score@5
TagRCNN 0.68 0.54 0.46 0.40 0.36
TagCNN 0.70 0.57 0.49 0.43 0.39

Post2VecLSTM,All,Sep 0.78 0.63 0.54 0.48 0.44
Post2VecCNN,−Code,Sep 0.74 0.61 0.52 0.46 0.42

Post2VecCNN,All,Com 0.77 0.63 0.54 0.48 0.43
Post2VecCNN,All,Sep 0.79 0.64 0.55 0.49 0.45

TABLE 3: Training time cost comparison

Approach Time cost (Mins)
TagRCNN 12,287
TagCNN 10,278

Post2VecLSTM,All,Sep 18,233
Post2VecCNN,−Code,Sep 9,916

Post2VecCNN,All,Com 7,811
Post2VecCNN,All,Sep 10,130

3.6 Research Questions and Analysis
We perform further analysis to answer the three research
questions.
RQ1: Compared with the state-of-the-art approach, how effective
and efficient is Post2Vec in tag recommendation?

To answer RQ1, we compare Post2Vec with the state-
of-the-art tag recommendation approaches (i.e., TagCNN
and TagRCNN). In terms of effectiveness, our experimental
results show that Post2Vec largely outperforms the baseline
approaches, i.e., it improves over TagCNN and TagRCNN
in terms of F1-score@5 by 15% and 25%, respectively. More-
over, in terms of efficiency, Post2Vec costs 0.1 day less than
TagCNN and 1.5 days less than TagRCNN in terms of model
training time. In terms of model application time (i.e., the
time it takes to recommend tags to a new SO post), all
approaches take a fraction of a second.

Post2Vec outperforms the state-of-the-art approaches in terms
of both effectiveness (by 15-25% in terms of F1-score@5) and
efficiency (by up to 1.5 days in terms of model training time).

RQ2: What is the impact of different types of NNs as feature
extractors?

To answer RQ2, we compare the performance of a pair of
Post2Vec’s variants that only differ in the way of used NN
model, i.e., Post2VecCNN,All,Sep and Post2VecLSTM,All,Sep.
From Table 2, we find that Post2VecCNN,All,Sep outper-
forms Post2VecLSTM,All,Sep by 3% in term of F1-score@5.
We apply the Wilcoxon Signed Rank Test [49] at a 95%
confidence level (i.e., p-value < 0.05) on the paired
data which corresponds to the F1-score@5 of CNN- and
LSTM-based Post2Vec. We find that CNN-based Post2Vec
(i.e., Post2VecCNN,All,Sep) significantly outperforms LSTM-

based Post2Vec (i.e., Post2VecLSTM,All,Sep). According to
Table 3, we also find that Post2VecLSTM,All,Sep costs 5.6
more days than Post2VecCNN,All,Sep for model training.

CNN-based Post2Vec outperforms LSTM-based Post2Vec sig-
nificantly and consumes fewer computing resources during
model training.

RQ3: Does Post2Vec benefit from code snippets?
To answer RQ3, we compare the performance of

Post2VecCNN,All,Sep and Post2VecCNN,−Code,Sep since the
only difference between them is the consideration of
code snippets. The experimental results show that
Post2VecCNN,All,Sep outperforms Post2VecCNN,−Code,Sep
in terms of effectiveness (7% better) but requires
more time to train (0.1 day more). It is reason-
able that Post2VecCNN,−Code,Sep is faster to train than
Post2VecCNN,All,Sep since Post2VecCNN,−Code,Sep has a
similar but simpler architecture (i.e., it ignores the code
snippets).

Consideration of code snippets can boost effectiveness (i.e., a
boost in F1-score@5 by 7%) but consumes more computing
resources during model training.

RQ4: What is the impact of handling post components separately
rather than combining them together?

To answer RQ4, we compare the performance of
Post2VecCNN,All,Com and Post2VecCNN,All,Sep because
both of them utilized title, description, and code snippets
as input data but Post2VecCNN,All,Sep separately employs
three CNN models for the title while description, and code
snippets, Post2VecCNN,All,Com concatenates them as one
document and feed it to a single CNN model. The exper-
imental results show that Post2VecCNN,All,Sep outperforms
Post2VecCNN,All,Com over all the evaluation metrics; in
terms of F1-score@5, Post2VecCNN,All,Com is 5% better than
Post2VecCNN,All,Com. We apply the Wilcoxon Signed Rank
Test [49] at a 95% confidence level (i.e., p-value < 0.05)
on the paired data which corresponds to the F1-score@5
and we find that Post2VecCNN,All,Sep significantly outper-
forms Post2VecCNN,All,Com. But Post2VecCNN,All,Com is
22% more efficient.

9

Post2Vec’s architecture that considers different post components
(i.e., title, description, and code snippets) separately signifi-
cantly boosts the performance by 5% in terms of F1-score@5 but
consumes more computing resources than considers different
components together during model training.

For the rest of the paper, we refer the variant
Post2VecCNN,All,Sep to Post2Vec.

4 POST2VEC FOR DOWNSTREAM TASKS

As stated earlier, the goal of this work is to build a Stack
Overflow post representation that can be useful for multiple
downstream tasks. In the training phase, our approach uses
tag as a guide to aid the learning of post representation. A
tag is a word or phrase that is attached to a post as a result
of a crowd sourced process and serves as a semantic label of
the post. Downstream tasks that are poised to benefit more
by representations learned by our approach are those where:
(1) the downstream task can benefit from an abstraction of
the post; (2) the tags in our training data capture suitable
semantics that are needed for the task. In this section, we
pick three tasks that satisfy the above two criteria.

4.1 Baseline Approaches

We first compare against state-of-the-art approaches pro-
posed by Xu et al. [6], Beyer et al. [10], and Huang et
al. [17] for relatedness prediction, post classification, and
API recommendation tasks, respectively. Note that all the
state-of-the-art approaches do not involve deep learning.
Furthermore, we also compare the performance of our
approach with two deep learning based techniques, i.e.,
TagCNN [3]8 and Doc2Vec [16], that can also be used to
generate post representations.

TagCNN forms a single output vector (i.e., post vector)
in the penultimate layer, and subsequently pass the vector to
a fully connected softmax layer to compute the probability
distribution over tags. Thus, we fed the posts used in
the downstream tasks to the TagCNN model which was
trained for the tag recommendation task (refer to Section 3)
and collected the corresponding vectors of those posts.
Moreover, as posts are also documents, we use Doc2Vec
(i.e., a document embedding algorithm) as another baseline
approach. We follow the Doc2Vec setting used in [15] as
they also use Doc2Vec to analyze Stack Overflow posts. We
use Gensim [50] to implement the Doc2Vec model. For a
fair comparison, the same training dataset is used to build
Post2Vec, TagCNN, and Doc2Vec models, i.e., the training
dataset used for the tag recommendation task.

4.2 Task 1: Relatedness Prediction

A post on a software question and answer (SQA) site can
be considered as a knowledge unit. Often information in one
post is insufficient to address a developer’s information
need. For such cases, developers need to search for related
posts that provide additional relevant knowledge units to
solve their technical problems. The task of automatically

8. We do not include tag recommendation approaches that do not use
deep learning as baselines for downstream tasks since they cannot be
used to generate post representations.

identifying such related posts or knowledge units is de-
scribed as relatedness prediction. It can support developers
for different purposes; for example, searching for related
solutions to better solve a particular problem, or gathering
new knowledge by browsing related SQA posts [4], [6].

4.2.1 Problem Formulation
The relatedness prediction is formulated as a multi-class clas-
sification problem. Given a set of pairs of software posts,
labels are assigned to them to describe how related they are.
The labels are based on the order of relatedness from most
to least related, i.e., Duplicate > Direct > Indirect > Isolated.
There is only one possible relatedness label between two
posts. For more details, please refer to the original work [4].

4.2.2 State-of-the-art Approach
The state-of-the-art relatedness prediction approach named
SoftSVM was proposed by Xu et al. [6]. SoftSVM in-
troduced a soft-cosine similarity which is able to cap-
ture the degree of relatedness when the text of posts
share related words. To measure the degree of related-
ness, SoftSVM constructs a four-dimensional vector which
corresponds to four types of features, 1) cosine similarity
based on Stack Overflow data cosSO , 2) soft-cosine simi-
larity based on Stack Overflow data softSO , 3) soft-cosine
similarity based on pre-trained Google word2vec softGoogle ,
and 4) soft-cosine similarity based on Levenshtein distance
softEdit . For more details on these four features, please
refer to [6]. To summarize, for a given pair of posts, a
four-dimensional feature vector FVSoftSVM is constructed
where each dimension corresponds to each feature value,
i.e., 〈cosSO , softSO , softGoogle , softEdit〉.

4.2.3 Dataset
We use the same dataset used in the state-of-the-art work [6].
The dataset contains 40,000 pairs of posts with the four
types of relatedness. Detailedly, each type of relatedness
corresponds to 10,000 pairs of posts, i.e., the dataset is
balanced with respect to class.

4.2.4 Experimental Setting
We hypothesize that there is a correlation between the
post vector distance and the relatedness, i.e., the smaller
the distance between two generated post vectors, the more
related these two posts are. To evaluate the post represen-
tation generated by the three approaches (i.e., Post2Vec,
TagCNN and Doc2Vec), we consider post vector distance
as an extra feature and combine it with the features used in
the state-of-the-art relatedness prediction approach. In par-
ticular, we add the Euclidean distance [51] (see Equation 8)
between two post vectors as an additional feature, namely
Dist . Then, we append Dist to the feature vector used by
the state-of-the-art approach. In this way, we construct a
five-dimensional feature vector FVSoftSVM+Dist for each
pair of posts, i.e., 〈cosSO , softSO , softGoogle , softEdit , Dist〉.
We name the feature vector based on Post2Vec, TagCNN,
Doc2Vec as FVSoftSVM+P2V , FVSoftSVM+TagCNN , and
FVSoftSVM+D2V , respectively. To facilitate comparison, we
feed the feature vector FVSoftSVM+Dist to the same kind of
traditional machine learning classifier (i.e., SVM) with the

10

same setting as described in [6]. Implementation-wise, we
reuse the source code released by Xu et al.9 and modify the
feature vector part. Then, ten times ten-fold cross-validation
is performed to evaluate predictive models.

Dist(p,q) = Dist(q,p) =

√√√√Dimension∑
i=1

(qi − pi)2 (8)

4.2.5 Evaluation Metrics

We use precision, recall, and F1-score, which were also
used by Xu et al. as evaluation metrics. The definitions of
precision, recall, and F1-score are as below. Note that Cij
denotes the number of pairs of class i that are predicted as
of class j. In the following equations, K = 4, as there are 4
relatedness types: Duplicate, Direct, Indirect and Isolated).

Precision for a class i is the percentage of post pairs correctly
classified as the class i among all pairs predicted as the class
i.

Precisioni =
Cii∑

1≤j≤K Cji
(9)

Recall for a class i is the percentage of post pairs correctly
classified as the class i among all pairs whose ground truth
label is class i.

Recalli =
Cii∑

1≤j≤K Cij
(10)

F1-score for a class i is a harmonic mean of precision and
recall for that class.

F1-scorei = 2× Precisioni×Recalli
Precisioni+Recalli

(11)

Higher values of the above metrics indicate better per-
formance. Following [6], F1-score is regarded as the main
metric.

4.2.6 Experimental Result

Table 4 shows the performance obtained using the fea-
ture vector FVSoftSVM and FVSoftSVM+Dist generated
by the three approaches. The results of the experi-
ment show that FVSoftSVM+P2V achieves the best perfor-
mance, FVSoftSVM+TagCNN achieves the second best, and
FVSoftSVM achieves worst in terms of precision, recall, and
F1-score. We found that when using FVSoftSVM+P2V as
feature vector, in terms of overall F1-score, it outperforms
FVSoftSVM+TagCNN , FVSoftSVM+D2V , and FVSoftSVM by
2%, 8%, and 10%, respectively. We apply the Wilcoxon
Signed Rank Test [49] at a 95% significance level (i.e., p-
value < 0.05) on the paired data which corresponds to
the F1-score of our approach, i.e., Post2Vec, and the best
performing baseline approach, i.e., TagCNN. We find that
Post2Vec significantly outperforms TagCNN in terms of F1-
score.

Overall, we are able to boost the performance of the
state-of-the-art relatedness prediction approach by leverag-
ing the post vectors generated by Post2Vec.

9. https://github.com/XBWer/ESEM2018.

4.3 Task 2: Post Classification

Beyer et al. [10] presented a taxonomy for Android-related
Stack Overflow (SO) posts and manually labeled 500 posts.
The taxonomy includes seven categories in which an An-
droid post can be classified, namely, API CHANGE, API
USAGE, CONCEPTUAL, DISCREPANCY, LEARNING, ERRORS,
and REVIEW.

4.3.1 Problem Formulation
The post classification problem is formulated as a multi-
label classification problem. Given a set of software ques-
tion and answer posts that are already labeled with one
or multiple categories, a new post needs to be classified
into a set of appropriate categories (i.e., API CHANGE, API
USAGE, CONCEPTUAL, DISCREPANCY, LEARNING, ERRORS,
and REVIEW).

4.3.2 State-of-the-art Approach
To classify posts into multiple categories, Beyer et al. [10]
constructed a binary classifier for each category. To con-
struct a classifier, they considered 82 different configurations
based on, e.g., whether data balancing is performed, which
classifier is used, whether parts-of-speech tags are included
in the feature vector representing a post, etc. The best
configuration is then determined for each category, and the
corresponding results are reported.

4.3.3 Dataset
To facilitate comparison, we have used the same dataset
used by Beyer et al. [10]. The dataset contains 500 posts
which have been manually labeled, with 30, 206, 145, 129,
79, 30, and 93 posts labeled as API CHANGE, API USAGE,
CONCEPTUAL, DISCREPANCY, LEARNING, ERRORS, and RE-
VIEW, respectively.

4.3.4 Experimental Setting
Our goal is to investigate whether leveraging post repre-
sentation generated using Post2Vec, TagCNN, and Doc2Vec
can boost the effectiveness of Beyer et al.’s state-of-the-art
approach. Thus, we reuse most of Beyer et al.’s proposed
architecture that considers the 82 configurations and de-
termines the best one. We refer to Beyer et al.’s original
approach as FVSTOA. The only change that we made is to
enhance the feature vector that FVSTOA uses to represent
a post. Specifically, we construct a new feature vector for
each post by appending FVSTOA’s feature vector with the
corresponding post’s representation that is learned by us-
ing either Post2Vec, TagCNN or Doc2Vec. We refer to the
approaches that use the feature vectors enhanced with post
representation learned using Post2Vec, TagCNN or Doc2Vec
as FVSTOA+P2V , FVSTOA+TagCNN , and FVSTOA+D2V

respectively. Implementation-wise, we reused the source
code released by Beyer et al.10 and only modified the feature
vector part.

Beyer et al. divided their manually-labeled set of 500
posts into training and test sets, with 90% (i.e., 450) of the
posts used for training and 10% (i.e., 50) for testing. Since
the dataset is unbalanced, random stratified sampling [52]

10. https://github.com/icpc18submission34/icpc18submission34.

11

TABLE 4: Performance Comparison for Relatedness Prediction

Feature Vector Duplicate Direct Indirect Isolated Overall

Precision

FVSoftSVM 0.47 0.41 0.43 0.73 0.51
FVSoftSVM+D2V 0.48 0.41 0.44 0.73 0.51

FVSoftSVM+TagCNN 0.53 0.44 0.46 0.76 0.55
FVSoftSVM+P2V 0.53 0.45 0.48 0.77 0.56

Recall

FVSoftSVM 0.54 0.19 0.49 0.91 0.53
FVSoftSVM+D2V 0.50 0.23 0.50 0.91 0.54

FVSoftSVM+TagCNN 0.52 0.33 0.49 0.91 0.56
FVSoftSVM+P2V 0.61 0.31 0.48 0.91 0.58

F1-score

FVSoftSVM 0.51 0.26 0.46 0.81 0.51
FVSoftSVM+D2V 0.49 0.30 0.47 0.81 0.52

FVSoftSVM+TagCNN 0.52 0.38 0.47 0.83 0.55
FVSoftSVM+P2V 0.57 0.36 0.48 0.83 0.56

is applied to ensure that the test set contains 10% or at least
three posts of each category. The experiment is repeated
50 times using the random stratified sampling, and the
average scores of the evaluation metrics (described below)
are reported.

4.3.5 Evaluation Metrics

We use precision, recall, and F1-score, which were also used
as evaluation metrics by Beyer et al. For each category,
these metrics are defined for both sides of the classification:
whether a post is classified correctly as belonging to the
category (classT) and whether a post is classified correctly
as not belonging to the category (classF). For all of the
above metrics, higher values indicate better performance.
F1-score for classT (denoted as fT) is regarded as the main
metric since the dataset is unbalanced and the minority is
classT (i.e., belonging to a category).

4.3.6 Experimental Result

Table 5 shows the performance of the post classification
task focusing on fT and the other two metrics used to
derive it (preT and recT). The experimental results show
that FVSTOA+P2V achieves the best average number of
fT and also the best performance for the most number of
categories. Specifically, across the 7 categories, on average
FVSTOA+P2V outperforms FVSTOA by 7% in terms of
fT . We apply the Wilcoxon Signed Rank Test [49] at a
95% significance level (i.e., p-value < 0.05) on the paired
data which corresponds to the fT of the feature vec-
tor based on our approach, i.e., FVSTOA+P2V , and the
best performing baseline approach, i.e., FVSTOA. We find
that FVSTOA+P2V significantly outperforms FVSTOA in
terms of fT . Moreover, we find that FVSTOA+D2V and
FVSTOA+TagCNN perform worse than FVSTOA. Also, none
of them achieve the best performance for a single category.
It indicates that Post2Vec’s learned representation enhances
the original feature vector, while the same cannot be said for
representations learned by TagCNN and Doc2Vec.

4.4 Task 3: API Recommendation

According to a survey conducted by Huang et al. [17], API
recommendation approach is desired and Stack Overflow is
an important resource for developers to search APIs.

TABLE 5: Performance Comparison for Post Classification.
preT , recT , fT = precision, recall and F1-score for classT .

Category preT
FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.59 0.60 0.74 0.67
API USAGE 0.91 0.82 0.94 0.88

CONCEPTUAL 0.59 0.47 0.62 0.58
DISCREPANCY 0.41 0.46 0.48 0.53

DOCUMENTATION 0.56 0.35 0.40 0.64
ERRORS 0.88 0.86 0.56 0.93
REVIEW 0.42 0.38 0.47 0.53
Average 0.62 0.56 0.60 0.68

recT
FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.95 0.76 0.73 0.77
API USAGE 0.78 0.58 0.58 0.71

CONCEPTUAL 0.62 0.74 0.46 0.68
DISCREPANCY 0.87 0.63 0.69 0.76

DOCUMENTATION 0.55 0.27 0.18 0.38
ERRORS 0.33 0.21 0.34 0.70
REVIEW 0.54 0.49 0.25 0.48
Average 0.66 0.53 0.46 0.64

fT
FVSTOA FVSTOA+D2V FVSTOA+TagCNN FVSTOA+P2V

API CHANGE 0.71 0.65 0.71 0.68
API USAGE 0.84 0.68 0.71 0.78

CONCEPTUAL 0.59 0.57 0.52 0.62
DISCREPANCY 0.56 0.53 0.56 0.62

DOCUMENTATION 0.53 0.28 0.24 0.45
ERRORS 0.46 0.33 0.37 0.79
REVIEW 0.46 0.42 0.31 0.48
Average 0.59 0.49 0.49 0.63

4.4.1 Problem Formulation

In the literature, the API recommendation problem is
formed as given a query in natural language that describes
a technical question, recommending a certain API or API
sequence to answer the question [17], [53], [54]. Depending
on the granularity of the recommended API, the problem
is divided into two categories, method- and class-level API
recommendation.

4.4.2 State-of-the-art Approach

Huang et al. [17] focus on the API recommendation at
the method level and present an approach named BIKER
which recommends API based on Stack Overflow data.
The framework of BIKER mainly contains three stages.
First, given a query and Stack Overflow data dump, BIKER
collects the top k most similar questions for the query by
measuring the similarity between the questions and the
given query. Second, it extracts API from the answers of the
k similar questions and ranks them by computing similarity
between each API candidate and the query. Third, BIKER
selects the top 5 most similar APIs and summarizes them
by considering multiple sources, e.g., the information in the
official description, title of the similar questions, and the
code snippets exist in the answers of the similar questions.

12

4.4.3 Experimental Setting
In the first stage of BIKER, it computes the similarity
between each question in the Stack Overflow data dump
and the query based on a word IDF (inverse document
frequency) vocabulary and a word embedding model. Based
on the similarity, all the questions are ranked and top k of
them are selected as similar questions to the query.

To investigate whether leveraging post representation
generated using Post2Vec, TagCNN, and Doc2Vec can boost
the effectiveness of BIKER, we embed the post representa-
tion into the rank list of the similar questions based on a new
perspective, i.e., considering similarity between questions
based on the post representation. Given a query, we first
collect the rank list with top k most similar questions and
their similarities to the query returned by BIKER, i.e.,

RankList = {TQ1 : {Sim〈TQ1, Query〉},
TQ2 : {Sim〈TQ2, Query〉},

...,

TQk : {Sim〈TQk, Query〉}}
And then we collect 5 questions in the data dump with the
least euclidean distance to each of the similar questions TQi
based on the post representation, i.e.,

TQi ⇒ TQSimQsi = {TQSimQ1
i ,

TQSimQ2
i ,

...,

TQSimQ5
i }

We set the similarity between two questions as
Sim〈Qi, Qj〉 = 1/(1 + dist〈Qi, Qj〉). Last, we add the top
5 questions (i.e., TQSimQs) to the rank list RankList.
For each question TQSimQji , we set its similarity to the
query by multiplying two similarities, (1) similarity between
the corresponding top question and query, (2) similarity
between the corresponding top question and the question,
i.e.,

Sim〈TQSimQji , Query〉 = Sim〈Qi, Query〉
×Sim〈TQi, TQSimQji 〉

In this way, the rank list of similar questions is expanded
and its top k questions are fed to the next stage of BIKER.
We follow the same setting in [17] and set k as 50.

4.4.4 User Study
To investigate whether BIKER can help developers find
the appropriate APIs more efficiently and accurately in
practice, Huang et al. conducted a user study [17]. Thus,
we conduct a user study to evaluate the performance of two
versions of BIKER, i.e., before and after integrating the post
representation.
Experimental queries and ground-truth APIs. In [17], 10
queries are selected as experimental queries. In this work,
we randomly select 50 queries which are 5 times more. And
for each query, we collect its corresponding API or API
sequence which is regarded as the ground truth.
Participants. We recruited 8 participants from the first au-
thor’s university, 1 postdoc, 3 PhDs, and 4 research engi-
neers. The years of their developing experience vary from 3
to 7 years, with an average of 4.6 years.

Experimental groups. We divided the participants uni-
formly based on years of development experience into
four groups, (1) BIKER: the full-feature of original
BIKER, (2) BIKER+D2V: the enhanced BIKER which
integrated the post representation learned by doc2vec,
(3) BIKER+TagCNN: the enhanced BIKER which inte-
grated the post representation learned by TagCNN, (4)
BIKER+Post2Vec: the enhanced BIKER which integrated
the post representation learned by Post2Vec.
Evaluation metrics. To measure the accuracy of BIKER,
two evaluation metrics have been used in [17], correctness
and time cost. Correctness is used to evaluate whether a
participant can find the correct APIs. For a query that only
needs one API method, correctness is 1 if the participant
submitted only one API and it’s correct, otherwise, it is 0.
For a query that needs an API sequence, correctness is the
proportion of the correct APIs submitted by the participant
among all APIs in the correct API sequence. Time cost
evaluates how fast a participant can answer a question.
Result analysis. As shown in Table 6, the result shows
that BIKER+Post2Vec achieves the best performance, BIKER
achieves the second-best, BIKER+TagCNN performs the
worst, in terms of both correctness and time cost. We find
that the correctness of BIKER is improved by 10% and
the time cost is reduced by 18% after integrating the post
representation learned by Post2Vec. Moreover, we also find
that only the representation learned by Post2Vec boosts the
performance of BIKER and the other two baselines harm the
performance.

TABLE 6: Performance Comparison for API Recommenda-
tion

Correctness Time Cost (in Seconds)
BIKER 0.40 67

BIKER+D2V 0.39 80
BIKER+TagCNN 0.37 108

BIKER+P2V 0.44 55

Table 7 presents the recommendation result returned
by BIKER and BIKER+Post2Vec for an experimental query,
Converting a time String to ISO 8601 format. We find that the
correct API (i.e., java.time.Instant.toString()) does not exist
in all the APIs recommended by BIKER but it is ranked
first by BIKER+Post2Vec. It indicates that BIKER+Post2Vec
successfully identifies similar questions which cover the
ground truth but BIKER fails. Thus, the result shows that
integrating the post representation learned by Post2Vec can
boost the performance of BIKER.

5 DISCUSSION

5.1 Qualitative Analysis

Recall that the goal of Post2Vec is to embed posts to a vector
space where it is easy to compute meaningful distances.
Ideally, the distance measure between closely related posts
should be small to capture the perception of similarity.
Also recall that, for the relatedness prediction task, there
are four relatedness types among pairs of posts, and the
order of relatedness from most to least related is Duplicate
> Direct > Indirect > Isolated. The experimental results
in Section 4.3 show that the state-of-the-art approach is

13

TABLE 7: Recommendation returned by BIKER and BIKER+Post2Vec for an experimental query

Query: Converting a time String to ISO 8601 format
1st Recommen-
dation

BIKER BIKER+Post2Vec

API java.lang.String.format java.time.Instant.toStringX
Java Doc Returns a formatted string using the specified format

string and arguments.
A string representation of this instant using ISO-8601
representation.

Relevant SO
Questions

1.Convert String to UUID formatted string (25895225*)
2.String.format runtime formatting (19803405*)
3.Formatting: String cannot be converted to String[]
(35702926*)

1.Format Instant to String (25229124*)

Code Snippets

/**********code snippet1**********/
String plain = ”...”;
String uuid = String.format(”...”, plain.substring(0,7));

/**********code snippet2**********/
int width = ...;
String fmt = String.format(”-%i%%s %%s”, width);
String formatted = String.format(fmt, ”Hello”, ”World”);

/**********code snippet3**********/
dataArray +=String.format(”...”, b.getTitle(), b.getIsbn());

/**********code snippet1**********/
DateTimeFormatter formatter = DateTimeFormatter
.ofPattern(”...”);
String text = date.toString(formatter);
LocalDate date = LocalDate.parse(text, formatter);

*: Unique question Id in Stack Overflow.

TABLE 8: Pairs in Figure 4a, 4b, 4c, and 4d

pairId id1 id2 label
0 10499846 10499780 duplicate
1 41995162 41985606 duplicate
2 25265734 25269382 duplicate
3 12399031 12399168 duplicate
4 21347995 21579452 duplicate
0 9701688 9690628 direct
1 4807299 27781975 direct
2 46692249 43321202 direct
3 12884573 40770990 direct
4 16821771 13944155 direct
0 24791298 27667086 indirect
1 7183010 37101318 indirect
2 32147303 23247539 indirect
3 36966266 40257154 indirect
4 23018048 29306473 indirect
0 25441021 45652298 isolated
1 42996077 35741584 isolated
2 25335343 22510809 isolated
3 25763556 2081159 isolated
4 40324266 33151168 isolated

improved by adding distance between post vectors as an
additional feature.

To further investigate the capability of Post2Vec, we
visualize the vector space of randomly selected 20 pairs of
posts with different types of relatedness labels (details are
shown in Table 8) and collected their corresponding post
vectors. Figure 4 presents the post vector space learned by
Post2Vec, visualized in a two-dimensional space using the
t-SNE dimensionality reduction technique [55]. Specifically,
Figures 4a, 4b, 4c, and 4d present vector space of Post2Vec
for pairs of post with different types of relatedness labels,
duplicate, direct, indirect, and isolated, respectively. From the
figures, we observe that the rank list of average distance
between pairs of posts which belong to the same type of
relatedness is: duplicate (Figure 4a) < direct (Figure 4b) <
indirect (Figure 4c) < isolated (Figure 4d). In other words,
post vectors are closer to each other when the corresponding
pair of posts are more related. This further demonstrates the
quality of post vectors generated by Post2Vec.

5.2 Quantitative Analysis

5.2.1 Stability of Post2Vec Representation

We find that the performance rankings of different post
representations for different downstream tasks are not al-
ways consistent. Take TagCNN as an example, it performs
second-best in relatedness prediction but performs worst
in post classification and API recommendation. Moreover,
after integrating the post representation learned by D2V
and TagCNN into the state-of-the-art approaches, the per-
formance becomes worse for the post-classification (see
Table 5) and API recommendation (see Table 6) tasks. It
demonstrates that the performance could be even harmed
when integrating unsuitable post representation. Overall,
the experimental result demonstrates that the post repre-
sentation learned by Post2Vec is not only higher quality but
also more stable than others.

5.2.2 Robustness of Post2Vec Representation

Recall that there are four handcrafted features proposed
in the original work of relatedness prediction and we
append the distance between posts’ vectors generated
by Post2Vec (denoted by P2VDist) to boost the fea-
tures (Section 4.2.4). In this way, we construct a five-
dimensional feature vector (FV) for each pair of posts, i.e.,
〈cosSO , softSO , softGoogle , softEdit , P2VDist〉.

To measure the relative importance of the feature gen-
erated by Post2Vec, we remove each component of FV
one-at-a-time and measure the corresponding performance
(in terms of F1-score; which is the summary metric). The
most important feature should result in the largest drop in
performance when it is removed. As shown in Table 9, we
find that F1-score decreases the most when Dist (the feature
generated by Post2Vec) is removed. This shows that the
representation learned by Post2Vec is the most important
feature among the five. The rank of the relative importance
of the five features is P2VDist > softSO > softGoogle >
cosSO = softEdit.

14

TABLE 9: Related Importance of Different Combinations of Features for Relatedness Prediction

Feature Vector Duplicate Direct Indirect Isolated Overall

Precision

FVw/o cosSO
0.53 0.45 0.48 0.77 0.55

FVw/o softSO
0.53 0.45 0.46 0.69 0.53

FVw/o softGoogle
0.53 0.44 0.48 0.76 0.55

FVw/o softEdit
0.53 0.45 0.48 0.77 0.55

FVw/o P2VDist
0.47 0.41 0.43 0.73 0.51

FVall 0.53 0.45 0.48 0.77 0.56

Recall

FVw/o cosSO
0.60 0.31 0.48 0.91 0.57

FVw/o softSO
0.60 0.32 0.38 0.93 0.55

FVw/o softGoogle
0.61 0.31 0.47 0.91 0.57

FVw/o softEdit
0.60 0.30 0.48 0.91 0.57

FVw/o P2VDist
0.54 0.19 0.49 0.91 0.53

FVall 0.61 0.31 0.48 0.91 0.58

F1-score

FVw/o cosSO
0.56 0.37 0.48 0.83 0.56

FVw/o softSO
0.57 0.37 0.42 0.79 0.53

FVw/o softGoogle
0.57 0.37 0.47 0.83 0.55

FVw/o softEdit
0.56 0.36 0.48 0.83 0.56

FVw/o P2VDist
0.51 0.26 0.46 0.81 0.51

FVall 0.57 0.36 0.48 0.83 0.56

5.3 Vector Space Visualization

To further investigate the clustering quality of post vectors
learned by Post2Vec, we randomly sample a subset of
posts with a significant number from the dataset of relat-
edness prediction and visualize the vector space learned
by Post2Vec. Out of the 51,918 posts from the dataset,
we randomly consider 8,105 posts (i.e., the exact number
provided by the Sample Size Calculator11 using 95% for the
confidence level). Different from the vector space visualiza-
tion for the relatedness prediction in Section 5.1, we omit
the relatedness labels between posts. As shown in Figure 5,
we utilize the t-SNE dimensionality reduction technique [55]
to visualize the vector space learned by our approach. We
find that the learned vector space contains different sizes
of clusters. Furthermore, we arbitrarily pick two clusters (as
shown in Figure 5b and Figure 5c) and manually read all the
included posts. We find that posts in a cluster are related as
they are mainly about one or a few specific technologies. For
example, all the posts in cluster #1 (i.e., Figure 5b) are related
to a Java API named Jackson while most of the posts (except
one) in cluster #2 are related to another API called Apache
POI. To some extent, it also explains that the boundaries
between clusters are not always clear as the posts may be
related to multiple technologies instead of only one.

Within a cluster, we find that the closer two posts’
vectors are, the more sentiment similar they are. Take a pair
of posts in cluster #1 as an example (i.e., Figure 5b), the two
posts (Id = 9300191 and 12468764) are close to each other in
the vector space but far from others. The reason is that only
these two posts are related to deserializing enumeration by
using Jackson. The same observation can also be found in
cluster #2 which is related to another technology named
Apache POI. Within cluster #2, the pair of posts that most
close to each other (i.e., Id = 28564045 and 16768328) are
related to version 3.9 of the API Apache POI and the usage
of API function calls for editing sheets. Above all, two posts’
vectors are likely to be close to each other in the vector space
learned by our approach if they are similar semantically.

11. https://www.surveysystem.com/sscalc.htm

5.4 Threats to Validity
A threat to internal validity relates to our assumption that
tags are labeled correctly by users in Stack Overflow; how-
ever, mislabeling could happen sometimes. Still, we believe
that Stack Overflow effective crowdsourcing process helps
to reduce the number of such cases. Also, some works
utilize a validation dataset to tune hyperparameters during
training to reduce overfitting likelihood. However, similar
to many prior works [56], [57], for efficiency reason, we
did not tune the hyperparameters. Tuning them can po-
tentially boost Post2Vec effectiveness. Still, the experimental
results have demonstrated that Post2Vec can improve the
effectiveness of state-of-the-art approaches in several tasks,
which suggests that the learned post representation does not
overfit training data.

One threat to external validity relates to the generality
of the distributed representation generated by Post2Vec.
Related works like fun2vec [58] and code2vec [59], that aim
to generate a representation for functions and methods, only
consider at most one downstream task. In this work, we
have reduced this threat by considering three downstream
tasks. Another threat to external validity is that the effec-
tiveness of our distributed representation depends on the
richness of the tags. We observed that there are more than
58k tags in Stack Overflow on August 2019 and on average
every post is labeled with 3 tags. Moreover, Stack Overflow
encourages users to label their questions with existing tags
and requires them to avoid meta-tags (i.e., generic tags that
do not describe the content of the question, e.g., beginners)
when creating new tags. 12 The aforementioned facts suggest
that the tags in Stack Overflow are commonly used to
characterize posts and they are meaningful for capturing
the contents of posts. In the future, we will explore other
potential information (in addition to the tags) that can also
be used to guide the representation learning process.

Threats to construct validity relate to the evaluation
metrics and the statistical hypothesis test that we consider.
We reuse the evaluation metrics that were used in the
original tag prediction, relatedness prediction, post classi-

12. Users guide on tags in Stack Overflow, https://stackoverflow.
com/help/tagging.

15

(a) Duplicate Pairs

(b) Direct Pairs

(c) Indirect Pairs

(d) Isolated Pairs

Fig. 4: Vector Space of Post2Vec on Relatedness Prediction

fication, and API recommendation work that we extend. We
use a standard statistical hypothesis test, Wilcoxon signed-
rank test [49], to check whether the performance difference
between two competing approaches is significant. This test
has been used in many past studies, e.g., [60], [61], [62].

(a) Vector Space

(b) An Jackson-related Cluster (#1) of Posts in Figure 5a

(c) An Apache POI-related Cluster (#2) of Posts in Figure 5a

*: The numbers in Figure 5b and 5c represent posts’ Ids in Stack Overflow.

Fig. 5: Vector Space learned by Post2Vec

Most of the metrics and the statistical hypothesis test are
well known. Thus, we believe that this threat is minimal.

6 RELATED WORK

In this section, we describe prior studies on SQA post
analysis, and those that learn distributed representations of
software artifacts.

16

6.1 SQA Post Analysis

Many past studies have analyzed SQA posts to help de-
velopers find relevant information on SQA sites; these in-
clude studies on tag recommendation for posts [1], [2], [3],
relatedness prediction for posts [4], [6], relevant question
retrieval [41], [63], [64], post classification [8], [9], [10],
etc. Moreover, SQA posts have also been analyzed to help
developers in performing other tasks such as code summa-
rization [65], [66], [67], and code comprehension [68], [69],
[70], etc. We briefly describe some of the aforementioned
works below.

6.1.1 Tag Recommendation

Xia et al. proposed TagCombine, a method that analyzes
mappings between posts and tags from different perspec-
tives [1]. TagCombine used bag-of-words (BOW) to repre-
sent posts. The representation was fed into three compo-
nents: multi-label ranking, similarity based ranking, and
tag-term based ranking. The combination of scores pro-
duced by the 3 components were used to rank and recom-
mend tags to a post. Recently, Zhou et al. have proposed
four different deep learning approaches, TagCNN, TagRNN,
TagHAN and TagRCNN, which are based on convolutional
neural networks (CNN), recurrent neural networks (RNN),
hierarchical attention networks (HAN), and recurrent con-
volutional neural network (RCNN), respectively [3]. All
four approaches concatenate the text in the title and de-
scription of posts as the input data to predict the posts’
tags. Their experimental results show that TagCNN and
TagRCNN achieve the best performance, and outperform
the aforementioned TagCombine proposed by Xia et al. [1]
and several other baselines.

6.1.2 Related Post Prediction

Xu et al. had come up with four relatedness types for
measuring relationship between posts and formulated the
relatedness prediction problem as a multi-class classification
problem [4]. Fu et al. extended Xu et al.’s work using a sup-
port vector machine (SVM) called TunedSVM [5]. Compared
with Xu et al.’s original approach, TunedSVM achieved
similar effectiveness but was much faster. In their latest
work, Xu et al. proposed four new handcrafted features
and a more efficient SVM model, namely SoftSVM [6]. The
results showed that SoftSVM achieved better performance
in terms of both effectiveness and efficiency.

6.1.3 Post Classification

Allamanis et al. employed a topic model for clustering ques-
tions in Stack Overflow into categories [9]. They defined
a category as “the set of reasons questions are asked and
what the users are trying to accomplish”. They found that
question category does not vary for different programming
languages. Very recently, Beyer et al. did a study focusing
on Android-related Stack Overflow posts to investigate
question categories, and proposed an approach that can au-
tomatically classify the posts into these categories [10]. More
specifically, they manually labeled 500 posts with seven
categories, API CHANGE, API USAGE, CONCEPTUAL, DIS-
CREPANCY, LEARNING, ERRORS, and REVIEW. Then, they

used these labeled posts for building models to automate
post classification.
Post2Vec can aid the aforementioned works by learning a
better representation of Stack Overflow posts. In Section 3,
we have demonstrated that Post2Vec can perform better
than the state-of-the-art approaches proposed by Zhou et
al. [3] for tag recommendation. Additionally, in Section 4, we
have also shown that Post2Vec’s distributed representations
can boost the performance of related post prediction, and
post classification.

6.2 Representations of Software Artifacts
Recently, a number of approaches have been proposed to
learn distributed representation of software artifacts [58],
[59], [71]. For example, DeFreez et al. proposed Func2vec,
which learns to map a code function to a vector in con-
tinuous vector space [58]. They first linearized code of a
function to generate path sequences as sentences, which
were generated using random walks over the paths in the
control-flow graph of the code. On these sentences, a neural
network was trained to learn function embedding. Also,
Alon et al. proposed code2vec, which learns code embeddings
- a continuously distributed vector representation of code
snippets [59].

Narayanan et al. proposed apk2vec, which uses a graph
embedding approach to build distributed representations
of android apps [71]. Their approach consisted of a static
analysis phase which took in an APK file and generated
dependency graphs from the code in the file. The informa-
tion from the dependency graphs was then fed into a neural
network which subsequently combined them and generated
a distributed representation of the APK file.

Different from the aforementioned works, our target is
to learn the distributed representations of software posts,
rather than source code or APKs. Our work can potentially
be enhanced by making use of the code representations
proposed by DeFreez et al. and Alon et al. which we leave
for future work. One benefit of our approach is that it is
programming language agnostic, unlike the representations
proposed by DeFreez et al. and Alon et al. This makes
our approach suitable for corpus containing a mix of code
snippets in different programming languages, such as the
code snippets in the Stack Overflow posts used in this work.

7 CONCLUSION AND FUTURE WORK

In this work, we present a novel neural network based archi-
tecture, namely Post2Vec, which learns distributed represen-
tation of Stack Overflow posts by using the tags assigned by
users to such posts as a guide. Post2Vec architecture takes
advantage of code snippets and handles different compo-
nents (i.e., title, description, and code snippets) separately.

To evaluate the quality of Post2Vec’s deep learning ar-
chitecture, we first investigate its end-to-end effectiveness in
tag recommendation task. The experimental results showed
that Post2Vec outperforms the best performing state-of-the-
art deep learning based tag recommendation approaches,
suggesting its ability to learn better post representations.
Furthermore, to evaluate the value of representation learned
using Post2Vec, we integrated the generated post repre-
sentations into the learning pipeline of three downstream

17

tasks, i.e., relatedness prediction, post classification, and
API recommendation. We found that the post representation
learned using Post2Vec can boost the effectiveness of state-
of-the-art approaches’ performance by a substantial margin.

In the future, we would like to explore the potential
improvements of post representation by integrating more
information, e.g., comments and answers. We also plan to
investigate the effectiveness of other deep neural network
models (beyond CNN and RNN) to be used in the feature
extraction layer of Post2Vec. Moreover, we plan to further
investigate the effectiveness of post representation learned
by Post2Vec in additional downstream tasks. It would also
be interesting to investigate the applicability of Post2Vec to
additional software question and answer sites beyond Stack
Overflow.

REFERENCES

[1] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in
software information sites,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
287–296.

[2] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information
sites,” in IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014, pp. 291–300.

[3] P. Zhou, J. Liu, X. Liu, Z. Yang, and J. Grundy, “Is deep learning
better than traditional approaches in tag recommendation for
software information sites?” Information and Software Technology,
2019.

[4] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via con-
volutional neural network,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 51–62.

[5] W. Fu and T. Menzies, “Easy over hard: A case study on deep
learning,” in Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering. ACM, 2017, pp. 49–60.

[6] B. Xu, A. Shirani, D. Lo, and M. A. Alipour, “Prediction of relat-
edness in stack overflow: deep learning vs. svm: a reproducibility
study,” in Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, 2018,
p. 21.

[7] T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu, “500+ times
faster than deep learning:(a case study exploring faster methods
for text mining stackoverflow),” in 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories (MSR). IEEE, 2018,
pp. 554–563.

[8] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Software
Engineering, vol. 21, no. 3, pp. 1192–1223, 2016.

[9] M. Allamanis and C. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 53–56.

[10] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension. ACM,
2018, pp. 211–221.

[11] C. Treude and M. Wagner, “Predicting good configurations for
github and stack overflow topic models,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 84–95.

[12] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow
posts,” Journal of Computer Science and Technology, vol. 31, no. 5, pp.
910–924, 2016.

[13] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec++: An
enhanced tag recommendation system for software information
sites,” Empirical Software Engineering, vol. 23, no. 2, pp. 800–832,
2018.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[15] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: automated gen-
eration of answer summary to developersź technical questions,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 2017, pp. 706–716.

[16] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in International conference on machine learning,
2014, pp. 1188–1196.

[17] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” in 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2018, pp. 293–304.

[18] X. Li, Y. Meng, X. Sun, Q. Han, A. Yuan, and J. Li, “Is word
segmentation necessary for deep learning of chinese representa-
tions?” in Proceedings of the 57th Conference of the Association for
Computational Linguistics, 2019, pp. 3242–3252.

[19] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2016, pp. 87–98.

[20] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Deep learning similarities from different repre-
sentations of source code,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). IEEE, 2018, pp.
542–553.

[21] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit: Code
editing with tree-based neural models,” IEEE Transactions on Soft-
ware Engineering, pp. 1–1, 2020.

[22] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study
of cnn and rnn for natural language processing,” arXiv preprint
arXiv:1702.01923, 2017.

[23] J. Han and C. Moraga, “The influence of the sigmoid function
parameters on the speed of backpropagation learning,” in Interna-
tional Workshop on Artificial Neural Networks. Springer, 1995, pp.
195–201.

[24] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping,”
in Advances in neural information processing systems, 2001, pp. 402–
408.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[27] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and
S. Mougiakakou, “Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network,” IEEE trans-
actions on medical imaging, vol. 35, no. 5, pp. 1207–1216, 2016.

[28] S. Arora, N. Cohen, and E. Hazan, “On the optimization of
deep networks: Implicit acceleration by overparameterization,”
in Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, 2018, pp. 244–253. [Online]. Available:
http://proceedings.mlr.press/v80/arora18a.html

[29] M. T. Hagan and M. B. Menhaj, “Training feedforward networks
with the marquardt algorithm,” IEEE transactions on Neural Net-
works, vol. 5, no. 6, pp. 989–993, 1994.

[30] C. Treude and M. P. Robillard, “Understanding stack overflow
code fragments,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 509–513.

[31] Y. Kim, “Convolutional neural networks for sentence
classification,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, 2014, pp. 1746–1751. [Online]. Available:
http://aclweb.org/anthology/D/D14/D14-1181.pdf

[32] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for
text classification with multi-task learning,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,

18

IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016, pp. 2873–2879.
[Online]. Available: http://www.ijcai.org/Abstract/16/408

[33] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2016, pp. 1480–1489.

[34] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in Twenty-ninth AAAI conference
on artificial intelligence, 2015.

[35] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information
sites,” in 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014.
IEEE Computer Society, 2014, pp. 291–300. [Online]. Available:
https://doi.org/10.1109/ICSME.2014.51

[36] P. Zhou, J. Liu, Z. Yang, and G. Zhou, “Scalable tag recommenda-
tion for software information sites,” in IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2017, pp. 272–282.

[37] J. Liu, P. Zhou, Z. Yang, X. Liu, and J. Grundy, “Fasttagrec: fast
tag recommendation for software information sites,” Automated
Software Engineering, vol. 25, no. 4, pp. 675–701, 2018.

[38] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question
titles for stack overflow from mined code snippets,” ACM Trans.
Softw. Eng. Methodol., vol. 29, no. 4, Sep. 2020. [Online]. Available:
https://doi.org/10.1145/3401026

[39] L. Wang, L. Zhang, and J. Jiang, “Detecting duplicate questions in
stack overflow via deep learning approaches,” in 2019 26th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2019, pp.
506–513.

[40] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving low quality stack overflow post detection,” in 2014
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 541–544.

[41] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th international
conference on software engineering. ACM, 2016, pp. 404–415.

[42] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident pro-
gramming prompter,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 102–111.

[43] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch
training for stochastic optimization,” in Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2014, pp. 661–670.

[44] V. J. Hellendoorn, P. T. Devanbu, and M. A. Alipour, “On the
naturalness of proofs,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 724–728.

[45] H. Ha and H. Zhang, “Deepperf: performance prediction for
configurable software with deep sparse neural network,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1095–1106.

[46] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhut, G. Li, and J. Wang,
“Unblind your apps: Predicting natural-language labels for mo-
bile gui components by deep learning,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 2020,
pp. 322–334.

[47] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 933–944.

[48] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of
feature pooling in visual recognition,” in Proceedings of the 27th
international conference on machine learning (ICML-10), 2010, pp.
111–118.

[49] F. Wilcoxon, “Individual comparisons by ranking methods,” in
Breakthroughs in statistics. Springer, 1992, pp. 196–202.

[50] R. Řehůřek and P. Sojka, “Software Framework for Topic Mod-
elling with Large Corpora,” in Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA,
May 2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[51] C. Rorres and H. Anton, Elementary linear algebra: applications
version. Wiley, 1994.

[52] C. Kadilar and H. Cingi, “Ratio estimators in stratified random

sampling,” Biometrical Journal: Journal of Mathematical Methods in
Biosciences, vol. 45, no. 2, pp. 218–225, 2003.

[53] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api
recommendation using crowdsourced knowledge,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1. IEEE, 2016, pp. 349–359.

[54] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 631–642.

[55] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[56] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit:
an end-to-end deep learning framework for just-in-time defect
prediction,” in Proceedings of the 16th International Conference on
Mining Software Repositories. IEEE Press, 2019, pp. 34–45.

[57] X. Huo and M. Li, “Enhancing the unified features to locate
buggy files by exploiting the sequential nature of source
code,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, 2017, pp. 1909–1915. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/265

[58] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based
function embedding and its application to error-handling specifi-
cation mining,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 423–433.

[59] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learn-
ing distributed representations of code,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, p. 40, 2019.

[60] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy, “An
empirical study of model-agnostic techniques for defect prediction
models,” IEEE Transactions on Software Engineering, 2020.

[61] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “Impact of
discretization noise of the dependent variable on machine learning
classifiers in software engineering,” IEEE Transactions on Software
Engineering, 2019.

[62] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learn-
ing for software defect prediction,” IEEE Transactions on Software
Engineering, vol. 46, no. 12, pp. 1267–1293, 2018.

[63] B. Xu, Z. Xing, X. Xia, D. Lo, Q. Wang, and S. Li, “Domain-specific
cross-language relevant question retrieval,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 413–424.

[64] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang, “Learning to
rank for question-oriented software text retrieval (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 1–11.

[65] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question
and answer sites for automatic comment generation,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2013, pp. 562–567.

[66] L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal
documentation to summarize classes and methods in context,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 639–642.

[67] L. Ponzanelli, A. Mocci, and M. Lanza, “Summarizing complex
development artifacts by mining heterogeneous data,” in Proceed-
ings of the 12th Working Conference on Mining Software Repositories.
IEEE Press, 2015, pp. 401–405.

[68] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
an analysis of stack overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 391–402.

[69] T. Diamantopoulos and A. Symeonidis, “Employing source code
information to improve question-answering in stack overflow,”
in 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 2015, pp. 454–457.

[70] S. Subramanian and R. Holmes, “Making sense of online code
snippets,” in Proceedings of the 10th Working Conference on Mining
Software Repositories. IEEE Press, 2013, pp. 85–88.

[71] A. Narayanan, C. Soh, L. Chen, Y. Liu, and L. Wang, “apk2vec:
Semi-supervised multi-view representation learning for profiling
android applications,” in 2018 IEEE International Conference on Data
Mining (ICDM). IEEE, 2018, pp. 357–366.

[72] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based

19

on bug reports,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 14–24.

[73] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in 2013
28th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2013, pp. 345–355.

[74] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language

vector space for domain-specific cross-lingual question retrieval,”
in Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on. IEEE, 2016, pp. 744–755.

[75] P. S. Kochhar, T.-D. B. Le, and D. Lo, “It’s not a bug, it’s a feature:
does misclassification affect bug localization?” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 296–299.

A1

APPENDIX A
POST2VEC FOR TAG RECOMMENDATION
Note that, Zhou et al. proposed a variant of standard
R@k because “Recall value disfavors small k.” [3], [37] (see
Section 3.4). To more comprehensively evaluate the effec-
tiveness of our proposed approach, we also collect the
performance of our approach and Zhou et al.’s approach
considering the standard definition of Precision@k, Recall@k,
and F1-score@k. To differentiate from Zhou et al.’s variants,
we denote to the standard Precision@k, Recall@k, and F1-
score@k as P@k, R@k, and F1@k respectively. Moreover,
considering that tag recommendation task can be viewed
as a ranking problem, we also investigate other standard
evaluation metrics that are widely employed in the software
engineering community for ranking problems [15], [63], [72],
[73], [74], [75] to measure the performance of our approach.
Specifically, we also consider: Top@K, Mean Average Preci-
sion (MAP) and Mean Reciprocal Rank (MRR). We provide
definitions of these metrics in Appendix A.1, and describe
performance of our approach and Zhou et al.’s approach in
Appendix A.2.

A.1 Additional Evaluation Metrics
P@k, R@k, F1@k, Top@k, MAP, and MRR are defined as
the averages of P@ki, R@ki, F1@ki, Top@ki, APi, and RRi
for each post pi respectively. The latter metrics are defined
below:
P@ki is the percentage of a post’s ground truth tags GTi that
are in the top-k recommended list TRki , and it is formally
defined as:

P@ki =

∣∣TRki ∩GTi∣∣
k

(12)

R@ki is the percentage of tags in the top-k recommended list
TRki that are among the set of ground truth tags GTi, and it
is formally defined as:

R@ki =

∣∣TRki ∩GTi∣∣
|GTi|

(13)

F1@ki is a harmonic mean of P@ki and R@ki, and it is
formally defined as:

F1@ki = 2× P@ki × R@ki
P@ki +R@ki

(14)

Top@ki is a binary value determined by the presence or
absence of at least one ground truth tag in the top-k rec-
ommended list TRki . Specifically, for a given post pi, if at

least one of tags in TRki is relevant, we consider the recom-
mendation to be successful, and set the value of Top@ki to 1;
otherwise, we set its value to 0. Top@ki is formally defined
as:

Top@ki =


1,
∣∣TRki ∩GTi∣∣ > 0

0,
∣∣TRki ∩GTi∣∣ = 0

(15)

Average precision (APi) for a post pi is defined as the mean
of the precision values obtained from its sets of top-k
recommendation lists with different values of k, and it is
formally defined as:

APi =

∑M
i=1 P (i)× T (i)
|GTi|

(16)

In the above equation, M is the length of the recom-
mended list which equals to the total number of considered
tags, T(i) indicates whether the recommended tag at position
i is one of the ground truth tags or not, and P(i) is the
precision at the given cut-off position i and is computed
as:

P (i) =

∣∣TRki ∩GTi∣∣
i

(17)

Reciprocal rank (RRi) for post pi is the multiplicative inverse
of the rank of the first ground truth tag (FGT) in the
recommended list. RRi is formally defined as:

RRi =
1

Rank(FGT)
(18)

A.2 Experimental Result and Analysis
Tables 10 and 11 present the performance of Post2Vecs’
variants and other baselines over the additional evaluation
metrics presented in Section A.1. The results show that
Post2VecCNN,All,Sep consistently achieves the best perfor-
mance over all metrics while Post2VecLSTM,All,Sep and
Post2VecCNN,All,Com achieve the second best performance,
and TagRCNN achieves the worst performance. In terms
of F1@5, Top@5, MAP, and MRR, Post2VecCNN,All,Sep out-
performs the best performing baseline proposed in prior
work (i.e., TagCNN) by 15%, 7%, 17%, and 9%, respectively.
Overall, the results further support the conclusions of our
four research questions.

A2

TABLE 10: Effectiveness of Post2Vec and its baselines in terms of Standard Precision, Recall, and F1-score

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5
TagRCNN 0.68 0.53 0.43 0.35 0.30
TagCNN 0.70 0.56 0.45 0.37 0.32

Post2VecLSTM,All,Sep 0.77 0.61 0.49 0.41 0.35
Post2VecCNN,−Code,Sep 0.74 0.59 0.48 0.40 0.34

Post2VecCNN,All,Com 0.78 0.62 0.50 0.41 0.35
Post2VecCNN,All,Sep 0.79 0.63 0.51 0.42 0.35

Recall@1 Recall@2 Recall@3 Recall@4 Recall@5
TagRCNN 0.28 0.41 0.48 0.52 0.54
TagCNN 0.28 0.43 0.51 0.55 0.58

Post2VecLSTM,All,Sep 0.32 0.48 0.56 0.61 0.64
Post2VecCNN,−Code,Sep 0.30 0.45 0.54 0.59 0.62

Post2VecCNN,All,Com 0.32 0.48 0.56 0.61 0.65
Post2VecCNN,All,Sep 0.33 0.49 0.58 0.63 0.66

F1-score@1 F1-score@2 F1-score@3 F1-score@4 F1-score@5
TagRCNN 0.37 0.44 0.43 0.40 0.37
TagCNN 0.38 0.46 0.45 0.42 0.39

Post2VecLSTM,All,Sep 0.43 0.51 0.50 0.47 0.43
Post2VecCNN,−Code,Sep 0.41 0.49 0.48 0.45 0.42

Post2VecCNN,All,Com 0.43 0.51 0.50 0.47 0.43
Post2VecCNN,All,Sep 0.44 0.53 0.52 0.48 0.45

TABLE 11: Effectiveness of Post2Vec and its baselines in terms of Top@k, MAP, and MRR

Top@1 Top@2 Top@3 Top@4 Top@5 MAP MRR
TagRCNN 0.68 0.78 0.82 0.84 0.85 0.49 0.76
TagCNN 0.70 0.81 0.85 0.87 0.88 0.54 0.78

Post2VecLSTM,All,Sep 0.77 0.86 0.89 0.91 0.92 0.61 0.84
Post2VecCNN,−Code,Sep 0.74 0.84 0.87 0.89 0.90 0.58 0.81

Post2VecCNN,All,Com 0.78 0.87 0.90 0.91 0.92 0.61 0.84
Post2VecCNN,All,Sep 0.79 0.88 0.91 0.93 0.94 0.63 0.85

