
1

Chatbot4QR: Interactive Query Refinement for
Technical Question Retrieval

Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, Zhenchang Xing

Abstract—Technical Q&A sites (e.g., Stack Overflow (SO)) are important resources for developers to search for knowledge about
technical problems. Search engines provided in Q&A sites and information retrieval approaches (e.g., word embedding-based) have
limited capabilities to retrieve relevant questions when queries are imprecisely specified, such as missing important technical details
(e.g., the user’s preferred programming languages). Although many automatic query expansion approaches have been proposed to
improve the quality of queries by expanding queries with relevant terms, the information missed in a query is not identified. Moreover,
without user involvement, the existing query expansion approaches may introduce unexpected terms and lead to undesired results.
In this paper, we propose an interactive query refinement approach for question retrieval, named Chatbot4QR, which can assist users
in recognizing and clarifying technical details missed in queries and thus retrieve more relevant questions for users. Chatbot4QR
automatically detects missing technical details in a query and generates several clarification questions (CQs) to interact with the user
to capture their overlooked technical details. To ensure the accuracy of CQs, we design a heuristic-based approach for CQ generation
after building two kinds of technical knowledge bases: a manually categorized result of 1,841 technical tags in SO and the multiple
version-frequency information of the tags.
We develop a Chatbot4QR prototype that uses 1.88 million SO questions as the repository for question retrieval. To evaluate
Chatbot4QR, we conduct six user studies with 25 participants on 50 experimental queries. The results are as follows. (1) On average
60.8% of the CQs generated for a query are useful for helping the participants recognize missing technical details. (2) Chatbot4QR can
rapidly respond to the participants after receiving a query within approximately 1.3 seconds. (3) The refined queries contribute to
retrieving more relevant SO questions than nine baseline approaches. For more than 70% of the participants who have preferred
techniques on the query tasks, Chatbot4QR significantly outperforms the state-of-the-art word embedding-based retrieval approach
with an improvement of at least 54.6% in terms of two measurements: Pre@k and NDCG@k. (4) For 48%-88% of the assigned query
tasks, the participants obtain more desired results after interacting with Chatbot4QR than directly searching from Web search engines
(e.g., the SO search engine and Google) using the original queries.

Index Terms—Interactive Query Refinement, Chatbot, Question Retrieval, Stack Overflow

F

1 INTRODUCTION

ONLINE technical Q&A sites, e.g., Stack Overflow1 (SO)
have emerged to serve as an open platform for knowl-

edge sharing and acquisition [1], [2], [3]. The Q&A sites
allow users to ask technical questions or provide answers to
questions asked by others. For example, SO, which has been
gaining increasing popularity in the software programming
domain, has accumulated more than 19 million questions

• Neng Zhang is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China and Ningbo Research Institute,
Zhejiang University, Ningbo, China and PengCheng Laboratory, Shen-
zhen, China.
Email: nengzhang@zju.edu.cn

• Qiao Huang is with the the College of Computer Science and Technology,
Zhejiang University, China.
E-mail: tkdsheep@zju.edu.cn

• Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Australia.
E-mail: xin.xia@monash.edu

• Ying Zou is with the Department of Electrical and Computer Engineering,
Queen’s University, Canada.
E-mail: ying.zou@queensu.ca

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Zhenchang Xing is with the Research School of Computer Science Aus-
tralian National University, Australia.
E-mail: zhenchang.xing@anu.edu.au

• Xin Xia is the corresponding author.

1. https://stackoverflow.com/

and 28 million answers as of December 20, 20192. The ques-
tions and answers in the Q&A sites form a huge resource
pool for developers to search for and solve programming
problems [4], [5].

Question retrieval is a key step for users to seek for
knowledge from Q&A sites, as well as a requisite step for
many automatic tasks, such as answer summarization [6],
API recommendation [5], and code search [7]. Most of the
Q&A sites provide a search engine for users to retrieve
questions using a query. Typically, a query is simply a
free form text that describes a technical problem [8]. The
search engines mainly rely on traditional information re-
trieval (IR) techniques (e.g., keyword matching and term
frequency-inverse document frequency (TF-IDF) [9]), which
cannot retrieve semantically similar questions for queries
due to the lexical gaps between questions and queries [5].
Recently, word embedding techniques (e.g., word2vec [10])
are widely used by the state-of-the-art question retrieval
approaches to bridge the lexical gaps [3], [5], [6], [11].
Such word embedding-based approaches have shown to
be able to achieve better performance than traditional IR
techniques.

A practical issue overlooked by the existing search en-
gines and question retrieval approaches is that it is not

2. https://data.stackexchange.com/

2

an easy task for users to formulate a good query [8], [12]. A
survey conducted by Xu et al. [6] with 72 developers in
two IT companies shows that a query could be imprecisely
specified as users may not know the important keywords
that the search engines expect. Rahman et al. [13] conducted
an empirical study on code search using Google, which
reveals that it is common for developers to miss some
important technical details (e.g., programming languages
and operating systems) in the initial queries. Consequently,
inaccurate queries will lead to unsatisfactory results of question
retrieval, as illustrated in the motivating example (see Sec-
tion 2). To enhance the quality of queries, many automatic
query expansion approaches have been proposed to expand
queries with relevant terms extracted from a thesaurus (e.g.,
WordNet [14]) or similar resources [8], [12], [15]. Although
the approaches can help retrieve relevant results, they are
insufficient to obtain accurate results due to two reasons:
(1) lack of techniques to identify the missing information in
a query; and (2) queries expanded with unexpected terms
without user involvement (as demonstrated in Section 6.1).

In this paper, we propose to interactively refine queries
with users using a chatbot, named Chatbot4QR, in order
to retrieve accurate technical questions from SO (or other
Q&A sites) for users. Chatbot4QR focuses on accurately
detecting the missing technical details in a query. It first
retrieves an initial set of top-n SO questions similar to the
query. To build a responsive chatbot, we adopt a two-phase
approach to explore a large-scale repository of SO questions
by combining Lucene [16] (an ultra-fast text search engine
that implements BM25) and a word embedding-based ap-
proach. Next, several clarification questions (CQs)3 [17] are
generated using a heuristic-based approach based on the
technical SO tags appearing in the query and the top-n
similar questions. To identify the types of technical details
missed in a query for CQ generation, we build two technical
knowledge bases: a manually categorized result of 1,841 SO
tags and the multiple version-frequency information of the
tags. Then, Chatbot4QR interacts with the user by prompt-
ing the CQs to the user and gathers the user’s feedback (i.e.,
a set of technical tags and versions answered by the user
to CQs). Finally, the user’s feedback is used to adjust the
initial similarities of SO questions (by assigning a weight
coefficient η to the feedback), which results in a refined list
of top-k similar questions for recommendation.

To evaluate Chatbot4QR, we collected 1,880,269 SO ques-
tions as a large-scale repository for implementing a Chat-
bot4QR prototype and testing the performance of question
retrieval for queries. Since our evaluation process contains
six user studies that require a great amount of manual
efforts, we built 50 experimental queries from the titles of
another 50 SO questions. We conducted the user studies
with 25 recruited participants to investigate the following
research questions:

RQ1. What are the proper settings of the parameters n and
η in Chatbot4QR?

In Chatbot4QR, there are two key parameters: (1) n is
the number of the initial top similar SO questions used for
CQ generation; and (2) η is the weight coefficient used for

3. We define “clarification question” as a question that asks for some
unclear information that is not given in the context of a query.

similarity adjustment of SO questions. We conducted a user
study to evaluate the quality of CQs generated for queries
by setting n from 5 to 50 and the quality of the top ten SO
questions recommended by setting η from 0 to 1. Based on
the results, we determine the proper settings of n and η as
15 and 0.2, respectively.

RQ2. How effective can Chatbot4QR generate CQs?
We conducted a user study to examine the usefulness of

the CQs, i.e., whether the CQs can help the participants rec-
ognize the missing technical details in queries. The results
show that on average, 60.8% of the generated CQs are useful
for a query.

RQ3. Can Chatbot4QR retrieve more relevant SO ques-
tions than the state-of-the-art question retrieval and query
expansion approaches?

We conducted a user study to evaluate the relevance of
the top ten SO questions retrieved by Chatbot4QR and nine
baselines, which apply two popular retrieval approaches
(i.e., the Lucene search engine and a word embedding-
based approach) and four query expansion approaches (see
Section 5.3). The results show that Chatbot4QR outperforms
the baselines by at least 54.6% in terms of two popular
metrics: Pre@k and NDCG@k. For more than 70% of the
participants, the improvement of Chatbot4QR over the base-
lines is statistically significant.

RQ4. How efficient is Chatbot4QR?
We recorded the execution time of Chatbot4QR during

the experiments. Chatbot4QR takes approximately 1.3 sec-
onds to start interaction with the user after receiving a query,
which is efficient for practical uses.

RQ5. Can Chatbot4QR help obtain better results than
using Web search engines alone?

We conducted four user studies (including the user
study conducted in RQ3) for answering this research ques-
tion. We asked the participants to search for their satisfied
results for queries using Web search engines (e.g., the SO
search engine and Google [18]) by applying the original
queries and the refined queries after interacting with Chat-
bot4QR. Then, the participants evaluated the relevance of
the search results. Finally, the participants chose their pre-
ferred results from three kinds of results: the two kinds
of Web search results and the SO questions retrieved by
Chatbot4QR. The results show that for 48%-88% of the
assigned query tasks, the participants obtain more desired
results either from Chatbot4QR or by applying the queries
reformulated after the interaction with Chatbot4QR to Web
search engines.

Paper Contributions:
1. We propose a novel chatbot to assist users in refining

queries. To the best of our knowledge, this is the first
work that uses an interactive approach to improving
the quality of queries for technical question retrieval.

2. We conduct six user studies to evaluate Chatbot4QR.
The evaluation results show that Chatbot4QR can gen-
erate useful CQs to help users recognize and clarify
the missing technical details in queries efficiently. The
refined queries contribute to retrieving better results
than using the existing question retrieval approaches
and Web search engines alone.

3

Query

Score

A similar question retrieved
by the SO search engine

Title

Tags

Fig. 1. The top three questions retrieved for a query by the SO search
engine.

3. We release the source code of Chatbot4QR and the
experimental dataset [19] to help other researchers
replicate our experiments and extend our study.

Paper Organization. Section 2 describes a motivating exam-
ple for our interactive query refinement approach. Section 3
presents the details of Chatbot4QR. Sections 4 and 5 report
the experimental setup and results, respectively. Section 6
discusses several key aspects of Chatbot4QR and the threats
to validity of our work. Section 7 reviews the related work.
Section 8 concludes the paper and discusses future work.

2 MOTIVATING EXAMPLE

To motivate the use of an interactive approach to assisting
users in refining queries, we illustrate the impact of a vague
query on the quality of the questions retrieved by the SO
search engine, and explain the key idea of Chatbot4QR.

Figure 1 shows an annotated screenshot of the top three
questions retrieved by the SO search engine for a query “pre-
vent SQL injection”. Each retrieved question is tagged with
a set of relevant technical terms, i.e., tags. For example, the
first question is tagged with techniques, such as ‘php’ and
‘mysql’. Obviously, the query is vague due to missing some
important technical details, e.g., the preferred programming
languages and databases. Looking at the tags associated
with each question, the first and the second questions are
related to the programming language ‘php’, while the third
question is related to ‘java’. Only the first question is ex-
plicitly tagged with the database ‘mysql’. Although the titles
of the three questions are similar to the query, they are not
satisfactory to every potential user as the users may have
different technical background or programming context. For
example, if a user prefers ‘java’, the top two questions
are undesirable, while the third question may be suitable
depending on the user’s preferred database. If a user is only
familiar with the programming language ‘c#’, none of the
three questions is relevant to the user. However, we find that
there are similar questions tagged with ‘c#’ outside the top
three returned results. To retrieve more desired questions for
a user, it is necessary to assist the user in clarifying technical
details that are not initially specified.

We propose Chatbot4QR to work interactively with
users to improve the quality of queries. Chatbot4QR can
heuristically generate several CQs to ask for two kinds of
technical details: (1) the types of techniques widely adopted
in software development, such as programming languages,
databases, and libaries; and (2) the version of a technique
as different versions of the technique may have substantial
changes (e.g., ‘python-2.x’ and ‘python-3.7’), which may cause
version-sensitive problems. In Fig. 1, there are two program-
ming languages in the top three retrieved questions, but no
programming language is specified in the query. Therefore,
a CQ can be generated, e.g., “What programming language,
e.g., php or java, does your problem refer to?”. Suppose that
the user answers the CQ with ‘java’, since ‘java’ can have
tags with multiple versions (e.g., ‘java-7’ and ‘java-8’), a new
CQ is generated to ask for a specific version, e.g., “Can you
specify the version of ‘java’, e.g., 7 or 8?”.

We strive to make our generated CQs easy for users
to understand and answer, for the purpose of adoption in
practice. Although a user needs to interact with our chatbot
to answer the CQs, the amount of time spent is acceptable
by the participants in our user studies (see Section 5.4). The
feedback to CQs can help retrieve more relevant results and
reduce the time required for the manual examination of
undesirable results.

3 THE APPROACH

Figure 2 gives an overview of our approach, which consists
of two components: (1) offline processing which builds the
Lucene index of SO questions, two language models (i.e.,
word2vec and word Inverse Document Frequency (IDF)
vocabulary), and the categorization and version-frequency
information of SO tags; and (2) Chatbot4QR which contains
four main steps, namely 1 retrieving the initial top-n sim-
ilar SO questions for a query, 2 generating CQs by detect-
ing the missing technical details in the query, 3 interacting
with the user by asking the CQs to assist them in refining
the query, and 4 producing the final top-k recommended
questions by adjusting the similarities of questions based on
the user’s feedback to CQs.

3.1 Offline Processing

As shown in Fig. 2, Chatbot4QR needs to retrieve the initial
top-n similar SO questions for a query before generating
CQs. We build two language models, i.e., word2vec and
word IDF vocabulary, to measure similarities between SO
questions and queries, similar to the previous work [5], [6],
[20]. The word2vec model is used to measure the semantic
similarities among words; and the word IDF vocabulary
measures the importance of words in the corpus. How-
ever, it is time-consuming to compute the semantic simi-
larity between a query and each question in a large-scale
repository, e.g., SO. To reduce the search space, we utilize
Lucene to build the index for SO questions and retrieve a
set of possibly similar questions before applying the word
embedding-based approach. Moreover, we build two techni-
cal knowledge bases from SO tags for SO generation, i.e., the
categorization and multiple version-frequency information
of tags.

4

Heuristic Clarification Question (CQ) Generation

word2vec
Model

Word IDF
Vocabulary

Lucene
Index

Version-Frequency
of Tags

Query

Two-Phase Similar
Question Retrieval

Initial Top-n
Similar Questions

Rule-based CQ Generation &
Ranking

Tags in the Query
and Initial Top-n

Similar Questions

Ranked CQ List

Lucene Index
Building

Word
Embedding

Word IDF
Computation

Tag Version-
Frequency Extraction

TagsText Corpus

Feedback to CQs

Interaction
with the User

Chatbot4QR

Offline
Processing

Tag
Identification

Tag
Categorization

Categorized
Tags

2
1

3

Similarity Adjustment of Questions
by Leveraging the Feedback to CQs

Top-k Similar
Questions

4

This is a semi-
automatic step.
The categorized
tags are reusable
and can be
incrementally
updated easily.

Fig. 2. An overview of our approach.

Description of java

Noun phrase that indicates the type of java

Ten synonyms
of java

Frequency of java

Fig. 3. An example SO tag “java”.

We use the text corpus of SO questions (including the
titles, tags, and bodies) and the SO tags (including the de-
scriptions and synonyms crawled from the SO TagWiki [21])
as the input of the offline processing component. Figure 3
shows the description and ten synonyms of SO tag ‘java’.
For questions, we remove the long code snippets enclosed in
HTML tag 〈pre〉 from the bodies. We also reduce each word
to its root form (aka. stemming) using the Porter stemmer in
NLTK [22], a Python toolkit for natural language processing.
As typical users would decide the relevance of a SO question
to a query using the title and tags before checking the long
body, we only consider the titles and tags of SO questions
for question retrieval.

3.1.1 Lucene Index Building
We create a document for each SO question by gathering
the title and tags, and build the index for all questions using

Lucene.

3.1.2 Word Embedding

We apply the sentence tokenizer in NTLK to the titles and
bodies of SO questions. Using the collected sentences, we
train a word2vec model using Gensim [23] with the default
parameter setting.

3.1.3 Word IDF Computation

We remove the stopwords provided in NLTK from SO
questions and build the word IDF vocabulary by computing
the IDF metric of each word.

3.1.4 Tag Version-Frequency Extraction

Many SO tags have multiple versions due to the update
of techniques; and each version has its own frequency. The
frequency of a SO tag reflects the number of SO questions
that have been tagged with it. For example, the tag ‘java’ has
several versions, e.g., ‘7’ and ‘8’; and the frequencies of ‘java-
7’ and ‘java-8’ are 2,861 and 18,302, respectively. We extract
the multiple version-frequency information of SO tags for
generating a particular kind of CQs that ask users to specify
the version of a technique that they are interested in.

By examining the SO tags with versions, there are two
common templates of a technique and the corresponding
versions: (1) concatenate a technique and a version num-
ber by ‘-’, e.g., ‘java-8’ and ‘python-3.x’; and (2) append a
version number to a technique, e.g., ‘sqlite3’ and ‘sslv2’.
We extract the version numbers in SO tags using regular
expressions. The extracted versions and the correspond-
ing frequencies of each tag t are stored in a dictionary,
denoted as ver freqs(t). For example, two elements in
ver freqs(‘java’) are {‘7’: 2,861, ‘8’: 18,302}.

5

TABLE 1
Twenty types of SO tags. For each value in the “#Tags Categorized to the Type” column, the first number is the total number of tags categorized to

the corresponding type; and the second number in the parenthesis is the number of tag synonyms categorized to the type.

Type #Tags Categorized to the Type Example Tags
Library 418(36) jquery, winforms, pandas, opencv, numpy
Framework 285(83) .net, node.js, hibernate, spring, twitter-bootstrap
Tool 211(27) maven, curl, gcc, ant, openssl
Class 171(3) uitableview, listview, , httprequest, imageview, applet
Programming Language 96(31) javascript, java, c#, python, c++
non-OS System 77(12) wpf, git, svn, gps, hdfs
Platform 74(14) azure, github, amazon-ec, google-cloud-platform, ibm-cloud
Service 65(2) outlook, firebase-authentication, gmail, google-cloud-messaging, google-play-services
Technique 64(2) jsp, reflection, proxy, nlp, deep-learning
Database 63(16) mysql, sql-server, mongodb, oracle, neo4j
non-PL Language 60(4) css, sql, wsdl, plsql, sparql, xml
Operating System 58(28) android, ios, linux, windows, macos
Server 55(17) tomcat, nginx, websphere, weblogic, jboss
Format 46(6) json, xml, csv, pdf, jar
Plugin 44(6) silverlight, jquery-validate, android-gradle, pydev, jstree
Environment 33(9) eclipse, netbeans, visual-studio, webstorm, spyder, jdeveloper
Engine 32(2) apache-spark, google-app-engine, elasticsearch, andengine, innodb
Design Pattern 15(0) model-view-controller, singleton, adapter, inversion-of-control, decorator
Model/Algorithm 15(1) dom, classification, rsa, svm, logistic-regression
Browser 15(6) google-chrome, internet-explorer, firefox, safari, opera
Total 1,841(305)

3.1.5 Tag Categorization

Categorizing SO tags to a set of meaningful types is critical
for generating CQs for queries. Existing work that catego-
rizes SO tags (e.g., [24], [25], [26]) is either incomplete or
too fine-grained for our CQ generation. For example, only
six types of SO tags were considered by Ye et al. [24] while
neglecting some important types, e.g., operating system and
plugin. Chen et al. [25] automatically generated 167 types
where the analogous types (e.g., library and module) should
be better merged. Incomplete types result in missing useful
CQs, while fine-grained types lead to redundant CQs.

We strive to manually build a high-quality categorization
of SO tags. However, the manual categorization of more
than 50 thousands tags in SO is a cumbersome task. As
the chances for querying the low frequency tags are low,
we focused on the tags with the frequency of more than
1,000. As a result, we selected 4,158 tags. Despite the syn-
onyms defined in SO, we also considered the tags marked
with version numbers to be synonyms. For example, an
extended synonyms set is {‘java’, ‘java-se’, ‘jdk’, ‘java-7’, ‘java-
8’, ...}. We kept only the most frequent tag in each set of
synonyms. Consequently, we obtained 3,772 tags. Then, we
categorized the tags by using two iterations of a card sorting
approach [27] as follows.

• Build a set of types. We observed that many SO tags
have a noun phrase in the first description sentence
to indicate the types of them, which are typically ex-
pressed in the form of “X is a/an noun phrase ...” [26]. As
shown in Fig. 3, the first description sentence of ‘java’
shows that it is a programming language. We randomly
sampled 349 tags from the 3,772 tags, which is a statis-
tically significant sample size considering a confidence
level of 95% and a confidence interval of 5. We used the
Stanford POS (Part-of-Speech) tagger in NLTK to parse
the first description sentence of each tag and extracted
the first noun phrase behind the articles ‘a’ or ‘an’. The
first two co-authors independently examined the noun
phrases and built their own sets of types. Then, the
two co-authors and a postdoc (who is not a co-author
of the paper) together discussed the disagreements,

eventually resulting in 20 types, as presented in Table 1.
The two types ‘non-PL Language’ and ‘non-OS System’
respectively represent the non-programming languages
(e.g., the query language ‘sql’) and the non-operating
systems, e.g., the version-control system ‘svn’.

• Categorize tags based on types. Based on the built
types, the two co-authors further independently cat-
egorized each of the 3,772 tags. In total, 1,641 tags
were initially categorized by at least one co-author. The
uncategorized tags belong to the ignored types which
are too general and are likely to be useless for CQ
generation, e.g., concept and keyword. There were 215
tags with disagreement. The Fleiss Kappa [28] value
of the two categorization results is 0.86, meaning an
almost perfect agreement. The two co-authors and the
postdoc worked together again to discuss the disagree-
ments. Finally, they reached consesus on the categoriza-
tion of 1,548 tags. The synonyms of a tag were then
categorized to be the same type(s) as the tag. Table 1
presents the numbers of tags categorized to each of
the 20 types, along with example tags. The numbers in
parentheses are the numbers of synonyms categorized
to the corresponding types. For example, “1,841(305)”
in the bottom row means that 1,841 tags including 305
synonyms are categorized to the 20 types. Note that the
sum of the number of SO tags categorized to the 20
types is 1,897, which is larger than 1,841, since some
tags are categorized to multiple types. For example,
the tag ‘xml’ is categorized to the two types ‘non-PL
Language’ and ‘Format’.

In our approach, tag categorization is a semi-automatic
step. We took approximately 65 hours and nine hours to
complete the two iterations, respectively. It is worth to
mention that the categorized tags are reusable and can be
incrementally updated easily. More specifically, when the
frequencies of a number of (e.g., 50) uncategorized SO tags
exceed 1,000, we can automatically extract the noun phrases
from the first description sentences of the tags and then
categorize them.

6

3.2 Chatbot4QR
Once the offline processing component is completed, the
Chatbot4QR component shown in Fig. 2 is launched when
a user submits a query. The query is processed first by two
steps: stemming and stopword removal. Then, the four steps

1 - 4 in Fig. 2 are conducted to help the user refine the
query if it has unclear technical details and recommend the
top-k similar SO questions to the user.

3.2.1 Two-Phase Similar Question Retrieval
To detect if there are technical details left out in the query,
denoted as q, we obtain the initial top-n SO questions sim-
ilar to q using a two-phase approach. More specifically, we
first use the Lucene search engine to retrieve a reduced set
of N possible similar questions based on the Lucene index
built for SO questions. Then, we use the word embedding-
based approach adopted in the previous work [5], [6], [20]
to retrieve the top-n semantically similar questions, denoted
as iSimQn(q), from the reduced set. To ensure that the
majority of semantically similar questions can be covered
by the reduced set, we set N = 10,000.

3.2.2 Heuristic Clarification Question Generation
Based on the initial top-n similar SO questions obtained
for query q, we design a heuristic-based approach to au-
tomatically detecting the missing technical details in q and
generate a set of CQs to help the user refine q interactively.
The approach contains two sub-steps: tag indentification
and rule-based CQ generation & ranking.
Tag identification. To generate CQs, we identify the SO tags
appearing in q and the top-n similar questions iSimQn(q).
This is not an easy task due to the diverse appearances of
SO tags in natural language texts. More specifically, every
SO tag is lowercase and multiple tokens are concatenated by
‘-’, e.g., ‘sql-injection’. Moreover, SO tags can have versions,
e.g., ‘java-8’. In contrast, the tags and versions can appear in
a variety of forms in queries and the titles of SO questions,
e.g., ‘java 8’, ‘Java8’, and ‘Java 8’s’. Before identifying tags in
q and the similar questions, we transform each categorized
SO tag by removing the possible version and replacing ‘-
’ with a blank character. We also transform the original
query as well as the original title and tags of each question
in iSimQn(q) by (1) converting them to lowercase, (2)
replacing punctuations (except ‘#’ and ‘+’ as such symbols
can be used as a part of a tag, e.g., ‘c#’ and ‘c++’) with a
blank character, and (3) separating the possible version at
the end of each token.

Using the transformed results described above, we iden-
tify the tags in q and each question Q ∈ iSimQn(q). We
also extract the version number, if it exists, of each tag
identified from q. We filter out the version numbers of
tags in the top-n similar questions as we directly use the
version-frequency information of tags stored in ver freqs
(see Section 3.1.4) to generate CQs, which may help cover
more similar questions outside the top-n. We group the two
sets of tags identified from q and similar questions by the
types of tags. The two grouped sets of tags are denoted
as typed tags(q) and typed tags(iSimQn(q)), respectively.
Table 2 presents the grouped tags identified from the query
and the top three SO questions shown in Fig. 1. In the table,

TABLE 2
Tags identified from the query “prevent SQL injection” (q) and the top

three SO questions shown in Fig. 1.

Type typed tags(q) typed tags(iSimQ3(q))

Programming Language { php: [‘7’, ‘5.3’],
java: [‘8’, ‘7’] }

non-PL Language { sql: ‘’ } { sql: [] }
Database { mysql: [‘2’, ‘5.7’] }
Framework { .net: [‘4.0’, ‘3.5’] }
Library { jdbc: [] }
Class { pdo: [] }
Technique { sql-injection: ‘’ } { sql-injection: [] }

we display the two most frequent versions of each tag in
typed tags(iSimQ3(q)).

Rule-based CQ generation & ranking. By comparing the
two sets of identified tags, we generate three kinds of CQs
for query q using the following three heuristic rules:

• Rule 1 (version related CQ generation). For each tag t
in typed tags(q), if it has no specified version in q and
it is a multi-version tag (i.e., len(ver freqs(t)) ≥ 2),
a version related CQ is generated, such as “Can you
specify the version of t, e.g., v1 or v2?”. v1 and v2 are the
two most frequent versions of t in ver freqs(t), which
are displayed to help the user better understand the CQ
and provide feedback correctly.

• Rule 2 (selection related CQ generation). For each
type type in typed tags(iSimQn(q)) but not in
typed tags(q), if there are two or more tags included in
the type, a selection related CQ is generated, such
as “What type, e.g., t1 or t2, are you using?”. t1 and t2
are the two most frequent tags belonging to type in
typed tags(iSimQn(q)). To make the selection related
CQs sounded more natural, we customized the CQ
expressions for the 20 types of SO tags, as shown in
Table 3.

• Rule 3 (confirmation related CQ generation). For
each type type in typed tags(iSimQn(q)) but not in
typed tags(q), if only one tag t is included in the type,
a confirmation related CQ is generated, such as “Are
you using t? (y/n), or some other types.”.

Rule 3 is a special case of Rule 2. We distinguish them
because a confirmation related CQ is more informative, im-
plying that only one tag belonging to that type is identified
from the initial top-n similar questions. If a user indeed uses
the asked technique, they can easily answer the CQ with ‘y’.

In the subsequent interaction with the user, CQs that are
more relevant to the query should be asked first. We rank the
generated CQs by assigning a score to each CQ as follows:

• If cq is a version related CQ, its score is set to 1.0 because
the tag asked in cq is explicitly specified by the user.

• If cq is a selection or confirmation related CQ, its score
is calculated according to the similarities of the ques-
tions that contain any tags belonging to the type asked
in cq, i.e.,

∑
Q∈iSimQ(type) sim(q,Q)∑
Q∈iSimQn(q) sim(q,Q) , where iSimQ(type)

denotes the subset of questions in iSimQn(q) that
contains a tag categorized to type; and sim(q,Q) is the
semantic similarity between q and Q.

7

TABLE 3
Customized CQ expressions for the 20 types of SO tags shown in Table 1. In each CQ expression, “X ” and “Y ” are two example SO tags of the

corresponding type that appear in the initial top similar SO questions retrieved for a query.

Type Customized Selection Related CQ Expression for the Type
Library Which library, e.g., X or Y, are you using?
Framework If you are using a framework, e.g., X or Y, please specify:
Tool Maybe you are using a tool, e.g., X or Y, for the problem. If so, what is it?
Class Are you using a specific class, e.g., X or Y? Please input it:
Programming Language What programming language, e.g., X or Y, does your problem refer to?
non-OS System Apart from the operating system (OS), is there a non-OS, e.g., X or Y, used for your problem?
Platform Tell me a possible platform, e.g., X or Y, you are using:
Service For the problem, if you are using a service, e.g., X or Y, please provide:
Technique Please give a possible technique, e.g., X or Y, you might use for the problem:
Database I want to know whether you are using a database, e.g., X or Y. Can you provide it?
non-PL Language Despite the programming language (PL), are you using any non-PL languages, e.g., X or Y?
Operating System Could you provide an operating system, e.g., X or Y?
Server Which server, e.g., X or Y, does your program intend to run on?
Format What is the format, e.g., X or Y, of the data/file you are handling?
Plugin I am wondering if you are using a plugin, e.g., X or Y. Specify it if there is one:
Environment Would you like to provide an environment, e.g., X or Y, you are using?
Engine Give me a possible engine, e.g., X or Y, that you need to execute your program:
Design Pattern Any design patterns, e.g., X or Y, used for your problem?
Model/Algorithm Do you use a model or an algorithm, e.g., X or Y? Please specify:
Browser Your problem may be related to a browser, e.g., X or Y. Can you specify it?

***** Welcome to Chatbot4QR! *********
Tip 1: If a clarification question is useless or hard to answer, you can skip it by pressing <Enter>;
Tip 2: You can terminate the chat process by inputting 'end' anytime.

User: prevent SQL injection
Chatbot: What programming language, e.g., c# or java, does your problem refer to?
User: java
Chatbot: Can you specify the version of java, e.g., 8 or 7?
User: 9
Chatbot: I want to know whether you are using a database, e.g., mysql or sql-server. Can you provide it?
User: .mysql
Chatbot: Can you specify the version of mysql, e.g., 2 or 5.7?
User: 5.7
Chatbot: Which library, e.g., hibernate or ado, are you using?
User: jdbc
Chatbot: If you are using a framework, e.g., .net or asp.net, please specify:
User: <Enter>
Chatbot: Are you using sqlalchemy? (y/n), or some other tools.
User: n

==== Finished! Nice to chat with you! =====

These two version related
CQs with a dotted frame
are dynamically generated
to ask for the versions of
multi-version technical
tags: {java, mysql},
answered by the user.

Fig. 4. The interaction with a user for the query shown in Fig. 1.

3.2.3 Interaction with the User
Based on the ranked CQ list, Chatbot4QR interacts with the
user by asking each CQ one-by-one and gathers the user’s
feedback. Figure 4 illustrates the chat process with a user
by submitting the query shown in Fig. 1 to Chatbot4QR.
The five CQs without a dotted frame are initially generated
based on the top 15 (the proper value of the parameter n in
Chatbot4QR, as evaluated in Section 5.1) similar SO ques-
tions retrieved using the two-phase approach. As shown in
Fig. 4, Chatbot4QR has the following features:

1. It can interact with the user in multiple rounds.
2. It can generate new version related CQs to ask for

the versions of the multi-version tags (e.g., ‘java’ and
‘mysql’) that are answered by the user to confirmation
or selection related CQs.

3. To be user-friendly, it allows the user to skip any CQs
that might be not useful or difficult to answer by press-
ing 〈Enter〉, or to terminate the interaction anytime.

3.2.4 Similarity Adjustment of Questions
We distinguish two kinds of a user’s feedback to the CQs
of query q: (1) positive feedback, denoted as pfb(q), which

includes the tags and versions answered by the user; and (2)
negative feedback, denoted as nfb(q), which includes the
tags involved in the confirmation related CQs whose an-
swers are explicitly ‘n’ (means that the user does not use the
asked technique). We do not consider the possible negative
feedback to CQs since the user’s rationale is unknown. For
example, if a confirmation related CQ has no answer (i.e.,
the CQ was skipped), it is not certain that the user does not
use the asked technique. It might be the reason that users are
not familiar with the programming context and thus have
difficulties in answering. In Fig. 4, the positive and negative
feedback given by the user are

• pfb(q) = {‘java 9’, ‘mysql 5.7’, ‘jdbc’},
• nfb(q) = {‘sqlalchemy’}.

Using the two kinds of feedback, we adjust the semantic
similarity between q and each question Q in the reduced set
retrieved using Lucene as

sim(q,Q) = sim(q,Q)× (1 + η × (
∑

e∈pfb(q)md(e,Q)

−
∑

e∈nfb(q)md(e,Q))) (1)

where md(e,Q) measures the degree that Q matches the
tag and its possible version in the feedback element e =
(t, v) (where t is the tag and v is the version), e.g., ‘java 9’.
The coefficient η ∈ [0, 1] is used to weight the importance
of the technical feedback. A larger η means to put more
weight on the feedback. More specifically, η = 0 ignores the
feedback, while η = 1 means that the feedback has the same
importance as the original query. In this work, we define
md(e,Q) as

md(e,Q) =


1.5, if e.v exists and both

e.t and e.v are matched by Q
1.0, if only e.t is matched by Q
0, otherwise.

(2)

The idea of Eq. 1 is to increase (resp. decrease) the
semantic similarity of Q according to the amount of positive
(resp. negative) feedback matched by Q. A refined list of the

8

TABLE 4
Fifty experimental queries.

No. SO Question Experimental Query (the Title of the SO Question)ID
1 17294809 Reading a line using scanf()
2 423006 How do I generate points that match a histogram?
3 15389110 How to convert Json String with dynamic fields to Object?
4 2733356 Killing thread after some specified time limit in Java
5 20458401 How to insert multiple rows into database using hibernate?
6 15626686 Better way to parse xml
7 2592985 ArrayList shallow copy iterate or clone()
8 6262084 how to slide image with finger touch in android?
9 5108926 how to encrypt data using AES in Java
10 7918593 How can I determine the week number of a certain date?
11 90838 How can I detect the encoding/codepage of a text file
12 12981190 How to make a static variable thread-safe
13 22173762 Check if two Lists are equal
14 2411893 Recognize numbers in images
15 3561202 Check If Instance Of A Type
16 8702165 How to clone (and restore) a DOM subtree
17 11182924 How to check if JavaScript object is JSON
18 30950032 How can I run multiple NPM scripts in parallel?
19 531998 Set path programatically
20 28052395 Find whether a 2d matrix is subset of another 2d matrix
21 14268053 Most efficient way to calculate pairwise similarity of 250k lists
22 5450055 How can I improve my INSERT statement performance?
23 3548495 Download, extract and read a gzip file in Python
24 44274701 Make predictions using a tensorflow graph from a keras model
25 4869189 How to transpose data in a csv file?
26 215557 Most elegant way to implement a circular list (FIFO)
27 1558402 Memory usage of current process in C
28 1805518 Replacing all non-alphanumeric characters with empty strings
29 6390339 How to query XML that has XSL in Java with XPath?
30 2676719 Calculating the angle between two points
31 10975913 How to make a new list with a property of an object which is in another list
32 8892073 how to compare webpages structure (dom) similarity in java?
33 9963331 java : How to know how many Threads have been Created and running?
34 891345 Get a screenshot of a specific application
35 8910840 Using LINQ to extract ints from a list of strings
36 21461102 Converting Html Table to JSON
37 6773550 Get id of div from its class name
38 2617515 Recommendation for a HTTP parsing library in C/C++
39 1323824 how to read numbers from an ascii file (C++)
40 3823921 Convert big endian to little endian when reading from a binary file
41 13340955 Convert linear Array to 2D Matrix
42 1623849 Fastest way to zero out low values in array?
43 32109319 How to implement the ReLU function in Numpy
44 14472795 How do I sort a list of datetime or date objects?
45 5741518 Reading each column from csv file
46 22722079 Choosing elements from python list based on probability
47 7891697 Numpy Adding two vectors with different sizes
48 8022530 Python check for valid email address?
49 459981 BeautifulSoup - modifying all links in a piece of HTML?
50 10052912 How to sort dictionaries of objects by attribute value in python?

top-k similar questions is produced based on the adjusted
similarities and recommended to the user.

4 EXPERIMENTAL SETUP

Chatbot4QR is an interactive approach that considers users’
personalized technical background and programming con-
text to retrieve desired questions. We design a series of
user studies to evaluate Chatbot4QR. In this section, we
describe the experimental setup of our user studies. Our
experimental environment is a laptop with Intel Core i5-
8300H CPU, 16G RAM, and Windows 10 Operating System.

4.1 Data Collection and Prototype Implementation
We downloaded the official SO data dump released in
September, 2018 and built a repository of 1,880,269 SO
questions that are tagged with six popular programming
language tags: {‘javascript’, ‘java’, ‘c#’, ‘python’, ‘c++’, ‘c’}. To
ensure the quality of our repository, every question needs to
have an accepted answer and a positive score (i.e., the votes
of a question shown in Fig. 1). Using the collected questions,
we built a text corpus by removing the long code snippets in
the bodies of questions and processing all words in the title,
tags, and body of each question using the Porter stemmer
in NLTK. We then trained a word2vec model using Gensim
(with the default parameter setting), computed the word
IDF vocabulary, and built the Lucene index for all questions.

Moreover, we crawled the descriptions and synonyms of
55,661 SO tags from the TagWiki, and built two technical
knowledge bases: the categorization and version-frequency
information of tags. The details of these offline steps are
described in Section 3.1.

As described in Section 3.2, Chatbot4QR has three pa-
rameters: (1) n is the number of the initial top similar SO
questions used for CQ generation; (2) η is the weight coeffi-
cient of users’ technical feedback in Eq. 1 used to adjust the
similarities of questions; and (3) k is the number of the top
similar questions recommended to the user. We determined
the proper settings of n and η as 15 and 0.2, respectively,
by conducting a user study (see Section 5.1). Considering
the fact that users are likely to be only interested in the
top ranked results [29], we set k = 10 in our prototype
implementation, similar to the previous work [30], [31], [32].

4.2 Experimental Query Selection
In the existing research work on information retrieval from
SO [5], [6], [8], [20], [32], [33], the experimental queries
used for evaluation are built from the titles of SO questions
selected according to some criteria, of which two commonly
used criteria are: (1) the questions should have accepted
answers; and (2) the scores of questions should be higher
than a threshold (e.g., 5). This is suitable because the title of
a SO question is a simple text that briefly describes a tech-
nical problem that a developer wants help for. We built 50
experimental queries from the titles of SO questions outside
our repository. We chose 50 queries due to two reasons: (1) it
is a relatively common number of experimental queries used
in the previous work [30], [32], [33]; and (2) our user studies
contain six consecutive stages (see Fig. 5) which require a
great amount of manual efforts.

Our experimental queries were selected as follows. We
first collected the popular SO questions which are tagged
with the aforementioned six programming languages but
not in our repository using two criteria: (1) the view count
should be no less than 1,000; and (2) the score should be at
least five. Then, we randomly selected 50 queries from the
titles of the collected questions. For each query, we further
ensured that there is no duplicate question contained in
the repository, similar to the previous work [6]. As listed
in Table 4, the 50 queries cover a variety of technical prob-
lems, which involve different techniques, e.g., programming
languages, databases, and deep learning libraries. Some of
the queries are simple, e.g., “Reading a line using scanf()”
while others are complex, e.g., “How to sort dictionaries of
objects by attribute value in python?”. Moreover, there are
queries expressed with technical terms, e.g., “Killing thread
after some specified time limit in Java”, while some queries have
no specified technique, e.g., “Recognize numbers in images”.
The diversity of the queries can improve the generality of
our experiment results.

We processed the queries by performing stemming and
stop word removal. Based on the Lucene index built for
SO questions, we retrieved the top N=10,000 similar ques-
tions for each query using the Lucene search engine. We
then re-ranked the 10,000 questions by measuring semantic
similarities between the questions and the query using the
word embedding-based approach adopted in the previous
work [5], [6].

9

TABLE 5
Profiles of 25 participants.

Participant Familiar #Years of
Programming Languages Programming Experience

P1 python 3.5
P2 python 4.0
P3 java, python 8.0
P4 java, python 6.0
P5 java 4.5
P6 python 7.5
P7 java, python 4.0
P8 java, python, c 10.0
P9 java, python 5.5

P10 java 3.5
P11 java 3.0
P12 java, c# 2.0
P13 java, python, matlab 8.5
P14 java, python, c# 6.5
P15 java 3.5
P16 java, python 4.0
P17 java, python, c++ 8.0
P18 java, python 8.5
P19 java, javascript 2.5
P20 java 3.5
P21 java, python 8.0
P22 java, javascript 7.0
P23 java, python 11.0
P24 java, python 6.5
P25 python, c, c++ 9.0

4.3 Participant Recruitment

To conduct our user studies shown in Fig. 5 for evaluating
Chatbot4QR, we recruited participants through the mailing
lists of the first and the third co-authors’ colleges. In the
email, we briefly introduced Chatbot4QR and our evalua-
tion plan, and asked a few questions about the program-
ming background. We received 25 responses that agreed to
join our user studies. The number of our participants is
close to the numbers of participants used to conduct user
studies in the previous work [34], [35], which is considered
to be sufficient for our user studies. Table 5 presents the
profiles of the 25 participants. Since some of the participants
have working experience in companies like Hengtian4, the
“#Years of Programming Experience” column shows the years
of both working experience and student experience in pro-
gramming for each participant. We observe that the partici-
pants have diverse familiar programming languages. Some
of them are only familiar with Java or Python, while others
have multiple familiar languages. Moreover, there are no-
table differences in the participants’ years of programming
experience (from 2 to 11 years) with an average of 5.92 years.

We asked the participants to review the experimental
queries and no participant reported being unable to un-
derstand the queries after we allowed them to search for
the definitions of unfamiliar technical terms (e.g., ‘LINQ’
and ‘NPM’) online. As listed in Table 4, our queries cover
multiple programming languages, e.g., Java, Python, and
C++. We did not guarantee that the participants are familiar
with all the programming languages because Chatbot4QR
intends to help both experienced developers and novices.

4. Hengtian is an outsourcing company in China that has more than
2,000 employees and mainly does outsourcing projects for American
and European corporations.

User Study 1: Sensitivity Analysis of Parameters

This is a pilot user study to determine the proper settings of two parameters, i.e., n and η,
in Chatbot4QR by analyzing the impact of the parameters on the quality of generated CQs
and the top ten recommended SO questions for queries.

User Study 3: Interaction with Chatbot4QR

This user study is to interact with Chatbot4QR to evaluate the usefulness of CQs
generated for queries (compared with EVPI) and give feedback to useful CQs.

User Study 5: Relevance Evaluation of SO Questions and Web Search Results

This user study is to evaluate the relevance of the top ten SO questions retrieved by ten
approaches (including Chatbot4QR and nine baselines) and the two kinds of the top ten
Web search results obtained by the user studies 2 & 4.

User Study 2: Web Search before Interacting with Chatbot4QR

This user study is to obtain the top ten results using Web search engines, e.g., Google and
the SO search engine, for each query before interacting with Chatbot4QR.

User Study 4: Web Search after Interacting with Chatbot4QR

This user study is to obtain the new top ten results using Web search engines by
reformulating each query with the feedback to CQs after interacting with Chatbot4QR.

These four user
studies constitute a
competitive
experiment between
Chatbot4QR and Web
search engines, to
validate if Chatbot4QR
can help achieve
better results than
using Web search
engines alone.

User Study 6: Best Results Selection

This user study is to select the preferred/best results for each query from the three kinds
of results: the top ten SO questions retrieved by Chatbot4QR and the two kinds of the top
ten Web search results obtained by the user studies 2 & 4.

Fig. 5. The flow of our six user studies.

The diversity of the participants’ technical background can
help improve the generality of our experiment results.

4.4 Research Questions and the Allocation of Queries
to Participants for User Studies

As shown in Fig. 5, we designed six user studies to investi-
gate the following research questions:

RQ1. What are the proper settings of the parameters n
and η in Chatbot4QR?

RQ2. How effective can Chatbot4QR generate CQs?
RQ3. Can Chatbot4QR retrieve more relevant SO ques-

tions than the state-of-the-art question retrieval and query
expansion approaches?

RQ4. How efficient is Chatbot4QR?
RQ5. Can Chatbot4QR help obtain better results than

using Web search engines alone?

It is a cumbersome task for a participant to conduct the
five user studies 2-6 (the user study 1 is a pilot user study)
for all the 50 experimental queries. Therefore, we allocated
25 queries to each participant as follows.

We randomly divided the 50 queries into two equally
sized groups: QG1 and QG2. The queries in QG1 are
indexed by Q1-Q25 and those in QG2 are indexed by Q26-
Q50, as shown in Table 4. From the 25 participants, we first
randomly selected five participants, denoted as PG0 = P1-
P5, who are responsible for conducting a pilot user study to
determine the proper settings of the two key parameters n
and η in Chatbot4QR. Then, we divided the remaining 20
participants evenly into two groups: PG1 = P6-P15 and PG2
= P16-P25, while ensuring that members of the two groups
have comparative years of programming experience.

Table 6 lists the allocation of queries to participants for
our six user studies and the research questions investigated
by each user study. More specifically, the user study 1 is a
pilot user study to investigate RQ1 by randomly selecting
ten queries and allocating the queries to the participants
in PG0. For the other five user studies, we allocated QG1

10

TABLE 6
The allocation of queries to participants for the six user studies shown in Fig. 5; and the research questions investigated by each user study.
“RQ1-RQ5” are the five research questions. “PG0-PG2” are three participant groups. “Q1-Q50” are the 50 experimental queries. “QG1” and

“QG2” are two query groups.

User Study No. Investigated Research Questions Allocation of Queries to Participants
1 RQ1 Ten queries randomly selected from Q1-Q50 are allocated to PG0
2 RQ5

QG1 are allocated to PG1, QG2 are allocated to PG2
3 RQ2, RQ4
4 RQ5
5 RQ3, RQ4, RQ5
6 RQ5

and QG2 to PG1 and PG2, respectively. The user study 3
investigates RQ3 by examining the usefulness of the CQs
generated by Chatbot4QR for the 50 queries. RQ4 is an-
swered by recording the amount of time spent on the steps
of Chatbot4QR during the user studies 3 and 5. The user
studies 2, 4, 5, and 6 constitute a competitive experiment
to investigate RQ5 by comparing the quality of the top ten
SO questions retrieved by Chatbot4QR and the two kinds
of the top ten results retrieved using Web search engines
(e.g., the SO search engine and Google) before and after
interacting with Chatbot4QR. As the participants interact
more with Chatbot4QR, they may gradually learn to recog-
nize some technical details missed in their initial queries.
Therefore, we required the participants to perform the user
study 2 (i.e., Web Search before Interacting with Chatbot4QR)
before the user study 3 (i.e., Interaction with Chatbot4QR), in
order to minimize the learning effect that the participants
may transfer the knowledge learned from Chatbot4QR to
enhance the queries for Web search.

Before performing the user studies, the participants are
expected to find a solution for each allocated query task.
Given a query, when searching results using Web search
engines, interacting with Chatbot4QR for evaluating the
CQs, and judging the relevance of SO questions and Web
search results, the participants should be based on the
existing technical context specified in the query and/or
their technical background. For example, for the query Q6
“Better way to parse xml”, it has no specified programming
language, the participants can perform the user studies with
their preferred programming languages. For the query Q46
“Choosing elements from python list based on probability”, it has
a programming language Python. The participants should
perform the user studies based on Python, but they can
determine the other technical context, e.g., a Python library,
based on their technical background.

5 EXPERIMENT RESULTS

In this section, we answer the five research questions by
conducting the corresponding user studies shown in Table 6.

5.1 RQ1: What are the proper settings of the parame-
ters n and η in Chatbot4QR?

Motivation. In Chatbot4QR, n and η are two key parameters
for generating CQs and recommending SO questions for
queries. The settings of n and η will affect the quality of
generated CQs and recommended questions. It is necessary
to figure out the proper settings of the parameters.

Approach. We randomly selected ten queries from the 50
experimental queries and allocated the queries to the five
participants in PG0. Then, we conducted the pilot user
study 1 shown in Fig. 5 as follows.

1. CQ generation using different settings of n. We gen-
erated different CQs for each query by setting n from 5
to 50 with a step size 5.

2. Usefulness evaluation of CQs. We gathered the CQs
generated using different values of n for each query.
The participants used the interactive interface of our
Chatbot4QR prototype to evaluate the CQs. Before eval-
uation, we gave a tutorial using a video conference call
with the participants to introduce the prototype with
an example query outside the experimental query set.
Then, the participants evaluated the CQs of each query
by performing two tasks: (1) rate the usefulness of each
CQ by five grades ranging from 0 to 4, where 0, 1, 2, 3,
and 4 mean ‘strongly useless’, ‘useless’, ‘neutral’, ‘useful’,
and ‘strongly useful’, respectively; and (2) give feedback
to the useful CQs. The usefulness of a CQ is judged
by whether the CQ can help recognize any important
information missed in a query for question retrieval.

3. Sensitivity analysis of n. For each setting of n, we
counted the numbers of CQs with different usefulness
and measured the ratio of useful CQs that are rated as 3
or 4 for each query. The usefulness of skipped CQs was
deemed to 0; and we considered the usefulness of the
CQs that were not prompted to the participants (due
to the early termination of interaction) as unknown, be-
cause such CQs were not evaluated by the participants.
Then, we determined a proper value of n according to
the results.

4. Similarity adjustment using different settings of η.
Using the participants’ feedback to the CQs generated
with the proper n, we adjusted the initial semantic
similarities of the 10,000 SO questions retrieved for each
query (see Section 4.2) by setting η from 0 to 1 with a
step size 0.1.

5. Relevance evaluation of SO questions. We gathered
the top ten SO questions obtained using different values
of η for each query. The participants evaluated the
relevance of each question by five grades 0-4, where
0, 1, 2, 3, and 4 mean ‘strongly irrelevant’, ‘irrelevant’,
‘neutral’, ‘relevant’, and ‘strongly relevant’, respectively.
In the aforementioned video conference, we explained
to the participants that the relevance of a SO question
to a query should be judged by evaluating the degree of
matching between the SO question and the query task

11

with the specified technical context (i.e., the technical
terms appearing in the original query or given by the
participants to the CQs).

6. Sensitivity analysis of η. For each setting of η, we
measured the average performance of the top ten SO
questions obtained for the ten queries using two met-
rics: Pre@k (Precision at k) [32] and NDCG@k (Normal-
ized Discounted Cumulative Gain at k) [31], which are
widely adopted in the IR community. Pre@k measures
the percentage of relevant questions that are rated as 3
or 4 in the top-k ranking list. NDCG@k considers the
ranking and rating scores of relevant questions.

Pre@k =
relevant questions in the top-k

k
(3)

NDCG@k =
1

IDCGk

k∑
i=1

2reli − 1

log2(1 + i)
(4)

where reli is the relevance score of the question at
the ranking position i; and IDCGk represents the
maximum possible DCG score through position k that
can achieve for a query. Then, we determined a proper
setting of η according to the performance results.

Results. Figure 6 shows the numbers of three kinds of CQs
generated for ten queries using different n ∈ [5, 50], with
respect to each of the five participants P1-P5 in PG0. “Useful
CQs” are the CQs rated as 3 or 4. “Useless & Neutral CQs”
are the CQs rated as 0, 1, or 2. “Unknown CQs” are the
CQs with unknown usefulness. From the figure, we have
the following findings:

• Under each setting of n, the total numbers of CQs
generated for the five participants are different. For ex-
ample, 15 (= 7+8) and 18 (= 2+16) CQs were generated
for the participants P1 and P2, respectively, when n
= 5. This result is because that during the interaction,
Chatbot4QR can dynamically generate subsequent CQs
based on the participants’ feedback to the initially
generated CQs, as illustrated in Fig. 4. In particular,
the participants have their own personalized technical
background; and their feedback to CQs can be varied.
Therefore, it leads to different numbers of CQs.

• There are notable differences among the five partici-
pants with respect to the numbers of the three kinds
of CQs. For example, when n = 5, only eight of the 15
CQs generated for P1 were evaluated as useful, while
P2 evaluated 16 of the 18 generated CQs as useful. This
result indicates that the participants had personalized
judgement on the usefulness of CQs. Moreover, there
are unknown CQs in the evaluation results of P2 and P5
when n is a little large (e.g., n = 25 for P2), meaning that
some participants may only pay attention to a limited
number of CQs during the interaction.

• For the five participants, at least 93.1% (= 27/29) of the
useful CQs are generated by setting n = 15. When n
is larger than 15, only one or two CQs are evaluated
as useful by P2 and P5, while the number of useless,
neutral, and unknown CQs increases. Therefore, we
determine that n = 15 is a good setting for Chatbot4QR.

8

7
12

7

14

13

14

14

14

17

14

19

14

21

14

21

14

22

14

23

16

2

20

4

27

6

28

7

28

8
2

29

9
2

29

10

4

29

10

4

29

10

5

29

11

5

13

5

15

8

16

14

16

15

16

18

16

20

16

22

16

22

16

22

16

23

17

2

21

4

24

9

24

10

24

13

24

14

24

16

24

16

24

18

24

19

14

4

17

8

22

12

1

22

14

1

22

14

4

22

15

4

23

15

5

23

15

5

23

15

7

23

15

8

P
1

P
2

P
3

P
4

P
5

555 101010 151515 202020 252525 303030 353535 404040 454545 505050555 101010 151515 202020 252525 303030 353535 404040 454545 505050555 101010 151515 202020 252525 303030 353535 404040 454545 505050555 101010 151515 202020 252525 303030 353535 404040 454545 505050555 101010 151515 202020 252525 303030 353535 404040 454545 505050

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

n

N
um

be
r o

f C
Q

s

Unknown CQs Useless & Neutral CQs Useful CQs

Fig. 6. The numbers of three kinds of CQs generated for ten queries
using different settings of the parameter n (i.e., ranging from 5 to 50).
n is the number of the initial top similar SO questions used for CQ
generation. “P1-P5” are five participants.

�
�

�
�

In Chatbot4QR, the parameter n, i.e., the number of the initial
top similar SO questions used for CQ generation, is suggested
to be set as 15.

Table 7 presents the detailed evaluation results of each
participant on the CQs generated for each query using n
= 15. “#Initial CQs” is the number of CQs that are initially
generated by Chatbot4QR before interacting with the par-
ticipants. “#CQs” is the total number of CQs generated after
interacting with each participant. “Ratio of Useful CQs” is
the ratio of useful CQs to the total CQs. We observe that the
values of “#CQs” and “Ratio of Useful CQs” vary from the
participants. For example, for the query Q5, the participant
P3 got seven CQs (i.e., one CQ was dynamically generated),
while the other participants got eight CQs (i.e., two CQs
were dynamically generated). The ratios of useful CQs for
P2, P4, and P5 are more than 0.75 and much higher than
those for P1 and P3. These results show that our chatbot
can generate personalized CQs based on the individual
interaction with a participant; and the participants have
personalized judgement on the usefulness of CQs.

Table 8 presents the average performance of the top
ten SO questions retrieved using different η ∈ [0, 1] by
leveraging the participants’ feedback to the CQs generated
with n = 15. From the table, we have the following findings:
• The performance achieved with a positive η is much

better than that achieved with η = 0.0, indicating that

12

TABLE 7
Evaluation of the CQs generated using the initial top 15 similar SO questions retrieved for ten queries (i.e., setting the parameter n = 15). “P1-P5”

are five participants. “#Initial CQs” is the number of CQs that are initially by Chatbot4QR before interacting with the participants. “#CQs” is the
number of CQs eventually generated by Chatbot4QR based on the participants’ personalized feedback to CQs.

Query #Initial CQs
P1 P2 P3 P4 P5

#CQs Ratio of #CQs Ratio of #CQs Ratio of #CQs Ratio of #CQs Ratio of
No. Useful CQs Useful CQs Useful CQs Useful CQs Useful CQs

5 6 8 0.500 8 0.750 7 0.429 8 0.750 8 0.875
14 4 5 0.400 8 0.875 5 0.600 6 1.000 7 0.857
15 2 3 0.667 3 1.000 3 1.000 3 1.000 3 1.000
21 4 5 0.800 5 1.000 5 0.600 6 0.833 5 0.800
26 6 7 0.429 8 0.875 7 0.429 7 0.571 7 0.429
31 2 3 1.000 3 1.000 3 1.000 3 0.667 3 1.000
35 1 2 1.000 2 1.000 2 1.000 2 1.000 2 0.500
42 3 4 0.750 4 0.750 4 0.500 4 0.750 4 0.500
45 2 3 1.000 3 1.000 3 0.667 2 0.500 3 0.667
48 5 5 0.400 5 0.800 5 0.400 6 0.667 5 0.600

TABLE 8
The average performance of the top ten SO questions retrieved by Chatbot4QR for ten queries using different settings of the parameter η (i.e.,

ranging from 0.0 to 1.0). η is the weight coefficient of the participants’ feedback to CQs in Eq. 1.

η Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10
0.0 0.480 0.456 0.358 0.453 0.506 0.558
0.1 0.720 0.652 0.518 0.653 0.728 0.788
0.2 0.840 0.680 0.550 0.741 0.764 0.821
0.3 0.900 0.648 0.502 0.783 0.743 0.790
0.4 0.900 0.616 0.482 0.783 0.727 0.764
0.5 0.880 0.576 0.462 0.765 0.697 0.736
0.6 0.820 0.556 0.442 0.719 0.679 0.708
0.7 0.800 0.536 0.430 0.710 0.665 0.698
0.8 0.760 0.536 0.428 0.675 0.650 0.681
0.9 0.760 0.516 0.414 0.675 0.625 0.664
1.0 0.760 0.516 0.398 0.675 0.624 0.653

the participants’ feedback to CQs can indeed help re-
trieve more relevant SO questions.

• As η increases from 0.0 to 1.0, the Pre@k and NDCG@k
values increase first until reach a peak; thereafter they
decreases. This result can be explained by the fact that
a query typically contains only a few keywords, a
relatively large η can overweight the user’s technical
feedback. Consequently, the recommended questions
can match the user’s technical requirements perfectly
but are irrelevant to the programming problem.

• The optimal Pre@1 and NDCG@1 are achieved when
η = 0.3 or 0.4. When k = 5 and 10, the optimal Pre@k
and NDCG@k are achieved with η = 0.2. Based on these
results, there are two proper settings of η depending on
the user’s desired number of recommended questions.
If a user focuses on the top one question, it is suggested
to set η = 0.3 or 0.4, otherwise η = 0.2 is suggested.
Moreover, in terms of Pre@1 and NDCG@1, the per-
formance achieved with η = 0.2 is close to the optimal
performance. Therefore, it is also a simple and good
suggestion to set η = 0.2, regardless of the value of k.

�
�

�
�

In Chatbot4QR, for simplicity, the weight coefficient η in Eq. 1
used for generating the recommended SO questions is suggested
to be set as 0.2.

5.2 RQ2: How effective can Chatbot4QR generate
CQs?

Motivation. Our work is the first attempt to automatically
generate CQs to interactively refine queries with the user
involvement, in order to retrieve more relevant technical
questions from Q&A sites. We want to evaluate the effective-
ness of Chatbot4QR for CQ generation and verify whether
the CQs can help users recognize missing technical details
in queries.

Approach. We conducted a user study (i.e., the user study
3 shown in Fig. 5) to evaluate the CQs generated by Chat-
bot4QR for the 50 experimental queries, under the setting of
n = 15. To the best of our knowledge, there is a similar work
proposed by Rao et al. [17], named EVPI, which aims to
generate CQs for asking good technical questions in Q&A
sites. Unlike Chatbot4QR that can automatically generate
CQs, EVPI extracts the existing CQs in the comment sections
of the top ten similar questions retrieved using Lucene.
Figure 7 shows two example CQs in the comment section
of a SO question5. We implemented EVPI using the source
code released at Github6, and used EVPI to generate CQs
for each experimental query.

5. https://stackoverflow.com/questions/22867636
6. https://github.com/raosudha89/ranking clarification questions

13

Two CQs in the comment section

Fig. 7. Two CQs in the comment section of a SO question.

The 20 participants in PG1 and PG2 were required to
evaluate the two kinds of CQs (one kind is generated by
Chatbot4QR and the other kind is generated by EVPI) for
their 25 allocated queries in QG1 and QG2, respectively. We
modified the interactive interface of our Chatbot4QR proto-
type to run for the CQs generated by EVPI. More specifi-
cally, the prototype automatically prompted each query and
the two kinds of CQs generated for the query in random
order. The participants did not know which kind of CQs
were generated by Chatbot4QR or EVPI. After completing
the evaluation of CQs for a query, the participants needed to
choose a preferred kind of CQs (i.e., the first or the second
prompted kind). Before starting the evaluation, we launched
a video conference to introduce the modified prototype to
the participants with an example query. Then, the partici-
pants used the prototype to evaluate the two kinds of CQs
for each allocated query by performing three tasks:

1. Rate the usefulness of each CQ by five grades 0-4, which
are defined in Section 5.1.

2. Give feedback to the useful CQs.
3. Specify the preferred kind of CQs (when both Chat-

bot4QR and EVPI generated a set of CQs).

Note that the three tasks are not mandatory. The partici-
pants had the freedom to choose to perform any of the tasks.
More specifically, the participants can skip a CQ if they think
it is useless or feel difficult to answer. The participants can
terminate the interaction with the chatbot early when they
think that they have answered enough CQs for a query.
If the participants have no preference for any of the two
kinds of CQs, they can skip the Task 3. Since the participants
may not know some technical terms asked in the CQs, they
can search for unfamiliar technical terms (e.g., OpenCV and
Keras) online during the interaction. Moreover, we asked the
participants to manually record the amount of time spent on
the interaction with Chatbot4QR for 25 allocated queries, as
the participants can take a short break during the user study
in case of personal work or fatigue. After the user study, we
interviewed the participants to obtain their comments about
the CQs produced by both approaches.

For each query, we counted the numbers of CQs gener-
ated by EVPI and Chatbot4QR, and measured the average ra-
tio of useful CQs evaluated by the ten participants who were
responsible for the query. We considered the usefulness of
skipped CQs as 0 and excluded the CQs that were not
displayed to the participants as the usefulness of such CQs
was unknown. We also analyzed the participants’ preferred
kinds of CQs for the queries that have CQs generated by
both approaches. We first identified two sets of participants
for a query who preferred Chatbot4QR or EVPI, which are
denoted as PChatbot4QR and PEV PI , responsively. Then, we

TABLE 9
Evaluation of the CQs generated by Chatbot4QR and EVPI. For a

query, “#Initial CQs” is the number of CQs that are initially generated by
Chatbot4QR; “Avg. #CQs” is the average number of CQs generated by
Chatbot4QR after the interaction with ten participants; and “#CQs” is

the number of CQs generated by EVPI.

Query CQs Generated by Chatbot4QR CQs Generated by EVPI
#Initial Avg. Avg. Ratio #CQs Avg. Ratio

No. CQs #CQs of Useful CQs of Useful CQs
1 2 3 0.833 1 0.400
2 3 4 0.750 2 0.250
3 3 4.4 0.565 2 0.000
4 4 4.6 0.590 0 –
5 7 9 0.522 1 0.000
6 5 6 0.500 0 –
7 3 4 0.425 1 0.000
8 9 9.9 0.314 1 0.400
9 2 2.4 0.750 1 0.000
10 4 5.9 0.607 1 0.400
11 3 4.9 0.590 2 0.200
12 5 6.3 0.412 0 –
13 2 3 0.733 1 0.000
14 5 7.1 0.541 0 –
15 3 4 0.775 2 0.200
16 7 9 0.496 1 0.000
17 2 2.8 0.783 4 0.000
18 6 7.7 0.488 1 0.000
19 6 8.2 0.449 0 –
20 3 4 0.900 1 0.000
21 5 6.1 0.624 0 –
22 4 5 0.620 2 0.150
23 3 3 0.500 3 0.000
24 2 2.8 0.750 4 0.325
25 6 7.1 0.577 2 0.250
26 6 7 0.471 0 –
27 4 4.5 0.512 0 –
28 3 4 0.775 2 0.250
29 4 4 0.700 0 –
30 3 4.5 0.710 2 0.250
31 2 3 0.800 2 0.200
32 5 6 0.642 2 0.300
33 3 3.2 0.767 1 0.600
34 7 8.9 0.479 1 0.200
35 2 3.6 0.725 1 0.700
36 5 6.4 0.626 2 0.200
37 5 7.3 0.664 1 0.300
38 8 8.4 0.419 1 0.000
39 5 5 0.553 1 0.100
40 4 5 0.460 2 0.300
41 3 4 0.775 2 0.300
42 4 4.9 0.565 2 0.100
43 4 4.8 0.595 3 0.267
44 4 5 0.480 1 0.600
45 2 3 0.933 1 0.100
46 4 4 0.600 2 0.300
47 2 2.7 0.483 0 –
48 7 7.1 0.377 1 0.600
49 4 4.8 0.570 1 0.100
50 2 2 0.600 1 0.000

Avg. 4.1 5.1 0.608 1.3 0.167

defined the “preference ratio” of the ten participants for the
query as | PChatbot4QR |:| PEV PI |.

Furthermore, according to the 20 types of SO tags shown
in Table 1 and the three heuristic rules for CQ generation
described in Section 3.2.2, Chatbot4QR can generate CQs
that ask for 40 types of technical details, i.e., 20 types of
SO tags and the versions. To examine whether the CQs that
ask for some specific types of technical details would be
more likely to be perceived as useful by users, we counted
the numbers of CQs that ask for different types of technical
details. We also measured the ratio of useful CQs that ask

14

1
2

1
2

1

6

9

18

0

5

10

15

20

5:3 6:4 7:3 8:1 8:2 9:0 9:1 10:0
Preference Ratio

N
um

be
r

of
 Q

ue
rie

s

Fig. 8. Preference ratios of the CQs that are generated by Chatbot4QR
and EVPI for 40 queries.

TABLE 10
Statistics on the evaluation of the CQs generated by Chatbot4QR and

EVPI.

Approach #CQs Evaluated #Useful CQs Evaluated
by the Participants by the Participants

EVPI 650 131
Chatbot4QR 2,565 1,479

for each type.

Results. Table 9 presents the numbers of CQs generated by
Chatbot4QR and EVPI, as well as the average ratio of useful
CQs for each query. For Chatbot4QR, we present the number
of initially generated CQs and the average number of CQs
(i.e., “Avg. #CQs”) obtained by the ten participants in PG1
or PG2 after interaction, for each query. The bottom row
shows the overall average results of both approaches on the
50 queries. From the table, we have the following findings:

• As for EVPI, it generated 1.3 CQs for a query on average
and generated zero CQs for ten queries. The overall
ratio of useful CQs for 50 queries is 16.7%, meaning
that only a few CQs generated for a query were useful.
Obviously, EVPI failed to generate any useful CQs for
some vague queries. For example, the query Q6, i.e.,
“Better way to parse xml”, is vague due to the missing
of a specific programming language. However, no CQ
was generated by EVPI for Q6.

• As for Chatbot4QR, on average for a query, it initially
generated 4.1 CQs and finally generated 5.1 CQs after
interacting with the participants. This result means that
on average one CQ was dynamically generated for a
query based on the participants’ feedback. More specif-
ically, 0-2.2 new CQs were generated for the 50 queries
during the interaction. We observe that the number of
CQs generated by Chatbot4QR is approximately four
times the number of CQs generated by EVPI. Compared
with EVPI, the effectiveness of Chatbot4QR depends on
the number of increased useful CQs. If more than 16.7%
of the increased CQs were useful, the effectiveness of
Chatbot4QR would be better than that of EVPI. For
each approach, we counted the number of times the
generated CQs are evaluated by the participants and
the number of times the CQs are evaluated as use-

ful, as shown in Table 10. Among the 1,915 (=2,565-
650) additional evaluations of the CQs generated by
Chatbot4QR, 1,348 (i.e., 70.4%) are useful. Moreover,
as listed in Table 9, the overall ratio of useful CQs
that are generated by Chatbot4QR is 60.8% for the 50
queries. For 37 queries, the average ratios of useful
CQs generated by Chatbot4QR are no less than 50%.
In contrast, the average ratios of useful CQs generated
by EVPI are no less than 50% for only four queries,
i.e., Q33, Q35, Q44, and Q48. As demonstrated in the
results, Chatbot4QR in CQ generation for a query is
more effective than EVPI.

Figure 8 shows the numbers of queries with different
preference ratios. There are 18 queries with the preference
ratio ‘10:0’, meaning that for these queries, all the ten
participants preferred the CQs generated by Chatbot4QR.
For the nine queries with ‘5:3’, ‘8:1’, and ‘9:0’, one or two
participants had no preference on the two kinds of CQs.
We observe that most of the participants preferred the CQs
generated by Chatbot4QR for the 40 queries (that have CQs
generated by both approaches).

Two major comments about EVPI given by the partic-
ipants are: (1) most of the generated CQs are too specific
to a particular problem and often not useful for retrieving
relevant questions, e.g., the CQ “What exactly is a week
number in this context, and what does ‘date.weekday’ have to
do with it?” generated for the query Q10; and (2) even some
CQs might be useful but they are difficult to answer with a
few words, e.g., the CQ “What output did you get?” generated
for Q7. These issues can be explained by the objective of
EVPI that it aims at generating CQs to help users refine
technical questions, so that the questions can be easier to
answer. Therefore, most of the CQs generated by EVPI may
not be useful for question retrieval.

Table 11 presents the CQs generated by Chatbot4QR for
the two queries Q18 and Q42. For the CQs related to each
query, we present (1) the scores for ranking the CQs (see
Section 3.2.2), (2) the orders of prompting the CQs to a
participant (i.e., P16 for Q18 and P7 for Q42), and (3) the
usefulness and feedback given by the participant. The two
CQs without scores are dynamically generated based on the
participants’ feedback, e.g., P16’s feedback ‘windows’ to the
third CQ of Q18. We observe that the ratios of useful CQs
for Q18 and Q42 are 57.1% and 60.0%, respectively. We can
use the final two kinds of feedback collected from all CQs
of a query q (i.e., the positive feedback pfb(q) and negative
feedback nfb(q)) to refine q. More specifically, pfb(q) and
nfb(q) are used to adjust the initial semantic similarities of
SO questions retrieved for q, as demonstrated in Eq. 1.

Table 12 presents the numbers of CQs and useful CQs
generated by Chatbot4QR that ask for 30 types of technical
details (including 18 technique types of SO tags and the
versions of 12 technique types). The types with ‘(v)’ are the
versions of the corresponding technique types. For example,
‘programming language (v)’ means the version of a program-
ming language. The first row shows that there are 370 CQs
that ask for programming languages; and 350 (i.e., 94.6%)
of the CQs are evaluated as useful by the participants.
We observe that the top five types of technical details
asked by the maximum numbers of CQs are ‘programming
language (v)’, ‘programming language’, ‘library’, ‘framework’,

15

TABLE 11
The CQs generated by Chatbot4QR for the two queries Q18 and Q42 in Table 4. For the CQs related to each query, we present the scores for

ranking the CQs, the orders of the CQs prompted to a participant (i.e., P16 for Q18 and P7 for Q42), as well as the usefulness and feedback given
by the participant. pfb(q) and nfb(q) are the positive feedback and negative feedback to all the CQs of a query q, respectively.

Query CQs Generated by Chatbot4QR for the Query Score for Prompting Usefulness Feedback Positive and Negative Feedback
No. CQ Ranking Order Used to Refine the Query

18

What programming language, e.g., javascript or python, does your problem refer to? 1.000 1 0

pfb(Q18) = {node.js, windows 8, babel}

If you are using a framework, e.g., node.js or mocha, please specify: 0.604 2 3 node.js
Could you provide an operating system, e.g., windows or linux? 0.198 3 4 windows
Can you specify the version of windows, e.g., 7 or 8? – 4 4 8
Which library, e.g., package.json or babel, are you using? 0.167 5 3 babel
Are you using json? (y/n), or some other formats. 0.135 6 0
Are you using terminal? (y/n), or some other classess. 0.066 7 0

42

What programming language, e.g., java or c#, does your problem refer to? 1.000 1 3 python
Can you specify the version of python, e.g., 3.x or 2.7? – 2 3 2.7 pfb(Q42) = {python 2.7, numpy}
Are you using .net? (y/n), or some other frameworks. 0.033 3 1 n nfb(Q42) = {.net, indexing}
Are you using numpy? (y/n), or some other libraries. 0.032 4 4 numpy
Are you using indexing? (y/n), or some other techniques. 0.032 5 2 n

TABLE 12
The numbers of CQs and useful CQs generated for the 50 queries by
Chatbot4QR that ask for different types of technical details, as well as
the ratios of useful CQs. Each type with “(v)” means the version of the

corresponding technique type.

Type #CQs that #Useful CQs that Ratio of Useful CQs
ask for the Type ask for the Type that ask for the Type

programming language 370 350 0.946
programming language (v) 494 422 0.854
database 20 15 0.750
database (v) 11 7 0.636
operating system 130 84 0.646
operating system (v) 61 37 0.607
library 329 179 0.544
library (v) 49 33 0.673
technique 129 48 0.372
class 98 35 0.357
class (v) 19 7 0.368
non-PL language 89 31 0.348
non-PL language (v) 47 29 0.617
format 130 37 0.285
format (v) 72 52 0.722
model/algorithm 19 5 0.263
model/algorithm (v) 22 21 0.955
tool 50 12 0.240
tool (v) 3 0 0.000
framework 239 55 0.230
framework (v) 22 14 0.636
design pattern 10 2 0.200
environment 59 10 0.169
environment (v) 2 0 0.000
non-OS system 70 11 0.157
non-OS system (v) 1 1 1.000
platform 10 1 0.100
engine 10 1 0.100
server 10 1 0.100
browser 20 1 0.050

and ‘operating system’. The top five types with the highest
ratios of useful CQs are ‘non-OS system (v)’, ‘model/algorithm
(v)’, ‘programming language’, ‘programming language (v)’, and
‘database’. Moreover, excluding the version types, the top
five technique types with the highest ratios of useful CQs are
‘programming language’, ‘database’, ‘operating system’, ‘library’,
and ‘technique’.�

�

�

�

On average, Chatbot4QR generates approximately five CQs for
a query and 60.8% of the CQs are helpful for users to recognize
missing technical details in the query. The CQs generated by
Chatbot4QR are much better than the ones generated by the
EVPI approach (as only 16.7% of the CQs generated by EVPI
are helpful). Moreover, the CQs generated by Chatbot4QR that
ask for some specific types of technical details are more likely
to be perceived as useful by users. For the 20 types of SO tags
shown in Table 1, the top five types with the highest ratios of
useful CQs are ‘programming language’, ‘database’, ‘operating
system’, ‘library’, and ‘technique’.

5.3 RQ3: Can Chatbot4QR retrieve more relevant SO
questions than the state-of-the-art question retrieval and
query expansion approaches?

Motivation. The ultimate goal of Chatbot4QR is to retrieve
accurate SO questions for users based on their feedback to
the CQs. Although it has been validated in RQ2 that most
of the CQs generated by Chatbot4QR for a query are useful,
it is necessary to check whether the refined queries (i.e., the
participants’ feedback to CQs) can improve the relevance of
recommended questions.
Approach. We retrieved the top ten SO questions for the 50
experimental queries based on the participants’ feedback to
the CQs of each query, under the setting of η = 0.2. Then,
we conducted a user study (i.e., the user study 5 shown
in Fig. 5) to evaluate the SO questions. We compared Chat-
bot4QR with several existing question retrieval and query
expansion approaches. More specifically, we summarized
two state-of-the-art approaches used for question retrieval:
• Lucene: This is the Lucene search engine which retrieves

SO questions similar to a query based on the Lucene in-
dex built for a question repository [8]. We implemented
Lucene using its source code7 released at Github.

• Word Embedding (WE): This is the word embedding-
based question retrieval approach widely used in recent
work [5], [6]. We implemented WE using the source
code8 released by Huang et al. [5].

A rich body of research work improves the performance
of IR systems by reformulating queries using relevant terms
extracted from thesauruses or similar resources. We summa-
rized three major query expansion approaches:
• WordNet (WN): This approach expands a query with

the synonyms of keywords in WordNet. We imple-
mented the WordNet-based query expansion approach
proposed by Lu et al. [12].

• QECK: This approach expands a query using the impor-
tant keywords contained in the top similar SO question-
and-answer pairs [8]. The importance of a keyword is
measured by considering both the TF-IDF score and the
scores of SO questions and answers. We implemented
QECK according to the details presented in the paper.

• Tag Recommendation (TR): There are a number of papers
on recommending SO tags for a technical question [36],

7. https://github.com/apache/lucene-solr
8. https://github.com/tkdsheep/BIKER-ASE2018

16

[37], [38]. These papers are similar to Chatbot4QR to a
certain extent as all of them focus on finding relevant
SO tags for a target (a question or a query). We viewed
the TR approaches as a specific kind of query expansion
approaches, to check whether they can be used to
recommend SO tags for queries. We implemented the
neutral network-based TR approach proposed by Liu
et al. [38] using the open-source code9 and expanded a
query with the top ten recommended SO tags.

We built nine baselines by combining the two retrieval
approaches: Lucene and WE, and four query expansion
approaches: WN, QECK, TR, and IQR (which refers to our in-
teractive query refinement approach used in Chatbot4QR).
The baselines are described as follows.

1. Lucene: This is the Lucene approach described above.
2. WE: This is the WE approach described above.
3. Lucene+WN: This approach uses Lucene to retrieve ques-

tions after expanding a query using WN.
4. Lucene+QECK: This approach uses Lucene to retrieve

questions after expanding a query using QECK.
5. Lucene+TR: This approach uses Lucene to retrieve ques-

tions after expanding a query using TR.
6. Lucene+IQR: This approach uses Lucene to retrieve ques-

tions based on the query refined using IQR, i.e., the
user’s positive and negative feedback to CQs. More
specifically, We first retrieved similar questions by ap-
plying the query and positive feedback to Lucene. Then,
we removed the similar questions that contain any
negative feedback.

7. WE+WN: This approach uses WE to retrieve questions
after expanding a query using WN.

8. WE+QECK: This approach uses WE to retrieve ques-
tions after expanding a query using QECK.

9. WE+TR: This approach uses WE to retrieve questions
after expanding a query using TR.

Note that Chatbot4QR can be simply viewed as a com-
bination of WE+IQR. We applied the eight baselines except
Lucene+IQR to the 50 queries and obtained eight lists of the
top ten SO questions for each query. Since IQR is a person-
alized query refinement approach, we applied Lucene+IQR
to retrieve the top ten questions based on each participant’s
feedback to the CQs of each query. Then, for each partici-
pant, we collected the different top ten questions retrieved
for each query using Chatbot4QR and nine baselines. The
participants evaluated the relevance of the questions by five
grades 0-4, as defined in Section 5.1.

As the participants may probably have different pref-
erences of techniques (e.g., the familiar programming lan-
guages shown in Table 5), they may get different SO
questions retrieved by Chatbot4QR and Lucene+IQR for
a query. Moreover, the participants may have their own
judgement on the relevance of the questions. Therefore, we
measured the overall Pre@k or NDCG@k performance of
an approach A as its average performance evaluated by the
20 participants. More specifically, given a specific Pre@k or
NDCG@k metric m, for each participant P , we computed m
of each query according to P ’s evaluation results of the SO
questions retrieved by A. Then, we computed the average
m of the 25 queries allocated to P . Finally, we computed the

9. https://pan.baidu.com/s/1slujtU1

overall m of A, denoted as mA, with respect to the average
of the m values of 20 participants. Based on the overall per-
formance results, we measured the “improvement degree”
of Chatbot4QR over each baseline B in terms of a specific
metric m as mChatbot4QR−mB

mB
.

Furthermore, we examined whether the improvement of
Chatbot4QR (denoted as C) over a baseline B is statistically
significant. Considering that the participants may obtain
different SO questions and have personalized benchmarks
of relevant questions for a query, we defined a metric
“significant ratio” to measure the statistical significance
of the performance improvement of C over B as follows.
For each participant, given a specific Pre@k or NDCG@k
metric m, we built two samples for C and B, respectively,
by gathering the m values of C and B on the 25 assigned
queries. We used the Wilcoxon signed-rank test [39] to test
the significance of C over B based on the two samples
with three p-values {0.05, 0.01, 0.001}. For each p-value p,
we identified the set of participants whose samples of C
are significantly better than those of B, which are denoted
as SigPm,p(C,B). Then, the significant ratio of C over B,
given m and p, is measured as

SigRm,p(C,B) =
| SigPm,p(C,B) |

participants
. (5)

Finally, we chose the maximum significant ratio and the
corresponding p-value.

As described in Section 5.2, the CQs generated by Chat-
bot4QR can ask for different types of technical details. In
RQ2, we measured the ratios of useful CQs that ask for 30
types of technical details (see Table 12). We further measured
the contributions of the participants’ feedback to the CQs
that ask for different types of technical details, in order
to retrieve relevant questions. More specifically, for every
feedback to a CQ of a query, we produced a list of the top ten
SO questions by adjusting the initial semantic similarities
of the 10,000 questions (see Section 4.2) using the single
feedback. The participants evaluated the relevance of the
questions that were not evaluated before for each allocated
query. Then, for a query q, we computed the performance of
a specific Pre@k and NDCG@k metric m improved by each
feedback fb, denoted as Impm(q, fb), as follows.
• If fb is a technique (e.g., a programming language)

or a version given to an initially generated CQ,
then Impm(q, fb) is measured as mChatbot4QR(q, fb)−
mInitial(q). mChatbot4QR(q, fb) is the m value of the
top-k questions retrieved for q using Chatbot4QR by
leveraging fb; and mInitial(q) is the m value of the
initial top-k questions retrieved for q using our two-
phase method.

• If fb is a version of a technique feedback fb′, then
Impm(q, fb) is measured as mChatbot4QR(q, fb) −
mChatbot4QR(q, fb

′).
Finally, we measured the average performance improve-

ment achieved using the participants’ feedback that belongs
to a specific type of technical details. For each type, we also
measured the average performance improvement achieved
using the participants’ feedback to all CQs of the queries
that contain any feedback of the type.
Results. Table 13 presents the performance of the top ten SO
questions retrieved using ten approaches. Table 14 presents

17

TABLE 13
Evaluation of the SO questions retrieved by ten approaches.

Approach Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10
Lucene 0.414 0.332 0.279 0.369 0.369 0.396

Lucene+WN 0.308 0.237 0.216 0.300 0.283 0.315
Lucene+QECK 0.278 0.190 0.156 0.251 0.245 0.260

Lucene+TR 0.250 0.203 0.169 0.243 0.246 0.265
Lucene+IQR 0.540 0.434 0.343 0.480 0.478 0.496

WE 0.530 0.416 0.348 0.484 0.473 0.500
WE+WN 0.300 0.236 0.188 0.285 0.281 0.299

WE+QECK 0.310 0.232 0.201 0.269 0.269 0.293
WE+TR 0.352 0.232 0.209 0.319 0.289 0.318

Chatbot4QR 0.838 0.670 0.548 0.765 0.731 0.760

TABLE 14
Improvement degrees and the maximum significant ratios of Chatbot4QR over nine baselines. “ImpD” is the improvement degree. “(p, SigR)” are

the maximum significant ratio and the corresponding p-value.

Baseline Pre@1 Pre@5 NDCG@1 NDCG@5
ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%))

Lucene 102.4 (0.05, 100.0) 102.1 (0.05, 100.0) 107.0 (0.01, 95.0) 97.8 (0.01, 100.0)
Lucene+WN 172.1 (0.05, 100.0) 182.9 (0.01, 100.0) 154.5 (0.05, 100.0) 158.5 (0.01, 100.0)

Lucene+QECK 201.4 (0.01, 100.0) 251.9 (0.01, 100.0) 205.2 (0.05, 100.0) 197.6 (0.001, 100.0)
Lucene+TR 235.2 (0.01, 100.0) 229.7 (0.001, 100.0) 214.0 (0.01, 100.0) 197.3 (0.001, 100.0)

Lucene+IQR 55.2 (0.05, 85.0) 54.2 (0.05, 95.0) 59.4 (0.05, 90.0) 52.7 (0.05, 100.0)
WE 58.1 (0.05, 70.0) 60.9 (0.05, 95.0) 57.8 (0.05, 80.0) 54.6 (0.01, 95.0)

WE+WN 179.3 (0.05, 100.0) 183.9 (0.01, 100.0) 168.4 (0.01, 100.0) 160.0 (0.001, 100.0)
WE+QECK 170.3 (0.05, 100.0) 189.3 (0.01, 100.0) 184.5 (0.01, 100.0) 171.9 (0.001, 100.0)

WE+TR 138.1 (0.05, 100.0) 189.3 (0.001, 100.0) 139.3 (0.05, 100.0) 152.8 (0.001, 100.0)

the improvement degrees and the maximum significant
ratios of Chatbot4QR over the nine baselines. “ImpD(%)”
is the improvement degree expressed as a percentage; and
“(p, SigR(%))” are the maximum significant ratio expressed
as a percentage and the corresponding p-value p. From the
two tables, we have the following findings:

• Chatbot4QR achieves the best performance in terms of
both Pre@k and NDCG@k. The result demonstrates
that the queries refined by IQR (i.e., our interactive
query refinement approach) can improve the quality of
SO questions retrieved by WE.

• Chatbot4QR improves the two popular baselines WE
and Lucene by at least 54.6% and 97.8%, respectively.
Chatbot4QR significantly outperforms Lucene for all the
participants in terms of Pre@1, Pre@5, and NDCG@5.
Although Chatbot4QR does not significantly outper-
form WE for all the participants, the significant ratios
are all higher than 70%. This result indicates that the
improvement of Chatbot4QR over WE is significant for
at least 14 of the 20 participants.

• Lucene+IQR improves Lucene by at least 22.91%, which
further demonstrates the effectiveness of our IQR ap-
proach in helping users refine queries and retrieve more
relevant questions using Lucene.

• WE outperforms Lucene by at least 24.48%. This is
because that WE can retrieve semantically similar ques-
tions for queries, while Lucene cannot due to the lexical
gaps issue.

• WE outperforms WE+WN, WE+QECK, and WE+TR
by at least 50.57%. Lucene outperforms Lucene+WN,
Lucene+QECK, and Lucene+TR by at least 22.93%. These

results may indicate that the three automatic query
expansion approaches (i.e., WN, QECK, and TR) are
not suitable for reformulating queries to improve the
performance of question retrieval.

Table 15 presents the average performance improvement
of question retrieval achieved using the participants’ feed-
back to the CQs that ask for 29 types of technical details.
For each type, “# Cases” is the number of times a partici-
pant’s feedback of the type is used for question retrieval;
“Avg. Imp” is the average Pre@k or NDCG@k improvement
achieved using the participants’ feedback of the type; and
“Avg. Imp by All” is the average Pre@k or NDCG@k im-
provement achieved using the participants’ feedback to all
CQs of the queries that contain any feedback of the type.
The type ‘tool (v)’ in Table 12 has no improvement result in
Table 15, since none of the three CQs that ask for the type of
technical details are evaluated as useful and thus there is no
feedback of the type used for question retrieval. We find that
the feedback of some types has positive improvement while
the feedback of other types has no or negative improvement.
For example, in terms of Pre@1, the improvement of the
three types ‘programming language’, ‘database (v)’, and ‘oper-
ating system’ are 0.318, 0.000, and -0.207, respectively. We
also find that the improvement achieved using the feedback
of a type can be different in terms of different metrics. For
example, the feedback of ‘operation system’ has a negative
impact on the Pre@1 and NDCG@1 performance, however, it
has positive improvement in terms of Pre@5 and NDCG@5.
The version types have very low improvement. One of the
possible reasons could be that many SO questions do not
explicitly specify the versions of the involved techniques, es-

18

TABLE 15
The average performance improvement of SO question retrieval achieved using the participants’ feedback to the CQs generated by Chatbot4QR

that ask for different types of technical details. Each type with “(v)” means the version of the corresponding technique type. For each type,
“#Cases” is the number of times a participant’s feedback of the type is used to adjust the initial semantic similarities of SO questions of a query;

“Avg. Imp” is the average Pre@k or NDCG@k improvement achieved using the participants’ feedback of the type; “Avg. Imp by All” is the average
Pre@k or NDCG@k improvement achieved using the participants’ feedback to all CQs of the queries that contain any feedback of the type.

Type #Cases
Pre@1 Pre@5 NDCG@1 NDCG@5

Avg. Imp Avg. Imp Avg. Imp Avg. Imp Avg. Imp Avg. Imp Avg. Imp Avg. Imp
by All by All by All by All

programming language 355 0.318 0.363 0.243 0.299 0.263 0.333 0.248 0.307
programming language (v) 454 0.075 0.326 0.040 0.264 0.065 0.285 0.039 0.265
database 15 0.333 0.333 0.173 0.240 0.236 0.271 0.179 0.268
database (v) 8 0.000 0.375 0.000 0.325 0.000 0.317 0.000 0.334
operating system 92 -0.207 0.217 0.039 0.241 -0.120 0.266 0.003 0.264
operating system (v) 45 0.000 0.200 0.018 0.276 0.000 0.276 0.016 0.290
library 183 0.279 0.421 0.118 0.280 0.224 0.381 0.133 0.293
library (v) 37 -0.081 0.324 -0.022 0.254 -0.011 0.275 -0.008 0.242
technique 56 0.054 0.464 -0.004 0.289 0.076 0.397 0.019 0.297
class 35 -0.057 0.343 -0.063 0.217 -0.094 0.306 -0.071 0.240
class (v) 13 0.000 0.077 0.000 0.431 0.000 0.021 -0.014 0.262
non-PL language 33 -0.364 0.273 0.012 0.406 -0.322 0.227 -0.063 0.307
non-PL language (v) 20 0.000 0.450 0.010 0.350 0.000 0.378 -0.028 0.259
format 40 -0.175 0.175 -0.035 0.200 -0.108 0.140 -0.036 0.202
format (v) 61 0.000 0.197 0.013 0.216 0.000 0.165 0.004 0.186
model/algorithm 5 -0.400 0.200 -0.120 -0.000 -0.107 0.333 -0.109 0.057
model/algorithm (v) 21 0.000 -0.143 0.010 0.124 0.000 -0.113 0.008 0.099
tool 15 0.000 0.200 0.040 0.213 0.036 0.196 0.047 0.233
framework 63 0.127 0.286 0.029 0.235 0.116 0.312 0.052 0.245
framework (v) 17 -0.176 0.235 -0.047 0.141 -0.024 0.267 -0.017 0.212
design pattern 3 0.000 0.333 0.067 0.467 0.000 0.311 0.066 0.521
environment 14 -0.143 0.143 -0.014 0.171 -0.062 0.248 -0.024 0.199
environment (v) 1 0.000 0.000 0.000 0.200 0.000 0.533 0.000 0.276
non-OS system 14 0.000 0.500 0.086 0.400 -0.038 0.479 0.046 0.403
non-OS system (v) 1 0.000 1.000 0.000 0.400 0.000 0.933 0.000 0.401
platform 3 0.000 1.000 0.000 0.200 0.000 1.000 0.000 0.333
engine 1 0.000 0.000 0.000 0.200 0.000 0.000 -0.054 0.025
server 1 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.203
browser 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083

pecially in the question title and tags. To effectively leverage
the feedback of versions, there needs a method for inferring
the versions of techniques from the content (e.g., code snip-
pets) of questions. Moreover, the values of “Avg. Imp by All”
are generally higher than those of “Avg. Imp”, indicating that
better performance is achieved by integrating the feedback
to all CQs of a query. The top three types with the maximum
performance improvement are the same, i.e., ‘programming
language’, ‘database’, and ‘library’, in terms of all metrics.�

�

�

�

Compared with the nine baselines that involve two question
retrieval approaches and four query expansion approaches, Chat-
bot4QR retrieves more relevant SO questions for queries. The
improvement degree of Chatbot4QR over the word embedding-
based question retrieval approach (WE) is at least 54.6%.
Furthermore, the improvement of Chatbot4QR over WE is
statistically significant for more than 70% of the participants.
Moreover, the participants’ feedback to the CQs that ask for
different types of technical details has different contributions to
question retrieval. The top three types with the maximum contri-
butions are ‘programming language’, ‘database’, and ‘library’.

5.4 RQ4: How efficient is Chatbot4QR?

Motivation. In Chatbot4QR, several resources need to be
built offline, including the Lucene index of SO questions,

two language models, and the categorization and version-
frequency information of SO tags. Although the offline
processing takes a substantial amount of time, the built
resources are reusable. We are interested in finding out the
response time that Chatbot4QR can respond to a user once
the user submits a query. If the response time is too long,
our approach may not be acceptable even if it is effective in
generating useful CQs and retrieving relevant SO questions.
Therefore, it is essential to examine whether Chatbot4QR is
efficient for practical uses.

Approach. We recorded the amount of time that Chat-
bot4QR, WE, and Lucene spent on the offline processing of
SO data and online question retrieval during our experi-
ments. After the user study 3, we asked the participants
to report their time spent on interacting with our chatbot.
We did not consider the time costs of the other seven
baselines because Lucene+IQR is based on our IQR and the
performance of other baselines is too low (see Table 13).

Results. Table 16 presents the time costs of the three ap-
proaches. From the table, we have the following findings:

• As for the offline processing, the processing time of
Chatbot4QR is 91.15 hours, which is much higher than
those of Lucene and WE. This is because that the offline
processing of Chatbot4QR contains three main parts:
(1) the semi-automatic categorization of SO tags (74
hours); (2) the building of the Lucene index of SO

19

TABLE 16
Time costs of three approaches.

Approach Offline Processing Online Question Retrieval
Lucene 8.52h 0.02s

WE 7.38h 49.96s

Chatbot4QR 91.15h
Response: 1.30s
Interaction: ≈ 42s
Recommendation: 0.02s

questions and two language models (8.52+7.38 = 15.9
hours); and (3) the tag identification from SO questions
(1.25 hours). Since the resources are reusable and can be
incrementally updated (as explained in Section 3.1.5),
the relatively high time cost of the offline processing of
Chatbot4QR may not be a problem for practical uses.

• As for the online question retrieval for a query, the
processing time of Chatbot4QR contains three parts
(as shown in Table 16): (1) Response is the amount of
time required to respond to a participant (1.30 seconds),
including the two-phase question retrieval and CQ gen-
eration; (2) Interaction is the amount of time that a par-
ticipant spent on the interaction with our chatbot (about
42 seconds); and (3) Recommendation is the amount
of time required to adjust the similarities of 10,000
SO questions and produce the top ten recommended
questions (0.02 seconds). The response time is 1.30
seconds, meaning that Chatbot4QR can responsively
start interacting with the user after receiving a query.
After the interaction, the question recommendation list
can be produced within 0.02 seconds. These results
demonstrate the efficiency of Chatbot4QR.

• The time spent by WE on question retrieval is 49.96 sec-
onds per query, which is high because WE measures the
semantic similarities between a query and the 1,880,269
SO questions in our repository. In contrast, the two-
phase question retrieval approach used in Chatbot4QR
is scalable. The reason is that the first phase uses Lucene,
which is efficient to handle a large-scale repository, as
shown in Table 16; and by fixing the parameter N to a
relatively large value (e.g., 10,000 in this work), the time
cost of the second phase is stable.

It is worth to mention that the average time spent on the
interaction with our chatbot for a query is 42 seconds. For
a few queries, some participants took 2-3 minutes because
they needed to search for unfamiliar technical terms asked
in the CQs online. As confirmed by the participants, the
amount of time spent on the interaction is practically
acceptable since the feedback to CQs can contribute to
more relevant SO questions and reduce the time required
for the manual examination of undesirable questions.
Although the quality of retrieved questions relies on the
user’s feedback to CQs, Chatbot4QR does not require the
user to answer every CQ. The amount of the interaction time
depends on (1) the user’s programming experience and (2)
whether the user wants to search for unfamiliar technical
terms online, in order to provide more precise feedback to
CQs and obtain more relevant questions.

�

�

�

�
Chatbot4QR takes approximately 1.30 seconds to respond to a
user after the user submits a query and 0.02 seconds to produce
the SO question recommendation list after interacting with the
user, indicating that Chatbot4QR is efficient for practical uses.

5.5 RQ5: Can Chatbot4QR help obtain better results
than using Web search engines alone?

Motivation. In practice, developers often use the SO search
engine and general-purpose search engines (e.g., Google) to
look for desired information [13], [40]. To further validate
the effectiveness of Chatbot4QR, we investigate whether
Chatbot4QR can help users obtain better results than us-
ing Web search engines (including the SO search engine,
Google, etc.) alone. Here, a result refers to a SO question or
any other resources returned by Web search engines, e.g., a
blog or a tutorial.
Approach. We conducted four user studies (i.e., the user
studies 2, 4, 5, and 6 shown in Fig. 5) for answering RQ5.
Before the interaction with Chatbot4QR, we asked the 20
participants in PG1 and PG2 to obtain the top ten results
using Web search engines of their choices for each allocated
query. The participants can modify a query according to
the returned results until they are satisfied with the results
(excluding the SO question whose title is the same as the
original query) listed in a webpage. For each query, we
asked the participants to record the final query and the top
ten results in the returned webpage. After interacting with
Chatbot4QR, the participants can obtain new results for a
query using Web search engines by reformulating the query
with interesting technical terms in their feedback to the
CQs. Take the query Q18 shown in Table 11 as an example,
the participant P16 can reformulate Q18 by adding some
technical terms, e.g., ‘node.js’, in his/her positive feedback.
Then, the participants evaluated the relevance of the two
kinds of Web search results. Finally, the participants chose
the preferred/best results for each allocated query from the
three kinds of results: the top ten SO questions retrieved by
Chatbot4QR and the two top ten Web search results. After
the user studies, we interviewed the participants to get their
opinions on the value of Chatbot4QR.

For each participant, we measured the performance of
the following three top ten results for each allocated query:
• WS: the top ten results obtained using Web search

engines before the interaction with Chatbot4QR.
• WS+IQR: the top ten results obtained using Web search

engines after the interaction with Chatbot4QR.
• Best: the best results chosen by the participant.
We viewed WS, WS+IQR, and Best as three retrieval

approaches. For a specific Pre@k or NDCG@k metric, we
measured the overall performance of each approach as
the average performance evaluated by the 20 participants.
Moreover, we measured the improvement degrees and the
maximum significant ratios of Best over WS and WS+IQR.
The detailed measurement process can refer to Section 5.3.
Results. Table 17 presents the overall performance of WS,
WS+IQR, and Best, as well as the improvement degrees
and the maximum significant ratios of Best over WS and
WS+IQR. From the table, we have the following findings:
• Best outperforms WS and WS+IQR in terms of both

Pre@k and NDCG@k with an improvement of at least

20

13

9

3

12

13

11

11

3

11

12

2

8

12

5

6

12

7

8

11

6

12

9

4

7

17

1

7

16

2

3

20

2

3

21

1

8

15

2

4

16

5

9

12

4

11

11

3

5

20

4

17

4

7

18

6

18

1

0

5

10

15

20

25

P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25
Participant

N
um

be
r o

f Q
ue

rie
s

WS+IQR Chatbot4QR WS

Fig. 9. The numbers of queries that achieve the best results using WS, WS+IQR, and Chatbot4QR by 20 participants.

TABLE 17
Evaluation of the results obtained using Web search engines before/after interacting with Chatbot4QR. “ImpD” is the improvement degree. “(p,

SigR)” are the maximum significant ratio and the corresponding p-value.

Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10
WS 0.634 0.483 0.401 0.532 0.500 0.502

WS+IQR 0.664 0.524 0.433 0.555 0.528 0.531
Best 0.900 0.725 0.585 0.798 0.746 0.749

ImpD(%) of Best over WS 22.4 29.4 26.9 27.5 26.9 29.8
(p, SigR (%)) of Best over WS (0.05, 80.0) (0.05, 100.0) (0.05, 90.0) (0.05, 90.0) (0.01, 100.0) (0.01, 100.0)

ImpD(%) of Best over WS+IQR 16.9 19.3 17.3 22.3 20.0 22.5
(p, SigR (%)) of Best over WS+IQR (0.05, 70.0) (0.05, 95.0) (0.05, 85.0) (0.05, 85.0) (0.01, 100.0) (0.05, 100.0)

22.4% and 16.9%, respectively. The significant ratios
of Best over WS are all higher than 80%, indicating
that the improvement of Best over WS is statistically
significant for at least 16 of the 20 participants. This
result shows that more desired results are obtained by
the participants after interacting with Chatbot4QR than
directly using Web search engines.

• WS+IQR is slightly better than WS. This means that for
some queries, the participants obtained better results
using Web search engines again by reformulating the
queries using information that they learned from the
interaction with our chatbot.

We counted the numbers of queries that achieve the
best results by WS, WS+IQR, and Chatbot4QR for each
participant, as shown in Fig. 9. From the figure, we have
the following findings:

• For 12-22 of the 25 (i.e., 48%-88%) assigned queries,
the participants preferred the results obtained by Chat-
bot4QR or WS+IQR. For 16 participants (except P6, P8,
P13, and P21), Chatbot4QR achieves the best results for
the largest number of queries. Moreover, there are 1-7
queries whose best results are obtained by WS+IQR for
17 participants (except P7, P22, and P24). For example,
for the query Q22, the participant P3 reformulated it
by adding the feedback ‘mysql’ given to the CQ “I
want to know whether you are using a database, e.g., mysql
or mongodb. Can you provide it?”, which contributes to
the best results retrieved by Google. All these results

are consistent with the overall performance shown in
Table 17, which further demonstrate that for a con-
siderable number of queries, Chatbot4QR helps the
participants obtain better results than using Web search
engines alone.

• For each of the two participant groups PG1 (=P6-
P15) and PG2 (=P16-P25), there are notable differences
among the participants with respect to the numbers
of queries whose best results are obtained by WS,
WS+IQR, and Chatbot4QR. By interviewing the partic-
ipants, we found that the differences are mainly caused
by the participants’ different preferences of techniques
and programming experience. For example, for the
query Q36, the participants P23 and P24 preferred Java
while P25 preferred Python. Before using Chatbot4QR,
P24 reformulated the query by adding ‘jsoup’ [41] (a
Java HTML parser) while P23 simply added ’java’.
Consequently, they obtained different results for Q36.

• For all the 20 participants, WS achieves the best results
for 3-13 queries. We found that most of those queries
are relatively simple and have specified technical terms,
e.g., Q1 and Q7. The result shows the good performance
of Web search engines when the query is clearly spec-
ified. Although Chatbot4QR cannot achieve the best
results for some queries, all the participants expressed
their willingness to use our chatbot as a complement
to Web search engines.

Moreover, we examined the query reformulation records

21

TABLE 18
The numbers of participants who reformulated the 50 queries.

Query Nos. #Participants Who
Reformulated the Queries

2, 26, 45 8
13, 20, 41, 48 7

1, 21, 22, 25, 32, 37, 39, 46 6
3, 8, 12, 18, 19, 27, 28, 31, 36 5

5, 10, 15, 17, 29, 33, 42, 50 4
6, 14, 34, 35, 38, 40, 49 3

7, 11, 16, 24, 30, 44 2
23, 43 1

4, 9, 47 0

TABLE 19
Technical terms used to reformulate ten queries. Each number in a

parenthesis is the frequency of the technical term used to reformulate
the corresponding query.

Query No. Technical Terms Used to Reformulate the Query
2 numpy(3), python(2), matplotlib(2), python 3.x(1)
26 java(3), collections(1), c(1), python 3(1), linux(1)
45 pandas(7), python(1)
13 python(2), numpy(2), java(1), c#(1), python 3.x(1)
48 regex(4), python 3.x(1), jquery(1), django(1)
7 java(2)
11 java(2)
16 xml(1), html(1)
23 python 3(1)
43 neural-network(1)

of the participants by leveraging the final queries that they
used for obtaining the results of WS and WS+IQR. Table 18
presents the queries according to the number of participants
who had reformulated them. We observe that 24 (=3+4+8+9)
queries were reformulated by 5-8 participants, while 11
(=3+2+6) queries were reformulated by 0-2 participants. We
further analyzed the participants’ feedback to CQs used in
their reformulated queries. Table 19 lists the statistics of
the technical terms added to five frequently reformulated
queries and five less frequently reformulated queries. The
number in a parenthesis indicates the frequency of the
corresponding technical term used to reformulate a query.
As shown in Table 19, the queries reformulated by more par-
ticipants often involve multiple techniques. For example, the
technical terms used to reformulate the query Q26 include
three programming languages {‘java’, ‘c’, ‘python 3’}, one
operating system {‘linux’}, and one library {‘collections’}.

�

�

�

�

For 12-22 of the 25 (i.e., 48%-88%) assigned queries, the
participants preferred the results obtained by Chatbot4QR or
using Web search engines with the queries reformulated after
interacting with Chatbot4QR. This demonstrates that Chat-
bot4QR can help obtain better results than using Web search
engines alone. During the interview with the participants, all
the participants expressed their willingness to use Chatbot4QR
as a complement to Web search engines.

6 DISCUSSION

6.1 Why Chatbot4QR can help users retrieve better SO
questions and Web search results?

Tables 13 and 14 show that Chatbot4QR significantly out-
perfoms the two popular retrieval approaches: WE and
Lucene, as well as their variants combined with three query
expansion approaches: WN, QECK, and TR. Moreover, WE
is better than Lucene because WE can bridge the lexical gaps
between SO questions and queries while Lucene cannot. The
variants perform worse than WE and Lucene due to the
fact that WN, QECK, and TR may introduce noise terms
and decrease the quality of retrieved SO questions. As an
example, for the query Q9, i.e., “how to encrypt data using
AES in Java”, the terms expanded by QECK are: {ruby, iv,
php, openssl, algorithm, i.e.fast, disk, byte, decrypt}. Since Q9
has a programming language ‘java’, the two terms ‘php’ and
‘ruby’ may probably be unexpected by users.

Based on the above analysis, Chatbot4QR uses WE as the
question retrieval model. However, the performance of WE
is limited by the quality of queries. When a query is vague,
e.g., missing important technical details, WE cannot retrieve
accurate questions. As users may have varied technical
background, Chatbot4QR uses an interactive approach to
assisting users in refining queries by asking CQs that are
generated according to the missing technical details in a
query. The user’s feedback to CQs can accurately represent
their technical requirements on the queries and contribute
to retrieving relevant SO questions.

Table 17 and Fig. 9 show that Chatbot4QR helps the
participants obtain much better results than using Web
search engines alone for at least 48% of their allocated
queries. The SO questions retrieved by Chatbot4QR were
chosen as the best results by 16 of the 20 participants for
the largest proportion of queries. For some queries, the
participants obtained the best results using Web search
engines by reformulating the queries with their feedback
to CQs. These results demonstrate that Chatbot4QR can (1)
retrieve desired SO questions for users after helping them
refine the queries and (2) help users better understand their
queries and obtain better results using Web search engines.

6.2 Why Not Use A Constant Chatbot?

Chatbot4QR is designed to generate different CQs for
queries based on the existing technical details mentioned
in a query and an initial set of similar SO questions re-
trieved for the query. Is this design necessary? Can we use a
constant chatbot that always asks several fixed CQs for queries?
To answer these questions, we implemented a constant
chatbot, denoted as ConstantBot, which focuses on asking
for four types of technical details given a query, namely the
programming language, framework, and the versions of the
two technique types. More specifically, ConstantBot first asks
a CQ “What programming language does your problem refer to?”.
If a user provides a programming language, e.g., Java, then
ConstantBot further asks for the version of Java using a CQ
“Can you specify the version of java?”. Then, ConstantBot asks
for a framework using “If you are using a framework, please
specify:”, as well as the version of a possible framework
given by the user.

22

TABLE 20
The average numbers of CQs and the average ratios of useful CQs that

are generated by Chatbot4QR and ConstantBot for the 50 queries.

Approach Avg. #CQs Avg. Ratio of Useful CQs
ConstantBot 2.7 0.446
Chatbot4QR 5.1 0.608

TABLE 21
Evaluation of the SO questions retrieved by Chatbot4QR and

ConstantBot ; and the improvement degrees and the maximum
significant ratios of Chatbot4QR over ConstantBot.

Pre@1 Pre@5 NDCG@1 NDCG@5
ConstantBot 0.766 0.596 0.687 0.661
Chatbot4QR 0.838 0.670 0.765 0.731

ImpD(%) 9.4% 12.3% 11.3% 10.5%
(p, SigR(%)) (0.05, 20.0%) (0.05, 55.0%) (0.05, 30.0%) (0.05, 35.0%)

We asked the 20 participants in PG1 and PG2 to evaluate
the CQs asked by ConstantBot for each allocated query.
Similar to the user study 3 conducted in Section 5.2, the
participants rated each CQ by five grades 0-4 (as defined
in Section 5.1) and gave feedback to the useful CQs. After
the evaluation, we asked the participants to provide some
comments about ConstantBot. Then, we retrieved the top
ten similar SO questions using Eq. 1 by leveraging each
participant’s feedback to a query. The participants evaluated
the relevance of the questions that were not evaluated before
by five grades 0-4, as defined in Section 5.1.

Table 20 presents the average number of CQs and the
average ratio of useful CQs that are asked by ConstantBot for
the 50 queries. Table 21 presents the Pre@k and NDCG@k
performance of the retrieved SO questions, as well as the
improvement degrees and the maximum significant ratios
of Chatbot4QR over ConstantBot. From Table 20, we find
that on average ConstantBot asked 2.7 CQs for a query; and
the ratio of useful CQs is 44.6%, which is much lower than
that of Chatbot4QR (i.e., 60.8%). By analyzing the evaluation
results of the 50 queries, there are 11 queries (i.e., Q4,
Q9, Q17, Q23, Q27, Q29, Q32, Q33, Q39, Q46, and Q50)
that have no useful CQ as evaluated by the participants.
The 11 queries contain a specific programming language,
e.g., Java in Q4; and the participants are not interested
in looking for a framework. Two major comments about
ConstantBot given by the participants are: (1) ConstantBot
still asks for a programming language when a query already
has a programming language; and (2) unlike Chatbot4QR,
ConstantBot cannot help recognize some technical details
that are useful but missed in a query, e.g., databases and
libraries. From Table 21, we find that in terms of Pre@k and
NDCG@k (k = 1 and 5) metrics, Chatbot4QR improves Con-
stantBot by 9.4%-12.3%; and the improvement is statistically
significant for 20%-55% participants. Based on the analysis
results, we can conclude that it is not appropriate to use
a constant chatbot for the interactive query refinement and
question retrieval.

6.3 Learning Effect from Interacting with Chatbot4QR
In Section 5.5, considering that the participants can learn
to recognize some missing technical details in queries from

the interaction with Chatbot4QR, we first asked the partic-
ipants to search results for queries before interacting with
Chatbot4QR. This can avoid the impact of the participants’
learning effect on their Web search results using the original
queries.

It is worth mentioning that the learning effect is good
for users in practice. After interacting with Chatbot4QR
for several times, users, especially the novices, can learn
to formulate high-quality queries with necessary technical
details for retrieving questions from SO or other resources
from general-purpose Web search engines (e.g., Google).
Because of the learning effect, users can ask better questions
in Q&A sites by describing their problems with a clear tech-
nical context, which can lead to better answers. Moreover,
there are too many techniques (e.g., libraries) available on
the Web; and it is difficult for users, even for experienced
developers, to know every possible technique. Chatbot4QR
may help users, including both novices and experienced
developers, discover unknown or better techniques for some
programming tasks.

6.4 Application Scenarios of Chatbot4QR
Chatbot4QR can be applied in the following two scenarios:
• Chatbot4QR can be implemented as a browser plugin.

When a user inputs a query to Web search engines, the
plugin detects the missing technical details in the query.
If there are missing technical details, the plugin informs
the user that the query has a quality issue. Then, the
user can choose to interact with our chatbot. After the
interaction, our chatbot recommends the top ten similar
SO questions. Moreover, the user can use their feedback
to CQs to reformulate the query for Web search.

• In the literature, many technical tasks, such as answer
summarization [6] and API recommendation [5] rely on
the quality of the top similar SO questions retrieved
for queries. Chatbot4QR could be used to improve the
performance of question retrieval, which will contribute
to better results of the tasks.

6.5 Participants’ Comments about Chatbot4QR
In the experiments, we encouraged the participants to pro-
vide comments about Chatbot4QR. We summarize several
major positive and negative aspects of the comments.
• Positive Comments

PC1. The chatbot is good! It can really help me figure out some
important technical details missed in the queries. And, the
final retrieved results are more satisfactory.

PC2. Using the generated CQs to refine queries is more straight-
forward and systematic than manually picking up relevant
information scents in the search results.

PC3. The chatbot is flexible and fast, and most of the asked CQs
are really closely related to a query.

PC4. Although it may ask some unfamiliar techniques for me,
it still helps me get a better understanding of the query as
well as some other possibly useful libraries. I’d like to try
it later.

• Negative Comments
NC1. Some CQs are unnecessary because the asked information

can be inferred from some keywords in the query. For

23

●

●

●

●

●
● ● ● ● ●

0.349

0.653

0.828

0.919

0.968
0.989 0.996 0.999 1 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
k

A
vg

. R
at

io
 o

f U
se

fu
l C

Q
s

in
 th

e
To

p−
k

C
Q

s
to

 A
ll

U
se

fu
l C

Q
s

Fig. 10. The average ratios of useful CQs that are contained in the top-k
CQs prompted to the participants to all useful CQs for the 50 queries.

example, the CQ “What programming language, e.g., java
or c#, does your problem refer to?” asked for the query
Q35 “Using LINQ to extract ints from a list of strings” is
useless because ‘LINQ’ is based on C#.

NC2. There are a bit too many CQs for some queries. Although
the chatbot allows me to skip and terminate, I suggest that
you can limit the number of CQs for a query, e.g., five.

According to the comments, Chatbot4QR can assist the
participants in refining queries and retrieving more desired
results (PC1 and PC2). Additionally, Chatbot4QR can help
the participants better understand the queries and discover
some possibly useful techniques (PC4). The efficiency of
Chatbot4QR is also acceptable (PC3). However, there still
remain some issues. For example, Chatbot4QR cannot fil-
ter unnecessary CQs based on the existing information in
queries (NC1). To solve this issue, we need to mine the
relationships among techniques, e.g., what frameworks and
libraries are related to a specific programming language.
Moreover, the participants suggest us to limit the number
of CQs asked for a query (NC2).

To validate the suggestion in NC2, we generated a list
of the CQs evaluated by a participant for a query. The
CQ list was ranked by the orders of the CQs prompted to
the participant during the interaction with Chatbot4QR. We
counted the number of useful CQs in the top-k CQs of the
list, and measured the ratio of useful CQs in the top-k to
all useful CQs that are evaluated by the participant for the
query. We set k from 1 to 10 (the maximum number of CQs
in all CQ lists). For each k, we measured the average ratio of
useful CQs in all CQ lists, as shown in Fig. 10. On average,
96.8% of the useful CQs of a query are contained in the
top five CQs prompted to a participant, indicating that it is
suitable to limit the number of CQs asked for a query as 5.

6.6 Error Analysis of Chatbot4QR
Although it has been validated that Chatbot4QR can ef-
fectively generate useful CQs and recommend relevant SO
questions for queries, we find two error scenarios of Chat-
bot4QR from the participants’ evaluation results as follows.

1. As reported in the comment NC1, Chatbot4QR may
generate wrong CQs for a query. Despite the wrong CQ
asked for the query Q35 in NC1, the CQ “What program-
ming language, e.g., javascript or python, does your problem

refer to?” generated for the query Q18 (see Table 11)
is also useless since the technical term ‘NPM’ in Q18 is
highly related to JavaScript. During the interaction with
a participant, Chatbot4QR cannot dynamically filter
unsuitable CQs or technical terms appearing in CQs
based on the participant’s feedback. For example, for
the query Q42 shown in Table 11, after the participant
P7 answered the CQ “What programming language, e.g.,
java or c#, does your problem refer to?” with Python,
the subsequent CQ “Are you using .net? (y/n), or some
other frameworks.” became unsuitable as ‘.net’ is a C#
framework. The CQ should be revised by replacing
‘.net’ with a Python framework appearing in the initial
top-n similar questions retrieved for Q42. If there is
no such a Python framework, the CQ can be removed.
Through our analysis, the errors are caused by the fact
that Chatbot4QR currently has no knowledge about the
relationships between techniques, e.g., NPM is related
to JavaScript and .net is related to C#. In the future, we
plan to mine knowledge about the relationships among
SO tags and integrate the knowledge to Chatbot4QR.

2. Chatbot4QR may produce worse question recommen-
dation lists than the two-phase method for some
queries. For example, for the query Q5 “How to insert
multiple rows into database using hibernate?”, the partic-
ipant P17 provided three kinds of positive feedback,
i.e., {‘java 8’, ‘mysql’, ‘sql’}, to the CQs. However, the
final top ten SO questions refined by incorporating the
feedback are worse than the initial top ten questions.
Table 22 presents the initial and the final top five ques-
tions retrieved for Q5, as well as the relevance of the
questions evaluated by P17. By analyzing the results,
the performance of the final top five questions is de-
creased as some questions (e.g., the question ‘23200729’)
are irrelevant to the query task, but they match all the
feedback, and therefore the rankings of such questions
are over-promoted. To correct such errors, our future
work will aim to optimize the weights of different
types of technical feedback in Eq. 1 according to their
contributions to the question retrieval (see Table 15).

6.7 Threats to Validity

Threats to internal validity relate to two aspects in this
work: (1) the errors in the implementation of Chatbot4QR
and the baseline approaches and (2) the participants’ bias
during the experiments.

As for the aspect (1), we carefully checked the implemen-
tation code of our Chatbot4QR prototype. Considering that
there could be noises in the tag assignments of SO questions,
which may affect the CQ generation of Chatbot4QR, we
built the question repository by requiring that each question
has an accepted answer and a positive score. Moreover, we
ensured that the experimental queries and their duplicates
were not included in the repository. Although our experi-
mental queries were built from the titles of SO questions, it
may not be a serious problem as it is a common experimen-
tal setup used in previous work [5], [6], [8], [20], [32], [33].
For the four baselines EVPI, Lucene, WE, and TR, we directly
used the open-source code. For the other two baselines WN
and QECK, we carefully re-implemented them according to

24

TABLE 22
Two kinds of the top five SO questions retrieved for the query Q5; and the relevance of questions evaluated by the participant P17. “Initial”

represents the top five questions retrieved using our two-phase method. “Final” represents the top five questions retrieved using Chatbot4QR by
leveraging P17’s feedback to the CQs of Q5.

Result The Top Five SO Questions RelevanceType Question ID Question Title Question Tags

Initial

20045940 Inserting multiple rows in database java, database 4
47244614 Inserting Data in Multiple Tables in Hibernate java, hibernate, jpa 3
22553920 Insert into two tables in two different database java, spring, hibernate, jpa 2
39383049 How to insert data to multiple table at once in hibernate using java java, mysql, hibernate 3
22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

Final

25485086 how to insert new row in hibernate framework? java, mysql, sql, hibernate 3
23200729 Records in DB are not one by one. Hibernate java, mysql, sql, hibernate 1
39383049 How to insert data to multiple table at once in hibernate using java java, mysql, hibernate 3
31583737 hibernate: how to select all rows in a table java, mysql, sql, hibernate, postgresql 2
22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

the details presented in the papers [8], [12]. Therefore, there
is little threat to the implementation of the approaches.

As for the aspect (2), we recruited the participants who
are interested in our work and have 2-11 years of program-
ming experience. We adopted several strategies to mitigate
the participants’ bias in the steps that require manual efforts.
For the categorization of SO tags, we used two iterations
of a card sorting approach. Each iteration step was in-
dependently conducted by the first two co-authors of the
paper; then they worked together with an invited postdoc
to discuss the disagreements to obtain the final results. We
asked the participants to search results for the queries using
Web search engines before interacting with Chatbot4QR, in
order to avoid the participants transferring the knowledge
learned from our chatbot to enhance the original queries
when they use Web search engines. Before evaluating CQs
in the user studies 1 and 3, we launched a video confer-
ence with the participants to introduce our Chatbot4QR
prototype, to ensure that they understood how to use the
prototype for evaluation. In the video conference of the user
study 1, we also explained the relevance judgement of SO
questions to a query with a technical context. Moreover,
at the beginning of our user studies, we explained to the
participants about how to perform the user studies based
on the existing technical details in queries and/or their
technical background. It is possible that the participants may
have difficulties in building the technical context for some
queries as they may not be interested in the problems. In the
future, we plan to develop Chatbot4QR as a plugin and de-
ploy the plugin in companies, such as Hengtian, to validate
whether Chatbot4QR can help developers retrieve better SO
questions or other resources for technical problems.

Threats to external validity relate to the generalizability of
experiment results. To alleviate this threat, we built a large-
scale repository of 1.88 million SO questions. To conduct
our user studies, we recruited 25 participants. Considering
that the user studies require significant manual efforts, we
built 50 experimental queries. The number of participants
and the number of experimental queries are close to the
existing user studies in the previous work [30], [32], [33],
[34], [35]. The 25 participants have different years of pro-
gramming experience and diverse familiar programming
languages, as shown in Table 5. The 50 experimental queries
have diversity in the involved techniques, the complexity of
problems, and the quality of expression (i.e., whether there

are specified techniques or not), as explained in Section 4.2.
The diversity of participants and queries can help improve
the generalizability of our experiment results. In the future,
we plan to further reduce this threat by extending the user
studies with more participants and queries.
Threats to construct validity relate to the suitability of
evaluation metrics. To reduce this threat, we used two
popular metrics: Pre@k and NDCG@k, which are widely
used to evaluate the ranking results in the fields of IR and
software engineering [5], [6], [31], [32], [33], [42].

7 RELATED WORK

Question Retrieval in SO. Question retrieval is a key step
for many knowledge search tasks in SO. A number of
work retrieves similar SO questions for queries by lever-
aging the Lucene search engine [8] or word embedding
techniques [3], [5], [6], [11]. For example, Nie et al. [8]
proposed a code search approach by expanding queries with
important keywords extracted from relevant SO question-
and-answer pairs. Lucene is used for indexing and retriev-
ing SO question-and-answer pairs. Xu et al. [6] proposed
an approach named Answerbot to generating a summarized
answer for a query by extracting important sentences from
the answers of similar SO questions. It retrieves similar
SO questions using a word embedding-based approach.
Huang et al. [5] proposed an API recommendation approach
named BIKER. A word embedding-based approach is also
used for retrieving SO questions similar to a query. The
recommended APIs are extracted from the answers of the
top ten similar SO questions. The Lucene search engine
is efficient but cannot handle the lexical gaps between SO
questions and queries. Recently, the word embedding-based
approach is widely used to bridge the lexical gaps and can
achieve better performance. However, the existing work on
question retrieval rarely considers an important issue in
practice that the query can be inaccurately specified, which
will lead to undesireable questions.

We propose a novel question retrieval approach which
improves the word embedding-based approach in two main
aspects: (1) a two-phase question retrieval approach is used
to improve the efficiency by reducing the search space
using Lucene before applying the word embedding-based
approach; and (2) a chatbot is designed to interactively help
users refine queries by asking several CQs related to the

25

missing technical details in a query. The refined queries can
contribute to retrieving more relevant SO questions.

Tag Recommendation in SO. SO encourages users to attach
several (no more than five) tags to a question, which can
help organize the tremendous amount of questions and
facilitate the question retrieval [43]. However, the large set
of more than 50 thousand SO tags imposes a huge burden
for users to select a few appropriate tags for a question.
Much attention has been paid to recommending relevant
tags for SO questions [36], [37], [38], [43]. For example,
Xia et al. [36] proposed an approach called TagCombine to
finding relevant tags by composing three ranking compo-
nents. Wang et al. [37] proposed a tag recommendation
system by using the labeled Latent Dirichlet Allocation
(LDA) modeling technique [44]. They analyzed the historical
tag assignments and users of SO questions and the original
tags provided by users. Zhou et al. [38] proposed a neural
network approach to recommending tags, which leverages
both textual descriptions and tags of SO questions.

Different from the tag recommendation (TR) work, our
work focuses on determining missing technical details in
a query based on the tags of similar SO questions. As
evaluated in Section 5.3, the existing TR approaches may
not be suitable for determining relevant tags for queries
because of two main reasons. First, unlike a SO question that
has a rich description (including the title, original tags, and
body), a query typically consists of a few keywords, which
makes it difficult to find relevant tags precisely. Second,
even for the same query, different users may have personal-
ized preferences of tags considering their different technical
background (e.g., the preferred programming languages)
or programming context (e.g., the platform the software is
developed for). To address these challenging issues, given a
query, we use a chatbot to interact with the user by asking
several CQs with a candidate set of relevant tags extracted
from the top-n similar SO questions, allowing the user to
tell what tags they want.

Query Reformulation. The quality of queries has an great
impact on the performance of IR systems. However, it is
not an easy task to formulate a good query, which largely
depends on the user’s experience and their knowledge
about the IR system [45]. A lot of work has been proposed
to automatically reformulate queries by expanding them
with relevant terms extracted from lexical databases (e.g.,
WordNet) or similar resources [8], [12], [15], [46], [47]. For
example, Lu et al. [12] proposed to expand a query with
the synonyms in WordNet for code search. Nie et al. [8] also
proposed a code search approach by expanding queries with
important keywords extracted from relevant SO question-
and-answer pairs. A major limitation of automatic query
expansion approaches is that there can be unexpected terms
added to the query without user involvement, which will
affect the quality of results.

To overcome the limitation, several work has recently
been proposed to interactively help users refine queries [31],
[48], [49]. For example, Zou et al. [48] proposed a person-
alized Web service recommendation approach, which can
assist users in refining their requirements. The approach is
based on a process knowledge base built from the available
online resources. Guo et al. [49] proposed an interactive

image search approach which uses a reinforcement learning
model to capture the user’s feedback on their desired image.
The approach relies on the predefined feature set of images.
It has been demonstrated that these interactive query re-
finement approaches can help find desired results for users.
In contrast to these work, we propose an interactive query
refinement approach to assisting users in clarifying the
missing technical details in queries, in order to improve the
performance of question retrieval from technical Q&A sites.
For this purpose, we build two technical knowledge bases,
i.e., the categorization and multiple version-frequency infor-
mation of SO tags.

8 CONCLUSION AND FUTURE WORK

Question retrieval plays an important role in acquiring
knowledge from technical Q&A sites, e.g., SO. The existing
search engines provided in the Q&A sites and the state-
of-the-art question retrieval approaches are insufficient to
retrieve desired questions for users when the query is in-
accurately specified. In this paper, we propose a chatbot,
named Chatbot4QR, to interactively help users refine their
queries for question retrieval. Chatbot4QR can accurately
detect missing technical details in a query and interacts
with the user by asking several CQs. The user’s feedback
to CQs is used to retrieve more relevant SO questions.
The evaluation results of six user studies demonstrate the
effectiveness and efficiency of Chatbot4QR.

To the best of our knowledge, it is the first work on the
interactive query refinement for technical question retrieval.
However, the current Chatbot4QR is still in infancy with
some limited capability. In the current stage, Chatbot4QR
focuses on helping users clarify 20 major types of techniques
(see Table 1) and the versions of the techniques missed in a
query. In the future, we will improve Chatbot4QR in two
main directions: (1) we plan to use the possible solutions
discussed in Section 6.6; and (2) we will mine knowledge
on the differences (e.g., the frequency of use and perfor-
mance) between the similar techniques (e.g., HashMap is
more efficient than Hashtable [6]), so that Chatbot4QR could
suggest better techniques when users intend to search for a
less frequently used technique or an obsolete technique (e.g.,
Hashtable). Moreover, we plan to implement Chatbot4QR
as a browser plugin to assist users in searching results for
technical problems. When a user inputs a query to a Web
search engine (e.g., the SO search engine or Google), the
plugin can notify the user if there are missing technical
details in the query. The user can interact with our chatbot
to obtain the top ten similar SO questions and get insights
for reformulating the query to search on the Web.

ACKNOWLEDGMENT

This research was partially supported by the National
Key R&D Program of China (No.2019YFB1600700), NSFC
Program (No. 61972339), the Australian Research Coun-
cil’s Discovery Early Career Researcher Award (DECRA)
(DE200100021), Ministry of Education, Singapore, under its
Academic Research Fund Tier 2 (Award No.: MOE2019-T2-
1-193), Natural Sciences and Engineering Research Council
of Canada (NSERC), and Alibaba-Zhejiang University Joint
Institute of Frontier Technologies.

26

REFERENCES

[1] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proac-
tive policy assurance of post quality in community q&a sites,”
Proceedings of the ACM on Human-Computer Interaction, vol. 2, no.
CSCW, p. 33, 2018.

[2] D. Ye, Z. Xing, and N. Kapre, “The structure and dynamics of
knowledge network in domain-specific q&a sites: a case study of
stack overflow,” Empirical Software Engineering, vol. 22, pp. 375–
406, 2017.

[3] B. Xu, Z. Xing, X. Xia, D. Lo, and S. Li, “Domain-specific cross-
language relevant question retrieval,” Empirical Software Engineer-
ing, vol. 23, pp. 1084–1122, 2018.

[4] E. C. Campos, L. B. de Souza, and M. d. A. Maia, “Searching crowd
knowledge to recommend solutions for api usage tasks,” Journal
of Software: Evolution and Process, vol. 28, no. 10, pp. 863–892, 2016.

[5] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 2018, pp. 293–304.

[6] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated gener-
ation of answer summary to developers’ technical questions,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 706–716.

[7] H. Yin, Z. Sun, Y. Sun, and W. Jiao, “A question-driven source
code recommendation service based on stack overflow,” in 2019
IEEE World Congress on Services (SERVICES), vol. 2642. IEEE,
2019, pp. 358–359.

[8] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Transactions on
Services Computing, vol. 9, no. 5, pp. 771–783, 2016.

[9] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval
in software engineering,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 842–851.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[11] T. Nandi, C. Biemann, S. M. Yimam, D. Gupta, S. Kohail, A. Ekbal,
and P. Bhattacharyya, “Iit-uhh at semeval-2017 task 3: Exploring
multiple features for community question answering and implicit
dialogue identification,” in Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 90–97.

[12] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 545–549.

[13] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F.
Quezada, C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how
developers use general-purpose web-search for code retrieval,” in
Proceedings of the 15th International Conference on Mining Software
Repositories. ACM, 2018, pp. 465–475.

[14] G. A. Miller, WordNet: An electronic lexical database. MIT press,
1998.

[15] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative feature
location in models through automatic query expansion,” Auto-
mated Software Engineering, vol. 26, no. 1, pp. 161–202, 2019.

[16] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software reposi-
tories,” Data Mining and Knowledge Discovery, vol. 18, no. 2, pp.
300–336, 2009.

[17] S. Rao and H. Daumé III, “Learning to ask good questions:
Ranking clarification questions using neural expected value of
perfect information,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 2737–2746.

[18] “Google search,” https://www.google.com.
[19] “Chatbot4qr release,” https://tinyurl.com/y6dgwwy5, 2019.
[20] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-

dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th international
conference on software engineering. ACM, 2016, pp. 404–415.

[21] “Tagwiki,” https://stackoverflow.com/tags, 2019.
[22] S. Bird, E. Klein, and E. Loper, Natural language processing with

Python: analyzing text with the natural language toolkit. O’Reilly
Media, Inc., 2009.

[23] R. Rehurek and P. Sojka, “Software framework for topic modelling
with large corpora,” in In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Citeseer, 2010.

[24] D. Ye, Z. Xing, C. Y. Foo, Z. Q. Ang, J. Li, and N. Kapre, “Software-
specific named entity recognition in software engineering social
content,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 2016, pp.
90–101.

[25] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge
into word embedding,” in 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering (SANER). IEEE,
2016, pp. 338–348.

[26] M. Nassif, C. Treude, and M. Robillard, “Automatically categoriz-
ing software technologies,” IEEE Transactions on Software Engineer-
ing, 2018.

[27] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, 2018.

[28] J. L. Fleiss, “Measuring nominal scale agreement among many
raters,” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[29] “Models of the information seeking process.”
[30] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code examples

for code search engines,” Empirical Software Engineering, vol. 22,
no. 1, pp. 259–291, 2017.

[31] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X. F. Liu, “Web service
discovery based on goal-oriented query expansion,” Journal of
Systems and Software, vol. 142, pp. 73–91, 2018.

[32] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 933–944.

[33] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for javascript frameworks,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016, pp. 690–701.

[34] J. Zhang, H. Jiang, Z. Ren, T. Zhang, and Z. Huang, “Enriching
api documentation with code samples and usage scenarios from
crowd knowledge,” IEEE Transactions on Software Engineering,
2019.

[35] A. Alami, M. L. Cohn, and A. Wasowski, “Why does code review
work for open source software communities?” in Proceedings of the
41st International Conference on Software Engineering. IEEE Press,
2019, pp. 1073–1083.

[36] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in
software information sites,” in 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, 2013, pp. 287–296.

[37] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec++: An
enhanced tag recommendation system for software information
sites,” Empirical Software Engineering, vol. 23, pp. 800–832, 2018.

[38] J. Liu, P. Zhou, Z. Yang, X. Liu, and J. Grundy, “Fasttagrec: fast
tag recommendation for software information sites,” Automated
Software Engineering, vol. 25, no. 4, pp. 675–701, 2018.

[39] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[40] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes, “How
well do search engines support code retrieval on the web?” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 1, p. 4, 2011.

[41] “Jsoup,” https://jsoup.org, 2019.
[42] N. Zhang, J. Wang, K. He, Z. Li, and Y. Huang, “Mining and

clustering service goals for restful service discovery,” Knowledge
and Information Systems, vol. 58, no. 3, pp. 669–700, 2019.

[43] P. Zhou, J. Liu, Z. Yang, and G. Zhou, “Scalable tag recommen-
dation for software information sites,” in 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2017, pp. 272–282.

[44] G. Boudaer and J. Loeckx, “Enriching topic modelling with users’
histories for improving tag prediction in q&a systems,” in Pro-
ceedings of the 25th International Conference Companion on World
Wide Web. International World Wide Web Conferences Steering
Committee, 2016, pp. 669–672.

[45] J. A. Rodriguez Perez and J. M. Jose, “Predicting query per-
formance in microblog retrieval,” in Proceedings of the 37th in-
ternational ACM SIGIR conference on Research & development in
information retrieval. ACM, 2014, pp. 1183–1186.

[46] C. Lucchese, F. M. Nardini, R. Perego, R. Trani, and R. Venturini,
“Efficient and effective query expansion for web search,” in Pro-

27

ceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM, 2018, pp. 1551–1554.

[47] M. M. Rahman and C. Roy, “Effective reformulation of query
for code search using crowdsourced knowledge and extra-large
data analytics,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 473–484.

[48] P. K. Venkatesh, S. Wang, Y. Zou, and J. W. Ng, “A personalized

assistant framework for service recommendation,” in 2017 IEEE
International Conference on Services Computing (SCC). IEEE, 2017,
pp. 92–99.

[49] X. Guo, H. Wu, Y. Cheng, S. Rennie, G. Tesauro, and R. Feris,
“Dialog-based interactive image retrieval,” in Advances in Neural
Information Processing Systems, 2018, pp. 678–688.

	Introduction
	Motivating Example
	The Approach
	Offline Processing
	Lucene Index Building
	Word Embedding
	Word IDF Computation
	Tag Version-Frequency Extraction
	Tag Categorization

	Chatbot4QR
	Two-Phase Similar Question Retrieval
	Heuristic Clarification Question Generation
	Interaction with the User
	Similarity Adjustment of Questions

	Experimental Setup
	Data Collection and Prototype Implementation
	Experimental Query Selection
	Participant Recruitment
	Research Questions and the Allocation of Queries to Participants for User Studies

	Experiment Results
	RQ1: What are the proper settings of the parameters n and in Chatbot4QR?
	RQ2: How effective can Chatbot4QR generate CQs?
	RQ3: Can Chatbot4QR retrieve more relevant SO questions than the state-of-the-art question retrieval and query expansion approaches?
	RQ4: How efficient is Chatbot4QR?
	RQ5: Can Chatbot4QR help obtain better results than using Web search engines alone?

	Discussion
	Why Chatbot4QR can help users retrieve better SO questions and Web search results?
	Why Not Use A Constant Chatbot?
	Learning Effect from Interacting with Chatbot4QR
	Application Scenarios of Chatbot4QR
	Participants' Comments about Chatbot4QR
	Error Analysis of Chatbot4QR
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

