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Revisiting Supervised and Unsupervised
Methods for Effort-Aware Cross-Project Defect
Prediction

Chao Ni, Xin Xia, David Lo, Xiang Chen, and Qing Gu

Abstract—Cross-project defect prediction (CPDP), aiming to apply defect prediction models built on source projects to a target project,
has been an active research topic. A variety of supervised CPDP methods and some simple unsupervised CPDP methods have been
proposed. In a recent study, Zhou et al. found that simple unsupervised CPDP methods (i.e., ManualDown and ManualUp) have a
prediction performance comparable or even superior to complex supervised CPDP methods. Therefore, they suggested that the
ManualDown should be treated as the baseline when considering non-effort-aware performance measures (NPMs) and the ManualUp
should be treated as the baseline when considering effort-aware performance measures (EPMs) in future CPDP studies. However, in
that work, these unsupervised methods are only compared with existing supervised CPDP methods using a small subset of NPMs, and
the prediction results of baselines are directly collected from the primary literatures. Besides, the comparison has not considered other
recently proposed EPMSs, which consider context switches and developer fatigue due to initial false alarms. These limitations may not
give a holistic comparison between the supervised methods and unsupervised methods. In this paper, we aim to revisit Zhou et al.’s
study. To the best of our knowledge, we are the first to make a comparison between the existing supervised CPDP methods and the
unsupervised methods proposed by Zhou et al. in the same experimental setting when considering both NPMs and EPMs. We also
propose an improved supervised CPDP method EASC and make a further comparison with the unsupervised methods. According to
the results on 82 projects in terms of 11 performance measures, we find that when considering NPMs, EASC can achieve prediction
performance comparable or even superior to unsupervised method ManualDown in most cases. Besides, when considering EPMs,
EASC can statistically significantly outperform the unsupervised method ManualUp with a large improvement in terms of Cliff’s delta in

most cases. Therefore, the supervised CPDP methods are more promising than the unsupervised method in practical application
scenarios, since the limitation of testing resource and the impact on developers cannot be ignored in these scenarios.

Index Terms—Defect prediction, cross-project, supervised model, unsupervised model

1 INTRODUCTION

Software defect prediction (SDP) [1]-[4] is a hot research
topic in software engineering research domain and aims
to help prioritizing testing resource allocation by predict-
ing defect-prone program modules in advance. Given the
prediction results, a project manager can (1) classify the
modules into two categories, high defect-prone or low
defect-prone [5]], [6], or (2) rank the modules from the
highest to lowest in terms of defect-proneness [7], [§]. In
both scenarios, more resources can be allocated to perform
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code inspection or software testing on highly defect-prone
program modules. A large number of defect prediction
methods have been proposed, which mainly apply machine
learning techniques to build prediction model by mining
data stored in software repositories (such as version control
systems, bug tracking systems) [9], [10]. For a given project,
it is common to use the historical project data to build a
model. Besides, prior studies have shown that the model
can predict defects well on test data if a sufficiently large
amount of data is avaliable [11].

However, in practice, it is challenging that sufficient
training data is available for a new project. Thus, researchers
focus on cross-project defect prediction (CPDP) [3], [6], [12]-
[17] which builds a model using training data from other
projects (i.e., source projects) to predict defective modules
in a particular project (i.e., target project). Many methods
have been proposed for CPDP scenario and have achieved
promising prediction performance [6], [13], [18]. Most of
them are supervised methods which build models with the
help of labelled data. Recently, some researchers proposed
unsupervised methods [5], [19]. Most recently, Zhou et al.
[5] conducted large-scale empirical studies on comparison
between unsupervised and supervised methods. Their em-
pirical results showed that the simple module size based
methods (i.e., ManualDown and ManualUp that predicts
the defect-proneness of a module based on the lines of code)
have a prediction performance comparable or even superior
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to existing supervised CPDP methods. The result is sur-
prising as supervised models which benefit from historical
data are expected to perform better than unsupervised ones.
Besides, their findings indicated that previous studies on
defect prediction have made a simple problem too complex
and consequently have a high influence on two-folds. For
practitioners, it will assist in determining whether it is worth
to apply the existing supervised CPDP methods in practice.
If simple module size methods perform similarly or even
better, there seems to have no practical reasons to adopt
complex supervised CPDP methods. For researchers, if sim-
ple module size methods perform similarly or even better,
they strongly need to improve the prediction performance
of the existing supervised CPDP methods.

However, there have a few limitations in Zhou et al.’s
study, such as no implementation of baseline methods,
non-uniform performance measures, and no recently pro-
posed effort-aware performance measures. In particular,
First, Zhou et al. did not re-implement the baseline CPDP
methods and just reported the baseline methods’ perfor-
mance values published in corresponding original papers.
Researchers may conduct experiments with different de-
fault experimental settings [20], which may result in unfair
comparisons and consequently draw unreliable conclusions.
For example, the experiments in these works [6], [21]-
[23] are conducted by Java programming language, and
the experiments in these works [24], [25] are conducted
by Matlab programming language. All of them are treated
as partial baseline methods in Zhou et al.’s work. How-
ever, Zhou et al. [5] conducted their own experiments by
R programming language. Second, different performance
measures have been used to investigate the effectiveness of
different CPDP methods. In particular, although Zhou et al.
discussed a large number of performance measures in their
work, they only use a small subset of them in a specific
comparison between supervised and unsupervised meth-
ods. For example, Ryu et al. [23] just reported AUC measure,
and Peters et al. [21] just reported G1 measure. Therefore,
Zhou et al. only compared with Ryu et al.’s work in terms
of AUC and compared with Peters et al.’s work in terms
of G1. They did not compare with these methods in terms
of any other performance measures. Limited performance
measures can barely provide a holistic comparison of these
methods’ ability in CPDP scenario. Third, recently proposed
effort-aware performance measures [26], [27], which con-
sider context switches and developer fatigue due to initial
false alarms, have not been considered. Since the limitation
of testing resources and the impact on developers cannot
be ignored in practice, their comparison should take these
measures into consideration.

Considering these limitations and yet the high impact
of Zhou et al.’s work [5], we want to revisit their work
by conducting a comprehensive comparison between su-
pervised and unsupervised methods considering the same
experimental settings and a more comprehensive set of
performance measures especially recently proposed effort-
aware performance measures [26], [27].

In this paper, we conduct a revisit study with the help
of CrossPare developed by Herbold et al. [28]. CrossPare
is the sole benchmark toolkit for cross-project defect pre-
diction comparison and has implemented all these existing
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baselines in Zhou et al.’s work. We investigate the difference
between the top four comprehensive ranking supervised
CPDP methods [28], [29] and two unsupervised methods [5]
under the same experimental settings. We also take, for a
holistic view, recently proposed effort-aware performance
measures into consideration to compare supervised and un-
supervised methods since the limitation of testing resource
and the impact on developers cannot be ignored in practice.

Besides, different types of performance measures are
considered for different purposes. Non-effort-aware perfor-
mance measures (NPMs) consider merely how prediction
methods work on projects, while effort-aware performance
measures (EPMs) consider not only how prediction methods
work on projects but also how the prediction results of
methods affect participants. However, the existing CPDP
methods barely consider the influences on participants,
which will hinder the practical usage of CPDP methods.
Therefore, inspired by both Qiao et al.’s [26] and Zhou et
al.’s works [5], we would like to propose a new supervised
method EASC to boost the performance of a supervised
method. Notice EASC differs from Qiao et al.’s work [26],
[27]. Qiao et al. proposed their method for change-level
within-project defect prediction, while EASC is proposed
for file-level cross-project defect prediction.

Our study focuses on answering the following research
questions:

RQ1: What are the performance differences between the
supervised and unsupervised methods when different
types of performance measures are considered?

We revisit the comparison between state-of-the-art su-
pervised CPDP methods and recently proposed unsuper-
vised CPDP methods (i.e., ManualDown and ManualUp)
by Zhou et al. [5] considering two types of performance
measure: (1) non-effort-aware performance measures (i.e.,
F1-score [6], [30], [31], AUC [22], [23], [32] and PF [33]-
[35]) and (2) effort-aware performance measures (i.e., [FA,
PIIQL, CostEffortQL and P,y [27], [36]-[38]).

By revisiting Zhou et al.’s work with the same datasets
but more performance measures, we find that in terms of
NPMs, ManualDown outperforms the existing state-of-the-
art supervised methods in most cases. We further analyze
why the unsupervised method performs better than the ex-
isting supervised methods in terms of NPMs and figure out
that the unsupervised method achieves high performance at
the cost of higher inspection effort and higher false alarms,
which may cause developer fatigue and tool abandonment.
For EPMs, both the existing supervised methods and Man-
ualUp have their own advantages on different performance
measures.

RQ2: Could the supervised method be enhanced by lever-
aging the intuition of unsupervised methods?

We propose an improved supervised CPDP method
called EASC and make a deep comparison between EASC
and ManualDown (ManualUp) proposed by Zhou et al. [5].
Based on the large-scale experiment on 82 projects, we find
that (1) when considering NPMs, supervised method EASC
can achieve prediction performance comparable or even
superior to unsupervised method ManualDown; (2) when
considering EPMs, EASC can statistically significantly out-
perform ManualUp with a large improvement with respect
to the Cliff’s delta in most cases.
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The main contributions of our paper can be summarized
as follows:

(1)  We make a comprehensive comparison between su-
pervised CPDP methods and unsupervised CPDP
methods (i.e., ManualDown and ManualUp) under
the same experiment settings using a more compre-
hensive set of performance measures.

(2) We perform an in-depth analysis of the experiment
results in Zhou et al.’s work, and analyze the reasons
why their simple module size method can obtain a
prediction performance comparable or even superior
to most of the existing supervised CPDP methods.
We figure out that unsupervised method achieves
high performance measures at the cost of higher
inspection cost and high false alarm, which may
cause developer fatigue and tool abandonment.

(3) We propose an enhanced supervised method EASC
and perform a holistic evaluation on EASC vs. un-
supervised methods. We find that EASC can outper-
form unsupervised methods when limited inspection
effort is considered.

The remainder of this paper is organized as follows. We
describe the problem and the general workflow of cross-
project defect prediction in Section [2 We introduce our
improved supervised method in Section 3| We describe the
non-effort-aware and effort-aware performance measures in
Section[4 We present the experimental design, including the
datasets, the research setting and the research questions in
Section [5} We analyse the experimental results in Section [6]
We analyse the potential threats to validity in our empirical
studies in Section [] We summarize related work on cross-
project defect prediction in Section[8] We conclude this paper
and show future work in Section 9]

2 PROBLEM STATEMENT AND GENERAL WORK-
FLOW

Software defect prediction (SDP) [6]], [16]], [39], [40], a hot
research topic in current software engineering research do-
main, can help to optimize testing resource allocation by
predicting defect-prone modules F_-I in advance [33]. A large
number of defect prediction methods have been proposed,
which mainly apply machine learning techniques to build
prediction methods by mining data stored in historical
software repositories [9], [10], [41]. These methods typically
extract various features (i.e., metrics) from repositories, e.g.,
process features, previous-defect features, source code fea-
tures, etc., to measure extracted modules and apply a ma-
chine learning algorithm to predict if a module is defective
or not. Most of the proposed methods work on within-
project defect prediction (WPDP) setting, i.e., the prediction
models are trained and then applied to modules from the
same project. These WPDP methods require sufficient train-
ing (historical) data from a project to achieve satisfactory
performance.

However, in practice, it is rare that sufficient training
data is available for a new project or those projects have a

IThe granularity of extracted module can be set as package, class,
or code change as needed.
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few or even no historical data. Thus, researchers focus on
cross-project defect prediction (CPDP) [3], [18], [22], [42]-
[44], which builds a model using training data from other
projects (i.e., source projects) to predict defective instances
in a particular project (i.e., target project). To predict defects
in the target project, it follows a two-phase process (i.e.,
model building phase and model application phase) which
is the same as WPDP. In the model building phase, the
metric data and the defect data are first collected from the
modules in historical releases of source projects. Then, a
specific prediction model is built based on these collected
data to capture the relationships between the metrics and
defect-proneness. In the model application phase, the same
metrics are first collected from the target projects. Then,
the prediction model built in the previous phase is used
to predict the defect-proneness of each module in the tar-
get project. After the prediction on the target project, the
predicted performance can be evaluated by comparing the
predicted defect-proneness with the actual defect informa-
tion for the target project.

There are at least four variants of CPDP studies, which
can be found in the literature [28]: strict CPDP, mixed
CPDP, mized-project defect prediction, and pair-wise
CPDP. Different types of CPDP may have a different
general workflow. In this paper, we consider the setting of
strict CPDP [32] and its general workflow of the experiment
can be found in [28]. For a dataset with information about
software products, when one of these software products
is selected as the target product, the other products of
the dataset are used as the source projects and used for
the defect prediction model building. If other revisions
of the target product exist in the dataset, they are also
discarded such that no information from the same project
context remains. For example, consider a dataset D that
contains three projects (e.g., P,, P, and P.) and each
project has two versions (e.g., 1.0 and 2.0). That means
D ={Ps.1.0,Pa2.0,Pv.1.0,Pv.2.0,Pc.1.0and Pc2}.
When P. ;¢ is selected as the target project, then the rest
of the projects except for P, 2 ¢ in D are used as the source
projects (i.e., Py 1.0, Pa.2.0, Pp.1.0 and Py 2.9 ). Besides,
we consider the homogeneous CPDP as same as Zhou et
al.’s work.

3 EASC: AN IMPROVED SUPERVISED METHOD

In this section, we propose an improved and effective super-
vised method for CPDP scenario: EASC. We first introduce
the motivation of EASC, then we present the technical
details in the form of pseudo-codes.

Motivation. Labeled data can provide important infor-
mation for building a model, and previous studies have
made significant progress in the CPDP scenario [3], [6], [42].
Therefore, we propose a supervised method based on the
following findings in previous works:

e Finding 1: Unlimited inspection effort. When in-
specting instances without considering inspection
effort, a larger instance should be first considered
since previous studies report that a larger instance
tends to have more defects [5], [45].
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o Finding 2: Limited inspection efforts. When in-
specting instances, taking into consideration inspec-
tion effort, an instance with a larger ratio between
each instance defect proneness (i.e., a probability
outputted by a classifier) and its inspection effort
(i-e., LOC') should be first considered. This is the case
since previous studies argue that a smaller instance
is proportionally more defect-prone [27], [46]-[48].

Ideally, we can inspect all defect-prone instances with-

out considering inspection effort. However, in practice, we
cannot ignore the limitation of inspection effort, context
switches and developer fatigue due to initial false alarms.
Therefore, we should consider different strategies for differ-
ent usage scenarios [5]]. To benefit from the recent findings
of Huang et al. [27] and Zhou et al. [5], we propose EASC
(Effort-Aware Supervised Cross-project defect prediction).
EASC assumes that for these identified potential defective
instances, the instances with higher defect-proneness should
be inspected first.
Technical Details. EASC contains two phases: model build-
ing phase and model evaluating phase. A model can be
built with a specific classifier after some pre-processing in
the former phase, while in the latter phase, two types of
performance measure will be calculated after the prediction
using the specific classifier. The technical details of EASC
are presented in Algorithm [T|and Algorithm 2|

ALGORITHM 1: EASC: Model Building Phase

Input:
projects: all projects in a specific dataset;
classifier: the basic classifier;
effort: the available effort to decide whether a instance is
defective or not, the default is 20% total lines;
Output:
Results: a list which contains all performance pairs of
non-effort-aware measures and effort-aware measures (e.g.,
(NPM,EPM));
Filter unsuitable projects from projects;
for all TestProject in projects do
TrainSet = Set(a copy of projects)-Set(TestProject, any
other versions of TestProject);
4:  Build a predictor by using classifier on TrainSet;
5: (NPM, EPM)=EASC:Model
Evaluating(classifier, TestProject, effort), and append
them to Results;
6: end for

7: return Results.

@D

Algorithm [1] presents the pseudo-code to build a classi-
fier. First, projects will be removed if they do not have the
required minimum number of instances (i.e., 5; following
the same setting as Herbold et al. [28]) in each class (ie.,
defective and non-defective) (Line 1). Then, each qualified
project will be treated as the target project (i.e., TestProject)
in order and be used to evaluate the performance of a
built model (Lines 2-6). As we consider the strict CPDP
scenario, the TestProject itself and any other versions of
the TestProject will be excluded from TrainSet (Line 3).
Then, a model can be built with a specific classifier (e.g.,
Naive Bayes) (Line 4). Followed that, the NPM and EPM
performance measures can be obtained and appended to
Results after a call of Model Evaluating (Line 5). Finally, all
NPM and EPM performance values will be returned after
the iteration in this dataset (Line 7).

ALGORITHM 2: EASC: Model Evaluating Phase

Input:
TestProject: test project to evaluate performance;
classifier: the classifier built on training projects;
effort: the effort available to decide whether a instance
is defective or not;
Output:
NPM: the performance value of non-effort-aware performance
measures;
EPM: the performance value of effort-aware performance
measures;
. Initialize TargetList, Defective, NonDefective=¢;
: for all testInstance € TestProject do
Append testInstance into Defective if classifier predicts it
as defective instance, otherwise append testInstance into
NonDefective;
4: end for
/ * % * Calculating EPMs % x * /
5: Sort separately instances in Defective and NonDefective in
descending order by score/LOC;
6: Append NonDefective to the end of Defective;
7: Select those instances in front of Defective into TargetList and
make sure that the total cost of them accounts for effort;
8: Calculate effort-aware performance based on TargetList,
Defective and classifier, then save them into EPM;
/ * % % CalculatingNPMs % x * /
9: Sort Defective in descending order by score x LOC, then
calculate non-effort-aware and save them into NPM ;

10: return (NPM,EPM).

LN

Algorithm 2| presents the pseudo-code of evaluating a
classifier. We first classify potentially defective and non-
defective instance with the classifier built on the train-
ing dataset (Lines 2-4). When classifying a new instance,
the classifier will output a probability score, which in-
dicates the defect-proneness of the instance. An instance
will be classified as potentially defective if its predicted
score is larger than 0.5; otherwise, it will be classified
as non-defective. After all the instances in the target
project (i.e., TestProject) are predicted, we get two lists
(i-e., Defective and NonDefective) which contain defective-
prone instances and non-defective-prone instances sepa-
rately. Then we sort the instances in the two lists in de-
scending order (Line 5). In particular, when calculating
effort-aware performance measures, we sort the instances in
the two lists in descending order by score/LOC, in which
LOC represents the proxy of inspection effort and score
represents the defect-proneness outputted by a classifier.
After that, we append the sorted non-defective list to the
end of the defective list (Line 6). Then, we select those
instances to be inspected into TargetList from the top of
combined Defective list with limited inspection cost (i.e.,
effort) (Line 7). After that, effort-aware performance mea-
sures can be obtained (Line 8). Followed that, Defective,
a combination of the original Defective in Line 5 and the
original NonDefective, are sorted again by score x LOC
in descending order for calculating non-effort-aware perfor-
mance (Line 9). Finally, two types of performance measures
will be returned (Line 10).

Notice that, inspired by Zhou et al.’s work, we use
different strategies for different usage scenarios. In this
paper, two scenarios are considered: unlimited inspection
efforts and limited inspection effort. Therefore, we use both
score x LOC and score/LOC in our proposed method
EASC for the two usage scenarios. In particular, when calcu-
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lating NPMs, EASC sorts the instances in descending order
by score x LOC which is consistent with Finding 1, when
calculating EPMs, EASC sorts the instances in descending
order by score/ LOC which is consistent with Finding 2.

4 EVALUATION PERFORMANCE MEASURES

In this section, we introduce 11 performance measures to
comprehensively evaluate the performances of both super-
vised and unsupervised methods. These measures can be
divided into two groups: 3 non-effort-aware performance
measures (NPMs) and 8 effort-aware performance measures
(EPMs).

We consider the three NPMs since this paper aims to re-
visit the Zhou et al.’s work. Although Zhou et al. discussed
a large number of performance measures in their work, they
only used a small subset of them in a specific comparison
between supervised and unsupervised methods. Therefore,
we use a few but representative performance measures [6],
[22], [23], [301-[32], [45], [49] to compare the difference
between supervised and unsupervised methods.

We consider additional eight EPMs since Zhou et al.’s
work did not consider most recently proposed EPMs, which
can effectively assess the value of the prediction model
to developers. Consequently, their work may not give a
holistic view on the comparison between supervised and
unsupervised methods.

4.1 Non-Effort-Aware Performance Measures

This group includes three widely used performance mea-
sures in SDP: F1-score [6], [30], [31] , AUC [22], [23],
[32] and PF [33]-[35], which are the representative of
threshold-dependent performance measure and threshold-
independent performance measure, respectively [50]. There
are four possible outcomes for an instance in a target project:
An instance can be classified as defective when it is truly
defective (true positive, T'P); it can be classified as defective
when it is actually non-defective (false positive, F'P); it can
be classified as non-defective when it is actually defective
(false negative, F'N); or it can be classified as non-defective
and it is truly non-defective (true negative, TN). Therefore,
based on the four possible outcomes, F'1-score and PF' can
be defined as follows:

F1-score: a summary measure that combines both

feiom — TP _ _ TP :
Precision = TPIFF and Re;all = TP3FN- It is computed
. _ __ 2XPrecision X Reca
as: F'1—score = Precision+Recall *

PF: The probability of false alarm is defined as the

ratio of false positives to all non-defective instances: PF' =
FP

FP+TN " ) )
AUC: the area under the receiver operating character-

istic (ROC) curve [51], which is a 2D illustration of true
positive rate (TPR) on the y-axis versus false positive rate
(FPR) on the z-axis. ROC curve is obtained by varying the
classification threshold over all possible values, separating
clean and buggy predictions. A well performed predictor
provides an AUC value close to 1. The ROC analysis is
robust in case of imbalanced class distributions and asym-
metric misclassification costs. It also represents the proba-
bility that a method will rank a randomly chosen defective
module higher than a randomly chosen not defective one.

4.2 Effort-Aware Performance Measures

In practical settings, non-effort-aware performance mea-
sures cannot provide enough information to help prac-
titioners to fully evaluate a CPDP method considering
limited testing resources. We consider a few additional
effort-aware performance measures which are proposed by
Qiao et al. [26], [27] and have not been investigated in
CPDP scenario. This group includes eight performance mea-
sures: IFA [52], [53], PII©20%, PII@Q1000, PIIQ2000 [36],
CostEffort@Q20%, CostEffortQ1000, CostEffort@Q2000 and
Py [27], [37], [38], [54]. We consider IFA because previous
studies [52], [53] have shown that developers are not willing
to use the prediction method if the value of /FA is quite large
which means the first few recommendations are all false
alarms and will seriously affect the confidence of develop-
ers. We consider PIIQL to measure the additional effort
needed due to context switches between instances, since
context switching has been shown harmful to developer
productivity [36] and thus make developers” work harder.
We consider CostEffortQL because we want to find more
detective instances under the limited inspection effort. We
also take F,,; into consideration due to its widely usage in
previous works [27], [37], [38]], [54].

For the convenience of the subsequent description, we
first give some notations to easily define these measures.
Suppose we have a dataset with A instances and N de-
fective instances in total. After inspecting L lines of code,
suppose we inspected m instances and observed n defective
instances. Additionally, let’s consider that we inspected &
instances when we find the first defective instance. Then
these evaluation measures can be defined as follows:

IFA: the number of Initial False Alarms encountered
before we find the first defective instance. It is computed
as: [FA = k.

PITQL: Proportion of Instances Inspected when L LOC
of all instances are inspected. A high PI/QL indicates that,
under the same number of LOC to be inspected, developers
need to inspect more instances. For example, suppose that
team A and team B are planning to investigate instances
which have 500 LOC in total. For the team A, they had
to review 500 instances where each instance has only 1
LOC. For the team B, they only need to review one instance
where this instance has 500 LOC. Apparently, the number
of LOC that needs to be inspected by the two teams are
the same (i.e., 500 LOC in total). However, developers in the
team A would frequently switch between different instances
which consequently increase the time cost and effort spent.
For example, Meyer et al. [36] conducted a survey with
379 professional software developers and they found that
developers perceive their days as productive when they
complete many or big tasks without significant interrup-
tions or context switches. Also, a large number of instances
may cover many different localities (e.g., hundreds of files
and modules), and more coordination and communication
between developers with different expertise are required.
Thus, the additional effort required due to context switches
and additional communication overhead among developers
should not be ignored.

Besides, different instances may have different size. For
example, some instances may have a hundred of LOC, while
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some instances may have a thousand of LOC. Therefore, to
comprehensively investigate PIIQL, two kinds of PIIQL
are considered: relative LOC of PII and absolute LOC of
PII. To the best of our knowledge, this is the first paper
that takes these factors into consideration to evaluate effort-
aware CPDP methods. PI1@Q20%, PIIQ1000, PIIQ2000
can be computed as follows:

PII@Q20% = %, where L accounts for 20% of total LOC (1)
PIT@1000 = % where L equals to 1000 LOC )
PIT@2000 = %, where L equals to 2000 LOC 3)

Notice that the smaller of these measures’ value, the
better of these methods” performance.

CostEffort@L: proportion of inspected defective in-
stances among all the actual defective instances when L
LOC of all instances are inspected. The high CostEffortQL
indicates more defective instances could be detected. Be-
sides, different instances may also have different sizes.
Therefore, to comprehensively investigate CostEffortQL,
two kinds of PII@QL are considered: relative LOC
CostEffort and absolute LOC of CostEffort. To the best
of our knowledge, this also is the first paper that
takes these factors into consideration to evaluate effort-
aware CPDP methods. CostEffort@20%, CostEffort@Q1000,
CostEffort@Q2000 can be computed as follows:

CostEffort@20% = %, where L accounts for 20% of total LOC
4)

CostEffort@1000 = %, where L equals to 1000 LOC (5)

CostEffort@2000 = %, where L equals to 2000 LOC 6)

P,y is the normalized version of the effort-aware per-
formance measure originally introduced by Mende and
Koschke [54]. The P, is based on the concept of the “code-
churn-based” Alberg diagram [55]. An Alberg diagram (see
Figure[T|for an example) shows the relationship between the
number of defect-including instance (e.g., y-axis) obtained
by a prediction model and the inspection cost for specific
prediction model (e.g., the effort LOCSs in z-axis). Besides,
P,y is widely used effort-aware performance measure in
previous works [7], [27], [38], [56], and in their works, the
x-axis and y-axis have the same meaning. Therefore, in our
paper, we calculate P,,; as same as they do.

To compute P,,:, two additional curves are included:
the optimal model and the worst model. In the optimal
model and the worst model, instances are respectively
sorted in decreasing and ascending order according to
their actual defect densities. The actual prediction model
should outperform the random model and try best to
get close to the optimal model. For a given prediction
model m, its P,, can be computed as: P,y (m) = 1 —

Area(O.P) . O represents the optimal
Area(O,P)+Area(P,R)+Area(R,W)
curve, P represents the prediction curve, R represents the
random curve, and W represents the worst curve, respec-
tively. The function Area(parameterl, parameter2) repre-
sents the corresponding area between two curves. For ex-
ample, Area(O, P) represents the area between the optimal
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Fig. 1: An example of the relationship between the number
of defective instances and the inspection cost for different
prediction models.

curve and the prediction curve. Area(P, R) represents the
area between the prediction curve and the random curve,
and Area(R, W) represents the area between the random
curve and the worst curve. Thus, a larger P,,; value means
a smaller difference between the prediction model and the
optimal model. In this paper, we calculate P,,; following
the previous works [27]], [37], [57] when 20% of the LOC's
are inspected.

When calculating EPMs, different methods have dif-
ferent sorting strategies. In particular, for all state-of-the-
art CPDP methods, the testing instances will be sorted
in descending order of score (i.e., the probability of
defect-prone outputted by prediction model). For Manu-
alUp/ManualDown method, the testing instances will be
sorted in descending order of risk (i.e., 1/LOC for Manu-
alUp and LOC for ManualDown), which is consistent with
Zhou et al’s work [5]. For EASC method, the testing in-
stances are firstly divided into two groups: defective group
in which all instances are identified as defective ones, and
clean group in which all instances are identified as non-
defective ones. Then, instances in the two groups will be
sorted in descending order of score/LOC, respectively.

For a better understanding of how these methods calcu-
lating EPMs (i.e., IFA, PIIQL and CostEffortQL), we de-
scribe the calculating process with an example. The details
can be found in the online APPENDIX A [58].

5 EXPERIMENTAL SETUP

In this section, we first introduce the characteristics of
datasets and then describe the experimental settings. Fol-
lowed that, we present our research questions.

5.1 Experimental Subjects

In our experimental studies, we evaluate CPDP methods on
four publicly available datasets: AEEEM [59], NASA [60],
[61], PROMISE [62] and RELINK [63], which are widely
used in [6], [21]-[23], [25], [28]. We also give an overview
of the datasets, including the number of products, statistical
values and the proxies of inspection effort for different
datasets. Notice that for a fair comparison and for consis-
tency with Zhou et al.’s work, we also use LOC as the proxy
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of inspection effort. The detailed information about these
datasets can be found in the online APPENDIX B [58].

We note that defect severity and module importance are
often taken into consideration when developers perform
corrective maintenance efforts. However, there is no infor-
mation about defect severity or module importance in the
four publicly-available and widely-used datasets. Besides,
in the current research of SDP, there is no clear instruction
about how to incorporate defect severity and importance of
software modules into the evaluation process. Therefore, in
this paper, we do not take the defect severity or module
importance into consideration, which is the same setting
that was followed by Zhou et al.’s work.

Data Set
Project 1 Project 2

Project m
Version 1 Version 1

Training Data Filter

Testing Data
Project Version

ManualDown
ManualUp

v

Data Set* Project Versions
Training Data

Building Model

Supervised CPDP
Methods

EASC

Descending Order|  Descending Order by Building Model

by score score*LOCs ( score/LOCs)‘

(Non-Effort—Aware Measures / Effort-Aware Measures)

Descending Order
by Risk Value

[ —

[] Non-Defect-Prone
D Defect-Prone

Predicting

Data Set*: Data Set except target project and all other versions of the same product

Fig. 2: The workflow of supervised methods and unsuper-
vised methods in CPDP scenario.

5.2 Experiment Setting
5.2.1 Baseline Methods

Selection Criterion. To evaluate the performance of su-
pervised methods and unsupervised methods in different
scenarios, we set up strict selection criterion for selecting
baseline methods which are considered in our experiments.

Criterion for selecting supervised methods: best per-
formance on both NPMs and EPMs. We choose four
methods: CamargoCruz09-DT proposed by Camargo and
Cruz [64],Turhan09-DT proposed by Turhan et al. [33],
Menzies11-RF proposed by Menzies et al. [65], Watanabe08-
DT proposed by Watanabe et al. [66]. The four methods
are supervised and their comprehensive good performances
have been verified by Herbold et al. [28]], [29]. In particular,
Herbold et al. [28] conducted a large-scale comprehensive
comparison among 24 CPDP methods on 86 projects and
measured these CPDP methods with NPMs. According to
the results in their work, they found that the four methods
perform best in a holistic view in the CPDP scenario. Her-
bold et al. [29] further investigated how these CPDP meth-
ods performed when considering EPMs, and found that the
four methods still ranked at the top. Therefore, we choose
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the four methods as the representatives of supervised meth-
ods and use the names of four supervised approaches as
same as the ones used in Herbold et al.’s work. The brief
introduction to four state-of-the-art supervised methods can
be found in the online APPENDIX C [58].

Criterion for selecting unsupervised methods: best
performance on both NPMs and EPMs. We choose two
simple module size methods: ManualDown and ManualUp.
The two methods are proposed by Zhou et al. [5] and the
concept behinds the two methods can date back to [45], [46].
In particular, ManualDown considers a larger module as
more defect-prone, as previous study reports that a larger
module tends to have more defects [45]. However, Manu-
alUp considers a smaller module as more defect-prone, as
recent studies argue that a smaller module is proportionally
more defect-prone and hence should be inspected first [46]—
[48]. Zhou et al. found that ManualDown and ManualUp
have a prediction performance comparable or even superior
to complex supervised CPDP methods. Recently, Chen et
al.’s work [43] further confirmed the competitiveness of the
two methods over other unsupervised ones.

5.2.2 Methods Implementation and Statistical Analysis

To avoid implementation errors, we utilize the CrossPare:
a cross project defect prediction tool developed and shared
by Herbold et al. [28]. The four supervised methods have
been implemented and we use them in this tool without
modification. We also extend it to implement ManualDown,
ManualUp and EASC. Besides, to overcome a possible bias
of randomness in Menzies11-RF, we run Menzies11-RF 10
times with different random seeds and report the average.

To check the significance of performance comparison, we
conduct the Wilcoxon signed-rank test [67], which is a non-
parametric statistical hypothesis test on the performance
measures. For all the statistical testings, the null hypotheses
are that there is no difference between two prediction meth-
ods, and the significance level « is set to 0.05. If p-value is
smaller than 0.05, we reject the null hypotheses; otherwise
we accept the null hypotheses.

We also use Cliff’s delta (§) [68], which is a non-
parametric effect size measure that quantifies the amount
of difference between two methods. The range of Cliff’s
delta is [-1,1]. |§| equals to 1 indicates the absence of
overlap between two methods. It means all data from one
group are higher than that from the other group, and vice
versa. |d| equals to zero means that the two methods are
overlapping completely. We consider delta that are less than
0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible (N)”, “Small (S)”, “Medium (M)”,
“Large (L)” effect size, respectively following [68].

5.3 Research Questions

Our study explores the following research questions:

RQ1: What are the performance differences between
the supervised and unsupervised methods when different
types of performance measures are considered?

RQ2: Could the supervised method be enhanced by
leveraging the intuition of unsupervised methods?
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TABLE 1: Comparisons among supervised methods and ManualDown (ManualUp) on four datasets in terms of non-effort-
aware performance measures in the form of average+variance.

[ Measures | Datasets | CamargoCruz09-DT | Menzies11-RF [ Turhan09-DT | Watanabe08-DT | ManualDown | ManualUp |
AEEEM 0.31+0.01 0.2740.02 0.2740.00 0.30+0.00 0.3940.03 0.1340.00
+ NASA 0.0940.01(L)** 0.12+0.01(L)* 0.16+0.01(L)* 0.11£0.00(L)* 0.2740.02 0.0940.01
Fi-score” | pROMISE | 0.37£0.02(M)*** 0.3310.03(L)*** | 0.36£0.03(M)*** | 0.37£0.01(M)*** | 0.5040.03 0.2240.03
RELINK 0.54£0.00 0.59+£0.03 0.53£0.09 0.4940.03 0.64£0.01 0.24£0.00
AEEEM 0.60£0.01(L)* 0.58+0.00(L)* 0.53+0.00(L)** 0.59£0.00(L)* 0.73£0.00 0.27+0.00
NASA 0.70£0.01 0.5340.00(L)*** | 0.6240.00(L)*** | 0.67£0.01 0.74£0.01 0.26+0.01
AUCT | PROMISE | 0.58+0.01(Ly*** 0.5910.01(L)** | 0.59E0.01(L)** | 0.59+0.01(L)y*** | 0.73-£0.01 0.2740.01
RELINK 0.65+0.00 0.684-0.01 0.6310.01 0.60+0.02 0.7440.01 0.2610.00
AEEEM | 0.0620.00() 0.0410.00(0)™ | 0.1310.01(L)* | 0.11E£0.00(L)* | 0.43£0.00 0.5610.00
. NASA 0.0140.00(L)*** 0.0340.00(L)*** | 0.05+0.00(L)** | 0.02:£0.00(L)*** | 0.46-:0.00 0.5340.00
PF PROMISE | 0.20-0.01(L)** 0.13+0.01(L)** | 0.18+0.01(L)** | 0.26+0.02(L)** | 0.38+0.01 0.6140.01
RELINK 0.21+0.01 0.20+£0.00 0.17£0.02 0.17£0.01 0.33£0.01 0.64+0.00

Notes: (1) ** means p < 0.001,** means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ") indicates "the smaller the better’; "1 indicates 'the larger the better’.

6 EXPERIMENT RESULTS

In this section, we first report in detail the experimental
results in terms of the comparison of the existing super-
vised CPDP methods and unsupervised CPDP methods
(i.e., ManualDown and ManualUp). Then, we make a deep
comparison between supervised method EASC proposed in
this paper and the unsupervised methods.

6.1 RQ1: What are the performance differences be-
tween the supervised and unsupervised methods when
different types of performance measures are consid-
ered?

Motivation. In the work of Zhou et al. [5], they compared
the performance of state-of-the-art supervised methods pro-
posed for the CPDP scenario and two novel unsupervised
methods proposed by themselves. They concluded that the
simple module size methods have a prediction performance
comparable or even superior to most of the existing CPDP
methods in the literature, including many newly proposed
models. However, there are a few limitations introduced
in Section [I| in Zhou et al.’s study. Considering these lim-
itations, we want to conduct a comprehensive comparison
between supervised and unsupervised methods using the
same experimental settings and the same performance
measures.
Method. In practical applications, these NPMs (i.e., F'1-
score, AUC and PF) cannot provide enough information
to help practitioners fully evaluate a prediction method
especially when the testing resources are limited. Thus,
we consider a few additional EPMs, namely [FA, PIIQL,
CostEffortQL (i.e., L equals to 20%, 1000 or 2000) and P,,;.
To answer this RQ, we investigate two specific sub-
questions:

e Question 1: What is the performance difference
between unsupervised methods and supervised
methods?

¢ Question 2: What is the relationship between the
inspection effort and instance quality?

In Question 1, we replicate the comparison between
state-of-the-art supervised CPDP methods and unsuper-
vised CPDP methods recently proposed by Zhou et al. [5].
To avoid implementation errors and make the compari-
son fairer, we comprehensively use CrossPare [28], a tool

for benchmarking CPDP, since it has implemented a large
number of CPDP methods and provided a full analysis in
terms of different performance measures. Besides, based on
this tool, we implement EASC, ManualDown and Manu-
alUp. We consider four CPDP methods due to their overall
better performance than other alternatives as confirmed
by a previous work [28]: CamargoCruz09-DT, Turhan09-
DT, Menzies11-RF and Watanabe08-DT. Besides, all classical
classification performance measures and recently proposed
performance measures are considered. The workflow of
these methods are presented in Figure

In Question 2, we explore the characteristics of dataset
in each project. We want to explore how unsupervised
methods (i.e., ManualDown and ManualUp) perform on the
four datasets, and analyze why or why not unsupervised
method outperforms the supervised methods. Based on
our intuition, larger instances have higher possibility to be
defective. Therefore, we want to analyse the relationship
between instance inspection effort (e.g., LOC) and instance
quality (e.g., defective or non-defective). Notice that the
definition of inspection effort for each dataset can be found
in the online APPENDIX B [58]. We sort instances of each
project in descending/ascending order of inspection effort
(e.g., LOC) and want to figure out whether unsupervised
method requires developers to inspect more instances.
Results for Question 1:

What is the performance difference between unsupervised
methods and supervised methods?

To present the result in a comprehensible way, Table
and Table [Z] present the average results E] (i.e., the mean
performance value) of each method following previous
works [6], [26], [27], [38] and statistical analysis results of
supervised and unsupervised methods when NPMs and
EPMs are considered, respectively. In both of the two tables,
the first column lists the performance measures. The second
column lists the datasets we experiment on. In the following
four columns, the average performance of four supervised
methods are given. The last two columns list the average
performance of ManualDown and ManualUp. For columns
of supervised methods, we use different ways to present
the statistical analysis results. In particular, the cells are in
bold if the supervised method is significantly superior to the

2All the average performance in this paper represents the mean of
performance value in statistics.
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unsupervised method, the cells are in underline if the super-
vised method is significantly inferior to the unsupervised
method. Besides, we use different number of symbol “*”
to represent the level of p-value (i.e., *** means p < 0.001,
*means p < 0.01,* means p < 0.05). The effect sizes are
also indicated using the “L/M/S” character, which corre-
spondingly represents the Large/Medium /Small effect size
according to Cliff’s delta.

Notice that Zhou et al. [5] proposed two simple size
based methods ManualDown and ManualUp. They con-
cluded that ManualDown has better performance on NPMs,
while ManualUp has better performance on EPMs. There-
fore, they suggested ManualDown should be treated as a
baseline method when considering NPMs, while ManualUp
should be treated as a baseline method when considering
EPMs. Therefore, for a fair comparison, we present the
statistical information among four supervised methods and
ManualDown (ManualUp) in Table [I| (Table 2) in terms of
NPMs (EPMs). More statistical information between super-
vised methods and unsupervised methods can be found in
the online APPENDIX D [58].

Non-effort-aware Performance Measures Comparison.
From the results shown in Table [I} we make the following
observations:

(1) On average, ManualDown always performs better
than ManualUp in terms of all the three NPMs, which is
consistent with Zhou et al.’s conclusion.

(2) ManualDown statistically significantly outperforms
supervised methods with a large effect size in terms of F'1-
score and AUC on the datasets of AEEEM, NASA, and
PROMISE in most cases. However, on RELINK, the differ-
ence between ManualDown and the supervised methods are
not statistically significant.

(3) Supervised methods always perform better than
ManualUp in terms of these NPMs.

(4) In terms of AUC, by analyzing the essence of Man-
ualDown and ManualUp, the results seem to confirm that
large size modules may have more possibility to be defect-
prone.

(5) In terms of PF, supervised methods statistically
significantly outperform ManualDown and ManualUp with
a large effect size in almost all cases except for RELINK.

Effort-aware Performance Measures Comparison.
From the results shown in Table E] , we make the following
observations:

(1) When compared with ManualUp, supervised meth-
ods perform statistically significantly better than ManualUp
in terms of IFA and PII@L in most cases, and perform
worse than ManualUp in terms of CostEffortQL and P,p;.
It means that in practice ManualUp may cause many false
alarms and require much context switch than supervised
methods.

(2) When compared with ManualDown, supervised
methods perform better than ManualDown in terms of
CostEffortQL and P,,; in most cases. Besides, Manual-
Down obtains a better average performance of IFA and
PIIQL. It means that even though ManulDown reduces the
number of initial false alarms and the number of context
switch, it also reduces the performance of CostEffortQL
and P,,, and consequently obtains lower returns.
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(3) In terms of EPMs, both ManualDown and Manu-
alUp has their own advantages on different performance
measures. In particular, ManualDown has priority over
ManualUp in terms of IFA and PIIQL, while ManualUp
has priority over ManualDown in terms of CostEffortQL
and P,,;. However, in practice, from the perspective of
cost, we may not consider ManualDown to inspect larger
instances first although it has a good performance of IFA
and PIIQL. We also find that ManualDown obtains a few
recalls when inspecting instances with 20% of total effort.
Besides, we may also not consider ManualUp as preferred
method since it may case developer fatigue due to larger
initial false alarms and more context switches.

(4) From the perspective of benefits (e.g., more returns
and no consideration of influence on developers), Manu-
alUp outperforms ManualDown since it has a better per-
formance of recall, which is consistent with Zhou et al.’s
conclusion.

Results for Question 2:
What is the relationship between instance inspection
effort and instance quality?

Firstly, we sort instances of each project based on their
inspection effort (i.e., LOC) in descending order and anal-
yse the relationship between instance inspection effort and
instance quality. The sorting strategy is consistent with
ManualDown. The results are shown in Table[3

In Table (3} the first column lists the name of the dataset.
The second column lists the number of projects in this
dataset. In the following five columns, we list the percentage
of defective instances in the top sorted instances when
inspecting T'% of instances. In Zhou et al.’s method, they
used 50% as the classification threshold. We list the average
results of five different thresholds (i.e., 10%, 20%, 30%,
40% and 50%). Next, we list the total number of defective
instances in each dataset. In the following five columns,
we list the percentage of effort in the top sorted instances
when inspecting T'% of instances. The last column lists total
number of inspection effort in each dataset. Take AEEEM as
an example (i.e., classification threshold set as 10%), there
are five projects with 853 defective instances. Inspecting all
instances in AEEEM, it needs to check 639,827 lines of code.
When sorting instances in descending order by LOC, on
average, we will identify 222 (i.e., 853 x 0.26 ) defective
instances and inspect 339,108 (i.e., 639, 827 x 0.53) lines of
codes.

According to the results in Table 3} for each dataset,
when we sort instances according to its inspection effort (i.e.,
LOC) in descending order and inspect the top 50% instances,
the majority of defective instances (i.e., at least more than
70%) will be ranked at the top. As for ManualDown method,
the classification threshold is set as 50%, which means the
top 50% instances will be classified as defective instances
and the rest will be classified as non-defective instances.
Therefore, when the classification threshold is set as 50%,
ManualDown will obtain a higher Recall (i.e., at least 70%
on average), which consequently contributes to a higher
AUC. Besides, for a dataset, if the majority of defective
instances are ranked in the top 50%, then the majority of
non-defective instances are ranked in the rest 50%. Man-
ualDown classifies the instances in the top 50% and the
instances in the last 50% as defect-prone and non-defect-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO.,

10

TABLE 2: Comparisons among supervised methods and ManualUp (ManualDown) on four datasets in terms of effort-
aware performance measures in the form of average+variance.

\ Measures | Datasets | CamargoCruz09-DT [ Menzies11-RF | Turhan09-DT | Watanabe08-DT | ManualUp | ManualDown |
AEEEM | 1£1(Lf 0L0(D)™ 250 FEST(DE 30+417 T2
NASA 33£6341(L)* 28£5637(L)** | 5+43(L)™** 4£39(L)* 12687251939 | 1+16
IFAt PROMISE | 3+114(L)*** 54+194(L)** 64205(L)*** 3450(L)*** 194473 142
RELINK 040 040 040 1+0 8+1 040
AEEEM | 0.22£0.00(L)" 0.22F0.00(L)™ | 0.22F0.00(L)™ | 0.22%0.00(L)* | 0.69£0.00 0.02£0.00
NASA 0.18£0.00(L)*** 0.18+0.00(L)™** | 0.1840.00(L)*** | 0.1840.00(L)*** | 0.54+0.02 0.03+0.00
PIT@20%" PROMISE | 0.22-40.00(L)*** 0.22:0.00(L)*** | 0.2240.00(L)** | 0.2240.00(L)** | 0.68+0.01 0.03-£0.00
RELINK 0.17£0.00 0.17+0.00 0.17+0.00 0.17£0.00 0.68+0.00 0.04+0.00
AEEEM 0.02£0.00(L)** 0.02-£0.00(L)** 0.02+0.00(L)** 0.02+0.00(L)** 0.19+£0.02 0.00£0.00
NASA 0.09+0.01(L)** 0.09£0.01(L)™ | 0.09+£0.01(L)* | 0.09£0.01(L)* | 0.2540.02 0.02:0.00
PII@1000% PROMISE | 0.08-+0.02(L)*** 0.08+0.02(L)*** | 0.0840.02(L)*** | 0.084-0.02(L)*** | 0.3540.04 0.03-£0.00
RELINK 0.08+0.00 0.0840.00 0.0840.00 0.08+0.00 0.484+0.05 0.02+0.00
AEEEM | 0.02£0.00(L)" 0.0220.00(L)™ | 0.02£0.00(L)™ | 0.02£0.00(L)* | 0.2620.02 0.00£0.00
NASA 0.18£0.05(L)* 0.18+0.05(L)* 0.180.05(L)* 0.18+0.05(L)* 0.39+0.05 0.05+0.01
PIT@2000* PROMISE | 0.14:£0.05(L)** 0.14+0.05(L)*** | 0.1440.05(L)** | 0.144+0.05(L)** | 0.4540.05 0.06-£0.03
RELINK 0.18+0.04 0.18+0.04 0.18+0.04 0.18+0.04 0.61£0.07 0.05£0.00
AEEEM 0.26£0.00 0.20+0.03 0.24+0.01 0.30£0.01 0.26£0.00 0.05£0.00
NASA 0.07£0.01 0.09+0.00 0.13+0.01 0.11£0.02 0.18+0.02 0.10+£0.00
CostEffort@20%" PROMISE | 0.29+0.02 0.2740.02 0.2840.02 0.26+0.01 0.2740.02 0.08+0.00
RELINK 0.29+0.00 0.3140.00 0.261+0.02 0.22+0.00 0.2840.00 0.09+0.00
AEEEM 0.04+0.00 0.0540.00 0.0340.00(L)* 0.04+0.00 0.0840.00 0.00+0.00
NASA 0.06+0.00 0.0640.00 0.08+0.01 0.05+0.00 0.08+0.02 0.05+0.00
CostEffort@1000T | PROMISE 0.09+£0.02(M)*** 0.06£0.01(L)*** 0.060.01(L)*** 0.09£0.02(M)*** 0.15+0.01 0.05£0.01
RELINK 0.16£0.02 0.15+0.02 0.14+0.02 0.11£0.01 0.194£0.01 0.06£0.00
AEEEM 0.05£0.00 0.07+£0.00 0.05+0.00(L)* 0.04+0.00(L)* 0.12+0.01 0.01£0.00
NASA 0.06£0.00 0.08+0.00 0.10+0.01 0.06£0.00 0.11+£0.02 0.11+£0.02
CostEffort@2000" | PROMISE | 0.1240.02(M)** 0.10£0.02(M)** | 0.10£0.03(M)*** | 0.1320.03(M)*** | 0.1820.02 0.08+0.02
RELINK 0.21+0.05 0.2940.10 0.244+0.09 0.29+0.12 0.24+0.00 0.12+0.03
AEEEM 0.4940.01(L)* 0.4940.02 0.4040.00(L)** 0.51+0.02 0.651+0.00 0.224+0.03
NASA 0.34+0.04 0.361+0.04 0.3440.04(L)* 0.35+0.03 0.49+0.04 0.41+0.04
PuptT PROMISE | 0.4540.04(L)*** 0.394+0.03(L)*** 0.3940.04(L)*** 0.43£0.05(L)*** 0.63+0.04 0.20+0.08
RELINK 0.51£0.13 0.46+0.04 0.50+0.12 0.62+0.12 0.63£0.00 0.32+0.08

Notes: (1) *** means p < 0.001, ** means p < 0.01,* means p < 0.05.

(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) "} indicates "the smaller the better’; 1" indicates "the larger the better’.

TABLE 3: The relationship between instance inspection effort and instance quality when sorting testing instances by

ManualDown.

. Percentage of Defects [ \ Percentage of Efforts [
Dataset # Project [10% 20% 30% 40% 50% | # Total Defect [10% 20% 30% 40% 50% | # Total Effort
AEEEM 5 026 044 058 0.67 074 853 053 069 080 0.87 092 639,827
NASA 12 034 049 061 070 0.78 3,199 044 061 072 080 0.86 630,912
PROMISE 62 024 040 053 063 072 6,062 049 066 077 085 091 5,249,888
RELINK 3 020 036 050 0.64 072 238 045 066 079 0.87 093 76,811

prone instances respectively. Therefore, ManualDown can
obtain a higher Recall, and consequently obtain a higher
F1-measure. Besides, in most cases, ManualDown obtains
small values of PF', and only in some cases, ManualDown
achieves very high performance of PF, which consequently
results in a large average value of PF'.

However, when analyzing the percentage of inspection
effort in the top 50% instances, the total inspection effort
accounts for the majority of all inspection effort (i.e., at least
86% on average). Thus, it is clear that unsupervised method
ManualDown obtains better NPMs at the cost of higher
inspection efforts. The detailed results of each project can
be found in the online APPENDIX E [58].

Secondly, we sort instances of each project based on
their inspection effort (i.e.,, LOC ) in ascending order and
analyse the relationship between instance inspection effort
and instance quality. The sorting strategy is consistent with
ManualUp. The results are shown in Table

From the results shown in Table [ it can be found that
inspecting the top 50% instances will consume a few of
the total inspection effort. For example, inspecting the top
50% instances of AEEEM, NASA, PROMISE and RELINK

needs to consume only 8%, 14%, 10% and 7% of the total
inspection effort, respectively. In other words, inspecting
instances with 20% of the total inspection effort will inspect
much more than 50% of instances. That is the reason why
ManualUp performs bad in terms of /FA and PIIQL
but performs well in terms of CostEffortQL. It also can
be found that, at least on the four datasets, the smaller
instances are more likely to be clean, while the larger
instance are more likely to be defective.
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TABLE 4: The relationship between instance inspection effort and instance quality when sorting testing instances by

ManualUp.

Percentage of Defects [
20% 30% 40%

‘ Dataset ‘ # Project } 0%

50% | # Total Defect [10%

\ Percentage of Efforts [
20% 30% 40% 50% | * Total Effort

AEEEM 5 005 009 012 019 026
NASA 12 0.02 004 009 014 02

PROMISE 62 0.05 0.1 015 021 0.29

RELINK 3 004 0.1 016 02 0.28

853 0 0.01 003 0.05 0.08 639,827
3,199 0.01 003 006 0.1 0.14 630,912
6,062 0 0.01 003 006 0.1 5,249,888

238 0 0.01 002 0.04 0.07 76,811

When considering NPMs, the unsupervised CPDP
method ManualDown performs significantly better
than supervised methods on most performance mea-
sures (i.e., F'1-score and AUC) at the cost of higher
inspection efforts and higher false alarms. When
considering EPMs, the supervised CPDP methods
1) perform significantly better than the unsuper-
vised method ManualUp on [FA and PIIQL, and
2) perform significantly worse than the unsuper-
vised method ManualUp on CostEffortQL and
P,,¢. ManualDown always outperforms ManulaUp
in terms of NPMs, while ManualDown and Manu-
alUp have their own advantages in terms of EPMs.

6.2 RQ2: Could the supervised method be enhanced by
leveraging the intuition of unsupervised methods?

Motivation. Labeled data can provide useful information
for building a high-quality model, and previous supervised
works have made great progress in the CPDP scenario [3],
[6], [13]], [42], [69]. Besides, inspired by Zhou et al. [5], we
should consider different methods for different scenarios.
When the inspection costs are unlimited, we should first
consider a larger instance since as previous study reports
that a larger instance tends to have more defects [45].
However, in practice, we cannot ignore the limitation of
inspection effort, context switches and developer fatigue
due to initial false alarms. Therefore, when the inspection
costs are limited, inspired by Huang et al. [27], we should
first inspect the instances with a larger ratio between each
instance defect proneness (i.e., a probability outputted by a
classifier) and its inspection effort (i.e., LOC') since recent
studies argue that a smaller instance is proportionally more
defect-prone and hence should be inspected first [46]—[48].
Consequently, both the findings of Huang et al.” work [27]
and Zhou et al.’s work [5] should be further leveraged in
future work, and we want to investigate whether there exists
an enhanced supervised method having superiority over
the unsupervised methods when more NPMs and EPMs are
considered in the CPDP scenario.
Method. We first propose an improved supervised method
EASC (Effort-Aware Supervised Cross-project defect pre-
diction) which utilizes the advantage of classical super-
vised methods and takes inspection efforts into consider-
ation. Then, we make a comparison between the supervised
method (i.e., EASC) and the unsupervised methods (ie.,
ManualDown and ManualUp) when NPMs and EPMs are
considered.

For a fair comparison, according to the suggestions of
Zhou et al. [5], we should compare EASC with Manual-
Down when the NPMs are considered, while we should

compare EASC with ManualUp when the EPMs are con-
sidered. Besides, in previous work [70], Lessmann et al. pro-
pose a framework for comparative software defect predic-
tion experiments about the inconsistent findings regarding
the superiority among different classifiers. They found that
the performance differences of classifier are not significant.
Therefore, Naive Bayes is used as the default classifier in
EASC and the effect of the choice of EASC’s underlying
classifier can be found in the online APPENDIX F [58].

Besides, Menzies et al. [45]] found that manualUp tuned
with a defect predictor could achieve better performance. In
particular, in the phase of model building, a defect predictor
should be trained on training instances. In the phase of
model applying, the defect predictor firstly makes a binary
decision (e.g., defective or clean) on testing instances. Then,
all instances identified as defective are sorted in ascending
order of LOC. For convenience, we refer to the tuned
manualUp method as TunedmanualUp. In this section,
we will make a further comparison between EASC and
TunedmanualUp in terms of both NPMs and EPMs to fig-
ure out whether EASC has priority over T'unedmanualUp.
Notice that Naive Bayes is used as the default classi-
fier in TunedmanualUp and the effect of the choice of
TunedmanualUp’s underlying classifier can be found in the
online APPENDIX F [58].

Results 1: Comparison between EASC and Manual-
Down/ManualUp.

Table [5] and Table [f] present the average results and the
statistical test results comparing EASC and ManualDown
(ManualUp). In Table[f|and Table[f], the first column lists the
performance measures. The second column lists the datasets
we experiment on. The following two columns present the
average performance of EASC and ManualDown (Manu-
alUp) in Table [f (Table [), respectively. We also present
the results of TunedmanualUp in the last one column in
Table [Hland Table[6l

Non-effort-aware Performance Comparison. From the
results shown in Table[5] in terms of F'7-score and AUC, the
supervised method EASC can achieve similar performance
with ManualDown (with no statistically significant differ-
ence) in almost all datasets except for PROMISE. However,
EASC statistically significantly performs better than Manu-
alDown in terms of PF'.

Effort-aware Performance Comparison. From the re-
sults shown in Table[f], we make the following observations:

(1) In terms of IFA, EASC achieves the best results on
all datasets and statistically significantly improves Manu-
alUp with large effect size on almost all dataset except for
RELINK. On average, the IFA scores of EASC are no larger
than 6, while those of ManualUp vary in large range (i.e.,
8~1268). For example, on AEEEM, EASC on average can
successfully detect the first defective instance with at most
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TABLE 5: Comparisons between EASC and ManualDown (TunedmanualUp) on four datasets in terms of non-effort-aware

performance measures in the form of averagetvariance.

[ Measures | Datasets [ EASC | ManualDown [[ EASC | TunedmanualUp |

AEEEM 0.321+0.02 0.39+0.03 0.3240.02 0.42+0.02

NASA 0.26+0.01 0.27+0.02 0.26+0.01 0.30+0.02

Fi-score’ | PROMISE || 0.284+0.02(L)** | 0.50--0.03 0.2840.02(Ly** | 0.49+0.03
RELINK 0.67+0.02 0.64+0.01 0.67+0.02 0.66+0.01

AEEEM 0.7540.00 0.7340.00 0.7540.00(L)** 0.5940.00

NASA 0.771+0.01 0.74+0.01 0.7740.01(L)** 0.60+0.01

AUCT | PROMISE || 0.7340.01 0.73+0.01 0.73+0.01(L)** | 0.60-0.01
RELINK 0.79+0.01 0.74+0.01 0.7940.01 0.63+0.01

AEEEM 0.07+0.01(L)** 0.43+0.00 0.07+0.01(L)** 0.29+0.03

NASA 0.07+0.00(L)*** | 0.46+0.00 0.0740.00(L)*** 0.4740.06

prt PROMISE || 0.07-£0.00(L)** | 0.38+0.01 0.0740.00(L)** | 0.28+0.02
RELINK 0.231+0.05 0.331+0.01 0.23+0.05 0.4340.02

Notes: (1) *** means p < 0.001, ** means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium /Small effect size according to Cliff’s delta.
(3) "} indicates "the smaller the better’; 1" indicates the larger the better’.

TABLE 6: Comparisons between EASC and ManualUp (TunedmanualUp) on four datasets in terms of effort-aware

performance measures in the form of average+variance.

[ Measures [ Dataset || EASC | ManualUp [ EASC | TunedmanualUp |
AEEEM 1£2(L)** 30+417 142 240
NASA 5+50(L)*** 1268+7251939 5450 214745
IFAY PROMISE 6+118(L)*** 204538 61118 61247

RELINK 1+2 8+1 1+2 4426

AEEEM 0.08£0.00(L)* | 0.6940.00 0.08£0.00(L)* | 0.23+0.02

NASA 0.07+0.00(L)*** 0.5440.02 0.0740.00(L)*** | 0.254-0.01

PIQ@20%* PROMISE || 0.1140.00(L)** | 0.68+0.01 0.1140.00(L)*** | 0.2440.00

RELINK 0.22+0.01 0.68+0.00 0.2240.01 0.324+0.01

AEEEM 0.02+0.00(L)** 0.19+£0.02 0.0240.00 0.0440.00

NASA 0.040.00(L)*** 0.2540.02 0.04+£0.00(L)* 0.1440.02

PII@1000" PROMISE || 0.06+0.01(L)** | 0.35+0.04 0.06£0.01(L)*** | 0.08+0.01

RELINK 0.12£0.00 0.48+0.05 0.1240.00 0.1840.01

AEEEM 0.02+0.00(L)** 0.26+0.02 0.0240.00 0.0640.00

NASA 0.07+0.01(L)*** 0.3940.05 0.07+0.01(L)* 0.224+0.03

PII@2000" PROMISE || 0.10+0.04(L)** | 0.4540.05 0.10+0.04(L)*** | 0.1640.04

RELINK 0.18+0.00 0.61£0.07 0.1840.00 0.2740.01

AEEEM 0.184£0.01 0.26+0.00 0.1840.01 0.3140.00

NASA 0.20£0.01 0.1840.02 0.20+0.01(L)* 0.3140.02

C'ostE'ﬁort@,QO%T PROMISE 0.1740.01(M)*** | 0.2740.02 0.1740.01(L)* 0.284+0.01

RELINK 0.33£0.00 0.284+0.00 0.3340.00 0.3840.00

AEEEM 0.04=£0.00 0.08+0.00 0.0440.00 0.0740.00

NASA 0.11£0.02 0.08+0.02 0.11£0.02 0.1740.05

COStEﬁOTt@JOUOT PROMISE 0.05+0.00(L)*** 0.1540.01 0.0540.00 0.10+0.02

RELINK 0.22+0.04 0.19+0.01 0.2240.04 0.2040.02

AEEEM 0.0540.00 0.1240.01 0.0540.00 0.0840.00

NASA 0.16£0.02 0.11£0.02 0.16£0.02 0.2540.08

COStEﬁOTt@QOUOT PROMISE 0.07£0.01(L)*** 0.1840.02 0.0740.01 0.154+0.03

RELINK 0.32+0.06 0.24+0.00 0.3240.06 0.3240.06

AEEEM 0.7340.02 0.6540.00 0.734+0.02 0.631+0.01

NASA 0.62+£0.02 0.49+0.04 0.6240.02 0.5940.01

PoptT PROMISE 0.6640.08 0.6340.04 0.66+0.08 0.62+0.06

RELINK 0.74+0.02 0.64+0.00 0.7440.02 0.5840.00

Notes: (1) ** means p < 0.001,* means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ") indicates "the smaller the better’; "1’ indicates "the larger the better’.

one initial false alarm, while ManualUp on average gets
30 initial false alarms before the first defective instance is
found. Besides, ManualUp has thousands of initial false
alarms on NASA (i.e., 1268) which may cause developer
fatigue in using a defect prediction tool.

(2) In terms of PII@Q20%, EASC statistically significantly
outperforms ManualUp with a large improvement with
respect to Cliff’s delta on almost all datasets except for RE-
LINK. In particular, the performance of ManualUp is many
times that of EASC, which may cause more context switches.
For a comprehensive comparison with ManualUp, we also
consider another two performance measures: PIIQ1000
and PII@2000. According to the results in Table [6} we can

draw similar conclusions as with PIT@20%.

(3) In terms of CostEffort@20%, the difference between
EASC and ManualUp are not statistically significant in
almost all cases except for PROMISE. In addition, for a com-
prehensive comparison with ManualUp, we also consider
another two performance measures: CostEffort@Q1000 and
CostEffort@2000. According to the results in Table [6] we
can draw similar conclusions as with PIT@20%.

(4) In terms of P,;,;, EASC also outperforms ManualUp
in all cases since EASC (i.e., 0.69) obtains higher perfor-
mance than ManualUp (i.e., 0.60) on average.

Results 2: Comparison between EASC and Tunedmanu-
alUp.
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Non-effort-aware Performance Comparison. From the
results shown in Table[5] we find that EASC achieves similar
performance with TunedmanualUp in terms of FI-score
and the difference is not statistically significant except for
PROMISE. However, in terms of AUC and PF, EASC sta-
tistically significantly outperforms TunedmanualUp with
a large improvement with respect to Cliff’s delta in most
cases.

Effort-aware Performance Comparison.  From  the
results shown in Table [f] we find that in terms of PIIQL,
EASC statistically significantly performs better than
TunedmanualUp in most cases. In terms of [FA and
P,pt, EASC also achieve better average performance
than TunedmanualUp. On NASA and PROMISE, EASC
performs worse than TunedmanualUp in terms of
CostEffort@Q20%. Besides, in terms of CostEffortQL, the
difference between EASC and TunedmanualUp is not
statistically significant.

s ~

When considering NPMs, supervised method EASC
achieves prediction performance comparable or even
superior to unsupervised method ManualDown.
When considering EPMs, EASC can significantly
outperform ManualUp with a large improvement
with respect to Cliff’s delta in most cases. Besides,
EASC can obtain better performance than Tuned-
manualUp in most cases in terms of both NPMs and
EPMs.

7 THREATS TO VALIDITY

Threats to internal validity relate to faults in the imple-
mentation of the methods when we revisit the supervised
and unsupervised methods, especially for the unsupervised
methods (i.e., ManualDown and ManualUp) which are both
published by their authors using R language. To minimize
the internal threats, we not only implement these methods
by pair programming but also make full use of third-party
implementations such as the CrossPare [28] and Weka [71].
We use the default hyper-parameters suggested by Cross-
Pare and Weka. For the unsupervised method, although our
code is written in Java, we have carefully read the published
paper and strictly follow the description of these methods.
All of the datasets used in our paper are publicly available
from previous works, and most datasets are cleaned for
quality or manually verified in previous works.

Threats to external validity relate to the quality and
generalizability of our datasets. We use four datasets with
82 projects, which belong to different application domains,
vary in size, cover a long period of time and are written
in different programming languages. However, there are
still many other projects in other domains using other
programming languages, which are not considered in our
study. Besides, in our experiment, most of these projects are
open source projects. Thus, it is still unclear whether our
conclusions are generalizable for commercial projects. In the
future, we plan to reduce this threat by considering more
additional software projects especial commercial projects.
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Threats to construct validity relate to the suitability
of our performance measures. In addition to state-of-the-
art NPMs, we consider another eight EPMs, namely [FA,
PIIQL, CoftEffortQL and P,,;. We use IFA because pre-
vious studies have shown that developers are not willing
to use the prediction method if its /FA is quite large which
will heavily depress the confidence of developer. We use
PIIQL because the developers are always in heavy work.
The high value of PIIQL means developers need to inspect
more instances under the same inspection effort, which will
make developers” work harder. We use CostEffort because
we want to find more detective instances under the limited
inspection effort. We use P,,; because it has been widely
used in previous works [27], [37], [38] as the effort-aware
performance measure. We have carefully discussed the
motivation for using these additional evaluation measures
and cited previous studies to support our assumptions.
However, it is difficult to accurately measure the inspection
effort of an instance in practice. In this paper, we treat
number of lines of code inspected as the proxy of inspection
effort, which is widely used in previous works [5], [27], [38].
However, number of lines of code inspected may not be
appropriate to measure the true effort associated with code
inspections activities. In this future, we want to investigate
other proxies of inspection effort. Besides, we use the non-
parametric statistical hypothesis Wilcoxon signed-rank test
and compute non-parametric effect size measure Cliff’s 6 to
compare the performance of different methods, and ensure
that the differences are statistically significant and substan-
tial. These tests have been used by past studies [5], [6]. Thus,
we believe we have little threats to construct validity.

8 RELATED WORK

Since the target software projects usually lack the labelled
modules, a possible solution is to use other historical
projects with labelled modules to train the prediction mod-
els. This issue is called the cross-project defect prediction
(CPDP) [18], [22], [44]. However, the dataset distribution
of the target and source projects is usually different, which
makes CPDP a challenging task. Zimmermann et al. [72]
conducted a large-scale empirical study to investigate the
feasibility of CPDP and their results were not optimistic.
Consequently, many supervised CPDP methods are pro-
posed in past decades to improve the performance of CPDP
[5], [28]. Most researchers focus on homogeneous CPDP,
which assumes that the source and target projects have the
same feature sets. Turhan et al. [33] proposed Burak filter to
first transform the metric data with the logarithm and then
applied a relevancy filter to the available training data based
on the k (i.e., 10) nearest instances algorithm. Through the
relevancy filter, the k nearest instances to each instance in
the target data are selected. Peters et al. [21] improved the
filter mechanism, which took in the infra-structure of source
projects. Menzies et al. [65] created a local model through
clustering of the training data with the WHICH algorithm.
Separate WHICH rules are created for each cluster to create
local models. In addition to WHICH, random forest is used
in this paper due to its better performance. Ma et al. [22]
proposed a method which assigns higher weights to the
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source instances that are similar to the target instances. Ca-
margo Cruz and Ochimizu [64] proposed to apply a power
transformation to the metric data and then standardize it.
The power transformation is based on the logarithm and
the observation that software metrics, especially the size and
complexity, often follow exponential distributions, which is
the same as what Turhan et al. [33] do for the treatment of
the data. Besides, they considered a single training product
as reference. Watanabe et al. [66] proposed to compensate
differences between products through a standardization
technique that rescales the data. In a scenario with only
one candidate product as training data, they proposed to
use this product as reference for the standardization of the
target data. This shall increase the homogeneity between
the target product and the candidate product. As formula
for standardization, the authors proposed to multiply each
metric value of the target product with the mean value of the
candidate product and divide this by the mean of the target
product itself. Wang et al. [73] leveraged a representation-
learning algorithm (i.e., deep learning) to learn semantic
representation of the modules from the projects. Nam et al.
propose [18] TCA+ which extends TCA [74] which trans-
forms data from source and target projects to a latent space
where the two datasets are close to each other with some
data pre-processing options and a heuristic to decide the
best pre-processing option to use. Xia et al. [6] proposed a
two-layer framework Hydra, which combined the genetic
algorithm and ensemble learning to capture general prop-
erties between the source and target projects and merits of
multiple prediction models. Zhang et al. [75] investigated
seven composite algorithms that integrate multiple machine
learning classifiers to improve cross-project defect predic-
tion.

Some researchers investigate heterogeneous CPDP,
which assumes that the source and target projects have
different feature sets. Nam and Kim [16] proposed the
heterogeneous CPDP method, including feature selection
phase and feature mapping phase. Jing et al. [76] solved
the problem by defining unified feature space and applying
CCA (Canonical Correlation Analysis)-based transfer learn-
ing. Li et al. [77] proposed multiple kernel learning and
ensemble learning to improve heterogeneous CPDP perfor-
mance. Then they [78], [79] further studied two importance
issues (i.e., privacy preservation and cost) in heterogeneous
CPDP.

Other researchers considered unsupervised learning
methods. Nam and Kim [19] performed defect prediction
on unlabelled data using a cluster based method which has
two phases. They further used feature selection and instance
selection to remove noises in dataset to improve CLA and
proposed CLAMI. Zhang et al. [80] designed a connectivity-
based unsupervised prediction method. Recently, Zhou et
al. [5] proposed two unsupervised methods (ManualDown
and ManualUp) and they suggested that these two simple
methods should be set as baseline methods in the future
CPDP research.

Ideally, we can inspect all defect-prone instances during
the process of development. However, in practice, a devel-
oper has a limited time and can only inspect a limited num-
ber of lines of code. Therefore, in this paper, we propose an
improved supervised method EASC based on the findings
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of Huang et al. [27] and Zhou et al. [5]. EASC takes both
NPMs and EPMs into consideration. The results analyzed
in previous Sections prove that supervised methods have
priority over unsupervised methods.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we first revisit a comparison between the
state-of-the-art supervised CPDP methods and unsuper-
vised methods (i.e., ManualUp and ManualDown) recently
proposed by Zhou et al. [5] under the same experimental
settings. We conduct this experiment based on CrossPare
which was developed and shared by Herbold et al. [28]
to make CPDP method comparisons easier. The experi-
mental results show that 1) when considering NPMs, the
unsupervised method (i.e., ManualDown) performs better
than state-of-the-art supervised methods in most cases in
terms of FI-score and AUC; 2) when considering EPMs,
the supervised CPDP methods perform better than the un-
supervised method (i.e., ManualUp) in most cases in terms
of IFA and PIIQL while perform worse than ManualUp in
terms of CostEffortQL and P,y,:. We further analyze why
the unsupervised method performs better than the existing
supervised methods in terms of NPMs and figure out that
the unsupervised method achieve higher performance at the
cost of higher inspection effort and false alarms which may
cause developer fatigue and tool abandonment. In addition,
since we cannot ignore the limited inspection efforts in
practical applications, we propose an improved supervised
method EASC to compare with the unsupervised method
especially for the scenario when limited inspection cost
is considered. EASC contains two phases: model building
phase and model evaluating phase. In the former phase,
a model can be built with a specific basic classifier (i.e.,
Naive Bayes is used as the default classifier) after some
pre-processing. In the latter phase, it sorts the testing set in
descending order by score x LOC when considering NPMs,
or it separately sorts instances predicted as defective and
instances predicted as non-defective in descending order
by score/LOC when considering EPMs. In which, score
is the probability outputted by a classifier to indicate the
proneness of an instance to be defective, and LOC is the
inspection effort of an instance. The experimental results
proved that EASC can significantly outperform ManualUp
in most cases with medium or large effect size and its
performance does not heavily rely on the trained classifiers.

In the future, firstly, we plan to collect more datasets,
especially datasets gathered from commercial projects, to
verify the generality of our empirical results of EASC.
Secondly, we plan to design more new EPMs to guide our
work on improving the performance in the practical usage
scenario.
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APPENDIX A
AN EXAMPLE ON How To CALCULATE EPMs

For a better understanding of how these recently pro-
posed methods calculating EPMs (i.e.,, [FA, PIIQL and
CostEffortQL), we describe the calculating process with an
example shown in Table

In Table |1} suppose we have a testing dataset, which
contains eight instances. The first column represents the
original order of these instances. These instances are num-
bered from 1 to 8 shown in the second column. The LOC
of instances and the class label of instances are presented in
the following two columns. Then, the predicted score and
predicted results of each method are given in the next six
columns. Finally, score/LOC is listed in the last column.

e Sorting strategy for state-of-the-art CPDP methods:
The state-of-the-art CPDP methods sort the testing
instances in descending order of score (ie., the
probability of defect-prone outputted by prediction
model).

o Sorting strategy for EASC method:

EASC uses different sorting strategies on testing
instances when calculating different types of per-
formance measures. In particular, when calculating
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EMPs, EASC firstly predicts testing instances, and di-
vides all instances into two groups: Group_Defective
and Group_Clean. For instances in Group_Defective,
the probability of defect-proneness of each instance
is larger than 0.5, while instances in Group_clean
have less than 0.5 probability of defect-proneness.
After that, all the instances in the two groups will be
sorted by score/LOC, respectively. Finally, the two
groups are combined together. In particular, these
instances in Group_Clean will be appended at the
end of Group_Defective. The results are shown in

Figure [T}

Combined Instances of Testing Instances

-roup_Defective - Group_Clean

YR —— TR >c2

D1: High possibility to be defective
D2: Loss possibility to be defective
C1: High possibility to be clean

C2: Loss possibility to be clean

Fig. 1: Sorting Strategy for EASC.

In the above figure, different colors represent d-
ifferent types of instances: defective instance and
clean instance. Besides, instances in each group have
different color depth. The color depth indicates the
defect density of each instance, which to some extent
indicates the priority of inspecting these instances.
Sorting strategy for ManualDown/ManualUp
methods:

Zhou et al. proposed two unsupervised methods
in the scenario of cross project defect prediction:
ManualDown and ManualUp. For the simplicity
of presentation, let m be a module in the testing
data, SizeMetric be a module size metric, and
R(m) be the predicted risk value of the module
m. Formally, the ManualDown method is R(m) =
SizeMetric(m), while the ManualUp method is
R(m) = 1/SizeMetric(m).
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TABLE 1: An example with 8 testing instances for calculating EPMs

Score Predicted
00 | No. | LOC | Actual | CPDP EASC ManualUp | CPDP EASC ManualUp|

Score 1 Score 2 Score 3 Predict T | Predict2 | Predict3 | Score/LOC
1 [©) 50 0 0.43 0.22 1/50 0 0 4.40E-03
2 @ 180 :[ 0.86 0.97 1/180 5.44E-03
3 ® 100 0 0.495 0.12 1/100 0 0 1 1.20E-03
4 ) 500 0 0.45 0.33 1/500 0 0 0 6.60E-04
5 ® 758 0.34 0.89 1/758 0 0 1.17E-03
6 ® 1000 0.33 0.12 1/1000 0 0 1.20E-04
7 @ 80 0.78 0.78 1/80
8 210 0 0.32 0.48 1/210

Notes: (1) OO: Original Order; (2) No.: Instances Number.

For a given testing data, ManualDown considers a
larger module as more defect-prone. However, Man-
ualUp considers a smaller module as more defect-
prone. Besides, in their work, they use LOC as
the SizeM etric. Therefore, when calculating NPMs:
ManualDown sorts all testing instances in descend-
ing order by LOC. Then, ManualDown classifies
these instances sorted at the top 50% as defective
ones, while ManualDown classifies these instances
sorted at the bottom 50% as clean ones.

When calculating EPMs: ManualUp sorts all test-
ing instances in descending order by 1/LOC. Then,
ManualUp classifies these instances sorted at the top
50% as defective ones, while ManualUp classifies
these instances sorted at the bottom 50% as clean
ones.

In this section, we pay more attention on ManualUp
since Zhou et al. suggested ManualUp should be
treated as base method when considering EPMs.

According to the sorting strategies of different methods,
we give the re-sorted testing data for three methods inde-
pendently.

e Order of CPDP methods:

Actual Results DR®EEOD®
Sorted Instances order @OODDLBE®®
Prediction Results DE®E®OD®
20% of Inspection Effort QDO

e Order of EASC method:

D2OOEEO©D®
[CBEOEEE0)

Actual Results
Sorted Instances order

SCORE / LOC 9.75e-03,5.44e-03,1.17e-03,
Prediction Results D2ROEO®D®
20% of Inspection Effort W)

e Order of ManualUp method:

Actual Results D2E®EOD®
Sorted Instances order DORRED®E®

1/ LOC 1/50,1/80,1/100,1/180,
Prediction Results DRE®EOD®
20% of Inspection Effort [OLEP)

Therefore, based on the above results, the results of IFA
and PII@Q20% for these methods are listed as follows:

EPMs CPDP EASC ManualUp
IFA 1 0 1
PII@20% 3/8 2/8 4/8
CostEffort@20% 2/3 2/3 2/3

From the above tables, in terms of IFA, PII@Q20% and
CostEffort@20%, we find that EASC can achieve a good
trade-off performance. In particular, when compared with
CPDP and ManualUp, EASC can not only have less false
alarm since its IF'A is small, but it also has less context
switch since its PI1@20% is still small. Besides, all these
methods achieve same performance of CostEffort@20%.

APPENDIX B
EXPERIMENTAL SUBJECTS

In our experimental studies, we evaluate CPDP methods on
four publicly available datasets, which are also used in [[1]-
[30]. Table [2| gives an overview of these datasets. The first
column reports the name of the group. The second to sixth
columns, respectively, report the target project, the project
type, the programming language, the brief description, the
number of instances contained (one instance corresponding
to one module), and the percentage of defective instances.
The last column reports the effort metric name in different
datasets, which represents the proxy of effort when inspect-
ing whether an instance has a defect or not. Note that, in
our experiment, we only consider the strict cross-project
defect prediction scenario. That means all other versions of
a specific product will be excluded for training. Therefore,
“Eclipse”, investigated in [31], is not considered since the
dataset only has one project with different versions.

NASA. The first dataset is the preprocessed version of the
NASA Metrics Data Program data provided by Shepperd et
al. [32]]. The dataset contains information about 12 products
from 6 projects. We use the preprocessed version since
Shepperd et al. resolved the problems with the consistency
of the originally published MDP data noted by Gray et
al. [33]]. There are 17 static source code metrics used in the
dataset. However, information about how the defect labels
were created is not available. In our experiment, we use all
12 products from this data set and refer to this dataset as
NASA.

AEEEM. The second dataset was shared by D’Ambros et
al. [34] and contained data about five Java products from
different projects. Sixty one software metrics are considered,
including static product metrics, process metrics like the
number of defects in previous releases, the entropy of code
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changes, and source code churn, as well as the weighted
churn and of source code metrics (WCHU) and linearly
decayed entropy of source code metrics (LDHH). The defect
labels were extracted from the Issue Tracking System (ITS)
of the projects. In our experiment, we use all five original
products from this dataset and refer to this dataset as
AEEEM.

RELINK. The third dataset was shared by Wu et al. [35]
and contains defect information about three products from
different projects. The dataset has 60 static product metrics
and three different defect labels for each module: 1) golden,
with manually verified and not automatically labelled defect
labels; 2) relink, with defect labels generated with their
proposed approach; and 3) traditional heuristic, with an
SCM comment based labelling. In our experiment, we use
all 3 products with the golden set labelling from this dataset
and refer to this dataset as RELINK.

PROMISE. The fourth data set was shared by Jureczko
and Madeyski [36]. In our experiment, we use 65 product
versions of 32 projects which are provided by Herbold et
at. [1]. As for metrics, they collected 20 static product metrics
for Java classes, as well as the number of defects that were
found in each class. According to [36], all the labels are
extracted from the source code management system using a
regular expression. Notice that in Herbold et al.’s work, the
dataset is named as JURECZKO. In our experiment, we use
all 32 products from this dataset and refer to this dataset as
PROMISE since it is referred as such in previous works [2],
[31]], 1371, [38].

TABLE 2: The Characteristics of Studied Datasets.

Dataset | Project Lang. | Description #Instances | %Defective Effort Metric
M1 . A spacecraft instrument 344 12.21%
™I € [Areal time € project 9593 1834%
KC1 C++ 2096 15.51%
KC3 A storage management system for ground data 200 18.00%
MC1 Java I combustion experiment 9277 073%
MC2 A video guidance system 127 3465%| LOC_EXECUTABLE
NASA | MWI1 ‘A zero gravity experiment related to combustion 264 1023% | (The number of lines
Pl A flight software from an earth orbiting satellite 759 son| o "X““"‘b: f""" for
PC2 ¢ [A dynamic simulator for attitude control systems 1585 101% @ module)
PC3 1125 1244%
pc4 A flight software from an earth orbiting satellite 1399 1272%
PC5 17001 2.96%
equinox An OSGi R4 core framework implementation 324 39.81%
elipse jdt The Java infrastructure of the Java IDE 97| 20.66%
AEEEM | lucene Java | A text search engine library 691 9.26%| numberOfLinesOfCode
mylyn A task management plugin 1862 13167 | (Number of lines of code)
pde A plug-in development environment 1497 13.96%
Apapce Httpd An open-source HTTP server 194 50.52%
RELINK | Openlntents Safe | Java | An open intents library 56 39.29% CountLineCode
( Number of lines of code)
Zxing ‘A barcode image-processing library 399 29.57%
continued on the next page
APPENDIX C

BRIEF INTRODUCTION TO FOUR STATE-OF-THE-ART
SUPERVISED METHODS

Cruz and Ochimizu [39] proposed to apply a power trans-
formation to the metric data and then standardize it. The
power transformation is based on the logarithm and the
observation that software metrics, especially the size and
complexity, often follow exponential distributions, which is
the same as what Turhan et al. [40] do for the treatment
of the data. Besides, they only consider training product as
a reference. They conducted an experiment on seven Java
projects and found that the CPDP methods with standard-
ization can achieve better performance than the correspond-
ing CPDP methods without standardization.

3

TABLE 2: The Characteristics of Studied Datasets. — contin-
ued from previous page

Dataset | Project Lang. | Description #lnstances | %Defective | Effort Metric

ant13,141516,17 A build management system 125-745 | 10.92%-26.21%

arc Academic software project developed by 8th or 9th 234 1154%
berek semester computer science students 5 3721%
camel 10,12, 14,16 A versatile integration framework 339-965 | 3.83%-35.53%
ckjm A tool for collecting Chidamber and Kemerer metrics 10 50.00%
e-learning Academic software project developed by 8th or 9th o4 7.81%
forrest 0.7 semester computer science students 29 17.24%
ivy 11,14,20 A dependency manager 111352 | 6.64%56.76%

jedit3.2,4.0,4.1,42,43 A text editor 272-492 | 2.24%-33.09%

Academic software project developed by 8th or 9th
Kalkulator 27
semester computer science students.

22.22%

109-205 | 25.19%-92.20%
195-340 | 46.67%-59.71%

log4j1.0,1.1,12
lucene 2.0, 2.2, 2.4

A logging utility

A text search engine library

Academic software project developed by 8th or 9th
nieruchomosci 27
semester computer science students

37.04%

pbeans 1.0, 2.0 An object/relational database mapping framework 26-51 | 19.61%-76.92%

Academic software project developed by 8th or 9th
PROMISE | pdftranslator Java 33
semester computer science students

loc(Number of
45.45%
lines of code)

poi 1.5,20,25,3.0 API for Office Open XML standards 237-442 | 11.78%-64.42%

redaktor A decentralized content management system 176 15.34%
serapion 45 20.00%
Academic software project developed by 8th or 9th
skarbonka ’ 45 20.00%
Kiebagd semester computer science students 20 60.00%
synapse 1.0, 1.1, 12 A high-performance Enterprise Service Bus 157256
systemdata 65
Academic software project developed by 8th or 9th
szybkafucha i 25
_ semester computer science students.
termoproject 2
tomcat A Web server 858 8.97%
velocity 14,15, 1.6 A template language engine 196-229 | 34.06%-75.00%
workflow Academic software project developed by 8th or 9th 39 51.28%
wspomaganiepi semester computer science students 18 66.67%
xalan 2.4,2.5,2.6,2.7 An XSLT processor

723-909 | 15.21%-98.79%
162-588 | 15.23%

xerces 1.0,12,13, 1.4 An XML processor

Academic software project developed by 8th or 9th
zuzel ) 29 44.83%
semester computer science students

Turhan et al. [40] proposed Burak filter to first transform
the metric data with the logarithm and then applied a
relevancy filter to the available training data based on the &
(i.e., 10) nearest instances algorithm. Through the relevancy
filter, the k nearest instances for each instance in the target
data are selected. Notice that repeat selected instance will
be used only once. They conducted an experiment on seven
products from the NASA dataset and all three products from
the SOFTLAB dataset and found that the Burak filter can
achieve better performance on recall and pf for both WPDP
scenario and CPDP scenario.

Menzies et al. [41] created a local model through clus-
tering of the training data with the WHERE algorithm and
afterwards classification of the results with the WHICH rule
learning algorithm. Separate WHICH rules are created for
each cluster to create local models. In addition to WHICH,
random forest is used in this paper due to its better perfor-
mance. They conducted an experiment on seven products
from the PROMISE dataset and observed a further gain in
terms of the median over the method using all data.

Watanabe et al. [42] proposed to compensate differences
between products through a standardization technique that
rescales the data. In a scenario with only one candidate
product as training data, they proposed to use this product
as the reference for the standardization of the target data.
This shall increase the homogeneity between the target
product and the candidate product. As a formula for stan-
dardization, they proposed to multiply each metric value
of the target product with the mean value of the candidate
product and divided this by the mean of the target product
itself. They conducted an experiment on two projects mined
by themselves using seven metrics and bug labels based
on the comments in the version control system logs. They
observed a little improvement in recall (e.g., 15%) and
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precision (e.g., 2%).

APPENDIX D

MORE STATISTICAL COMPARISON RESULT BE-
TWEEN SUPERVISED AND UNSUPERVISED METH-
OoDS.

As suggested by Zhou et al., we should treat ManualDown
(ManualUp) as baseline method when inspection effort is
unlimited (limited). Therefore, for the convenience of read-
ing, we present a part of statistical results between super-
vised methods and unsupervised methods in main article.
For example, when considering NPMs, we only present
the statistical test between ManualDown and supervised
methods, and when considering EPMs, we only present the
statistical test between ManualUp and supervised methods.
In this section, for comprehensively understanding the dif-
ference between supervised and unsupervised methods, we
list more statistical information.

TABLE 3: Comparisons between EASC and ManualUp on
four datasets in terms of Non-effort-aware Performance
Measures.

Measures Datasets | EASC ManualUp | ManualDown
AEEEM | 0.3240.02(L)* 013+0.00 0.39+0.03
F1— score® NASA 0.26+0.01(L)** | 009+0.01 0.2740.02
S PROMISE | 0.2840.02(S)* 02240.03 0.50+0.03
RELINK | 0.6740.02 024+0.00 0.64+0.01
AEEEM | 0.75%0.00(L)** | 02740.00 0.73+0.00
Avct NASA 0.7740.01(L)*** | 026+0.01 0.74+0.01
PROMISE | 0.7340.01(L)*** | 02740.01 0.73+0.01
RELINK | 0.7940.01 026+0.01 0.74+0.01
AEEEM | 0.07£0.01(L)** | 05640.00 0.43+0.00
False Alarmb NASA 0.07+0.00(L)*** | 053+0.00 0.460.00
PROMISE | 0.0740.00(L)*** | 061+£0.01 0.38+0.01
RELINK | 0.2340.05 064+0.00 0.33+0.01

Notes: (1) ** means p < 0.001,* means p < 0.01, * means p < 0.05.
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) "}’ indicates "the smaller the better’; 4" indicates ‘the larger the better”.

Table 3| and Table 4| present the average results and
statistical analysis results of supervised and unsupervised
methods when NPMs and EPMs are considered, respec-
tively. In both of the two tables, the first column lists the
performance measures. The second column lists the datasets
we experiment on. In the following column, the average
performance values (i.e., the mean performance values) of
EASC are given. Then we list the average performance
of unsupervised methods. Notice that the results listed in
the columns filled with grey is used for comparison. For
example, Table (3| mainly lists the comparison of EASC
and ManualUp in terms of NPMs. But for convenience,
we also list the average result of ManualDown in the last
column. Besides, for columns of supervised methods, we
use different ways to present the statistical analysis results.
In particular, the cells are in bold if the supervised method is
significantly superior to the unsupervised method, the cells
are in underline if the supervised method is significantly
inferior to the unsupervised method. Furthermore, we use
different number of symbol “*” to represent the level of
p-value (i.e., *** means p < 0.001, ** means p < 0.01, *
means p < 0.05). The effect sizes are also indicated using
the “L/M/S” character, which correspondingly represents
the Large/Medium/Small effect size according to Cliff’s
delta.

4

From the results shown in Table B]and Table [4} we make
the following observations:

(1) NPMs. EASC can statistically significantly outper-
form ManualUp with a large improvement for al-
most all cases in terms of FI-score, AUC and
False Alarm.

(2) EPMs. ManualDown can statistically significantly
outperform EASC in most cases in terms of PI/QL,
while EASC can statistically significantly outperfor-
m ManualDown for almost all cases in terms of
CostEffort@L% and P,,;. In terms of IFA, Manual-
Down and EASC obtain similar performance without
statistical significance except for PROMISE.

Besides, we also conduct experiments on the compar-
isons of the four state-of-the-art supervised methods and
two unsupervised methods. The results are listed in the
Table[§land Table[dl

From Table[f|and Table [d, we find that:

(1) NPMs. The four state-of-the-art supervised methods
can statistically significantly outperform ManualUp
with a large improvement for almost all cases in
terms of F'1-score , AUC and False Alarm.

(2) EPMs. ManualDown can statistically significant-
ly outperform the four state-of-the-art supervised
methods in most cases in terms of [FA and PIIQL.
In terms of CostEffort@QL% and P,,;, four state-of-
the-art supervised methods statistically significantly
outperform ManualDown in most cases.

APPENDIX E
THE DISTRIBUTION OF INSTANCE INSPECTION EF-
FORT AND INSTANCE QUALITY ON FOUR DATASETS

In Table[7]to Table[10} the first column lists the dataset name.
The second column lists the name of project. In the following
five columns, we list the percentage of defective instances
in the top sorted instances based on inspection effort. In
Zhou et al.’s method, they used 50% as the classification
threshold. We list the results of five different thresholds (i.e.,
10%, 20%, 30%, 40% and 50%). Next, we list the total number
of defective instances in each project. In the following five
columns, we list the percentage of effort in the top sorted
instances based on inspection effort. Notice that the proxy
of inspection effort can be found in APPENDIX|[B] Followed
that, we list the total number of inspection and instances
in each project respectively. The last column shows the
distribution of defective modules by using ManualDown
method via visualization technology. Notice that all the
instances in each dataset are represented as stripes, and
sorted by their inspection effort in descending order from
the left side to the right side. In each distribution figure, the
pink stripes represent the defective instances, and the green
stripes represent the non-defective instances.

For each project, we find that the majority of defective
instances (i.e., more than 70%) will be ranked on the top
when sorting the instances according to its inspection effort
in descending order and inspect the top 50%. In particular,
we find that ManualDown can find at least 67%, 68%, 64%
and 44% defective instances of total defective instances
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TABLE 4: Comparisons between EASC and ManualDown
Measures.

5

on four datasets in terms of Effort-aware Performance

Measures Dataset EASC ManualDown | ManualUp Measures Dataset EASC ManualDown | ManualUp
AEEEM | 122 12 30£417 AEEEM | 0.7320.02(D% | 0.222£0.03 0.65£0.00
NASA 5450 1+16 126847251939 NASA 0.6240.02(L)* | 0.41+0.04 0.49-0.04
i 1
IFA PROMISE | 6+118(My*™* | 142 20+538 Popt@20% PROMISE | 0.66+0.08(L)*** | 0.20-£0.08 0.63-0.04
RELINK | 1£2 00 8+1 RELINK | 0.7440.02 0.32+£0.08 0.63-£0.00
AEEEM | 0.08E0.00(L) | 0.0240.00 0.69£0.00 AEEEM | 0.1820.01(0* | 0.0520.00 0.262£0.00
NASA 0.0740.00(L)* | 0.03+0.00 0.54-:0.02 NASA 0.20+0.01(L)* | 0.10£0.00 0.18+0.02
1 .U/ V.Ul . . T
PII@20%" | PROMISE | 0.110.00(L)*** | 0.03-0.00 0.68+0.01 CostEffort@20%" | pROMISE | 0.17-£0.01(L)*** | 0.08+0.00 0.2740.02
RELINK | 0.2240.01 0.04£0.00 0.68-£0.00 RELINK | 0.3340.00 0.09+0.00 0.28-£0.00
AEEEM | 0.020.00(L)* | 0.004£0.00 0.19£0.02 AEEEM | 0.04£0.00(D* | 0.00£0.00 0.08£0.00
NASA 0.04£0.00 0.0240.00 0.25+0.02 NASA 0.1120.02 0.05+0.00 0.08+£0.02
1 1T
PIIQ1000% | PROMISE | 0.06+0.01(L)*** | 0.03+0.00 0.35+0.04 CostEffort@10007 | pROMISE | 0.0540.00 0.05-£0.01 0.15+0.01
RELINK | 0.12+0.00 0.0240.00 0.48+0.05 RELINK | 0.2240.04 0.06£0.00 0.19-£0.01
AEEEM | 0.0220.00(L* | 0.00£0.00 0.26£0.02 AEEEM | 0.05£0.00(D* | 0.01£0.00 0.12£0.01
NASA 0.07£0.01 0.05+0.01 0.39+£0.05 NASA 0.16£0.02 0.1120.02 0.11£0.02
1 . g T
PIIQ2000% | PROMISE | 0.10+0.04(L)*** | 0.06+0.03 0.45+0.05 CostEffort@20007 | pROMISE | 0.07+0.01(S)* | 0.08+0.02 0.18+0.02
RELINK | 0.18+0.00 0.0540.00 0.61£0.07 RELINK | 0.32+0.06 0.120.03 0.24-£0.00

Notes: (1) ** means p < 0.001,* means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ') indicates "the smaller the better’; 1 indicates ‘the larger the better’.

TABLE 5: Comparisons among supervised methods and ManualUp on four datasets in terms

performance measures.

of non-effort-aware

Measures Dataset CamargoCruz09-DT | Menzies11-RF Turhan09-DT Watanabe08-DT | ManualUp | ManualDown
AEEEM 0.3140.01(L)* 0.2740.02(L)* 0.2740.00(L)* 0.3040.00(L)** 0.13£0.00 0.39+0.03
ry " NASA 0.09+0.01 0.12+0.01 0.16+0.01 0.11+£0.00 0.0940.01 0.27+0.02
- score PROMISE | 0.37+0.02(L)*** 0.330.03(M)*** | 0.3620.03(M)*** | 0.3740.01(L)*** | 0.2240.03 | 0.5040.03
RELINK 0.54+0.00 0.59+0.03 0.534+0.03 0.494+0.03 0.24+0.00 0.64+0.01
AEEEM 0.60+0.01(L)** 0.58-0.00(L)** 0.53-+0.00(L)** 0.59-+0.00(L)** 0.27+0.00 0.73+0.00
Avct NASA 0.70+0.01(L)*** 0.53+0.00(L)*** 0.6240.00(L)*** 0.6740.01(L)*** 0.26+0.01 0.74+0.01
PROMISE | 0.58+0.01(L)*** 0.5940.01(L)*** 0.5940.01(L)*** 0.5940.01(L)*** 0.27+0.01 0.73+0.01
RELINK 0.65+0.00 0.68+0.01 0.63+0.01 0.60£0.02 0.26+0.01 0.74+0.01
AEEEM 0.06+0.00(L)** 0.04+0.00(L)** 0.13+0.01(L)** 0.11+0.00(L)** 0.5640.00 0.4340.00
False Al + NASA 0.0140.00(L)*** 0.034-0.00(L)*** 0.0540.00(L)*** 0.0240.00(L)*** 0.53-+0.00 0.46+0.00
atse Alarm = pROMISE | 0.20-£0.01(L)*** 0.13+0.01(L)*** | 0.1840.01(L)*** | 0.2620.02(L)*** | 0.61+£0.01 | 0.38=0.01
RELINK 0.21+0.01 0.20+0.00 0.17+0.02 0.17+0.01 0.64+0.00 0.33+0.01
Notes: (1) *** means p < 0.001, ** means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium /Small effect size according to Cliff’s delta.
(3) "l indicates "the smaller the better’; 1" indicates "the larger the better’.
on AEEEM, RELINK, NASA and PROMISE respectively. Fl-score
However, we need to spend 87%, 91%, 77% and 80% of total 1.004
inspection effort on AEEEM, RELINK, NASA and PROMISE 0.751 orsd a
respectively. Through the fringe patterns, we can easily 0.501 050l s
illustrate the distribution of defective and non-defective 0.257 TiR, et B ' !
instances. Thus, it is not hard to find that the unsupervised 0001 = g B el W 0287 , ‘L ,
method obtains better performance in terms of NPMs at the AEEEM  NASA PROMISE RELINK AEEEM  NASA PROMISE RELINK
cost of higher inspection efforts. False Alarm
1.004 -
0.75+ I g
S ]
APPENDIX F 0501 F I T
| e I 1
THE INFLUENCE OF CLASSIFIER ON EASC AND Ziz 5 s, é-i::-;z. |L

TUNEDMANUALUP
F.1

EASC, a supervised method proposed in this paper, builds a
prediction model on the basis of state-of-the-art supervised
classifiers and then resorts the testing instances for different
practical usages. Therefore, in this section, to investigate
the effect of the choice of EASC’s underlying classifier, we
make a comparison among six commonly used classifiers:
Decision Tree, Random Forest, Logistic Regression, Naive
Bayes, RBF Network and Support Vector Machine. Table
lists the introduction to all basic classifiers used in the
paper. The first to third columns are the name of classifier,
the abbreviation and brief description respectively. These
classifier are widely used in CPDP scenario [7], [49]-[52].

The Influence of Classifier on EASC

AEEEM NASA PROMISE RELINK

EASC-DT EZ} EASC-NB M EASC-RF
method ... - :
{22l EASC-LR £ EASC-NET J@ EASC-SVM

Fig. 2: Comparison of Different Classifiers in EASC in Terms
of Non-Effort-Aware Performance Measures.

Figure[2and Figure[|show the overall performance of EASC
built with different classifiers on different datasets.
Figure2land Figure[§|present the value of EASC in terms
of 11 performance measures when using six different basic
classifiers. Therefore, there are 11 sub-figures and each one
illustrates the performance of EASC in terms of a specific
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TABLE 6: Comparisons among supervised methods and ManualDown on four datasets in terms of non-effort-aware
performance measures.

Measures Datasets | CamargoCruz09-DT | Menzies11-RF Turhan09-DT Watanabe08-DT | ManualDown ManualUp
AEEEM | 1+1 0+0 2+5 jES] 1£2 30417
TFAd NASA 3346341 28+5637(M)* 54+43(L)* 4439 1+16 126847251939
PROMISE | 3+£114(S)*** 54+194(M)*** 6£205(S)*** 3£50(5)** 1+2 19+473
RELINK | 040 040 040 140 040 8+1
AEEEM 0.2240.00(L)** 0.2240.00(L)** 0.224+0.00(L)** 0.2240.00(L)** 0.02+0.00 0.69+0.00
PII@20%* NASA 0.184-0.00(L)*** 0.1840.00(L)*** | 0.18+0.00(L)*** | 0.1840.00(L)*** 0.03£0.00 0.54+0.02
° PROMISE | 0.2240.00(L)*** 0.2240.00(L)** | 0.22+0.00(L)*** | 0.2240.00(L)*** | 0.03-0.00 0.6840.01
RELINK | 0.1740.00 0.1740.00 0.1740.00 0.1740.00 0.044-0.00 0.684-0.00
AEEEM | 0.02£0.00(L)* 0.02£0.00(L)™ | 0.02£0.00(L)** | 0.0220.00(L)* 0.00£0.00 0.19+0.02
PH®1000 NASA 0.0940.01(L)* 0.0940.01(L)* 0.0940.01(L)* 0.0940.01(L)* 0.024-0.00 0.2540.02
PROMISE | 0.08+0.02(L)*** 0.08+0.02(L)*** | 0.08£0.02(L)*** | 0.0840.02(L)*** 0.03+0.00 0.35+0.04
RELINK 0.08=+0.00 0.08+0.00 0.08+0.00 0.08=+0.00 0.02+0.00 0.48+0.05
AEEEM 0.02+0.00(L)** 0.02+£0.00(L)** 0.02+0.00(L)** 0.02£0.00(L)** 0.00+£0.00 0.26+0.02
NASA 0.18£0.05 0.18+0.05 0.18+0.05 0.18+0.05 0.05+0.01 0.39+0.05
PII@2000*% PROMISE | 0.1440.05(L)*** 0.1440.05(L)** | 0.14+0.05(L)*** | 0.1440.05(L)** | 0.06+0.03 0.4540.05
RELINK | 0.1840.04 0.1840.04 0.1840.04 0.1840.04 0.054-0.00 0.6140.07
AEEEM | 0.26%0.00(L)** 0.20£0.03(L)* 0.24+0.01(L)*™ | 0.30£0.01(L)** 0.05+£0.00 0.2620.00
CostEffort@20%" NASA 0.0740.01 0.0940.00 0.1340.01 0.1140.02 0.104:0.00 0.1840.02
ostEffor © PROMISE | 0.294-0.02(L)*** 0.2740.02(L)*** | 0.28+0.02(L)*** | 0.26+0.01(L)*** | 0.08+0.00 0.2740.02
RELINK 0.29£0.00 0.31+£0.00 0.26+0.02 0.22+0.00 0.09+0.00 0.28+0.00
AEEEM | 0.04%0.00(L)* 0.0520.00(L)* 0.03%0.00 0.04+0.00(L)* 0.00£0.00 0.0840.00
CostEffort®1000" NASA 0.06£0.00 0.06+0.00 0.08+0.01 0.05£0.00 0.05+0.00 0.08+0.02
ostEffor PROMISE | 0.0940.02(S)* 0.060.01 0.060.01 0.0940.02(S)* 0.0540.01 0.15-0.01
RELINK | 0.1640.02 0.154:0.02 0.1440.02 0.1140.01 0.064-0.00 0.1940.01
AEEEM | 0.05+0.00(L)* 0.07%£0.00(L)* 0.05+0.00(L)* 0.04%0.00(L)* 0.01£0.00 0.12+0.01
CostEffort©2000" NASA 0.0640.00 0.084:0.00 0.104:0.01 0.0640.00 0.1140.02 0.1140.02
ostEffor PROMISE | 0.12:£0.02(S)** 0.1040.02 0.1040.03 0.13+0.03(S)** 0.0840.02 0.1840.02
RELINK | 0.2140.05 0.2940.10 0.244-0.09 0.2940.12 0.124-0.03 0.244-0.00
AEEEM 0.49+0.01(L)* 0.49+0.02 0.40+0.00 0.51+£0.02(L)* 0.22+0.03 0.65+0.00
P @20%" NASA 0.34+0.04 0.36+£0.04 0.34+0.04 0.35+0.03 0.41+0.04 0.49+0.04
opt ° PROMISE | 0.454-0.04(L)*** 0.394+0.03(L)*** | 0.39+0.04(L)*** | 0.4340.05(L)*** | 0.20-+0.08 0.6340.04
RELINK | 0.5140.13 0.4640.04 0.5040.12 0.6240.12 0.3240.08 0.634-0.00
Notes: (1) ** means p < 0.001,** means p < 0.01,* means p < 0.05.
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) '} indicates "the smaller the better’; "1’ indicates "the larger the better’.
TABLE 7: The Distribution of Instance Inspection Effort and Instance Quality on AEEEM
Percentage of Defect Percentage of Effort: sstibuti
Dataset  Project ereentage of Delecs # Defect ercentage o ors # Total Effort # Instances Distribution
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Larger effort <= Lower effort
eclipse 035 054 068 076 079 206 059 074 083 089 093 224,055 997 BRI
equinox 021 036 053 063 073 129 055 072 08 090 095 39,534 324 (1L AT A AR
AEEEM  lucene 020 039 050 058 067 64 058 073 08 088 092 73,184 691 0NN R A
mylyn 029 045 058 068 073 245 052 068 078 086 091 156,102 1,862 11 A R AT
pde 025 046 059 070 078 209 042 060 072 081 087 146,952 1,497 0 O 0 000000 0
TABLE 8: The Distribution of Instance Inspection Effort and Instance Quality on NASA
Percentage of Defect: Percentage of Effort N
Dataset  Project ercontage of Teteds # Defect ercentage o ors # Total Effort # Instances Distribution
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Larger effort <= Lower effort
CM1 029 048 060 069 0.76 42 038 055 066 075 0.81 13,626 344 ll.l|.|l_
M1 025 041 055 065 072 1759 047 064 075 082 0.88 272,370 9,593 SOOI O]
KCl 029 048 064 075 086 325 050 072 084 091 096 30,631 2,09 I ]
Nasa _KC3 028 039 053 058 064 36 035 054 066 075 082 6,354 200 O
MCl 065 084 088 08 1.00 68 065 084 093 097 1.00 59,159 9,277 T
MC2 023 034 045 057 066 44 041 058 070 079 086 5,205 127
MW1 044 059 063 074 078 27 028 045 059 069 078 6,838 264 0000 A
PC1 030 046 061 075 082 61 037 055 066 075 082 22,038 759 | X A
PC2 013 019 044 044 069 16 031 047 059 069 077 3,170 1,585 [ 1 ]
PC3 018 037 052 066 074 140 041 057 068 076 0.83 31,040 1,125 A
PC4 017 039 057 069 075 178 038 056 068 078 084 26,980 1,399 [
PC5 091 094 096 096 096 503 080 085 088 090 092 153,501 17,001 ]
TABLE 9: The Distribution of Instance Inspection Effort and Instance Quality on RELINK
P f Def. 3 £ Eff - tribut
Dataset Project ercentage of Defects # Defect ercentage o orts # Total Effort  # Instances Distribution
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Larger effort<==> Lower effort
Apache2.0 016 031 048 062 0.71 98 041 063 0.78 086 092 59,879 194
RELINK openintents 027 050 059 073 0.77 22 046 0.69 080 090 095 4,121 56
zxingl6 016 028 043 057 0.68 118 047 068 079 086 091 12,811 399 AL 0 A AR MY
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TABLE 10: The Distribution of Instance Inspection Effort and Instance Quality on PROMISE

Percentage of Defects

Percentage of Efforts

Distribution

Dataset Project # Defect # Total Effort # Instances
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Larger effort <= Lower effort
ant-1.3 0.40 0.55 0.65 0.80 0.90 20 036 055 070 0.79 0.87 37,699 125 i
ant-1.4 0.10 0.25 0.40 0.50 0.63 40 038 059 073 0.83 0.89 54,195 178 T Ny
ant-1.5 034 059 0.69 0.72 0.81 32 045 0.65 0.77 0.85 0.90 87,047 293 L N Y
ant-1.6 026 0.51 0.70 0.82 0.88 92 044 064 076 0.84 0.90 113,246 351 10 AT
ant-1.7 033 057 0.69 078 087 166 045 0.64 075 0.84 0.90 208,653 745 QUAHRCRII 0O e
are 033 044 052 059 063 27 055 070 01 089 094 31342 234 (| R
berek 031 0.56 0.81 0.94 1.00 16 0.64 075 0.84 091 0.94 32,320 43 (i
camel-1.0  0.31 0.31 0.54 0.69 0.77 13 041 059 071 081 0.88 33,721 339 T N
camel-1.2 014 024 035 045 054 216 041 061 0.75 0.84 0.90 66,302 608 T I
camel-1.4 023 0.39 048 0.61 069 145 043 063 0.76 0.84 091 98,080 872 1 R NN
camel-1.6 019 031 043 051 062 18 045 0.64 0.76 0.85 091 113,055 965 L R T
ckjm 020 040 0.40 0.60 0.80 5 029 043 058 0.72 0.82 1,469 10
e-learning  0.60 0.60 1.00 1.00 1.00 5 042 059 072 0.80 0.87 3,639 64 (A
forrest-0.7 020 0.60 0.60 0.60 0.80 5 026 045 0.61 0.74 0.83 4,930 29 U
ivy-1.1 0.14 029 0.44 059 0.67 63 055 0.72 0.81 0.88 0.93 27,292 111 I
ivy-l4 044 056 069 075 088 16 058 075 084 090 094 59286 241 |
PROMISE ivy-2.0 045 0.65 0.75 0.83 0.88 40 052 0.73 0.83 0.90 0.94 87,769 352 I H TN I
jedit32 020 042 053 068 078 90 063 075 083 089 093 128883 272 [N
jedit-4.0 0.25 048 0.67 0.72 0.75 75 0.62 0.76 0.83 0.89 0.93 144,803 306 0
jedit-4.1 028 0.51 0.63 0.73 0.81 79 0.61 0.74 0.83 0.89 0.93 153,087 312 0
jedit-4.2 0.38 0.60 0.73 0.83 0.92 48 056 0.70 0.80 0.87 0.92 170,683 367 I
jedit-4.3 036 0.55 0.55 0.64 0.64 11 0.54 0.69 0.80 0.88 0.93 202,363 492 | YRR O
kalkulator ~ 0.17 0.33 0.33 0.33 0.83 6 032 050 0.64 0.71 0.82 4,022 27 \ [
log4j-1.0 029 047 0.62 0.76 0.79 34 0.38 057 0.70 0.80 0.87 21,549 135 I
log4j-1.1 022 043 059 0.73 0.84 37 035 0.53 0.68 0.78 0.86 19,938 109 L
log4j-1.2 0.11 0.20 030 0.39 050 189 040 058 0.71 0.80 0.88 38,191 205 | I 1
lucene-20  0.19 0.34 046 057 0.67 91 047 0.63 076 0.84 0.90 50,596 195 T T
lucene-22  0.13 026 039 047 057 144 048 0.65 077 0.85 091 63,571 247 T e e
lucene-24  0.14 027 038 049 058 203 052 0.69 0.80 0.87 0.92 102,859 340 0 e
nieruchomosci 0.30 0.60 0.70 0.80 0.90 10 0.35 0.56 0.70 0.78 0.87 4,754 27 111
pbeansl 0.15 0.30 0.40 0.50 0.60 20 076 0.87 090 095 0.97 5,572 26
pbeans2 0.30 0.50 0.60 0.60 0.80 10 073 0.83 0.90 095 0.98 15,125 51 (T
pdftranslator  0.27 040 0.53 0.67 0.80 15 056 071 0.81 0.90 0.94 6,318 33 [11]
poi-1.5 0.12 0.28 0.40 0.53 0.63 141 040 057 070 0.79 0.86 55,428 237 T e P
poi-2.0 030 041 051 0.62 0.62 37 048 0.63 0.75 0.83 0.88 93,171 314 T
poi-2.5 0.13 0.25 0.38 047 057 248 049 0.64 075 0.83 0.89 119,731 385 IR TIETAREER BT T AT O
poi-3.0 014 027 041 053 0.64 281 049 0.66 077 0.85 090 129,327 442 [0 L LU

continued on next page
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TABLE 10: The Distribution of Instance Inspection Effort and Instance Quality on PROMISE. - continued from previous
page

Percentage of Defects Percentage of Efforts istributi

Dataset Project 8 # Defect 8 # Total Effort # Instances Distribution

10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Larger effort<==>Lower effort
redaktor 011 015 030 044 048 27 034 051 064 074 083 59,280 176 WA
serapion 0.33 0.67 0.67 0.67 0.78 9 0.53 0.67 0.78 0.83 0.88 10,505 45
skarbonka 022 033 044 0.78 0.89 9 043 0.62 0.78 0.87 0.94 15,029 45 i
sklebagd 0.17 0.33 0.50 0.58 0.67 12 039 054 0.65 0.74 0.83 9,602 20
synapse-1.0  0.44 0.69 0.88 0.88 0.88 16 0.32 052 0.65 0.75 0.84 28,806 157 0
synapse-1.1 022 0.38 050 060 0.68 60 035 055 0.69 078 086 42,302 222 A
synapse-12 021 042 057 0.65 073 8 036 058 070 0.80 0.87 53,500 256|000 NN TAAORR
systemdata  0.33 0.33 0.67 0.78 0.89 9 0.55 0.74 0.84 0.90 0.94 15,441 65

szybkafucha 021 029 0.36 043 0.57 14 0.35 049 0.65 0.74 0.85 1,910 25
termoproject  0.38 0.54 0.69 0.69 0.85 13 0.57 0.72 0.82 0.89 0.94 8,239 42
tomcat 039 065 075 082 087 77 054 074 0.84 091 095 300,674 858 (N0
PROMISE
velocity-1.4  0.10 0.18 0.27 0.38 047 147 0.62 075 0.84 0.90 0.94 51,713 196 I \
velocity-15 011 024 039 052 0.64 142 063 076 0.84 090 095 53,141 214 IO
velocity-1.6 013 0.32 047 060 0.68 78 062 076 085 091 095 57,012 229 R
workflow 0.20 0.30 0.45 055 0.65 20 0.46 0.61 0.72 0.81 0.87 4,125 39
wspomaganiepi 0.17 0.25 0.42 0.58 0.67 12 0.31 050 0.64 0.75 0.80 5,685 18
xalan-24 030 051 071 0.83 0.88 110 051 0.69 0.80 0.88 093 225088 723 |
xalan25 015 028 040 051 0.62 387 054 072 0.83 090 094 304,860 803 (I AR
xalan2.6 021 038 050 0.61 073 411 053 072 083 090 094 411,737 885 1 R OO
xalan-2.7 0.10 020 0.30 0.40 0.51 898 052 0.71 0.82 0.89 0.94 428,555 909 \ I
xerces-1.2 0.18 0.28 0.32 0.44 046 71 0.73 0.88 0.94 0.97 0.98 159,254 440
Xxerces-13 026 046 057 075 083 69 073 088 094 097 098 167,095 453 |1 A
xerces-1.4 013 025 0.37 049 061 437 068 084 091 095 097 141,180 588 LI T
xerces-init 0.16 023 0.31 0.39 0.44 77 0.73 0.88 0.94 0.97 0.98 90,718 162 M
zuzel 0.23 046 0.62 0.69 0.85 13 0.38 0.65 0.82 0.89 0.94 14,421 29
TABLE 11: The basic classifiers used in our experiment
[ Classifier | Abbr. | Brief Description |

C4.5 Decision Tree [43 DT A tree structure consists of nodes and leafs. Each node of the tree represents a logical
decision based on a single metric, while each leaf of the tree defines the classification.
Information gain decides which attribute should be used for decision.

Random Forest [44 RF A random forest is composed of many random trees. Each random tree is a decision
tree (e.g., C4.5).

Logistic Regression [45 LR A linear regression model estimates the likelihood of a classification with logistic
function. For classification issues, logistic regression chooses the class with the highest
likelihood.

Naive Bayes [46 NB The method estimates a score for each class based on a simplification of Bayes law.

RBF Network [47 NET One of the types of artificial neural network with Radial Basis Functions (RBFs) as
neurons.

Support Vector Machine [48] | SVM | It determines a hyperplane that separates the positive from the negative samples. The
hyperplane is determined in the kernel space of the data, i.e., a transformation of the
data in a higher dimensional space using a kernel function. We use RBFs as kernel
function in this paper.
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Fig. 3: Comparison of Different Classifiers in EASC in Terms
of Effort-Aware Performance Measures.

performance measure. Besides, for every sub-figure, the z-
axis represents different datasets while the y-axis represents
the corresponding performance values. Notice since the
large range of IFA value (i.e., 0~17001), we truncate those
values which are large than 22 and make them equal to 22
for better illustration presentation. We choose 22 as the cut-
point since the number of values which are larger than 22
occupies a small proportion (i.e., 121/492) and the number
22 is statistically the upper quartile value for IFA.

As shown in Figure [2] and Figure [B] when EASC built
on different basic classifiers, the performances of EASC ap-
pear similarly in terms of different performance measures.
Through observing this figure, we can obtain the following
two conclusions:

o the six state-of-the-art classifiers have similar pre-
diction ability since they can achieve similar perfor-
mance in terms of NPMs and EPMs;

o EASC does not rely on the classifiers used, at least on
the four datasets. However, through further analysis
of the results, we find that EASC using Naive Bayes
wins more times than any other classifiers consider-
ing the average performances.

We list the total numbers of wins and ties for each
classifier on different projects in Table[12] As shown in Table
the first column represents classifiers, the following 11
columns represent different performance measures used
in this paper and the last column lists the sum of each
classifier. We sum up the number of cases that EASC built
on a special classifier obtains the best performance or
obtains the same performance with others which obtain the
best performance. At last, we sort classifiers in descending
order according to total win/tied numbers and find that
NB ranks first. Therefore, we use NB as the default basic

9
Fl-score
0.75- B
S
0.50- a9
0.25-
0.00- ' ' . ' ' ' '
AEEEM NASA PROMISERELINK AEEEM NASA PROMISERELINK
False Alarm
1.00+ '
0.75+
0.50-
0.25-
0.00- — R .
AEEEM NASA PROMISERELINK
E TunedmanualUp-DT EE: TunedmanualUp-NB %  TunedmanualUp-RF
method T, H .
et TunedmanualUp-LR ':';' TunedmanualUp-NET - TunedmanualUp-SVM
Fig. 4. Comparison of Different Classifiers in

TunedmanualUp in  Terms of Non-effort-aware

Performance Measures.

classifier in EASC.

EASC is insensitive to basic classifiers and can
obtain stable performances on various projects using
different classifiers.

F.2 The Influence of Classifier on TunedmanualUp

Menzies et al. [53] found that manualUp tuned with a defect
predictor could achieve better performance. In particular, in
the phase of model building, a defect predictor should be
trained on training instances. In the phase of model apply-
ing, the defect predictor firstly makes a binary decision (e.g.,
defective or clean) on testing instances. Then, all instances
identified as defective are sorted in ascending order by
LOC. Therefore, the choice of TunedmanualUp underlying
classifier can infect the sorting order of testing instances.

Therefore, in this section, to investigate the effect of
the choice of TunuedmanualUp’s underlying classifier, we
make a comparison among six commonly used classifiers:
Decision Tree, Random Forest, Logistic Regression, Naive
Bayes, RBF Network and Support Vector Machine. The
introduction to all basic classifiers can be found in Table
oo

Figure [4] and Figure [ present the overall performance
of TunedmanualUp in terms of 11 performance measures
when using six different basic classifiers. Notice since the
large range of IFA value (i.e.,, 0~435), we truncate those
values which are large than 8 and make them equal to 8
for better illustration presentation. We choose 8 as the cut-
point since the number of values which are larger than 8
occupies a small proportion (i.e., 109/492) and the number
8 is statistically the upper quartile value for IFA.

As shown in Figure [ and Figure when
TunedmanualUp built on different basic classifiers,
TunedmanualUp achieves similar performances in terms
of different performance measures. Through observing this
figure, we can find that the six state-of-the-art classifiers
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TABLE 12: The Win/Tie Numbers of Different Classifiers in EASC on Four Datasets

PII CostEffort
Classifiers Fl-score AUC False Alarm | IFA ~20% 1000 2000 20% 1000 2000 Popt | Total
EASC-NB 18 32 16 41 56 27 33 10 11 8 30 282
EASC-SVM 1 2 82 14 44 39 0 1 1 5 196
EASC-LR 14 0 0 16 0 2 40 52 53 14 191
EASC-RF 8 37 7 29 15 13 13 10 9 9 12 162
EASC-NET 24 4 0 21 2 5 28 30 31 9 158
EASC-DT 18 8 5 32 1 4 11 13 14 16 125

TABLE 13: The Win/Tie Numbers of Different Classifiers in TunedmaunalUp on Four Datasets

PII CostEffort
Classifiers Fl-score AUC False Alarm | IFA ~30% 1000 2000 20% 1000 2000 Popt | Total
TunedmanualUp-NB 37 4 58 27 60 28 35 15 28 22 32 346
TunedmanualUp-SVM 18 42 10 52 14 29 28 20 22 19 15 269
TunedmanualUp-LR 15 21 6 40 3 15 10 20 31 28 16 205
TunedmanualUp-RF 13 6 10 38 17 29 27 14 24 14 11 | 203
TunedmanualUp-NET 8 8 11 29 12 20 12 14 21 18 9 162
TunedmanualUp-DT 8 3 8 19 3 1 3 2 30 30 18 | 145
PII@20% PII@1000 measures (EPMs). In particular, as for NPMs, three perfor-
0751 e § 0.8+ s 2o mance measures are considered which are widely used in
050+ s o e Lo 851 g . the scenario of software defect prediction. As for EPMs,
0.25] e o Mhee 027 vl mﬂr:.; q!;. e I P )
’ NAISA PRO;VIISERELIINK ’ AEEEM NASA PROMISERELINK elghifdperi:rm}?.n;e measures froml four dlffefjent ::jypes are
considered which are most recently proposed and are not
0
1.00- PIl@2000 0.6 CostEffort_'@“?_O % considered in Zhou et al.’s work.
§j§(5>3 . 0l s 8"2" e Different software modules may have different sizes.
257 2 W - Sl | . . .
0.00- ;E-E"‘E-'; ?\i:-\".sf el e v PF-;O-I;I-I;ERELINK That is, the lines of code in software modules may vary
from hundreds of LOC to thousands of LOC. Therefore,
0s- COStEffOI’t@lOOO Loo- COSt_E_ffort@ZOOO to comprehensively investigate PIIQL and CostEffortQL,
gel °° " 0.25] o '.‘ two kinds of PIIQL and CostEffortQL are considered: 1)
051 ewen 3"""3" S 0237 o relative LOC of PII and CostEffort (e.g., 20%); 2) absolute
AEEEM NASA PROMISERELINK AEEEM NASA PROMISERELINK LOC Of PII and COStEffOrt (e.g.’ 1000’ 2000) These perfor-
IFA Popt mance measures consider costs from different perspectives:
%: &’; E:;: I H- e éigg: inspection costs, revenue costs, and impact on developers.
2] Wity .i_:' ,-l-v ﬁ."\‘.. 928 aanpan We make a correlation analysis among the all perfor-
AEEEM NASA PROMISERELINK AEEEM NASA PROMISERELINK  mance measures on all projects and all methods. The results
are shown in Figure[6}
E TunedmanualUp-DT Et: TunedmanualUp-NB 4  TunedmanualUp-RF
method . -
2220 TunedmanualUp-LR - E2 TunedmanualUp-NET - TunedmanualUp-SVM 10
False Alarm 01 ﬂ 0015 = 055 025 0.16 028 011 013 | -0.081
Fig. 5 Comparison of Different Classifiers in Frscore [N oc7c N oc7t acst oot R o031 |ost 023 o

TunedmanualUp in Terms of Effort-Aware Performance
Measures.

have similar prediction ability since they can achieve similar
performance in terms of NPMs and EPMs.

We list the total numbers of wins and ties for each
classifier on different projects in Table As shown in
Table [13] we find that TunedmanualUp using Naive Bayes
wins more times than any other classifiers considering the
average performances. Therefore, we use NB as the default
basic classifier in TunedmanualUp.

APPENDIX G
THE CORRELATION BETWEEN PERFORMANCE
MEASURES.
In this paper, we totally consider 11 performance measures,

which can be divided into two groups: non-effort-aware per-
formance measures (NPMs) and effort-aware performance
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Fig. 6: Correlation analysis among all performance measures
on all projects and all methods.

In the above figure, different colors indicate different
degrees of correlation between two performance measures.
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From this figure, we make the following observations: (1)
PIIQ1000 (CosfEffort@1000) has a high correlation with
PIT@2000 (CosfEffot@2000), which is also obvious since
they has same definition with different inspection effort.
(2) F1-score has a 51% correlation with CostEffort@Q20%.
The reason behinds this observation is that CostEffortQL
has the same meaning with Recall and CostEffortQL can
be treated as the effort-aware version of Recall. Besides,
F1-score is highly related to Recall. (3) PIIQ20% has
a 55% correlation with False Alarm. It is obvious that if
there are many false alarm in modeling application, then
it requires developers to switch the context more frequently.
Therefore, False Alarm has a relationship with PIT@Q20%.
(4) For other performance measures, there is not obvious
correlation between two performance measures.

According to above analysis, in this revision, we keep
PIIQ1000 and PII@2000 since they are the absolute ver-
sion of PIIQL. We also keep CostEffortQL for the same
reason. Besides, we also keep F1-score, CostEffortQ20%,
PII@20% and False Alarm for two reasons: 1) the correla-
tion between each pair of performance measures is not large;
2) these performance measures are proposed for different
goals (i.e., effort-aware and non-effort-aware).
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