
IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 1

Diversified Third-Party Library Prediction for
Mobile App Development

Qiang He, Bo Li, Feifei Chen, John Grundy, Xin Xia, Yun Yang

Abstract—The rapid growth of mobile apps has significantly promoted the use of third-party libraries in mobile app development.
However, mobile app developers are now facing the challenge of finding useful third-party libraries for improving their apps, e.g., to
enhance user interfaces, to add social features, etc. An effective approach is to leverage collaborative filtering (CF) to predict useful
third-party libraries for developers. We employed Matrix Factorization (MF) approaches - the classic CF-based prediction approaches -
to make the predictions based on a total of 31,432 Android apps from Google Play. However, our investigation shows that there is a
significant lack of diversity in the prediction results - a small fraction of popular third-party libraries dominate the prediction results while
most other libraries are ill-served. The low diversity in the prediction results limits the usefulness of the prediction because it lacks
novelty and serendipity which are much appreciated by mobile app developers. In order to increase the diversity in the prediction
results, we designed an innovative MF-based approach, namely LibSeek, specifically for predicting useful third-party libraries for
mobile apps. It employs an adaptive weighting mechanism to neutralize the bias caused by the popularity of third-party libraries. In
addition, it introduces neighborhood information, i.e., information about similar apps and similar third-party libraries, to personalize the
predictions for individual apps. The experimental results show that LibSeek can significantly diversify the prediction results, and in the
meantime, increase the prediction accuracy.

Index Terms—Third-party library, prediction, mobile app development, matrix factorization, diversity, accuracy bias.

F

1 INTRODUCTION

THE rapid growth of mobile apps (referred to as
apps hereafter) has significantly fueled the competition

among app developers and app vendors. As reported by
AppBrain,1 more than 2.73 million Android apps are avail-
able on Google Play in Q2, 2019. App developers often need
to enhance or upgrade their apps as soon as possible to
survive or gain an advantage in the market competition.
Third-party libraries (referred to as TPLs hereafter) offer app
developers a large variety of options for improving their
apps, e.g., adding social features, enhancing user interfaces,
etc., as well as saving time and effort. Thus, they are used
more and more widely for app development [1]. Our investi-
gation over 61,700 Android apps on Google Play shows that
92.25% of these apps use 5 TPLs or more, with an average of
11.81. Fig. 1 shows the results of our investigation in detail.
The popularity of TPLs is also evidenced by the 6,200 TPLs
hosted in the repository of Android Arsenal,2 an Android
developer portal.

The large number and variety of available libraries offer

• Qiang He and Bo Li are with the School of Software and Electrical
Engineering, Swinburne University of Technology, Melbourne, AU, 3122.
E-mail: {qhe, boli}@swin.edu.au

• Feifei Chen is with the School of Information Technology, Deakin Univer-
sity, Melbourne, AU, 3125.
E-mail: feifei.chen@deakin.edu.au

• John Grundy and Xin Xia are with the Faculty of Information Technology,
Monash University, Melbourne, AU, 3800.
E-mail: {john.grundy, xin.xia}@monash.edu

• Yun Yang is with the School of Computer Science and Technology, Anhui
University, PRC and the School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, AU, 3122.
E-mail: yyang@swin.edu.au

Manuscript received xxx xx, 2019; revised xxx xx, 2019.
1. https://www.appbrain.com/stats/number-of-android-apps
2. https://android-arsenal.com/

0 5 10 15 20 25 30 35 40 >40>50

Number of TPLs in Each App

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

o
f
A

p
p
s

Fig. 1. Use of third-party libraries by apps

a wide range of possibilities for app developers. However,
new challenges are also raised for app developers. First,
given the severe time-to-market constraints, potentially use-
ful libraries often slip under the radar due to the lack
of effective approaches for finding useful libraries. It is
impractical for app developers to manually inspect every
potential library and determine its usefulness from differ-
ent perspectives, e.g., its performance, interface, etc. Thus,
finding useful libraries is often impossible due to the time
limitations in the competitive app markets. Second, some-
times multiple libraries are used to collectively perform
one specific function. Finding the synergy between different
libraries is another time-consuming process to find appro-
priate combinations of libraries merely through inspecting
official manuals or online user reviews.

In recent years, more and more attention has been paid to
the use of libraries in mobile app development. Researchers
have proposed several tools for analyzing or detecting
libraries used in apps, such as LibRadar [2], LibD [3],
LibPecker [4] and LibScout [5]. These tools can be employed
to collect TPL usage records. Derr et al. [1] conducted a

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 2

comprehensive developer survey and disclosed the needs
of as well as the obstacles to the use of TPLs in Android app
development. One of the major obstacles is the difficulty in
finding useful TPLs.

In our preliminary study, we collect a total of 61,722 apps
and investigate the TPLs used in those apps. We find that the
use of TPLs has certain patterns. For example, most of the
apps that use the Facebook library also use the Picasso library.
The former can be used in apps to communicate with the
popular Facebook social network and the latter can be used
to download and cache images and videos from specific web
servers. The two libraries may be used together by apps to
perform a social media based task. This indicates that the
combination of the Facebook library and the Picasso library is
suitable for adding social functions to apps as many popular
apps have benefited from it. Thus, apps using one of the two
libraries have a good chance of finding the other one useful.
The TPL usage patterns contain both explicit and implicit
information that can be leveraged to facilitate predictions
of useful libraries for app developers. This finding inspires
a new way to predict useful libraries for apps based on
collaborative filtering (CF).

Collaborative filtering has been widely employed to
make predictions based on user-item interactions in a va-
riety of domains [6] [7], including software engineering [8]
[9]. Its basic philosophy is that if two users (apps) u and v have
similar behaviors (use of libraries), they will act on other items (li-
braries) similarly [10]. Existing CF-based prediction methods
can be categorized into memory-based methods and model-
based methods [11]. The memory-based methods try to find
a user’s similar users and/or an item’s similar items for
making predictions. They can be further categorized into
user-based approaches [12], item-based approaches [13] and
their fusion [14]. The model-based methods train a factor
model with existing user-item interactions and then make
predictions. Examples of model-based methods include the
clustering model [15], the aspect model [16], etc. Popular-
ized by the Netflix Prize,3 Matrix Factorization (MF) [17]
has become the de facto model-based prediction approach
for making predictions in recent years.

Given a user-item matrix, MF can project users, items
and their interactions into a shared latent space, in which
a user or an item is represented with a vector of latent
features. Then, it models a user’s interaction on an item
as the inner product of their latent vectors. MF is capable
of discovering the latent features underlying the interac-
tions between users (apps) and items (libraries). It is more
effective than these memory-based approaches when the
information about user-item interactions is limited, usually
indicated by a sparse user-item matrix [17]. Most of the re-
cent recommendation systems based on matrix factorization
have illustrated its effectiveness in a variety of applications
[18]. In addition, our investigation shows that apps and their
use of libraries result in a very sparse app-library matrix
with a 1.42% sparsity. Thus, in this research, we employ MF
to predict the potentially useful libraries for app developers.

To facilitate this research, we built a dataset named
MALib that contains 61,722 mobile apps on Google Play and
827 libraries used in those apps across 725,502 app-library

3. https://www.netflixprize.com/

usage records - one app-library usage record indicates the
use of one library in one app. Following the idea of Thung
et al. [19], we selected 31,432 apps which tend to use TPLs
during their development - those that are already using
10 or more TPLs [19]. We then ran three representative
MF-based approaches, including SGD [20], ALS [21] and
BPR [22] on the dataset to make TPL recommendations for
apps. After investigating the recommendation results, we
identified a critical issue, referred to as the popularity bias
issue in this research. A small fraction of popular libraries
- those that are used by a large number of apps - dominate
the prediction results and most other libraries are ill-
served [18]. For instance, when we remove 1 library and
recommend 10 libraries for each testing app with the SGD
approach, an MF-based prediction approach which employs
the stochastic gradient descent as the training algorithm
[20], the top 8 most popular TPLs - 1% of all the libraries,
contribute to 32.12% of the recommendation results. We
investigated the recommendation results and MALib further
and found that this was caused by the long-tail distribution
[23] of library usage in MALib, i.e., 1% of the libraries
are involved in 29.91% of app-library usage records, as
illustrated in Fig. 4.

Predicting popular libraries is trivial and does not bring
much benefit to app developers. Most app developers may
already be aware of those very popular libraries and have
decided whether they are useful for their apps. Even if they
are not, the identification of a limited number of popular
libraries is not difficult using online library repositories.
Most, if not all, app developers would appreciate a certain
degree of novelty and serendipity in the library recom-
mendation results, similar to many other applications as
suggested by a recent study of recommender systems [24].
To address the popularity bias issue, the prediction results
need to be diversified. To achieve this objective, this paper
proposes a new approach named LibSeek. It employs an
adaptive weighting mechanism that neutralizes the bias
caused by the popularity of libraries. In addition, it in-
troduces neighborhood information, i.e., information about
similar apps and similar libraries, into MF to further tackle
the popularity bias. LibSeek can help app developers find
various libraries that are potentially useful for developing
or updating their apps. To the best of our knowledge, it
is the first attempt to employ MF to predict useful third-
party libraries for mobile app development. It is also the
first attempt to tickle the popularity bias problem relevant to
the third-party library prediction. The major contributions
of this paper include:

• We analyze mobile apps on Google Play and validate
the idea of predicting useful libraries by running
some classic MF-based prediction approaches on
31,423 mobile apps. Then, we identify the popularity
bias issue, which largely reduces the significance of
the prediction results;

• We propose LibSeek, a new MF-based approach that
neutralizes popularity bias with an adaptive weight-
ing mechanism and neighborhood information, sig-
nificantly diversifying the prediction results;

• We conduct extensive experiments to validate the

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 3

i1 i2 i7

u1 1 0 0 0 1 0 1

u2 1 1 0 1 0 1 0

0 1 0 0 0 0 0

0 0 0 ru,i 0 0 0

0 1 0 1 0 0 1

u6 1 0 1 0 1 0 0

libraries

ap
p
s

i3 i4 i5 i6

u3

u4

u5

Fig. 2. An example app-library relation matrix

performance of LibSeek. Both the MALib dataset 4

and the prototype of LibSeek 5 are published online
for validation and reproduction of our experimental
results.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates our research with an analysis of the MALib
dataset and the preliminary results achieved with three
representative MF-based prediction approaches. Section 3
briefly introduces the main idea of MF-based predictions.
Section 4 discusses LibSeek with a focus on how it addresses
the popularity bias issue. Section 5 reports the results of
the experiments conducted on LibSeek. Section 6 reviews
related works. Finally, Section 7 concludes this paper and
points out future work.

2 MOTIVATION

In this section, we first explain the basic concept of library
prediction. Then, we discuss the methodology of our prelim-
inary experiments. Finally, we illustrate the popularity bias
identified in our preliminary experiments on the MALib
dataset with classic MF-based approaches.

2.1 Library Prediction
Each mobile app uses a certain number of TPLs to serve
specific purposes, e.g., to enhance its user interface, to
add social features, etc. We employ a m × n app-library
matrix (referred to as matrix M hereafter) to represent the
relationship between apps and libraries, assuming that there
are m apps and n libraries totally in MALib. In M , the uth
(1 ≤ u ≤ m) row represents whether app u uses each of
the n libraries, and the ith (1 ≤ i ≤ n) column represents
whether library i is used in each of the apps. An entry ru,i
is set to 1 if app u uses library i. Otherwise, ru,i is set to
0. Fig. 2 demonstrates an example of M with 6 apps and 7
libraries.

Let A and L be the set of all apps and the set of all
libraries inM , respectively. Library prediction aims, for each
app u ∈ A, to select k libraries {i1, i2, · · · , ik} ∈ L that are
not used by u but are most likely to be useful to u. Then
developers can prioritize the investigation of these libraries
to save their effort in seeking new libraries. There are many
ways to make predictions based on M . In recent years, MF-
based prediction approaches have proven to be the most
effective and efficient ones in many application areas [17].
They are thus employed in this research.

4. https://github.com/malibdata/MALib-Dataset
5. https://github.com/libseek/LibSeek

2.2 Preliminary Experiments
To validate the idea of TPL recommendation, we performed
experiments on the MALib dataset. To recommend TPLs for
apps that tend to use TPLs, we selected apps that use 10 or
more TPLs for conducting the experiments, similar to the
methodology employed in Thung et al.’s work [19]. More
details of the MALib dataset will be discussed in Section
5.1. Based on the MALib dataset, we built a 31,423 × 752
matrix M which has 537,011 1s and 23,099,853 0s.

To simulate realistic prediction scenarios, we employed
cross-validation technique [25] to set up the preliminary
experiments. Cross-validation has been widely used in ex-
periments on software-relevant predictions [8], [26], [27],
[28]. The main idea is to find out whether a given approach
can find libraries that are definitely useful for a given app.
We conducted the preliminary experiments as follows. For
each testing app, we produced a to-be-improved version
of the app by randomly removing some of the libraries
used by the app. Accordingly, in the app’s row in M , we
changed the entries corresponding to the removed libraries
from 1 to 0. Then, we ran SGD [20], ALS [21] and BPR [22],
three representative state-of-the-art MF-based prediction ap-
proaches, to recommend three lists of libraries for the testing
app. Finally, we evaluated the prediction performance by
inspecting whether the correct libraries, i.e., the removed
libraries, are including in recommendation results.

The results were encouraging. For each app in MALib,
we removed 1, 3, 5 TPLs, respectively, and recommended 5,
10 TPLs, respectively. Then, we calculated the average recall
across the six cases. The three approaches were capable
of finding the correct libraries with an average recall of
37.98% across all cases. This shows that a large portion of
the libraries recommended by those approaches was truly
useful for the corresponding apps. More details can be
found in Section 5.4. This validated our idea of predicting
useful libraries for apps with MF-based approaches.

2.3 Popularity Bias
However, after carefully inspecting the results of the pre-
liminary experiments, we identify the popularity bias issue -
a small fraction of popular libraries dominates the prediction
results while most other libraries are ill-served. Unpopular
libraries rarely appear in the recommendation results. Most
of them are not recommended at all. Fig. 3 illustrates the
prediction results achieved by SGD in one set of experi-
ments on 31,432 apps. In this set of experiments, for each
app, we randomly removed 1 library and produced a recom-
mendation list with 10 libraries. In Fig. 3, for each removed
library, the total number of times it is removed is indicated
by a corresponding blue star - these removed libraries are
the correct libraries that are expected to be included in
the prediction lists. For each remaining library, the total
number of times that the library appears in all the apps
is represented by a corresponding golden diamond. Given
31,432 recommendation lists, the total number of times that
each library is included in these lists is represented by a
corresponding red star. All libraries are given unique IDs
and ordered by their popularity indicated by the magenta
diamonds in Fig. 3, i.e., the popularity of each library across
all the apps, with the most popular to the left.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 4

100 200 300 400 500 600 700

Library ID

100

101

102

103

104

105

C
o
u
n
t
(l
o
g
)

Testing Set

Training Set

Recommended Libraries

Fig. 3. Contrast between testing set and predicted libraries by MF

The red stars in Fig. 3 indicate that the recommendation
results are extremely condensed in a very small fraction of
popular libraries. In our preliminary experiments, we ex-
pected that the recommendation results would cover all the
removed libraries. However, only 34 libraries were included
in the 31,432 prediction lists. That was only 4.52% of all
the 752 removed libraries. We evaluated the diversity in the
recommendation results with two widely used metrics, i.e.,
coverage and inter-list diversity. The results were consistent
with what is demonstrated in Fig. 3 - the diversity in the
recommendation results was low. The details of the metrics
and the evaluation results can be found in Section 5.3 and
5.4, respectively.

Recommending popular libraries does not bring much
benefit, as app developers are likely to have already known,
inspected or even tried out these popular libraries. In ad-
dition, such popularity-oriented recommendations are not
personalized and thus are not interesting to most app
developers. On the other hand, unpopular libraries are
usually hard to find and easy to overlook. Recommending
less popular libraries offers novelty and serendipity to app
developers. Thus, it is important to diversify the library
predictions for app developers. To do this, we investigated
MALib and found the root cause for the low diversity in the
prediction results obtained by the conventional MF-based
prediction approaches in the preliminary experiments. As
demonstrated by the blue stars and golden diamonds in
Fig. 3, the use of libraries in apps follows the long-tail
distribution [23], where the majority of library usages are
condensed in a small fraction of popular libraries. Fig. 4
demonstrates the usage of libraries in the apps in MALib
and shows the high skewness of the prediction results.
Specifically, the top 1% most popular libraries were involved
in approximately 29.91% of the app-library usage records in
MALib. Conventional MF prediction approaches train the
prediction models with the known entries inM , i.e., existing
use of libraries in apps. Thus, they tend to include too many
popular libraries in their prediction results. This issue is so
critical that it led to a no-tail distribution of libraries in the
prediction results, as shown by the red stars in Fig. 3. Thus,
the prediction results must be diversified.

3 MATRIX FACTORIZATION

Whether a library i is used by an app u is represented
by entry ru,i in the app-library matrix. Such information

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of use relations

0.1%

1%

10%

100%

P
e
rc

e
n
t
o
f
lib

ra
ri
e
s
 (

lo
g
)

Short-head

(popular)
Long-tail

(unpopular)

Fig. 4. Usage distribution of MALib

is explicit. However, the reasons why a library is used by an
app are usually implicit, depending on various factors, e.g.,
the features, interface and performance characteristics of the
library. A major strength of matrix factorization is its ability
to leverage both explicit and implicit information on app-
library usage. Given an app-library matrix M , matrix factor-
ization models both apps and libraries in a joint latent factor
space of dimensionality f . In that joint latent factor space,
app-library usage is modeled as inner products. Each library
i inM is associated with a column vector yi ∈ Rf while each
app u is associated with a column vector xu ∈ Rf . Vector yi
measures how much library i possesses those f factors and
vector xu measures the extent of interest app u has in the
corresponding libraries. In this way, each missing entry in
M can be approximated by:

r̂u,i = xTu · yi (1)

where symbol · represents the inner product and r̂u,i is an
approximation of the real preference ru,i which is app u’s
overall interest in library i. Thus, the entire matrix M can be
approximated:

M ≈ XTY (2)

where X = {x1, x2, · · · , xm} ∈ Rf×m and Y =
{y1, y2, · · · , yn} ∈ Rf×n. X here is referred to as the app
latent feature matrix and Y the library latent feature matrix.

To estimate all vectors xu ∈ Rf and yi ∈ Rf , many of
the recent matrix factorization approaches directly model
the known information, i.e., entries whose value is 1 in M ,
and employ a regularized model to avoid over-fitting. When
factorizing M , they attempt to minimize the squared loss
function below:

min
X,Y

Loss =
∑
ru,i>0

(ru,i − xTu yi)2 + λ(‖xu‖2 + ‖yi‖2) (3)

where λ is the degree of regularization. As the loss function
is not convex, stochastic gradient descent (SGD) [20] or alter-
nating least squares optimization (ALS) [21] are employed
to find the approximate optimal solution by Eq. (4) and Eq.
(5):

xu = xu − lx
∂Loss

∂xu
(4)

xi = yi − ly
∂Loss

∂yi
(5)

where lx and ly are the learning rates that are usually set to
the same value.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 5

TABLE 1
Summary of Notations

Symbols Description

M the app-library matrix
L the full set of libraries in M
A the full set of apps in M
u, v apps namely u and v, respectively
i, j libraries namely i and j, respectively
L(u) all the libraries used by u
A(i) all the apps using library i
NA(u) the selected neighbors of app u
NL(i) the selected neighbors of library i
Nu matrix consists of latent factors of each neighbor

app in NA(u)
Ni matrix consists of latent factors of each neighbor

TPL in NL(i)
X app latent feature matrix
Y TPL latent feature matrix
xu latent factor vector of app u
yi latent factor vector of library i
λ regularization coefficient of MF
ru,i entity of M relevant to app u and TPL i
Ru the uth row vector of M , i.e., entities relevant to

app u
Ri the ith column vector of M , i.e., entities relevant

to TPL i
wu,i weight of entity ru,i
Wu diagonal matrix with all the entity weights rele-

vant to app u
Wi diagonal matrix with all the entity weights rele-

vant to TPL i
SimApp(u, v) similarity between apps u and v
SimLib(i, j) similarity between TPLs i and j
Sa(u, v) normalized similarity between apps u and v
Sl(i, j) normalized Similarity between TPLs i and j
Su vector with all similarities between app u and

its neighbor apps in NA(u)
Si vector with all similarities between TPL i and its

neighbor TPLs in NL(i)
pn number of TPLs in each prediction list
rm number of TPLs removed from each testing app
k number of apps or TPLs selected as neighbors
α parameter controlling how much MF relies on

neighborhood information
weight parameter weighting explicit entries

Based on the estimated entries in M , predictions can be
made whether the corresponding app would take an interest
in the corresponding library. However, as illustrated and
discussed in Section 2, conventional MF-based prediction
approaches suffer from low diversity in their results caused
by popularity bias. They highly tend to include a small
fraction of the libraries that are more popular.

4 LIBSEEK

This section presents LibSeek, our novel MF-based approach
for diversified library prediction for apps. The first means
employed by LibSeek is to neutralize the skewness in app-
library usage caused by popular libraries. LibSeek achieves
this objective through modeling all entries in M and assign-
ing an individualized weight to each library, giving high
penalties to popular libraries. The second means is to intro-
duce neighborhood information, information about similar
apps and similar libraries, during the matrix factorization.
The key notations used are shown in Table 1.

4.1 Adaptive Weighting Mechanism
As demonstrated in Section 2, the app-library matrix M
uses a binary entry ru,i to represent the app-library usage
record for app u and library i, with 1 indicating that app
u uses library i and 0 otherwise. Most of the MF-based
prediction approaches take only the 1 entries into account in
the training process. They simply interpret a 0 entry as the
user disliking the corresponding item, and thus discard all
the 0 entries during the training. However, this assumption
is not entirely true. For example, an entry in M being 0
can stem from various reasons. A library may have slipped
under the app developer’s radar when they search for useful
libraries. An app developer may choose not to use a library
due to, say its price or privacy policy. Thus, zero entries
provide implicit information on user-item interactions [29],
i.e., the use of libraries in apps in the context of this research.
For ease of representation, we refer to the non-zero entries
M as explicit entries while the zero entries as implicit entries.
To fully leverage both the explicit and implicit information
contained in M , LibSeek models not only the explicit entries
but also the implicit entries to make third-party library
predictions. By nature, the implicit information provided by
zero entries are usually associated with low confidence [29].
Thus, LibSeek assigns to implicit entries weights that are
lower than those for explicit entries.

As discussed in Section 2, the main root causes of the
popularity bias in conventional MF-based predictions is
the long-tail distribution of app-library usage. To address
this, we introduce an adaptive weighting mechanism that
adaptively assigns weights to libraries according to their
popularity, giving higher weights to less popular libraries.
In this way, each library is assigned a personalized weight
to be used during the matrix factorization process.

LibSeek employs Eq. (6) as its loss function instead of
Eq. (3):

min
X,Y

Loss =
m∑
u=1

n∑
i=1

wu,i(ru,i − xTu yi)2

+ λ
(m∑
u=1

‖xu‖2 +
n∑
i=1

‖yi‖2
) (6)

where λ is used to control the regularization. We use wu,i
to adaptively assign different weights to different libraries
in M . It is calculated based on the popularity of the corre-
sponding library as follows:

wu,i =

{
1 ru,i = 0

1 + weight/(1 + ln pi) ru,i = 1
(7)

where weight is used to prioritize the non-zero entries over
zero entries and pi denotes the popularity of library i in M
measured by the number of apps using i. For example, if
library i is used by 1,000 apps, there is pi = 1,000. With Eq.
(7), LibSeek assigns a personalized weight to each explicit
entry in M but the same weight 1 to implicit entries. In
Section 5, we will experimentally investigate the impact of
weight on the performance of LibSeek.

4.2 Neighborhood Information Integration
Compared with CF-based approaches, MF-based prediction
approaches utilize global information in M to train the app

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 6

latent feature matrix X and library latent feature matrix Y .
However, it does not utilize the neighborhood information,
i.e., information on an app or a library’s neighbors. Here,
an app u’s neighbors, denoted by NA(u), are the apps
that are similar to u in terms of their use of libraries. A
library i’s neighbors, denoted byNL(i), are the libraries that
are similar to i in terms of apps using them. Inspired by
CF which employs the neighborhood information to make
predictions, LibSeek leverages apps and libraries’ neighbor-
hood information to attack the popularity bias.

To fully utilize neighborhood information, LibSeek inte-
grates both apps’ and libraries’ neighbors into the factoriza-
tion of matrix M . The overall procedure consists of three
phases. In the first phase, LibSeek finds the neighbors of
each app u and library i. For each app u, LibSeek calculates
the library similarity between L(v) and L(u) for each v ∈ A
(v 6= u). For each library i, LibSeek calculates the app similar-
ity between A(i) and A(j) for each j ∈ L(j 6= i). All entries
in M are binary. Thus, LibSeek employs Eq. (8) to calculate
the Jaccard Correlation Coefficient (JCC) for measuring app
similarity, and Eq. (9) for library similarity. For each app
u, there might be many similar apps. In the second phase,
LibSeek selects the top k apps that are most similar to
u as u’s neighbors. Similarly, it selects the top k libraries
that most similar to i as i’s neighbors. In the final phase,
LibSeek integrates both apps and libraries’ neighborhood
information into the regularization when factorizing M .

The app similarities and library similarities can be cal-
culated offline prior to the MF and updated periodically by
Eq. (8) and Eq. (9), respectively.

SimApp(u, v) =

∑
l∈L ru,l × rv,l∑

l∈L (ru,l + rv,l − ru,l × rv,l)
(8)

SimLib(i, j) =

∑
u∈A ru,i × ru,j∑

u∈A (ru,i + ru,j − ru,i × ru,j)
(9)

Different neighbors have different similarities, thus all
similarities of selected neighbors v ∈ NA(u) and k ∈ NL(i)
should be normalized as follows:

Sa(u, v) =
SimApp(u, v)∑

r∈NA(u) SimApp(u, r)
(10)

Sl(i, j) =
SimLib(i, j)∑

k∈NL(i) SimLib(i, k)
(11)

LibSeek now combines the global information and
neighborhood information using Eq. (12) as the loss func-
tion:

min
X,Y,NA,NL

Loss =
m∑
u=1

n∑
i=1

wu,i(ru,i − xTu yi)2

+ λ
(m∑
u=1

‖xu‖2 +
n∑
i=1

‖yi‖2
)

+ α
m∑
u=1

∑
v∈NA(u)

Sa(u, v)‖xu − xv‖2

+ α
n∑
i=1

∑
j∈NL(i)

Sl(i, j)‖yi − yj‖2

(12)

where parameter α determines how much the predictions
rely on the neighborhood information. A higher α drives
LibSeek to utilize more of the neighborhood, which will di-
versify the prediction results more significantly. The impact
of α on the performance of LibSeek will be experimentally
evaluated in Section 5. NA(u) is the set of app u’s top k
similar neighbors and NL(i) is the set of library i’s top k
similar neighbors.

To approximate the global minimum of Eq. (12), we fix
the app factor vector xu and the library factor vector yi al-
ternately. In this way, Eq. (12) becomes a quadratic function
that can be minimized through an alternating least squares
optimization process which goes through three phases [29].

In the first phase, we fix yi in Eq. (12) and then compute
the partial derivative of xu. With yi fixed, we could treat
xu as the only variable during the derivation process. The
partial derivative of xu is:

∂Loss

∂xu
=− 2

n∑
i=1

wu,i(ru,i − xTu yi)yi + 2λxu

+ 2α
∑

v∈NA(u)

Sa(u, v)(xu − xv)

=− 2
n∑
i=1

wu,iru,iyi + 2
n∑
i=1

wu,ix
T
u yiyi + 2λxu

+ 2α
∑

v∈NA(u)

Sa(u, v)(xu − xv)

=− 2
n∑
i=1

wu,iru,iyi + 2
n∑
i=1

wu,iy
T
i xuyi + 2λxu

+ 2α
∑

v∈NA(u)

Sa(u, v)xu − 2α
∑

v∈NA(u)

Sa(u, v)xv

(13)

As discussed in Section 3, both xu and yi are latent
factors and each of them has f elements, where f is the
dimensionality of each latent factor. Thus, xTu yi is equivalent
to yTi xu.

Eq. (13) consists of 5 parts. The first part, i.e.,
−2
∑n
i=1 wu,iru,iyi, sums a total of n values of each

wu,iru,iyi when i = 1, 2, . . . , n. We employ matrix multi-
plication here to describe the process. For example, as each
latent factor yi is a f × 1 vector for TPL i ∈M , all the latent
factors yi, i = 1, 2, . . . , n form the f × n matrix Y with yi
making the ith column of Y . Similarly, as each wu,i is a
single value, we use an n × n diagonal matrix to represent
a total number of n values of each weight wu,i. Denoted by
Wu, this matrix is defined as:

Wu(p, i) =

{
wu,i p = i, 1 ≤ p ≤ n, 1 ≤ i ≤ n
0 p 6= i, 1 ≤ p ≤ n, 1 ≤ i ≤ n (14)

Each ru,i is also a single value in M . We define a row
vector Ru with n elements to represent a total number of n
values of each ru,i. In Ru, the ith element is equivalent to
ru,i. Thus, Ru is defined as:

Ru = {ru,1, ru,2, ru,3, · · · , ru,n} (15)

Now, the first part of Eq. (13) can be calculated via matrix
multiplication represented by −2YWuRu

T . The result is a
column vector with f elements. Similarly, the second part

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 7

of Eq. (13), i.e., 2
∑n
i=1 wu,iy

T
i xuyi, can be represented by

2YWuY
Txu.

Let us use a vector Su with k elements to represent the
similarities between app u and k other neighbor apps in
NA(u):

Su = {Sa(u, 1), Sa(u, 2), . . . , Sa(u, k)} (16)

and Sσu to denote the sum of all the elements in Su.
For app u’s neighbor app v ∈ NA(u), its latent factor

xv is also a f × 1 latent factor. All the k neighbor apps in
NA(u) form a f × k matrix, denoted as Nu and defined as:

Nu = {x1, x2, · · · , xk−1, xk} (17)

The last two parts of Eq. (13), i.e.,
2α
∑
v∈NA(u) Sa(u, v)xu and 2α

∑
v∈NA(u) Sa(u, v)xv ,

can also be calculated via matrix multiplication. Based on
the above transformation, Eq. (13) is transformed into:

∂Loss

∂xu
=− 2YWuRu

T + 2YWuY
Txu + 2λxu

+ 2αSσuxu − 2αNuSu

(18)

To solve xu, we set the partial derivative to 0, i.e., to set
Eq. (18) to 0. Then, we can obtain xu as follows:

xu =(YWuY
T + λI + αSσuI)

−1(YWuRu
T + αNuSu)

=
[
Y Y T + Y (Wu − I)Y T + (λ+ αSσu)I

]−1
× (YWuRu

T + αNuSu)
(19)

In the second phase, we calculate the value of yi in a
similar manner as follows:

yi =(XWiX
T + λI + αSσi I)

−1(XWiRi + αNiSi)

=
[
XXT +X(Wi − I)XT + (λ+ αSσi)I

]−1
× (XWiRi + αNiSi)

(20)

where the f ×m matrix X consists of all the latent factors
of each app u ∈M . Wi is a m×m diagonal matrix, defined
as:

Wi(u, q) =

{
wu,i u = q, 1 ≤ u ≤ m, 1 ≤ q ≤ m
0 u 6= q, 1 ≤ u ≤ m, 1 ≤ q ≤ m (21)

We use a column vector Ri to store each ru,i correspond-
ing to TPL i, defined as:

Ri = {r1,i, r2,i, r3,i, · · · , rm,i} (22)

We use Si to store the similarities between TPL i and its
k neighbor TPLs in NL(i):

Si = {Sl(i, 1), Sl(i, 2), . . . , Sl(i, k)} (23)

and use Sσi to denote the sum of all the elements in Si.
We use a f × k matrix Ni store the latent factor vectors

of all the TPLs in NL(i), defined as follows:

Ni = {y1, y2, · · · , yk−1, yk} (24)

In the third phase, by re-computing xu and yi alternately
over a number of iterations, the loss function Eq. (12) can be
minimized and finally matrix M is factorized into X and Y .

Now, M can be approximated with the inner product of
X and Y , i.e., M̂ ≈ X · Y . Each unknown entry ru,i in M
is approximated with a predicted value r̂u,i, which can be

calculated based on the corresponding vectors xu and yi,
i.e., r̂u,i = xu · yi. Those unknown entries can then be used
to predict useful TPLs for apps. The common practice is to
sort all the unknown entries relevant to app u based on their
predicted values, and then include the top k TPLs with the
highest entry values in the recommendations.

4.3 Complexity Analysis
LibSeek employs both the implicit and explicit informa-
tion in the app-library matrix to make recommendations.
However, its computational overhead is not much higher
than those that do not. Here, we theoretically analyze its
complexity.

Eq. (19) and Eq. (20) show that the most time-consuming
operations are the calculation of YWuY

T and XWiX
T ,

as both of them have a matrix multiplication process over
three matrices. Taking Eq. (19) as an example, the result of
YWuY

T is a f×f matrix and it needsO(n) time to calculate
each entry in this matrix. Thus, for each app u in M , it takes
O(f2× n) time to compute YWuY

T . Moreover, most of the
entries in Wu are 1 (corresponding to the implicit entries
in M) and others (the explicit entries) have different values
calculated with Eq. (7). Thus, we can replace YWuY

T by
Y Y T + Y (Wu − I)Y T . In this way, Y Y T can be calculated
offline prior to matrix factorization, which is not related to
any latent factors. In addition, (Wu − I) will drop all the
implicit entries whose values equal to 1, and only maintain
the explicit entries in L(u). In this way, we can significantly
reduce the time consumption of LibSeek and increase its
efficiency. Let us denote the number of libraries in L(u)
with C(L(u)). LibSeek only needs O(f2 × C(L(u))) time
to compute YWuY

T and C(L(u)) � n. Similarly, we can
compute YWuR

T
u in time O(f × n) and compute NuSu in

time O(k × f). Su can also be calculated offline in advance.
The third time-consuming operation is the matrix inversion
operation in Eq. (19) and Eq. (20). In the worst-case scenario,
the matrix inversion in Eq. (19) and Eq. (20) takesO(f3) time
to complete as the dimension of the matrices being inverted
is f × f [29].

Overall, for all them apps inM , the total time consumed
is O(f2 × N + f3 ×m), where N is the number of explicit
entries in M). This indicates that the running time for
computing all xu ∈ X is linear to the number of apps m.
Similarly, the running time for computing all yi ∈ Y is
O(f2 ×N+ f3 × n). It is linear to the number of libraries n.

5 EXPERIMENTAL EVALUATION

We evaluated the performance of LibSeek in both the diver-
sity and accuracy of the recommendation results through
comparison with 8 representative approaches, including
a popularity-based approach, an association rule mining
approach and 6 MF-based prediction approaches.

5.1 Dataset
We collected a total of 61,722 Android apps from Google
Play via AndroidZoo6 [30], then employed LibRadar [2]
to extract TPL usage records from these Android apps. As

6. https://androzoo.uni.lu

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 8

reported by Zhang et al. [4] and Backes et al. [5], LibRadar
cannot precisely find the boundary of a TPL and sometimes
treats the sub-folders of a specific TPL as different TPLs.
To address this issue, we manually checked and extended
LibRadar’s library dataset by comparing it against the TPLs
available on Maven7 and GitHub8 and obtained a total of
898 distinct TPLs. With the updated LibRadar, we obtained
725,502 app-library usage records involving 827 distinct
TPLs from these Android apps, and built the MALib dataset.

LibSeek is designed to help developers who tend to use
TPLs to find useful TPLs for their mobile apps. Following
the same methodology of Thung et al. [19], we include
mobile apps that use 10 or more TPLs and the relevant TPLs
in the experiments. The final dataset used in the experiments
contains 31,432 Android apps, 752 distinct TPLs and 537,011
app-library usage records.

5.2 Experiment Setup
We employ the cross-validation technique [25] to set up the
experiments. First, for each app u in M , we randomly re-
move rm ∈ {1, 3, 5} libraries to simulate a to-be-improved
version of u, i.e., change rm entries from 1 to 0 in the
uth row of M . LibSeek is then trained on the remaining
app-library usage records in M . The ground truth of the
evaluation is that those removed libraries will definitely be
useful to the corresponding to-be-improved versions of the
apps. Thus, the objective of the evaluation is to find out
whether those libraries removed from the apps (referred to
as correct libraries hereafter) can be predicted by LibSeek.
Then, we run LibSeek to make predictions, generating one
prediction list pl(u) (referred to as list hereafter) for each
app u ∈ M with pn (pn ≥ rm) libraries. Finally, we inspect
the list for the libraries from the corresponding app to
evaluate the prediction performance of LibSeek. To simulate
various prediction scenarios, we change the values of two
parameters, i.e., rm and pn. We also change the values of
α and weight, which are used in Eq. (12) and Eq. (7), as
well as k, i.e., the number of neighbors selected for each
app and library. For ease of representation, one round of
the validation is referred to as an experiment instance. In
each experiment instance, the performance of LibSeek is
evaluated across all the recommendation lists, one for each
app. When the value of a parameter is changed, we run 100
experiment instances and average the results.

All experiments are conducted on a machine with Intel
i5-4570 CPU 3.20 GHz, 8 GB RAM, running Windows 7 x 64
Enterprise.

5.3 Performance Metrics
We employ five widely-used metrics to comprehensively
evaluate the prediction performance of LibSeek from two
perspectives, diversity and accuracy. Those metrics are cal-
culated for each experiment instance, all within the range of
[0, 1]. All the metrics indicate better performance when their
values are higher. Details of those metrics are as follows.

Coverage and Mean Inter-List Diversity are used the
evaluate the diversity in the prediction results of LibSeek.

7. https://mvnrepository.com/
8. https://github.com/

Coverage (COV). Coverage measures the ratio of distinct
libraries in all lists to all libraries in Lib in an experiment
instance [31]. One COV value is calculated for each experi-
ment instance as follows:

COV =

∑m
u=1 distinct(pl(u))

|L|
(25)

where distinct(L) is the number of distinct libraries in list
L.

A higher COV value indicates that the prediction ap-
proach can give more equal opportunities to the libraries in
L. If a prediction approach only predicts popular libraries,
its COV value will be low.

Mean Inter-List Diversity (MILD). Inter-List Diversity
measures the difference between two lists [32] based on their
Hamming distance. It is calculated as follows:

Hu,v = 1− pl(u)
⋂
pl(v)

pn
(26)

If pl(u) and pl(v) are the same, their Hamming distance
is 0. If they share no libraries at all, their Hamming distance
is 1. Thus, a higher Hu,v indicates higher diversity across
the lists and that the lists are more personalized compared
with lists containing only the popular libraries. MILD av-
erages the inter-list diversity between every two lists in an
experiment instance.

To evaluate if and how much LibSeek trades accuracy
for diversity, Mean Average Precision, Mean Precision and
Mean Recall are used to evaluate the prediction accuracy of
LibSeek.

Mean Average Precision (MAP). Average precision is
widely-used to evaluate the ranking positions of correct
libraries in a list. It assigns different weights to the correct
libraries at different positions [19] to measures whether
LibSeek can put correct libraries at higher positions in the
list. Given a list, it is calculated as follows:

AP =

∑pn
i=1

p(i)
i × rel(i)∑pn

i=1 rel(i)
(27)

where i is the position of each library in the list, p(i) is
the sequence number of the correct library at position i,
and rel(i) returns 1 if the ith library in the list is correct
and 0 otherwise. For example, given a list with 5 libraries
(la, lb, lc, ld, le), assume that the first and third libraries, i.e.,
la and lc, are correct libraries. Then the sequence numbers of
la and lc are 1 and 2, respectively, i.e., p(1) = 1 and p(3) = 2.
MAP averages the APs across all the lists in one experiment
instance.

Mean Precision (MP). The precision of a list pl(u) is
the ratio of correct libraries to all libraries in pl(u). MP is
the mean precision across all the lists in one experiment
instance. Different from MAP, it does not consider the
positions of correct libraries in the lists.

Mean Recall (MR). The recall of a list is the ratio of
correct libraries in the list to all correct libraries removed
from the corresponding app. MR is the mean of the recalls
across all the lists in one experiment instance.

5.4 Performance Evaluation
In the experiments, we compare LibSeek with 8 representa-
tive approaches:

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 9

TABLE 2
Performance Comparison

Attr. Methods pn=5 pn=10
COV MILD MAP MP MR COV MILD MAP MP MR

rm=1

POP 0.0316 0.5406 0.2840 0.0753 0.3765 0.0465 0.4021 0.2949 0.0457 0.4565
SGD 0.0319 0.5420 0.2873 0.0761 0.3808 0.0455 0.4017 0.2973 0.0456 0.4556
ALS 0.0319 0.4959 0.1379 0.0673 0.3364 0.0468 0.4023 0.1550 0.0457 0.4573
BPR 0.0604 0.5699 0.2911 0.0783 0.3917 0.0867 0.4335 0.3015 0.0469 0.4693
MPR 0.0348 0.5220 0.0145 0.0074 0.0371 0.0511 0.4005 0.0177 0.0062 0.0615

CoMF 0.2738 0.8772 0.3748 0.0932 0.4661 0.3210 0.8616 0.3822 0.0521 0.5212
LibRec 0.2921 0.7932 0.4622 0.1267 0.6335 0.2990 0.6941 0.4669 0.0668 0.6682
WRMF 0.2973 0.9228 0.5151 0.1337 0.6689 0.3446 0.8939 0.5265 0.0752 0.7528

LibSeek 0.3346 0.9274 0.5236 0.1348 0.6741 0.3960 0.8992 0.5346 0.0755 0.7553

rm=3

POP 0.0322 0.5314 0.5931 0.2147 0.3579 0.0455 0.3913 0.5682 0.1341 0.4468
SGD 0.0282 0.5289 0.5920 0.2173 0.3621 0.0415 0.3897 0.5694 0.1335 0.4451
ALS 0.0332 0.5314 0.5686 0.2149 0.3581 0.0455 0.3918 0.5452 0.1342 0.4472
BPR 0.0864 0.5670 0.5961 0.2250 0.3751 0.1290 0.4337 0.5728 0.1376 0.4586
MPR 0.0346 0.5118 0.0380 0.0193 0.0322 0.0527 0.3863 0.0491 0.0188 0.0625

CoMF 0.2731 0.8980 0.5680 0.2279 0.3798 0.3366 0.8619 0.5546 0.1317 0.4392
LibRec 0.2916 0.8369 0.6883 0.2789 0.4648 0.2936 0.7265 0.6864 0.1542 0.5142
WRMF 0.2896 0.9013 0.7225 0.3682 0.6137 0.3361 0.8883 0.6930 0.2138 0.7128

LibSeek 0.3245 0.9135 0.7280 0.3710 0.6183 0.3907 0.8894 0.6971 0.2158 0.7193

rm=5

POP 0.0316 0.5065 0.7413 0.3383 0.3383 0.0449 0.3699 0.6813 0.2180 0.4360
SGD 0.0269 0.5004 0.7376 0.3421 0.3421 0.0402 0.3669 0.6854 0.2160 0.4320
ALS 0.0319 0.5086 0.7434 0.3361 0.3361 0.0447 0.3699 0.6812 0.2173 0.4347
BPR 0.1234 0.5420 0.7366 0.3483 0.3483 0.1936 0.4200 0.6808 0.2219 0.4438
MPR 0.0356 0.4802 0.0595 0.0360 0.0360 0.05423 0.3649 0.0766 0.0320 0.0640

CoMF 0.2722 0.8978 0.6293 0.3093 0.3093 0.3405 0.8614 0.6052 0.1824 0.3647
LibRec 0.2885 0.8652 0.6922 0.4400 0.4400 0.2992 0.7619 0.6890 0.2434 0.4868
WRMF 0.2843 0.9016 0.7816 0.5161 0.5161 0.3301 0.8762 0.7328 0.3206 0.6413

LibSeek 0.3141 0.9205 0.7896 0.5291 0.5291 0.3796 0.8810 0.7396 0.3293 0.6587

1) POP – a popularity-based recommendation ap-
proach that always recommends the most popular
libraries that have not been used by the current app.
This is the baseline approach in the experiments.

2) SGD [20] – a representative MF-based prediction
approach that only uses the explicit entries and
discards all unknown entries when making predic-
tions.

3) ALS [21] – is another representative MF-based ap-
proach. The major difference between ALS and SGD
is that they employ different strategies to minimize
their loss functions.

4) BPR [22] – is an approach that employs a personal-
ized ranking method to include implicit entries into
the prediction. It is optimized for ranking tasks via
the maximum posterior estimator derived from a
Bayesian analysis.

5) MPR [33] – divides the unobserved items into differ-
ent parts to further relax the simple pairwise pref-
erence assumption into multiple pairwise ranking
criteria.

6) CoMF [34] – jointly decomposes the user-item in-
teraction matrix and the item-item co-occurrence
matrix with shared item latent factors to get a better
precision and coverage.

7) LibRec [19] – this approach combines association
rule mining and user-based (app-based) collabora-
tive filtering to recommend libraries for traditional
Java projects.

8) WRMF [29] – this approach is the first work to con-
sider both the implicit and the explicit information
during the matrix factoring process. Generally, it
assigns a same weight to all the explicit entities and

assigns 1 to all the implicit entities.

To perform an objective and fair comparison, we tune
the parameters employed by each approach to obtain the
best results. We set the dimension of latent factors f = 20
for all approaches. Specially, we set the maximum number
of iterations iter = 10 for BPR, SGD, CoMF and LibSeek,
20 for ALS and WRMF and 1000 for MPR. We set the
regularization value λ = 0.001 for SGD and λ = 0.01
otherwise. We set weight = 24, α = 0.5, k = 6 in LibSeek.
Other parameters are specified following the original setup
of the experiments in the corresponding papers. We vary
rm from 1 to 3 and then to 5, which determines how many
libraries are removed from each testing app. We also change
pn from 5 to 10, which represents the length of the prediction
lists.

5.4.1 Overall Performance Comparison

Table 2 compares the overall performance of the nine ap-
proaches with pn ∈ {5, 10} and rm ∈ {1, 3, 5}. It shows
that LibSeek achieves the best performance in terms of
both recommendation diversity and accuracy indicated by
all five metrics. On average across six cases with dif-
ferent rm − pn combinations, LibSeek outperforms POP
by 836.06%, 102.38%, 37.69%, 64.23%, 64.29%, in terms
of COV, MILD, MAP, MP and MR, respectively, SGD by
920.55%, 103.33%, 37.07%, 63.70%, 63.72%, BPR by 256.63%,
85.99%, 36.14%, 59.19%, 59.18%, MPR by 732.99%, 107.34%,
1943.25%, 1334.72%, 1335.69%, respectively. Similar to Lib-
Seek, WRMF makes recommendations based on both ex-
plicit and implicit entities. Thus, we can find that LibSeek
achieves only slight advantages over WRMF in MAP, MP
and MR, i.e., 1.08%, 1.36% and 1.33%, respectively. This

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 10

comes from LibSeek’s adaptive weighting mechanism. Un-
like WRMF which assigns a same weight to all the explicit
entities, LibSeek assigns different weights to different ex-
plicit entities. However, by leveraging the neighborhood
information, LibSeek significantly outperforms WRMF in
coverage measured by COV, by 13.54% on average. With
rm = 1 and pn = 5, LibSeek achieves the most significant
average advantages over the other approaches, i.e., 527.68%,
49.15%, 511.48%, 262.76% and 262.05% in COV, MILD, MAP,
MP and MR, respectively. The results presented in Table 2
demonstrate that, when recommending potentially useful
TPLs for app developers, LibSeek offers global diver-
sity by giving opportunities to both popular and less
popular TPLs. LibSeek also significantly diversifies the
TPLs across individual recommendation lists and it does
so with high prediction accuracy. This shows that the
recommendations made by LibSeek for individual apps are
highly personalized.

Table 2 also shows that, when rm increases from 1 to 5,
some of LibSeek’s performance advantages over the other
approaches decrease. For example, when pn = 5 and rm
increases from 1 to 5, LibSeek’s average performance ad-
vantages over the other approaches decrease from 527.68%
to 477.23% in COV, 511.48% to 161.83% in MAP, 262.76% to
210.49% in MP and 262.05% to 210.49% in MR. The main rea-
son for the decreases in LibSeek’s performance advantages
is that more explicit entries in M are discarded when rm
increases. As discussed in Section 4.1, LibSeek assigns in-
dividualized weight values (weight > 1) to explicit entries
and a universal weight value (weight = 1) to implicit en-
tries. When rm increases, more explicit entries are removed
from the testing apps. The removal of these entries impacts
LibSeek’s recommendation performance more significantly
than the other approaches which only treat explicit entries
with equal weight values (weight = 1) in M . On the other
hand, the increase in rm leads to higher advantages of
LibSeek in terms of MILD. When pn = 5 and rm increases
from 1 to 5, LibSeek’s average performance advantage over
all other approaches increases from 49.15% to 52.40%. When
pn = 10 and rm increases from 1 to 5, LibSeek’s average
performance advantage in MILD increases from 79.68% to
85.76%.

5.4.2 Impact of weight
As discussed in Section 4.1, the parameter weight is used
to set the weight for each entry in M . To evaluate its
impact on LibSeek’s performance, we vary its value with
rm ∈ {1, 3, 5}, pn ∈ {5, 10}, k = 6, α = 0.5. According to
Eq.(7), when weight = 0, LibSeek assigns the same weight,
i.e., 1, to all the entries in M and treats both explicit and
implicit entries equally. Fig. 5 shows the recommendation
results with pn = 5 for the first row and pn = 10 for the
second row.

Compared with weight = 0, LibSeek achieves much
higher performance with a non-zero weight. On average
across all cases with different weight > 0, pn and rm,
LibSeek outperforms weight = 0 by 34.47%, 1.21%, 20.76%,
30.70% and 30.70% in terms of COV, MILD, MAP, MP and
MR, respectively. This indicates that the adaptive weighting
mechanism improves the diversity and accuracy of Lib-
Seek’s recommendation results by leveraging the explicit

entries in M . As weight increases, LibSeek’s recommen-
dation performance increases in general in terms of both
diversity and accuracy. The metric MILD, which indicates
the internal diversity of each prediction list, is an exception.
In both Fig. 5(1b) and Fig. 5(2b), whenweight increases from
0, LibSeek’s MILD values increase gradually. For example,
when rm = 5 and weight = 24, its MILD value increases
by 2.62% from 0.9057 to 0.9294 in Fig. 5(1b), and by 3.14%
from 0.8678 to 0.8950 in Fig. 5(2b). As weight continues
to increase to 44, LibSeek’s MILD values start to decrease,
by 0.97% from 0.9294 to 0.9205 in Fig. 5(1b) and by 1.56%
from 0.8950 to 0.8810 in Fig. 5(2b). However, such slight
performance decreases in MILD are acceptable in most, if
not all, cases given the performance increase gained in other
performance metrics. Let us take a look at Fig. 5(1a) and
Fig. 5(2a). When rm = 5 and weight increases from 24 to
44, LibSeek’s COV values increase by 11.23% from 0.2824 to
0.3141 with pn = 5 in Fig. 5(1a) and by 11.09% from 0.3417 to
0.3796 with pn = 10 in Fig. 5(2a). In the meantime, LibSeek’s
MAP, MP and MR values also increase significantly. When
pn = 5, its MAP value increases by 15.00% from 0.6866 to
0.7896, its MP value by 26.49% from 0.4183 to 0.5291 and its
MR value by 26.49% from 0.4183 to 0.5291. When pn = 10,
its MAP value increases by 14.70% from 0.6448 to 0.7396,
its MP value by 22.60% from 0.2686 to 0.3293 and its MR
value by 22.62% from 0.5372 to 0.6587. Those increases are
much more significant than the slight decreases in the MILD
values.

5.4.3 Impact of k
As discussed in Section 4.2, neighborhood information is
utilized by LibSeek to increase the diversity in its recom-
mendation results. Parameter k is used to determine how
many neighbors of each app or library are utilized by
LibSeek in making recommendations. On the one hand, an
overly small k may result in loss of information provided
by neighbor apps or libraries. On the other hand, an overly
large k may introduce dissimilar neighbors to LibSeek and
consequently decreases its recommendation performance.
To evaluate the impact of k, we change its value from 1
to 10 in the experiments. Fig. 6 presents the results with
rm ∈ {1, 3, 5}, α = 0.5 and weight = 24. As demonstrated
by Fig. 6(1a), Fig. 6(2a), Fig. 6(1b) and Fig. 6(2b), along with
the increase in k from 1 to 10, LibSeek’s COV and MILD
values increase first, reach their maximums when k = 6,
then decrease slowly. Take pn = 5 as an example. The COV
values increase by 5.46% from 0.2873 to 0.3030, by 5.44%
from 0.2850 to 0.3005 and 5.27% from 0.2676 to 0.2817 when
rm = 1, 3, 5, respectively. When k continues to increase, the
COV values decrease by 0.73% from 0.3030 to 0.3008, by
0.87% from 0.3005 to 0.2979 and 0.53% from 0.2817 to 0.2802
when rm = 1, 3, 5, respectively. On one hand, it shows that
the optimal k can be experimentally obtained for LibSeek
to achieve the best performance. On the other hand, it
illustrates that the introduction of neighborhood informa-
tion increases the global coverage and inner-list diversity in
LibSeek’s recommendation results. More distinct TPLs can
be recommended to developers, for increasing the novelty
and serendipity of the recommendation.

More importantly, the introduction of neighborhood
information merely affects the recommendation accuracy.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 11

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(1a)

0.15

0.2

0.25

0.3

0.35

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(1b)

0.905

0.91

0.915

0.92

0.925

0.93

0.935

M
IL

D
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(1c)

0.4

0.5

0.6

0.7

0.8

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(1d)

0.1

0.2

0.3

0.4

0.5

0.6

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(1e)

0.2

0.3

0.4

0.5

0.6

0.7

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(2a)

0.2

0.25

0.3

0.35

0.4

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(2b)

0.86

0.87

0.88

0.89

0.9

0.91

M
IL

D
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(2c)

0.4

0.5

0.6

0.7

0.8

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(2d)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0 1 2 3 4 6 8 10 13 16 20 24 30 36 44

weight

(2e)

0.3

0.4

0.5

0.6

0.7

0.8

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

Fig. 5. Impact of weight

1 2 3 4 5 6 7 8 9 10

k

(1a)

0.26

0.27

0.28

0.29

0.3

0.31

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(1b)

0.905

0.91

0.915

0.92

0.925

0.93

0.935

M
IL

D
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(1c)

0.5

0.55

0.6

0.65

0.7

0.75

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(1d)

0.1

0.2

0.3

0.4

0.5

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(1e)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(2a)

0.32

0.33

0.34

0.35

0.36

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(2b)

0.88

0.885

0.89

0.895

0.9

0.905

M
IL

D
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(2c)

0.5

0.55

0.6

0.65

0.7

0.75

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(2d)

0.05

0.1

0.15

0.2

0.25

0.3

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

1 2 3 4 5 6 7 8 9 10

k

(2e)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

Fig. 6. Impact of k

Looking at the other sub-figures in Fig. 6, we can find that
the increase in k does not impact LibSeek’s performance in
MAP, MP and MR significantly. For example, with pn = 5
and rm = 5, the maximum impact occurs on MR, with a
decrease by only 0.21% from 0.4191 to 0.4182.

5.4.4 Impact of α

Parameter α controls how much LibSeek relies on neighbor-
hood information. To investigate the impact of α, we change
its value from 0 to 0.55 in steps of 0.05. The results are shown
in Fig. 7 with rm ∈ {1, 3, 5}, pn ∈ {5, 10}, k = 6 and
weight = 24. When α = 0, LibSeek does not leverage any
neighborhood information when making recommendations.
Thus, we can investigate the effectiveness of the neighbor-
hood information by comparing LibSeek’s performance in
two different scenarios with α = 0 and α > 0, respectively.
In Fig. 7(1a) and Fig. 7(2a), compared with α = 0, LibSeek
achieves much higher performance with a non-zero α. On
average across all cases with rm ∈ {1, 3, 5}, LibSeek’s
COV outperforms α = 0 by 8.66% when pn = 5 and
by 7.01% when pn = 10. When α = 0.55, the average
COV advantages achieved by LibSeek are 10.15%, 8.15%

when pn = 5 and pn = 10, respectively. This indicates
LibSeek’s ability to leverage neighborhood information
to improve the coverage of its recommendation results. As
α increases, the increase in α significantly impacts LibSeek’s
COV values. Take pn = 5 as an example. As α increases
from 0 to 0.55, LibSeek’s COV increases by 9.87% from
0.2755 to 0.3027 when rm = 1, by 10.69% from 0.2713 to
0.3003 when rm = 3 and by 9.93% from 0.2569 to 0.2824
when rm = 5, as shown in Fig. 7(1a). LibSeek’s MILD value
also increases as long as the α increases, but only slightly.
For instance, its MILD value increases by 0.32% from 0.9277
to 0.9307 when rm = 1, by 0.34% from 0.9150 to 0.9181
when rm = 3 and by 0.44% from 0.9253 to 0.9294 when
rm = 1, as shown in Fig. 7(1b). Fig. 7(1c) - Fig. 7(1e) and
Fig. 7(2c) - Fig. 7(2e) demonstrate phenomena similar to
Fig. 6(1c) - Fig. 6(1e) and Fig. 6(2c) - Fig. 6(2e), i.e., the
increase in α does not impact LibSeek’s recommendation
performance significantly. The results presented in Fig. 7
again confirm the conclusion we draw in Section 5.4.3,
i.e., the integration of neighborhood information into the
prediction model can improve the diversity in LibSeek’s
prediction results without significantly sacrificing its pre-

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 12

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(1a)

0.25

0.26

0.27

0.28

0.29

0.3

0.31

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(1b)

0.915

0.92

0.925

0.93

0.935

M
IL

D
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(1c)

0.5

0.55

0.6

0.65

0.7

0.75

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(1d)

0.1

0.2

0.3

0.4

0.5

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(1e)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(2a)

0.31

0.32

0.33

0.34

0.35

0.36

C
O

V
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(2b)

0.89

0.892

0.894

0.896

0.898

0.9

0.902

M
IL

D
,

p
n

=
5 rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(2c)

0.5

0.55

0.6

0.65

0.7

0.75

M
A

P
,

p
n

=
5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(2d)

0.05

0.1

0.15

0.2

0.25

0.3

M
P

,
p

n
=

5

rm = 1

rm = 3

rm = 5

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

(2e)

0.5

0.55

0.6

0.65

0.7

0.75

M
R

,
p

n
=

5

rm = 1

rm = 3

rm = 5

Fig. 7. Impact of α

diction accuracy. This conclusion also can be supported by
comparing the results of WRMF with LibSeek. As shown in
Table 2, LibSeek has slight advantages over WRMF in MILD,
MAP, MP and MR, i.e., on average 0.87%, 1.08%, 1.36%,
1.33% across all rm - pn combinations in terms of MILD,
MAP, MP and MR, respectively. However, LibSeek gains a
significant advantage over WRMF in COV, by 13.54% on
average. Both LibSeek and WRMF assign 1 to the implicit
entries in M and higher weights to explicit entries. The
advantage of LibSeek over WRMF in COV is achieved by
integrating neighborhood information into its predictions.

5.5 User Study

In addition to the above experiments, we also conducted a
user study through an email survey to validate LibSeek’s
effectiveness as well as the impact of the popular bias
discussed in Section 2.3. Firstly, we randomly collected 3,400
apps as well as their developers’ emails from Google Play.
Secondly, we generated two TPL lists for each of the 3,400
apps. The first list was generated via the POP approach
discussed in Section 5.4, which always recommends the
most popular TPLs that have not been used by the app.
The second list was generated by LibSeek. Each list has
10 potential useful TPLs. Thirdly, for each app, we mixed
the two lists into one list with redundant TPLs removed,
then sent it to the corresponding developers. In this way,
we conducted a single-blind user study as the developers
did not know which TPLs were recommended by the POP
approach or LibSeek. We can then analyze their feedback
about LibSeek’s recommendation results in an objective
manner. Developers are required to rate each TPL in the list
with one of five optional labels, i.e., Actioned, Actionable,
Interesting, Irrelevant and Misleading, which stand for
five different levels of their interests in the recommended
TPLs from high to low. Higher interest in a recommended
TPL indicates its greater usefulness for the corresponding
app. We stated that we would only collect information that
complies with the Human Research Ethics9 and we would

9. https://www.nhmrc.gov.au/

provide a $25 Amazon eGift Card for their feedback. In total,
we received feedback from 237 developers.

We then calculated and compared the number of de-
velopers’ different ratings for the TPLs recommended by
LibSeek and the POP approach. Fig. 8 shows the distri-
butions of the 4,470 ratings on 474 lists - 237 generated
by LibSeek and 237 generated by the POP approach. We
can see that developers showed overall positive attitudes
towards LibSeek. In total, 75.27% (1,784 out of 2,370) of all
the TPLs recommended by LibSeek are rated as Actionable
or Actioned. In contrast, only 11.73% of the TPLs rec-
ommended by the POP approach are rated as Actionable
or Actioned. This indicates the effectiveness of LibSeek
in finding useful TPLs for apps. The survey results show
that developers are indeed interested in many TPLs that
are potentially useful for their apps despite their lower
popularity. This confirms the limitation of recommending
only popular TPLs to developers as well as the need for
novelty and serendipity in the recommendation results, as
discussed in Section 1.

We also analyzed the survey results according to de-
velopers’ development experience. Fig. 9 shows the dis-
tribution of developers’ different ratings of the TPLs rec-
ommended by LibSeek. We divided developers into four
categories according to their development experience lev-
els, i.e., less than 2 years, 2-3 years, 4-5 years and 6-10
years. There are 57, 74, 83, 23 developers in each category,
respectively. We can find in Fig. 9 that new developers
gave LibSeek’ recommendation results higher ratings than
experienced developers. Out of all the developers with 2
years’ development experience or less, 93.86% of the rec-
ommendations made by LibSeek were rated Actioned or
Actionable. This number is 72.43% for developers with 2-
3 years development experience, 67.83% for those with 4-5
years and 65.322% for those with 6-10 years. This tells us
that recommending TPLs for developers is useful, especially
for relatively new developers.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 13

Actioned Actionable Interesting Irrelevant Misleading

Ratings

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f
R

a
ti
n
g
s

LibSeek

POP

Fig. 8. Distributions of ratings for TPLs recommended by LibSeek and
POP

<2 years 2-3 years 4-5 years 6-10 years

Development Experiences

0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

R
a

ti
n

g
s

Actioned

Actionable

Interesting

Irrelevant

Misleading

Fig. 9. Distributions of ratings for TPLs recommended by LibSeek by
developers’ development experience

5.6 Threats to Validity

5.6.1 Threats to construct validity

One of the main potential threats to the construct validity
of the evaluation is whether the comparison with POP, SGD
[20], ALS [21], BPR [22], MBR [33], CoMF [34], WRMF [29]
and LibRec [19] can properly demonstrate the recommen-
dation performance of LibSeek. We minimized this threat in
four different ways. First, the comparison involves represen-
tatives in different categories of approaches, i.e., POP always
recommends popular libraries, SGD and ALS consider only
the explicit entries in M , BRP and WRMF consider both
explicit and implicit entries. Second, we also compared
LibSeek with approaches MBR and CoMF that employ extra
implicit information, such as multiple pairwise ranking
criteria [33] or item-item co-occurrence information [34].
Third, we compared LibSeek with LibRec, which is state-of-
the-art approach for predicting libraries for traditional Java
projects. Fourth, the approaches are compared in terms of
not only the diversity but also the accuracy of their results.
Furthermore, we changed five experiment parameters to
simulate various recommendation scenarios. In this way, we
compare the impacts of those parameters on the approaches
comprehensively. The other main threat is the use of the
removed explicit entries - the removed TPLs - in M as
the ground truth. For each app, useful TPLs are yet to
be discovered. When evaluating LibSeek’s recommendation
accuracy, the incorrect TPLs on a recommendation list are
unnecessarily not useful. Thus, the results presented in
Section 5.4 indicate the lower bound of LibSeek’s prediction
accuracy. LibSeek’s true prediction accuracy is likely to be
higher than what is presented in Table 2 as well as Fig. 5,
Fig. 6 and Fig. 7.

5.6.2 Threats to external validity
The representativeness of MALib is one of the main po-
tential threats to the external validity of the evaluation.
To minimize this threat, we included in MALib a total
of 31,432 real-world apps on Google Play, the largest and
most popular Android app repository in the world. In
addition, both LibSeek and MALib are published online.
More apps and TPLs can be included in MALib to further
improve its representativeness. Another potential threat is
whether our experiments can properly simulate real-world
prediction needs. To attack this challenge, we employed
cross-validation technique in the experiments. By removing
libraries currently used in apps, we mimicked the to-be-
improved versions of those apps and used the removed
libraries as the ground-truth for the evaluation. This can
properly demonstrate LibSeek’s ability to fulfill the cor-
responding app developers’ prediction needs. App-library
usage records play a significant role in building the ground
truth for the experiments. Hence, the accuracy of those
records is the third potential threat to the external validity
of the evaluation. To minimize this threat, we employed
LibRadar [2], a TPL detection tool which was trained over
more than 2 million Android apps, to extract the TPLs used
by the apps in MALib. We also manually inspected and
updated its library dataset against the TPLs on Maven and
GitHub to improve the accuracy of LibRadar’s detection
results.

5.6.3 Threats to internal validity
The main threat to the internal validity of the evaluation is
about our conclusion of the relationship between LibSeek’s
high recommendation performance and its diversity and
coverage performance. To minimize this threat, we have
implemented a popularity-based approach, i.e., POP, as a
baseline in the experiments. It allows us to analyze the
diversity and coverage of LibSeek’s recommendation results
via comparison against a popularity-based prediction ap-
proach.

5.6.4 Threats to conclusion validity
The lack of statistical tests is the main potential threat to
the conclusion validity, e.g., we should have conducted chi-
square tests to draw conclusions when evaluating LibSeek.
However, we ran 100 experiment instances with 31,432 apps
per experiment instance and averaged the results each time
we varied one of the five experimental parameters. This led
to a large number of test cases, which tend to result in a
small p-value in the chi-square tests and lower the practical
significance of statistical tests [35]. Thus, the threat to the
conclusion validity due to the lack of statistical tests might
be high but not significant.

6 RELATED WORK

In recent years, more and more effort has been devoted
to the detection of third-party libraries used in mobile
apps [2] [3] [5] [4] [36] [37] [38]. Early studies usually
rely on white-lists, e.g., AdRisk [36] investigates ad plug-
ins in apps with a white-list of 100 advertisement libraries.
These methods commonly match the package names to find
specific libraries and thus are not reliable when apps are

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 14

obfuscated [3]. Recently, clustering techniques have been
employed to detect libraries. Similar modules in each app
are clustered using different strategies, such as the hierarchy
of packages [37], package relationship [38], the reference
and inheritance relationships among classes and methods
[3], and the numbers and types of API calls in each folder
[2]. In addition, some methods employ feature matching
to detect libraries, e.g., LibScout [5] and LibPecker [4].
They compare the similarity between classic libraries and
app code modules to detect libraries. In this research, we
updated LibRadar’s library dataset and used LibRadar to
detect TPLs because it is demonstrated to be able to find
more libraries than the other approaches [3], [4], [5].

In the field of software engineering, many researchers
have employed recommendation techniques to help with
mobile app development [39]. Some of them try to exploit
the information provided by app users, i.e., user reviews,
bug reports, questions, to give a recommendation on devel-
opment requirements [40] [41] [42] [43]. Some employ soft-
ware documents or information relevant to developers to
recommend libraries [19] or APIs [44]. Thung et al. [19] pro-
pose an approach named LibRed that combines association
rules and user-based CF to recommend libraries for open-
source Java projects. Zheng et al. [44] propose an approach
for recommending cross-library APIs through querying Web
search engines. Mora and Nadi [45] employ several metrics,
e.g., popularity, release frequency, fault-proneness and se-
curity to help developers evaluate and compare the quality
of libraries. The limitation is that app developers must be
aware of what functionality they need while searching for
new libraries, which makes it inapplicable for developers to
explore these libraries with unknown but potentially useful
functionality. LibraryGuru [46] recommends both functional
APIs and callback APIs by extracting correlations between
functionality descriptions and Android APIs from online
tutorials and SDK documents. The major limitation of Li-
braryGuru is that it can only be used to search for APIs
in one library rather than across libraries. In this paper,
we attempt to assist app developers in finding potential
useful libraries for their apps rather than taking over their
responsibilities entirely. Thus, we focus on the prediction of
libraries - rather than APIs - that are potentially useful for
app development. Furthermore, LibSeek employs existing
app-library usage information.

Matrix factorization (MF) and its extensions have gained
considerable attention and have become the de facto for
building modern recommender systems [47]. Many MF-
based prediction approaches have been proposed to fa-
cilitate or enhance the recommendations for e-commerce
websites or news portals. In the early years, SVD [48] was
proposed to make recommendations. However, it is not
capable of handling sparse user-item matrices effectively
and efficiently. More sophisticated MF-based approaches
have been proposed to address the issue of data sparsity
and improve prediction performance. In general, there are
two categories of approaches, one based on SGD [20] and
the other based on ALS [21]. However, both categories of
approaches consider only explicit information, e.g., numeric
ratings. Hu et al. [29] reveal that implicit information can
also contribute to making predictions. They propose an
approach often referred to as WRMF that assigns confidence

to each item according to the amount of the corresponding
implicit information. It is implemented and compared in
our experiments. Rendel et al. [22] focus on the ranking
issues caused by implicit information and propose a generic
optimization criterion named BPR for personalized rank-
ing that maximizes the posterior estimator derived from a
Bayesian analysis. BRP is also selected as the representative
approach that leverages both explicit and implicit informa-
tion for making predictions in our experimental evaluation.
In recent years, several approaches have been proposed
to make predictions considering implicit information. The
most popular way is to employ external social information,
e.g., Ciao,10 Delicious11 and LibraryThing,12 to improve
prediction accuracy [49], [50]. However, such external infor-
mation is not available in TPL recommendation scenarios.
Some approaches employ group information to improve
the prediction accuracy [33], [34]. To be more specific about
the TPL recommendation performance of those approaches,
they are implemented in our experiments as MBR and
CoMF.

As discussed in Section 2.3, the issue of popularity
bias drives a very small number of popular libraries to
be included in the prediction results achieved by MF-
based approaches. We aim to offer app developers novelty
and serendipity by diversifying prediction results. This is
achieved through recommending unpopular but useful li-
braries which may otherwise slip under the radar during
app developers’ search for useful libraries. Cremonesi et al.
[18] find that the very few top popular items can skew the
performance of recommender systems and they suggested
to choose the testing set carefully to address the accuracy
bias. Lathia et al. [32] and Zhang et al. [51] introduce
temporal information into MF to improve the diversity
of the prediction results. Abdollahpouri [52] introduce a
flexible regularization based framework, which categorizes
items into a popular set and an unpopular set, to increase
the coverage of the prediction results. Unfortunately, in the
context of library predictions, the available information does
not include timestamps and it is difficult to manually and
accurately categorize libraries into popular and unpopular
ones. Thus, LibSeek attempts to address the issue of popu-
larity bias with a new personalized weighting mechanism
that assigns a personalized weight to each library according
to its popularity.

MF-based approaches employ only global information
in the user-item matrix to make predictions. This is a major
reason for the lack of diversity in their prediction results.
Memory-based prediction approaches based on users [12],
items [13] or both [14] leverage neighborhood information
to make predictions, i.e., information about similar items
and similar users. Inspired by memory-based prediction
approaches, LibSeek employs both apps’ and libraries’ in-
formation neighborhood to diversify the prediction results.
The experimental results presented and discussed in Section
5 demonstrate that LibSeek outperforms classic approaches
in terms of diversity as well as accuracy.

10. https://www.ciao.co.uk
11. https://www.delicious.com
12. https://www.librarything.com

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 15

7 CONCLUSION AND FUTURE WORK

In this paper, we first revealed the importance of third-party
libraries (TPLs) in mobile app development with the results
of our investigation of 31,432 apps on Google Play. Then,
also based on the results of our investigation, we imple-
mented three representative model-based MF approaches
to recommend useful third-party libraries for those apps.
However, the results showed that existing approaches suffer
from low diversity due to popularity bias. To address this
issue, we proposed LibSeek, a novel approach for recom-
mending potentially useful TPLs for mobile apps. To tackle
the issue of popularity bias, LibSeek employs a personalized
weighting mechanism and neighborhood information to di-
versify the recommendation results. Extensive experiments
show that LibSeek significantly outperforms all the eight
representative recommendation approaches in terms of both
the diversity and accuracy of the recommendation results.

As discussed in Section 5.6.1, the prediction performance
of LibSeek is reliant on the quality of the data in the MALib
dataset. In our future work, we will extend MALib further
with more mobile apps and more TPLs. We will also try
to find new and more accurate TPL detection tools for
improving the accuracy of the information in MALib. In
addition, we will try to leverage additional information
about apps and TPLs, e.g., their categories, versions, etc.,
to further improve LibSeek’s performance.

ACKNOWLEDGEMENT

This work is partly funded by Australian Research Council
Discovery Projects DP170101932, DP180100212 and Laure-
ate Fellowship FL190100035. The corresponding author of
this paper is Yun Yang.

REFERENCES

[1] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An empirical study of third-party library updatability
on android,” in 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2187–2200.

[2] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and
accurate detection of third-party libraries in android apps,” in 38th
International Conference on Software Engineering Companion. ACM,
2016, pp. 653–656.

[3] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: Scalable and precise third-party library detection
in android markets,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), 2017, pp. 335–346.

[4] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in android applications
with high precision and recall,” in 25th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering, 2018, pp.
141–152.

[5] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 356–367.

[6] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, 2009.

[7] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond
the user-item matrix: a survey of the state of the art and future
challenges,” ACM Comput. Surv., vol. 47, no. 1, pp. 3:1–3:45, May
2014.

[8] Z. Zheng and M. R. Lyu, “Personalized reliability prediction
of web services,” ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 2, p. 12, 2013.

[9] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and
Y. Yang, “Covering-based web service quality prediction via
neighborhood-aware matrix factorization,” IEEE Transactions on
Services Computing, pp. 1–1, 2019.

[10] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste:
A constant time collaborative filtering algorithm,” Information
Retrieval, vol. 4, no. 2, pp. 133–151, 2001.

[11] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative
filtering recommender systems,” Foundations and Trends in Human-
Computer Interaction, vol. 4, no. 2, pp. 81–173, 2011.

[12] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in 22nd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 1999, pp. 230–237.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in 10th International
Conference on World Wide Web. ACM, 2001, pp. 285–295.

[14] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unifying user-based
and item-based collaborative filtering approaches by similarity
fusion,” in 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 2006, pp.
501–508.

[15] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen,
“Scalable collaborative filtering using cluster-based smoothing,”
in 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 2005, pp. 114–121.

[16] T. Hofmann, “Latent semantic models for collaborative filtering,”
ACM Transactions on Information Systems (TOIS), vol. 22, no. 1, pp.
89–115, 2004.

[17] R. Bell, Y. Koren, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, pp. 30–37, 08 2009.

[18] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in 4th ACM
Conference on Recommender Systems. ACM, 2010, pp. 39–46.

[19] F. Thung, D. Lo, and J. Lawall, “Automated library recommenda-
tion,” in 20th Working Conference on Reverse Engineering (WCRE),
2013, pp. 182–191.

[20] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,”
in 17th International Conference on Knowledge Discovery and Data
Mining. ACM, 2011, pp. 69–77.

[21] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in 14th International Conference on
Knowledge Discovery and Data Mining. ACM, 2008, pp. 426–434.

[22] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
25th Conference on Uncertainty in Artificial Intelligence, 2009, pp.
452–461.

[23] Y.-J. Park and A. Tuzhilin, “The long tail of recommender systems
and how to leverage it,” in 2008 ACM Conference on Recommender
Systems. ACM, 2008, pp. 11–18.

[24] M. Kaminskas and D. Bridge, “Diversity, serendipity, novelty, and
coverage: a survey and empirical analysis of beyond-accuracy ob-
jectives in recommender systems,” ACM Transactions on Interactive
Intelligent Systems, vol. 7, no. 1, p. 2, 2017.

[25] S. Arlot, A. Celisse et al., “A survey of cross-validation procedures
for model selection,” Statistics surveys, vol. 4, pp. 40–79, 2010.

[26] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 181–196, 2008.

[27] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transactions
on Software Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[28] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise
in defect prediction,” in 33rd International Conference on Software
Engineering. IEEE, 2011, pp. 481–490.

[29] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in 8th IEEE International Conference on
Data Mining. IEEE, 2008, pp. 263–272.

[30] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in 13th International Conference on Mining Software Repositories.
ACM, 2016, pp. 468–471.

[31] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy:
Evaluating recommender systems by coverage and serendipity,”
in 4th ACM Conference on Recommender Systems. ACM, 2010, pp.
257–260.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 16

[32] N. Lathia, S. Hailes, L. Capra, and X. Amatriain, “Temporal diver-
sity in recommender systems,” in 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval.
ACM, 2010, pp. 210–217.

[33] R. Yu, Y. Zhang, Y. Ye, L. Wu, C. Wang, Q. Liu, and E. Chen,
“Multiple pairwise ranking with implicit feedback,” in 27th ACM
International Conference on Information and Knowledge Management.
ACM, 2018, pp. 1727–1730.

[34] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization
meets the item embedding: regularizing matrix factorization with
item co-occurrence,” in 10th ACM Conference on Recommender Sys-
tems. ACM, 2016, pp. 59–66.

[35] M. Lin, H. C. Lucas Jr, and G. Shmueli, “Too big to fail: large
samples and the p-value problem,” Information Systems Research,
vol. 24, no. 4, pp. 906–917, 2013.

[36] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe
exposure analysis of mobile in-app advertisements,” in 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2012, pp. 101–112.

[37] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated
detection of android ad libraries using semantic analysis,” in IEEE
9th International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, 2014, pp. 1–6.

[38] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in 13th Annual In-
ternational Conference on Mobile Systems, Applications, and Services.
ACM, 2015, pp. 89–103.

[39] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” IEEE Transactions on
Software Engineering, vol. 43, no. 9, pp. 817–847, 2017.

[40] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Fer-
rucci, and A. De Lucia, “Recommending and localizing change
requests for mobile apps based on user reviews,” in 39th Interna-
tional Conference on Software Engineering. IEEE Press, 2017, pp.
106–117.

[41] L. V. Galvis Carreño and K. Winbladh, “Analysis of user com-
ments: An approach for software requirements evolution,” in 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 582–591.

[42] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
people hate your app: Making sense of user feedback in a mobile
app store,” in the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2013, pp. 1276–1284.

[43] X. Gu and S. Kim, “”what parts of your apps are loved by
users?” (t),” in 30th International Conference on Automated Software
Engineering, 2015, pp. 760–770.

[44] W. Zheng, Q. Zhang, and M. Lyu, “Cross-library API recommen-
dation using web search engines,” in 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software
Engineering. ACM, 2011, pp. 480–483.

[45] F. L. de la Mora and S. Nadi, “Which library should i use?: A
metric-based comparison of software libraries,” in 40th Interna-
tional Conference on Software Engineering: New Ideas and Emerging
Results. ACM, 2018, pp. 37–40.

[46] W. Yuan, H. H. Nguyen, L. Jiang, and Y. Chen, “Libraryguru:
Api recommendation for android developers,” in 40th International
Conference on Software Engineering: Companion. ACM, 2018, pp.
364–365.

[47] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization
meets the item embedding: Regularizing matrix factorization with
item co-occurrence,” in 10th ACM Conference on Recommender Sys-
tems. ACM, 2016, pp. 59–66.

[48] G. H. Golub and C. Reinsch, “Singular value decomposition and
least squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp.
403–420, Apr 1970.

[49] G. Guo, J. Zhang, F. Zhu, and X. Wang, “Factored similarity mod-
els with social trust for top-n item recommendation,” Knowledge-
Based Systems, vol. 122, pp. 17 – 25, 2017.

[50] T. Zhao, J. McAuley, and I. King, “Leveraging social connections to
improve personalized ranking for collaborative filtering,” in 23rd
International Conference on Information and Knowledge Management.
ACM, 2014, pp. 261–270.

[51] X. Zhang, J. Zhao, and J. C. Lui, “Modeling the assimilation-
contrast effects in online product rating systems: Debiasing and
recommendations,” in 11th ACM Conference on Recommender Sys-
tems. ACM, 2017, pp. 98–106.

[52] H. Abdollahpouri, R. Burke, and B. Mobasher, “Controlling pop-
ularity bias in learning-to-rank recommendation,” in 11th ACM
Conference on Recommender Systems. ACM, 2017, pp. 42–46.

Qiang He received his first PhD degree
from Swinburne University of Technology, Aus-
tralia, in 2009 and his second PhD degree
in computer science and engineering from
Huazhong University of Science and Tech-
nology, China, in 2010. He is a senior lec-
turer at Swinburne. His research interests in-
clude software engineering, edge computing,
service computing and cloud computing. More
details about his research can be found at
https://sites.google.com/site/heqiang/.

Bo Li received the BS and MS degree from the
School of Information Science and Technology
from Shandong Normal University in 2003 and
2010, respectively. He worked as an academic
visitor at Shandong University from 2014 to 2015
and at Swinburne University of Technology in
2018. He is currently a Ph.D. student at Swin-
burne. His research interests include software
engineering, edge computing and cybersecurity.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

John C. Grundy received the BSc (Hons),
MSc, and PhD degrees in computer science
from the University of Auckland, New Zealand.
He is currently a professor of software engi-
neering at Monash University, Melbourne, Aus-
tralia. He is an associate editor of the IEEE
Transactions on Software Engineering, the Auto-
mated Software Engineering Journal, and IEEE
Software. His current interests include domain-
specific visual languages, model-driven engi-
neering, large-scale systems engineering, and

software engineering education. More details about his research can
be found at https://sites.google.com/site/johncgrundy/.

Xin Xia is an ARC DECRA Fellow and a lec-
turer at the Faculty of Information Technology,
Monash University, Australia. Prior to joining
Monash University, he was a post-doctoral re-
search fellow in the software practices lab at
the University of British Columbia in Canada,
and a research assistant professor at Zhejiang
University in China. Xin received both of his Ph.D
and bachelor degrees in computer science and
software engineering from Zhejiang University in
2014 and 2009, respectively. To help developers

and testers improve their productivity, his current research focuses
on mining and analyzing rich data in software repositories to uncover
interesting and actionable information. More information at: https://xin-
xia.github.io/.

Yun Yang received his PhD degree from the
University of Queensland, Australia, in 1992, in
computer science. He is currently a full professor
in the School of Software and Electrical Engi-
neering at Swinburne University of Technology,
Melbourne, Australia. His research interests in-
clude software technologies, cloud computing,
workflow systems, and service computing.

