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Just-In-Time Defect Identification and
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Abstract—Defect localization aims to locate buggy program elements (e.g., buggy files, methods or lines of code) based on defect
symptoms, e.g., bug reports or program spectrum. However, when we receive the defect symptoms, the defect has been exposed and
negative impacts have been introduced. Thus, one challenging task is: whether we can locate buggy program prior to the appearance
of the defect symptom (e.g., when buggy program elements are being committed to a version control system). We refer to this type of
defect localization as “Just-In-Time (JIT) Defect localization”. Although many prior studies have proposed various JIT defect
identification methods to identify whether a new change is buggy, these prior methods do not locate the suspicious positions. Thus, JIT
defect localization is the next step of JIT defect identification (i.e., after a buggy change is identified, suspicious source code lines are
located).
To address this problem, we propose a two-phase framework, i.e., JIT defect identification and JIT defect localization. Given a new
change, JIT defect identification will identify it as buggy change or clean change first. If a new change is identified as buggy, JIT defect
localization will rank the source code lines introduced by the new change according to their suspiciousness scores. The source code
lines ranked at the top of the list are estimated as the defect location. For JIT defect identification phase, we use 14 change-level
features to build a classifier by following existing approach. For JIT defect localization phase, we propose a JIT defect localization
approach that leverages software naturalness with the N-gram model. To evaluate the proposed framework, we conduct an empirical
study on 14 open source projects with a total of 177,250 changes. The results show that software naturalness is effective for our JIT
defect localization. Our model achieves a reasonable performance, and outperforms the two baselines (i.e., random guess and a static
bug finder (i.e., PMD)) by a substantial margin in terms of four ranking measures.

Index Terms—Defect Localization, Just-in-Time, Defect Identification, Software Naturalness
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1 INTRODUCTION

During software development and maintenance, developers
often spend much effort and resources to debug a pro-
gram [1]. Defect localization (or bug localization) aims to
help developers to locate buggy program elements, such
as buggy files, methods or lines of code. Researchers have
proposed various techniques for defect localization, includ-
ing information retrieval (IR) based techniques [2]–[5] and
spectrum-based techniques [6]–[8]. These techniques per-
form localization by analyzing the defect symptoms. These
symptoms could be a description of a bug, or a failing test
case. For example, IR based techniques analyze the textual
description in bug reports, spectrum-based techniques ana-
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lyze program spectrum of failing and successful execution
traces [1].

However, one main limitation of the above-mentioned
localization techniques is that they rely on defect symptoms
(i.e., from bug reports or execution traces). When a defect
symptom is discovered, the defect has already been exposed
and it has already negatively impacted the software. There-
fore, one challenging task is: can we locate buggy program
prior to the appearance of the defect symptom (e.g., when
buggy program elements are being committed to a version
control system)? We refer to this type of defect localization
as “Just-In-Time (JIT) Defect Localization”.

The idea of “JIT Defect Localization” comes from “JIT
Defect Identification” (aka, JIT defect prediction) which is
a well-known technique for identifying buggy (i.e., defect-
introducing) changes at check-in time. Recently, JIT defect
identification has attracted an increasing research interest,
a number of studies have proposed various techniques for
JIT defect identification [9]–[16]. JIT defect identification can
yield many benefits. For example, the identification can
be performed at the time when the change is submitted;
such immediate feedback ensures that the context is still
fresh in the minds of developers. This fresh context can
speed up the fixing of the buggy change. Additionally,
the identification is made at a fine-granularity, i.e., change-
level, that are mapped to a few areas of the large code
base. Such a fine-granularity identification can provide large
effort saving over coarser grained identification (e.g., file-
level or module-level) [17].

Despite the achievements of JIT defect identification,
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one issue remains unanswered is: what is the next step if
we identified a buggy change? Our main concern is that
all of the prior studies focus on how to classify a change
(i.e., classify a change as buggy or clean), or sort changes
according to their defective likelihood scores, to find more
buggy changes by inspecting fewer changed lines of code
(i.e., effort-aware model) [9], [12], [15], [16]. However, after
a buggy change is identified, it is also a difficult task to
locate the exact buggy positions (e.g., source code lines),
especially for a change that has added many lines of code
(LOC). Take the Jmeter project as an example: the average
newly added LOC across all the changes is 180. It would
cost a great amount of inspection effort if we inspect all the
added LOC for all the buggy changes. Unfortunately, there
is no technique for guiding how to inspect a buggy change
in order to locate the exact buggy lines with less inspection
effort.

Therefore, in response to the concerns raised above,
we highlight the framework of JIT Defect Identification
and Localization. Different from current defect localization
techniques by analyzing defect symptoms, JIT defect local-
ization aims to be an early step of continuous quality control
because it can be performed as soon as a code change is
checked in. In summary, the main benefits of performing
JIT defect identification and localization are as follows:

• Localization is performed at a fine-granularity. JIT de-
fect localization locates buggy program elements at
a fine-granularity, i.e., line-level. For each buggy
change, JIT defect localization locates the buggy lines
in a buggy change. Such a fine-granularity can help
developers to locate and address defects using less
effort.

• Localization is performed early on. JIT defect localiza-
tion is performed at check-in time. Such immediate
feedback ensures that the context is still fresh in
the minds of developers. This fresh context can help
speed up the fixing of located defects immediately.

• Localization is performed without relying on defect symp-
toms. In JIT defect localization, only change proper-
ties are needed. Thus, the localization can be invoked
without analyzing the defect symptoms. In contrast
to current defect localization techniques which re-
quire the analysis of defect symptoms, the benefit of
JIT defect localization is that it can locate the defect
before the appearance of its symptom.

The basic technical idea of our JIT localization technique
begins with the “software naturalness” as observed by
Hindle et al [18] who noted that “natural” code is highly
repetitive and can be captured through a language model
(e.g. a N-gram model that was originally developed in
Natural Language Processing field). Based on this obser-
vation, Ray et al. [19] observed that buggy code tends to
be more entropic (i.e. unnatural) compared with clean code.
Moreover, they observed that this observation can be helpful
for defect identification on release level and can complement
the effectiveness of static bug finders (e.g., FindBugs and
PMD).

Inspired by the above-mentioned observations, we pro-
pose an automated two-phase framework. The first phase

consists of a JIT defect identification (i.e., identify buggy
changes). The second phase consists of a JIT defect local-
ization for the buggy changes that were correctly identi-
fied by the first phase. The first phase is similar to the
prior approaches. We implement a JIT defect identification
approach by following prior studies [9], [15], [20]. In the
second phase, we propose a localization approach based
on software naturalness by learning from historical labeled
code.

In summary, our work consists of three steps as shown
in Figure 1. (1) The first step is a data preparation step.
We identify buggy and clean changes using the Refactoring
Aware SZZ (RA-SZZ) algorithm first [21], [22], then we
link each buggy change and its corresponding bug-fixing
change(s). Subsequently, we label the added lines by buggy
changes that are modified by the corresponding bug-fixing
changes as buggy code; otherwise, the lines are labeled as
clean code. (2) The second step is the model building phase.
We build a JIT defect identification model (i.e., JIT Defect
Identifier) and a JIT defect localization model (i.e., JIT Defect
Locator). For the JIT defect identifier, we use 14 change-
level features to build a logistic classifier by following prior
studies [15], [20]. For the JIT defect locator, we build a code
language model based on historical clean code using the N-
gram model that has shown to be an effective technique for
source code modeling [18], [19], [23], [24]. (3) The third step
is the model application phase. For a new change, we first
identify whether or not it is a likely buggy change using our
JIT defect identifier. For a likely buggy change, we sort the
added lines according to the likelihood values using the JIT
defect locator. The lines sorted at the top are more likely to
be the defect location.

1.1 Novelty Statement

The novelty of this paper is to propose a new framework:
Just-In-Time Defect Identification and Localization. The pro-
posed framework contains a two-phase analysis, i.e., (1)
identifying buggy changes and (2) locating suspicious code
lines introduced in the identified buggy change.

1.2 Contributions

The contributions of this paper are as follows:

• We propose a two-phase framework of JIT defect
identification and localization. This framework can
locate suspicious defective lines on change-level at
check-in time.

• We conduct an empirical study to evaluate our pro-
posed framework on 14 projects with a total of
177,250 changes. The results show that our frame-
work achieves a reasonable performance, which sig-
nificantly outperforms the baselines (i.e., random
guess and a static bug finder (i.e., PMD)) by a sub-
stantial margin1.

1. Our replication package: https://github.com/MengYan1989/JIT-
DIL
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Fig. 1: Overview of our proposed framework

1.3 Paper Organization

The rest of the paper is structured as follows. Section 2
presents the details of our proposed framework. Section 3
provides the empirical study setup, including the dataset,
validation setting and model evaluation. In Section 4, we
provide the experimental results and their analysis. Sec-
tion 5 presents the discussions on the impact of different
configurations. Section 6 describes the threats to validity.
Section 7 presents the related work of our study. Section 8
concludes and presents future work.

2 OUR FRAMEWORK

Figure 1 presents an overview of our proposed framework.
Our framework consists of three steps: data preparation,
model building and model application. In this section, we
first describe how to prepare the dataset to build our model.
Then we provide the details about how to build our model.
Finally, we present how to apply our framework to JIT
defect localization.

2.1 Data Preparation

In this phase, we identify and collect clean and buggy source
code lines that are added by software changes. Clean lines
are used to build a “Clean” language model, buggy lines are
used to be the ground truth for evaluating the localization
performance. We focus on added lines by software change
because our model aims to perform the localization on the
added lines of new changes. Note that a modified line of a
change is treated as an added line (after modification) and a
deleted line (before modification).

Similarly to Ray et al. [19], we apply the SZZ algo-
rithm [25] to identify clean and buggy lines. Many prior
studies reported that Śliwerski et al.’s original SZZ algo-
rithm [25] is impacted by large amounts of noise (e.g.,
blank/comment lines) [21], [22], [26]–[28]. Following prior
study’s recommendation [22], we apply Refactoring Aware
SZZ (RA-SZZ) [21]—an SZZ variant that can deal with noise
including blank/comment lines, format modifications and
refactoring modifications.

In summary, we take four steps to prepare the studied
data:

1) Defect-fixing change identification. We identify the
changes that fix defects following prior work [22]. For each
change, we first search the commit message for references
to issue reports, e.g., “Fixed #233”. Then, we crawl the
corresponding issue report from the issue tracking system
(ITS) of the project and check whether the report is defined
as a defect in the ITS. If the report is defined as a defect
and it is resolved or closed, we consider the change as a
defect-fixing change.

2) Buggy (i.e., defect-introducing) change identifica-
tion. We leverage RA-SZZ2 [21], [22] to identify defect-
introducing changes. RA-SZZ first leverages the git diff
command to identify the lines that were changed by defect-
fixing changes. From the identified lines, RA-SZZ filters
away blank/comment lines, lines involving format modi-
fications (e.g., modification of code indentation) and those
involving refactoring modifications. Then, for the remaining
lines, RA-SZZ traces back through the change history to
identify the changes that introduce the lines, which are
identified as defect-introducing changes. RA-SZZ leverages
the annotation graph [29] to trace back through the change
history. Annotation graph was proposed by Zimmermann et
al. [29]. The graph traces the evolution of lines of code along
the code change history. Using the annotation graph, RA-
SZZ will not stop its search for defect introduction changes
at changes that involve format modifications or refactoring
modifications instead it can further trace back through
the code history to identify the actual defect-introducing
changes. In addition, another advantage of RA-SZZ is that
for a code statement involving multiple lines, RA-SZZ can
automatically combine the lines into one line. Hence, RA-
SZZ ensures the completeness of the code lines that are
analyzed in our study.

3) Buggy and clean lines identification. We label the
lines that were added by clean changes, and lines that
were added by buggy changes but were not later fixed,
as clean lines. And we label the lines that were added
by buggy changes, and were later fixed by linked defect-
fixing changes as buggy lines. Since we aim to analyze the
source code to locate likely defective code lines, the source
code comments are out of the scope of our consideration.

2. https://github.com/danielcalencar/ra-szz
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Therefore, we remove all the source code comments in the
added lines using regular expression.

4) Code tokenization. After collecting buggy and
clean code lines, we perform the code tokenization step
to break each line into separate words. Specifically,
we use the tokenization tool that delimit code based
on the Java grammar proposed by prior study [24].
For example, a line in Deeplearning4J project is “Sys-
tem.out.println(graph.summary(InputType.feedForward(5)));”,
the tokenized words are: “System . out . println (
graph . summary ( InputType . feedForward (
5 ) ) ) ;”. All the tokenized words of code lines are
included for building a code language model.

2.2 Model Building

The model building step consists of two models, i.e., the JIT
defect identification model and the JIT defect localization
model.

1) JIT defect identification model.
Our JIT defect identification model aims to identify

whether or not a new change is a buggy change. To do
so, we implemented a logistic regression based approach
as done by prior studies [9], [15]. We briefly introduce the
steps of the JIT defect identification below, and more details
can be found in the original papers [9], [15]. First, we extract
14 change-level features proposed by prior studies [9], [12],
[15], [16], [30] and presented in Table 1. Second, we do the
same data preprocessing steps (e.g. re-sampling and log
transformation) as prior studies [9], [15]. Third, since we
already labeled each historical change as buggy or clean in
our data preparation step, we build the identification model
using a logistic regression classifier by training on historical
changes. Subsequently, a new change would be classified as
buggy if its predicted likelihood is larger than 0.5; otherwise
it will be identified as clean.

Table 1 presents the name and description of our used
14 change-level features. These features are grouped into
five dimensions: diffusion (NS, ND, NF and Entropy), size
(LA, LD and LT), purpose (FIX), history (NDEV, AGE and
NUC) and experience (EXP, REXP and SEXP). The diffusion
dimension characterizes the distribution of a change. The
purpose dimension only consists of FIX, which indicates
whether or not this commit is a bug fixing commit. The
history dimension characterizes how developers modify the
files within the change in the code history. The experience
dimension captures a developer’s experience based on the
number of commits made by that particular developer in the
past. We calculate these features following prior studies [9],
[15], more detailed description can be found at Kamei et al.’s
work [9].

2) JIT defect localization model.
To build a localization model, we build a source code

language model trained on clean source code lines (i.e., a
clean model) by using N-gram model.

N-gram modeling for source code. In our work, we choose
N-gram model as our underlying language modeling tech-
nique because N-gram model has been shown to be effective
in modeling source code [18], [19], [23], [24]. Our objective is
to propose the first JIT defect localization framework. Thus,

TABLE 1: Summary of the used change features.

Dimension Feature Description

Diffusion

NS Number of subsystems touched by the current
change

ND Number of directories touched by the current
change

NF Number of files touched by the current
change

Entropy Distribution across the touched files

Size
LA Lines of code added by the current change
LD Lines of code deleted by the current change
LT Lines of code in a file before the current

change
Purpose FIX Whether or not the current change is a defect

fix

History
NDEV Number of developers that changed the files
AGE Average time interval between the last and

current change
NUC Number of unique changes to the files

Experience
EXP Developers experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

we believe that a simple and popular modeling technique is
sufficient.

Formally, a language model assigns a probability (or a
score) to a sequence of words. In our context, suppose there
is a code fragment s of length |s|, it is tokenized into t1,
t2,...,ts. A language model estimates the probability of this
sequence occurring as a product of a series of conditional
probabilities as:

p(s) =

|s|∏
i=1

p(ti|t1, ..., ti−1). (1)

Specifically, p(ti|t1, ..., ti−1) denotes the probability that
the token ti follows the previous tokens, i.e., the prefix h =
t1, ..., ti−1. The count-based MLE (count of sequence/count of
context) that is used in N-gram models becomes impractical
to estimate the probabilities, due to the very large number
of possible prefixes. Thus, a common optimization is the
N-gram language model. The N-gram model assigns a
probability (or a score) to a sequence of words based on
the Markov-assumption, i.e., each token is conditioned on
the N − 1 preceding tokens, that is,

p(ti|h) = p(ti|ti−n+1, ..., ti−1). (2)

We estimate the above-mentioned probability from the
training corpus as the fraction of times that ti follows the
prefix ti−n+1, ..., ti−1. Additionally, since the probabilities
may vary by orders of magnitude, we use the (typically
negated) logarithm of the phrase probability, to arrive at the
information-theoretic measure of entropy as defined in prior
studies [19], [24]. Entropy reflects the number of needed bits
to encode the phrase (and, analogously, a token) given the
language model. Entropy is a measure of how “surprised”
a model is by the given document. The lower the entropy
of a new code fragment is, the more natural the new code
fragment is with the training code corpus. Formally, given
a code fragment s of length |s|, the prefix of each token is
denoted by h = t1, ..., ti−1, the entropy of the code fragment
(and, analogously, a token) is computed as:

Hp(s) = −
1

|s|
log2 p(s) = −

1

|s|

|s|∑
i=1

log2 p(ti|h). (3)
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Note that the model training corpus only consists of the
added clean lines by software changes that are identified in
the data preparation step. The vocabulary is built from the
training corpus. The reason is that we attempt to build a
pure-clean training corpus and our target is line-level local-
ization. Adding more context (e.g., other lines before/after
a clean line) might impact the cleanliness of our training
corpus.

N-gram configuration. By default, in terms of the N-gram
length (i.e., the value size N in an N-gram model), we set
N = 6 (i.e., 6-gram) since prior study by Hellendoorn and
Devanbu [24] has shown that the value performs well for
modeling source code. Additionally, in practice, it is neces-
sary to smooth the probability distributions by assigning
non-zero probabilities to unseen words or N-grams. The
smoothing is needed since models that are derived directly
from the n-gram frequency counts have severe problems
when confronted with any n-grams that have not explicitly
been seen before, i.e., the zero-frequency problem. Smooth-
ing is a popular technique to cope with this problem in
the NLP field [31]. Various smoothing methods have been
proposed, such as Jelinek-Mercer (JM), Witten-Bell (WB) and
Absolute Discounting (AD) [24], [31]. By default, we adopt
the JM smoothing method that has shown to perform well
for modeling source code as recommended by Hellendoorn
and Devanbu [24].

2.3 Model Application

JIT defect identification. Given a new change, the built
JIT defect identification model in previous subsection will
identify it as buggy or clean.

JIT defect localization. For the likely buggy changes
identified in previous step, the built JIT defect localization
model will computes the entropy of each token, then we
compute the entropy of a line using the entropy values of all
its tokens. Subsequently, we sort all the introduced lines in
descending order according the entropy of each line. Lines
that are sorted at the top are more likely to be defective.

One final issue that remains is how to compute the line
entropy (i.e., the entropy-based score of a line) according to
the entropy values of its tokens. Suppose there is a code line
s of length |s|, the line is tokenized into t1, t2,...,t|s|. The en-
tropy of each token outputted by language model is denoted
as Hp(t1), Hp(t2),...,Hp(t|s|). In a prior study [19], the line
entropy Hp(s) is computed by simply averaging the entropy
values of its tokens, that is: Hp(s) =

1
|s|

∑|s|
i=1 Hp(ti).

In our context, since our model aims to sort lines ac-
cording to line entropy to find more likely buggy lines,
we conjecture that the most unnatural token sequences is
important for sorting. Therefore, we adjust line entropy
Hp(s) computing method by combining maximum entropy
and the average entropy.

Specifically, in terms of the clean model, we compute the
line entropy (denoted as Hp(s)c) by summing the maximum
(i.e., max) entropy with the average entropy of its tokens,
that is,

Hp(s)c = max(Hp(t1), ...,Hp(t|s|)) +
1

|s|

|s|∑
i=1

Hp(ti). (4)

TABLE 2: Summary of the studied projects.

Project Start #Changes #Buggy Ratio
Deeplearning4j Nov-13 8,770 2,497 0.28
Jmeter Sep-98 14,625 1,542 0.11
H2o Mar-14 21,914 1,047 0.05
Libgdx Mar-10 13,019 2,042 0.16
Jetty Mar-09 14,804 923 0.06
Robolectric Jun-10 7,085 697 0.10
Storm Sep-11 8,819 401 0.05
Jitsi Jul-05 12,608 824 0.07
Jenkins Nov-06 23,764 1,436 0.06
Graylog2-server May-10 13,702 1,466 0.11
Flink Dec-10 11,982 1,184 0.10
Druid May-11 5,417 1,068 0.20
Closure-compiler Nov-09 10,870 249 0.02
Activemq Dec-05 9,871 1,738 0.18

The reasons for this adjustment are: 1) the max entropy
captures the most unnatural token sequences of a line.
Within the context of the clean model, the most unnatural
line means the most defective line. 2) The average entropy
captures the entire naturalness of a line, summing it with
max entropy is useful for describing the entire naturalness
of the line, especially when the max entropy of different
lines might be equal.

3 EMPIRICAL STUDY SETUP

In this section, we present our empirical study setup. First,
we present a summary of the used dataset. Second, we
present our validation setting to create the training and test-
ing sets for our study. Third, we describe the performance
measures that are used to evaluate the JIT defect localization
method. At last, we present the research questions that we
are interested in answering in our empirical study.

3.1 Dataset

We select experimental projects from Github. The selected
projects are written by Java, cover different application
domains, are of different sizes and have a varying number
of contributors. Additionally, all the projects have over 5,000
changes to ensure sufficient samples for modeling, and over
1,000 stars to ensure that the studied projects are non-trivial
ones [32]. We randomly selected 14 projects that satisfy our
inclusion criteria. The sample size is larger than the related
JIT studies [9], [12], [15], [16], [20]. Table 2 presents the
summary of studied projects.

We collect the changes of studied projects from the
creation data of the projects to March 1, 2018. However,
since we need to use the future changes to identify defect-
introducing changes, we use the changes until October 1,
2017 (i.e., a five-month window) to ensure most of the
studied changes are correctly labeled. We set the five-month
window because above 80% of the buggy changes in our
dataset were fixed within five months on average. There are
a few buggy changes that may need even over a year to
be fixed. A much larger window may reduce the number of
instances for our study. A shorter time window would likely
introduce noise in our data. Thus, we think five months is
a rational and sufficient window. In total, there are 177,250
changes in the studied projects.
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3.2 Model Evaluation

Evaluation setting. Our proposed framework aims to locate
the buggy lines that are introduced by a buggy change.
Thus, the JIT defect localization phase is only useful when a
buggy change is identified in JIT defect identification phase.
Under this situation, we report the evaluation results con-
sidering two kinds of settings. One setting is the evaluation
of identified-buggy changes in the testing set. This setting
means that we only consider the buggy changes that are
correctly identified by our first phase (i.e., the JIT defect
identification phase). This setting aims to simulate the prac-
tical usage scenario when using our tool. The other setting is
the evaluation of all-buggy changes in testing set. This setting
assumes that we already know whether or not a change
is a buggy one, then we apply our localization approach
(i.e., supposing we have a perfect JIT defect identification
approach). In our evaluation, we report the results of these
two settings.

Performance measures. MRR and MAP are classical
evaluation metrics for information retrieval [33]. In our
context, MRR measures how far we need to check in down a
sorted list of added lines of a buggy change to locate the first
buggy line, while MAP considers the ranks of all buggy lines
in that sorted list. MRR and MAP are widely used in many
software engineering studies to evaluate the performance
of a retrieval task [34]–[37]. Note that our evaluation is
performed at the change-level, i.e., each buggy change in
our test set has an MRR and an MAP performance value.
And we report the average of identified-buggy and all-buggy
changes in the testing set in a project.

Top-k Accuracy. In practice, inspecting all changed LOC
in all changes is probably unrealistic. Prior studies assumed
that only a small proportion of the changed LOC could
be inspected given the limited resources and time in prac-
tice [19], [38]. Therefore, we also evaluated our approach
considering a limited inspection budget (i.e., inspecting the
most Top-k buggy lines of a change).

Top-k accuracy is the percentage of buggy changes for
which at least one actually buggy line is ranked within the
Top-k position in our returned list of sorted code lines. In
terms of one buggy change i, if at least one of the Top-
k most likely buggy lines returned by our approach is
actually the buggy location, we consider the localization
to be successful, and set the top-k value of this change
Top k(i) to 1; otherwise, we consider the localization as
unsuccessful, and set the Top-k value Top k(i) to 0. Given a
set of N buggy changes in a project P , its Top-k accuracy is
computed as Top k(P ) = 1

N

∑N
i=1 Top k(i). In this paper,

we set k = 1 and 5.

3.3 Research Questions

We formalize our study using the following three research
questions:

RQ1: Can we effectively locate the buggy lines when iden-
tifying a buggy change using our proposed framework?
In this RQ, we evaluate the effectiveness of our proposed
framework for JIT defect identification and localization. To
answer this RQ, we conduct an empirical study to evaluate
our framework on 14 open source projects. Additionally, we

compare its performance with two baselines, i.e., a random
guessing and a static bug finder baseline (i.e., PMD [39]).

RQ2: What is the impact of using prior buggy code for JIT
defect localization phase? By default, we build our model
for JIT defect localization by training on prior clean code
(i.e., a clean language model). In this RQ, we investigate
what if we build the source code language model using
buggy code (i.e., a buggy language model).

RQ3: How effective is our framework in a cross-project
setting? In this RQ, we aim to explore the effectiveness of
our framework in a cross-project modeling setting. By de-
fault, we build our model for each project by learning from
the historical code changes within that project. To answer
this RQ, we build a cross-project model by learning from the
other studied projects except one project (the testing project)
at a time.

Validation setting for answering the above RQs. In order
to simulate the practical usage of our framework, we adopt
a time-aware validation setting that divides the training and
testing sets as done by prior studies [12], [25]. In our time-
aware validation, for each project, we first rank all changes
in chronological order according to the commit date and
time. Then we use the early 60% of the changes as our
training set, and use the remaining 40% of the changes as
our testing set.

For answering RQ1 and RQ2, we use the within-project
validation setting, i.e., learning from the early 60% changes
within the project, and testing on the remaining 40%
changes. For answering RQ3, we build the approach by
learning from all the changes from the other studied projects
except one project (the testing project) at a time. Note that
in order to make a fair comparison, we keep the testing
set of within-project and cross-project setting the same for
answering RQ3.

4 EXPERIMENTAL RESULTS

In this section, we aim to answer the aforementioned three
research questions. In RQ1, we evaluate the performance of
our proposed JIT defect localization approach on 14 open
source projects and compare it with two baselines. In RQ2,
we present the results of clean vs. buggy model. In RQ3, we
show the effectiveness of our approach when using cross-
project modeling.

4.1 RQ1: Performance of proposed framework

Approach: To answer this research question, we conduct
an empirical study on 14 open source projects. By default
in JIT defect localization phase, we build a clean model
by training on a clean corpus of lines of code from prior
code changes for each project. For each change in testing
set, we first classify it as buggy or clean using the built
logistic classifier learning on our training set (i.e., JIT defect
identification). Then, for a likely buggy change determined
by previous classifier, we perform our localization phase.
Additionally, in order to compare the effectiveness of the
proposed approach with similar solutions, we implement
two baselines, i.e., random guess and a static bug finder
baseline, PMD.
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TABLE 3: Descriptive statistics for our training and testing sets, as well as the performance measures for our JIT defect
identification approach.

Project #Training #Testing #Buggy in testing Identification ratio Misidentification ratio
Deeplearning4j 5,262 3,508 1,251 0.909 0.282
Jmeter 8,775 5,850 642 0.732 0.198
H2o 13,148 8,766 420 0.924 0.249
Libgdx 7,811 5,208 680 0.962 0.445
Jetty 8,882 5,922 582 0.787 0.254
Robolectric 4,251 2,834 388 0.655 0.167
Storm 5,291 3,528 250 0.976 0.252
Jitsi 7,565 5,043 455 0.635 0.159
Jenkins 14,258 9,506 586 0.935 0.253
Graylog2-server 8,221 5,481 482 0.842 0.132
Flink 7,189 4,793 747 0.973 0.684
Druid 3,250 2,167 430 0.984 0.373
Closure-compile 6,522 4,348 58 0.690 0.240
Activemq 5,923 3,948 571 0.800 0.290
Average 7,596 5,064 539 0.843 0.284

Baseline 1: Random Guess (RG). RG is usually adopted as
a baseline when there is no previous method for addressing
the same research question [40]. In random guess JIT defect
localization, the model randomly sort the introduced lines.
In terms of computing its performance, since the perfor-
mance only relates to the order of lines, we sort the intro-
duced lines in a buggy change randomly and we repeat the
random sorting 100 times to get the median performance.

Baseline 2: PMD. PMD is a commonly-used static bug
finder. We choose PMD as a baseline because it is a popular
static bug finder tool and has been used in prior related
studies [19], [41]. PMD produces line-level warnings and
assigns a priority for each warning. Another popular static
bug finder tool is FindBugs [42]. We did not choose Find-
Bugs as a baseline because it needs to operate on the Java
bytecode. Prior studies have found that not all changes leave
the code base in a compilable state [43]. The main reason
for a broken snapshot (i.e., cannot be compiled) is due to
the problems related to the resolution of dependencies [44],
[45]. Since we aim to perform the evaluation on each change,
the existence of broken snapshots prevents us from adding
FindBugs as another baseline.

We simply execute the existing PMD tool3 for each code
change to implement the baseline. Specifically, for each
change in our test set, we checkout the changed/added files
after the commit time. Subsequently, we use the PMD tool to
scan the changed files then record the warning priority (1-
5, denotes “High”, “Medium high”, “Medium”, “Medium
low”, “Low” respectively) of each introduced line by the
change. If a line is not marked by PMD, we assign the
value of priority as 6 (i.e., denotes “Clean”). In this way,
we can sort the lines according to their warning priority
(i.e., 1-6). Additionally, since some lines might have equal
priority, we add a small random amount from [0, 1] to
all line priority values for sorting. This step simulates the
developer randomly choosing to inspect the lines returned
by the PMD tool with the same priority level (as proposed
by a prior study [19]). Then we sort the introduced lines
according to these computed priority values (i.e., “1-6” +
“[0,1]”) in ascending order. The lines sorted at the top of the
list are more likely to be the defect location. To reduce the
bias of our randomly added amount from [0, 1], we repeat
this process for 100 times and get the median performance

3. https://pmd.github.io/

for each change.
To conduct a fair comparison, we use the same approach

in terms of JIT defect identification phase for our framework
and two baselines. Because our point is to compare the
localization performance supposing we use the same JIT
defect identification tool in the first phase as described in
section 2.

To investigate whether the difference between the base-
line models and our proposed models is statistically signif-
icant, we employ the Wilcoxon signed-rank test [46] with
a Bonferroni correction [47] at 95% confidence level. The
Wilcoxon signed-rank test is a non-parametric hypothesis
test which can compare two matched samples to assess
whether their population mean ranks differ. Bonferroni cor-
rection is used to counteract the problem of multiple com-
parisons. Additionally, we employ Cliff’s delta to measure
the effect size. Cliff’s delta is a non-parametric effect size
measure that can evaluate the amount of difference between
two approaches. It defines a delta of less than 0.147, between
0.147 and 0.33, between 0.33 and 0.474 and above 0.474 as
“Negligible (N)”, “Small (S)”, “Medium (M)”, “Large (L)”
effect size, respectively [48].

Results of JIT defect identification. Table 3 shows the
result of the first phase (i.e., JIT defect identification) of our
framework. For each project, we list the number of training
and testing changes and two performance measures for JIT
defect identification:

(1) Identification ratio is the recall of our JIT defect iden-
tification phase. It indicates the ratio of correctly identified
buggy changes among all buggy changes in our testing set.
Our JIT defect localization approach is only useful when
examining a buggy change. Thus, a high identification ratio
for the first phase of our framework is an essential first step
for using our localization approach.

(2) Misidentification ratio is the false positive rate of
our JIT defect identification phase. It indicates the ratio
of misidentified clean changes on which we would have
wasted our limited inspection effort. It is unrealistic to
inspect all changes in practice. Hence, we cannot classify
all changes as “buggy” to achieve an identification ratio of
1. This would lead to a large amount of wasted inspection
effort. Thus, we use misidentification ratio to capture the
amount of wasted effort.

From Table 3, we observe that we can achieve an av-
erage identification ratio of 0.843, and a misidentification
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Fig. 2: Distribution of total added lines, buggy lines, ratio of buggy lines relative to the added lines for all-buggy and
identified-buggy changes, and the number of tokens in buggy and clean lines in our dataset. “Buggy Lines/ Total Lines”
can capture the difficulty degree for a defect localization approach. A dot represents the median value.

ratio of 0.284 for JIT defect identification phase. Since the
first phase is not the main contribution of our work, we
simply implement a prior approach which provides us
with reasonable performance already. The core focus of this
paper is to investigate the performance of our proposed
framework for JIT defect localization using the correctly
identified buggy changes from the first phase. Additionally,
we report the performance of our localization approach in a
hypothetically setting which assumes that we have at hand
a perfect JIT defect identification approach that is capable
of identified all buggy changes and not misidentifying any
changes.

Data distributions of lines and tokens. To gain an overview
of the distribution of lines and tokens in our dataset, we use
violin plots [49]. Since the absolute value of added lines for
some changes are very large (e.g., more than 1K LOC are
modified), we applied a standard log transformation (base
2) to the size of each change before visualization. Figure 2
presents the distributions of change size (i.e., added lines),
buggy lines, the ratio of buggy lines relative to the number
of added lines in a buggy change for identified-buggy and
all-buggy changes, and the number of tokens in buggy and
clean lines across all the studied projects. The ratio of buggy
lines can capture the defect localization difficult degree. The
smaller the ratio is, the more difficult it is to perform defect
localization. A ratio of 1 indicates that all the added lines
are buggy lines, the defect localization is easiest in this case.
In summary, the figure shows that:

(1) Considering all-buggy changes, the majority of the
buggy changes added less than 180 (i.e., 27.5) lines of code,
the median value is near 32 (i.e., 25) from Figure 2(a).
Among the added lines, most of the buggy changes added
less than 6 (i.e., near 22.5) buggy lines from Figure 2(b).
From the ratio of buggy lines, most of the buggy changes
have a relatively higher difficulty degree for localization, the
median value of the ratio of buggy lines is near 0.125 (i.e.,
locating 1 buggy line from 8 added lines) from Figure 2(c).

(2) Considering identified-buggy changes, the number of
small changes (e.g., less than 22.5) is much less compared
to all-buggy changes from Figure 2(a). This means that
our JIT defect identification phase tends to identify “large”
buggy changes. Meanwhile, the number of buggy changes
with a high difficulty degree for localization is much larger
than all-buggy changes from Figure 2(c). This means that
identified-buggy changes tend to be more difficult for local-

ization.
(3) From Figure 2(c), we observe that there are a few

changes that have a ratio of 1 (i.e., all the added lines are
buggy lines). In this case, a JIT defect localization is not
needed. However, in order to consider a more realistic usage
scenario, we did not remove these changes.

(4) Figure 2(d) presents the distribution of the number
of tokens of buggy and clean lines. Since a few lines may
contain a large number of tokens (e.g., a long string), we
only visualize the lines that contain less than 50 tokens. We
use the Wilcoxon rank-sum test [50] to analyze the statistical
significance of the difference between the number of tokens
of buggy and clean lines. The result shows that the number
of tokens of buggy lines is significantly larger than that of
clean lines (i.e., p-value< 0.05). The number of tokens could
be an important factor affecting the entropy of a line. The
longer lines may have an overall average entropy higher
than shorter lines. The statistical results in Figure 2(d) could
be a correlated effect on why buggy lines tend to have a
higher average entropy.

Results of JIT defect localization. Tables 4, 5, and 6 present
the results of MRR, MAP, Top-k accuracy for each project
considering identified-buggy and all-buggy changes. We
list the performance of our approach and the two base-
lines (i.e., RG and PMD). Additionally, we list the average
improvement ratio over the baseline for each project (i.e.,
“Improve.RG” and “Improve.PMD”).

Calculation of improvement ratio. Since the perfor-
mance for each project is the average performance among
considered identified-buggy or all-buggy changes, there is
an improvement ratio for each change (change-level im-
provement). The change-level improvement ratio is com-
puted as (Ours−Baseline

Baseline )∗100% when our approach is better
than baseline on this change; as Ours−Baseline

Ours ∗ 100% when
our approach is worse than baseline on this change (now the
improvement is a negative number). Then we average all
the change-level improvement ratio among all considered
changes for each project.

We use average improvement ratio on change-level
rather than computing the improvement ratio on the final
project-level. This is because there are some small changes
(where most of the added lines are buggy) will flat the
improvement ratio. For example, if there are two identified-
buggy changes in testing set in a project, one change is
with 2 added code lines where there is 1 buggy line; the
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TABLE 4: The performance of MRR considering identified-buggy and all-buggy changes. “Improve” indicates the average
improvement ratio over the baseline for each project. The best performance among the three approaches is highlighted in
bold.

Identified-buggy All-buggy
Project RG Improve.RG PMD Improve.PMD Ours RG Improve.RG PMD Improve.PMD Ours
Deeplearning4j 0.423 39.8% 0.459 36.4% 0.533 0.432 39.1% 0.467 36.3% 0.541
Jmeter 0.361 45.7% 0.420 21.6% 0.443 0.453 36.2% 0.513 13.9% 0.519
H2o 0.248 65.6% 0.278 16.0% 0.326 0.281 120.7% 0.312 106.4% 0.357
Libgdx 0.466 77.6% 0.484 79.1% 0.541 0.471 74.8% 0.488 74.4% 0.545
Jetty 0.338 99.4% 0.360 106.1% 0.440 0.418 80.0% 0.433 86.3% 0.502
Robolectric 0.375 75.9% 0.393 54.7% 0.450 0.433 52.9% 0.460 24.7% 0.498
Storm 0.249 81.1% 0.281 67.9% 0.283 0.256 85.6% 0.287 73.0% 0.291
Jitsi 0.234 24.9% 0.252 -17.0% 0.275 0.371 24.6% 0.388 -5.0% 0.420
Jenkins 0.457 38.1% 0.485 37.6% 0.529 0.478 37.3% 0.506 36.6% 0.553
Graylog2-server 0.277 107.2% 0.321 81.8% 0.370 0.355 88.7% 0.386 69.4% 0.430
Flink 0.225 64.1% 0.262 16.2% 0.289 0.228 68.2% 0.268 19.7% 0.296
Druid 0.311 129.2% 0.348 126.3% 0.378 0.317 126.9% 0.353 123.5% 0.382
Closure-compiler 0.187 63.2% 0.208 73.0% 0.244 0.307 48.9% 0.313 44.2% 0.361
Activemq 0.346 57.0% 0.390 47.0% 0.436 0.401 67.0% 0.435 49.8% 0.482
Average 0.321 69.2% 0.353 53.3% 0.396 0.372 67.9% 0.401 53.8% 0.441
W/T/L 0/0/14 0/0/14 0/0/14 0/0/14
p-value <0.001 <0.001 <0.001 <0.001
Cliff’s Delta 0.41(M) 0.24(S) 0.44(M) 0.27(S)

TABLE 5: The performance of MAP considering identified-buggy and all-buggy changes. “Improve” indicates the average
improvement ratio over the baseline for each project. The best performance among the three approaches is highlighted in
bold.

Identified-buggy All-buggy
Project RG Improve.RG PMD Improve.PMD Ours RG Improve.RG PMD Improve.PMD Ours
Deeplearning4j 0.375 43.5% 0.394 39.7% 0.449 0.387 42.0% 0.406 37.5% 0.460
Jmeter 0.340 43.0% 0.375 29.5% 0.405 0.435 34.6% 0.475 21.0% 0.490
H2o 0.232 76.8% 0.251 42.1% 0.297 0.266 88.2% 0.287 63.6% 0.329
Libgdx 0.433 78.2% 0.448 81.0% 0.510 0.438 76.5% 0.452 79.5% 0.516
Jetty 0.302 83.9% 0.320 65.3% 0.378 0.380 69.2% 0.398 54.0% 0.448
Robolectric 0.337 54.9% 0.347 43.1% 0.389 0.398 45.2% 0.416 31.2% 0.455
Storm 0.226 61.2% 0.239 66.2% 0.261 0.233 61.4% 0.246 66.1% 0.266
Jitsi 0.194 49.9% 0.203 26.6% 0.230 0.334 43.9% 0.347 24.9% 0.382
Jenkins 0.430 40.4% 0.453 35.2% 0.500 0.452 38.9% 0.474 34.1% 0.523
Graylog2-server 0.255 106.0% 0.282 84.9% 0.324 0.333 89.2% 0.354 72.4% 0.391
Flink 0.202 67.4% 0.221 42.0% 0.254 0.205 68.9% 0.226 43.5% 0.259
Druid 0.285 131.0% 0.305 133.7% 0.344 0.291 129.0% 0.310 132.0% 0.349
Closure-compiler 0.166 63.4% 0.172 36.5% 0.211 0.282 51.5% 0.283 22.9% 0.334
Activemq 0.315 57.8% 0.344 37.3% 0.391 0.370 63.6% 0.394 45.4% 0.444
Average 0.292 68.4% 0.311 54.5% 0.353 0.343 64.4% 0.362 52.0% 0.403
W/T/L 0/0/14 0/0/14 0/0/14 0/0/14
p-value <0.001 <0.001 <0.001 <0.001
Cliff’s Delta 0.38(M) 0.27(S) 0.41(M) 0.24(S)

TABLE 6: The performance of Top-k accuracy considering identified-buggy and all-buggy changes.

Top-1 (Identified-buggy) Top-5 (Identified-buggy) Top-1 (All-buggy) Top-5 (All-buggy)
Project RG PMD Ours RG PMD Ours RG PMD Ours RG PMD Ours
Deeplearning4j 0.192 0.269 0.383 0.744 0.718 0.730 0.208 0.283 0.394 0.741 0.715 0.730
Jmeter 0.157 0.247 0.274 0.628 0.640 0.681 0.257 0.352 0.357 0.715 0.720 0.751
H2o 0.119 0.144 0.196 0.363 0.425 0.459 0.152 0.181 0.231 0.393 0.455 0.483
Libgdx 0.313 0.338 0.422 0.661 0.688 0.682 0.318 0.341 0.428 0.665 0.693 0.685
Jetty 0.183 0.216 0.312 0.524 0.526 0.592 0.265 0.292 0.376 0.605 0.601 0.655
Robolectric 0.232 0.240 0.315 0.551 0.551 0.598 0.289 0.314 0.369 0.629 0.624 0.647
Storm 0.123 0.160 0.152 0.377 0.414 0.422 0.132 0.168 0.160 0.380 0.416 0.428
Jitsi 0.107 0.121 0.166 0.346 0.374 0.363 0.224 0.246 0.301 0.532 0.538 0.536
Jenkins 0.276 0.318 0.376 0.686 0.697 0.717 0.299 0.340 0.406 0.705 0.715 0.734
Graylog2-server 0.116 0.180 0.232 0.478 0.480 0.532 0.199 0.245 0.290 0.552 0.554 0.598
Flink 0.089 0.133 0.165 0.366 0.382 0.425 0.092 0.141 0.171 0.369 0.388 0.435
Druid 0.191 0.234 0.260 0.409 0.452 0.508 0.198 0.240 0.263 0.416 0.456 0.512
Closure-compiler 0.100 0.100 0.150 0.250 0.300 0.300 0.224 0.190 0.276 0.362 0.448 0.414
Activemq 0.175 0.232 0.300 0.538 0.580 0.604 0.231 0.277 0.347 0.597 0.630 0.646
Average 0.170 0.209 0.265 0.494 0.516 0.544 0.221 0.258 0.312 0.547 0.568 0.590
W/T/L 0/0/14 1/0/13 1/0/13 2/1/11 0/0/14 1/0/13 1/0/13 3/0/11
p-value <0.001 <0.001 <0.001 <0.01 <0.001 <0.01 <0.001 <0.05
Cliff’s Delta 0.57(L) 0.35(M) 0.18(S) 0.12(N) 0.61(L) 0.4(M) 0.21(S) 0.11(N)
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other change is with 200 added lines where there is 2 buggy
lines. Obviously, the second change is more difficult for lo-
calization. Supposing the MRR of the two changes are 1 and
0.1 using PMD, the MRR of the two changes are 1 and 0.3
using our approach. Now the improvement ratio on project-
level is: (1+0.3)/2−(1+0.1)/2

(1+0.1)/2 = (0.65−0.55)
0.55 = 18%. However,

this project-level improvement ratio cannot describe the
actual improvement of our approach due to the different
difficulty degree for localization on the two changes as
Figure 2 shows. If we use a change-level calculation method,
the average improvement ratio is: (1−1)/1+(0.3−0.1)/0.1

2 =
(0+200%)

2 = 100%. We believe that this improvement ratio
can describe the actual difference when comparing two
approaches, since this is a pair-wise comparing manner. As
a result, although there is not a significant difference in
terms of the average performance sometimes, there could
be a significant difference in terms of the average change-
level improvement ratio. Additionally, note that we did not
calculate the improvement ratio for Top-k accuracy, because
the performance is either 1 or 0 for each change in terms of
Top-k accuracy for each change.

From Tables 4, 5, and 6, we have the following observa-
tions:

(1) On average across the 14 projects, our approach
achieves a reasonable performance. It achieves an MRR of
0.396, an MAP of 0.353, a top-1 accuracy of 0.265 and a top-
5 accuracy of 0.544 considering identified-buggy changes.
From MRR, the performance means that our approach can
successfully locate the first buggy line in near 3 lines on
average. From Top-k accuracy, the performance means that
our approach can successfully locate at least one buggy line
in top-1 line among 26.5% and in top-5 lines among 54.0%
of identified-buggy changes.

(2) Among our identified-buggy changes, there are a
few small buggy changes (i.e., adding <= 5 lines). In
this case, top-5 accuracy is 1 for both our framework and
baselines. However, we observe that there are only near
0.1% of small changes (i.e., adding <= 5 lines) in identified-
buggy changes. Thus, we believe that our top-5 accuracy is
reasonable.

(3) Considering all-buggy changes, the performance is
better from Tables 4, 5, and 6. This is observed because the
identified-buggy changes are likely larger and more difficult
for localization as Figure 2 shows. The median value of
added lines of identified-buggy is a bit larger than that of
all-buggy changes. The ratio of buggy lines of identified-
buggy is smaller than that of all-buggy changes (the ratio is
smaller; the localization tends to be more difficult).

(4) Comparing to RG and PMD, our approach outper-
forms the two baselines in terms of all the measures on aver-
age with a statistical significance (i.e., p-value < 0.05) and a
non-negligible effect size according to Wilcoxon signed-rank
test and Cliff’s delta in most of the projects from Tables 4, 5,
and 6. Additionally, the improvement ratio is substantial on
average (e.g., at least greater than 50% in terms of MAP and
MRR). The row “W/T/L” reports the number of projects for
which the corresponding approach obtains a better, equal or
worse performance than ours. Our framework outperforms
the two baselines in all of the projects in terms of MRR,and
MAP, and in most of the projects in terms of Top-k accuracy.

(5) In project “Jitsi”, although the performance of ours
is better, the improvement ratio is a negative value in
terms of MRR compared to PMD. Such value indicates that
our framework may be failed for some changes, but the
PMD is successful for defect localization for these changes
and with a significant improvement ratio compared to our
framework. In terms of Top-k accuracy, although the PMD
baseline could perform better than our framework in a
few projects (e.g., Libgdx, Storm, and Jitsi), our framework
outperforms PMD with a statistically significant difference
among 14 projects.

(6) Note that some of changes are with a high ratio of
buggy lines relative to the added lines as Figure 2(c) shows;
for those changes, most of (or even all of) the added lines
are buggy. These changes would lead to a good performance
in terms of all the measures and across all approaches. Such
changes are likely to be the reason for the reasonably good
performance of the random guess baseline.

Our approach can achieve a reasonable localization performance
that can outperform the two baselines with a statistical signifi-
cance in average of the 14 projects.

4.2 RQ2: Effectiveness of buggy model
Approach: By default, we build our JIT defect localization
model by training on the previously added clean source
code lines (i.e., a clean language model). The assumption of
a clean model is that buggy code tends to be more surprising
with clean code. In this RQ, we investigate how effective if
we build our model using the buggy source code lines (i.e.,
a buggy model). The assumption of a buggy model is that
buggy code tends to be similar with prior buggy code.

For building a buggy model, we use all the added buggy
lines of the training set as the training corpus for building
a language model. However, the method for computing
the line entropy and sorting is different with the default
clean model, since the assumption is different. In the buggy
model, a lower entropy value means a higher likelihood
to be defective. Thus, we sort the lines in ascending order
according to their entropy value.

In detail, in buggy model, we compute the line entropy
(denoted as Hp(s)b) by subtracting the average entropy
from the minimum (i.e., min) entropy of its tokens as
Formula 5 shows. The reasons for this adjustment are two-
folds:

1) The min entropy captures the most natural token
sequences of a line. Within the context of the buggy model,
the most natural line means the buggiest line.

2) The average entropy captures the entire naturalness
of a line, subtracting it from the min entropy is useful for
describing the entire naturalness of the line, especially when
the min entropy of different lines might be equal.

Hp(s)b = min(Hp(t1), ...,Hp(t|s|))−
1

|s|

|s|∑
i=1

Hp(ti) (5)

Results: We evaluate the buggy model on the same dataset
and setting used for answering RQ1. Table 7 presents the
performance of buggy model and its comparison with the
default clean model considering identified-buggy changes.
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TABLE 7: The performance buggy vs. clean model considering identified-buggy changes.

MRR MAP Top-1 Top-5
Project Buggy Clean Buggy Clean Buggy Clean Buggy Clean
Deeplearning4j 0.483 0.533 0.422 0.449 0.325 0.383 0.682 0.730
Jmeter 0.422 0.443 0.384 0.405 0.279 0.274 0.587 0.681
H2o 0.305 0.326 0.286 0.297 0.188 0.196 0.415 0.459
Libgdx 0.523 0.541 0.500 0.510 0.401 0.422 0.665 0.682
Jetty 0.391 0.440 0.351 0.378 0.255 0.312 0.563 0.592
Robolectric 0.443 0.450 0.391 0.389 0.307 0.315 0.602 0.598
Storm 0.326 0.283 0.272 0.261 0.201 0.152 0.471 0.422
Jitsi 0.212 0.275 0.194 0.230 0.100 0.166 0.304 0.363
Jenkins 0.494 0.529 0.474 0.500 0.339 0.376 0.712 0.717
Graylog2-server 0.358 0.370 0.318 0.324 0.219 0.232 0.515 0.532
Flink 0.266 0.289 0.240 0.254 0.140 0.165 0.418 0.425
Druid 0.352 0.378 0.322 0.344 0.253 0.260 0.442 0.508
Closure-compiler 0.211 0.244 0.201 0.211 0.150 0.150 0.200 0.300
Activemq 0.430 0.436 0.385 0.391 0.298 0.300 0.584 0.604
Average 0.373 0.396 0.339 0.353 0.247 0.265 0.512 0.544
p-value <0.01 <0.01 <0.05 <0.01
Cliff’s Delta 0.14(N) 0.11(N) 0.12(N) 0.15(S)
W/T/L 1/0/13 2/0/12 2/1/11 2/0/12

Since identified-buggy changes are more realistic than all-
buggy for using our approach, we only consider identified-
buggy changes in the following sections. From the table, we
observe that:

(1) Comparing the performance of buggy model to two
baselines in RQ1 as shown in Tables 4, 5, and 6, we observe
that buggy model can achieve a comparable or better per-
formance in most of the cases on average. This indicates that
a language model based on buggy code can also be possible
for JIT defect localization.

(2) The clean model is better than the buggy model on
average in terms of all the measures considering identified-
buggy changes. Clean model outperforms buggy model
with a statistical significance (i.e., p − value < 0.05) and a
non-negligible effect size according to Wilcoxon signed-rank
test and Cliff’s delta in terms of MAP and top-5 accuracy.
There is no statistical difference between them in terms of
MRR and top-1 accuracy.

(4) The main reason for the performance difference
between the clean model and the buggy model might be
the assumption behind them. The assumption of the clean
model is that buggy code tends to be surprising compared
to the prior clean code. For example, our approach suc-
cessfully located the buggy line at the first position in
the change “a7747417e541666d5316bccaaf41ca5e1112e985” for
the Deeplearining4j project, since the buggy line contains
“return feedForward(true, excludeOutputLayers, false, true);”.
We noticed that the use of “return feedForward(true” rarely
occurred elsewhere in the training corpus. After a closer
investigation, we observed that the most commonly used
token after “new feedForward(” is “train”, or “)” in the
training corpus. Thus, this line has a rather high entropy
since it is rather surprising relative to the training cor-
pus. The corresponding bug-fix change fixed this line by
using “return feedForward(train, excludeOutputLayers, false,
true);”. The assumption of the buggy model is that buggy
code tends to be similar compared to prior buggy code.
For example, the buggy model tends to sort the lines
that contain the use of “new INDArrayIndex[]” at the top
of the list in the Deeplearining4j project (e.g., in change
“33c68cdf23257cc9f09d721625f47cd832de8ca6”) since the “new
INDArrayIndex[]” occurs many times in the buggy training
corpus. However, in this change, the line used the “new

INDArrayIndex[]” is not the buggy line. Thus, the buggy
model failed to locate this buggy change.

(5) In most cases, the clean model outperforms the buggy
model. Hence, supporting our assumption that the clean
model is more effective for JIT defect localization. However,
the clean model does not consistently outperform the buggy
model. This indicates that the assumption of the buggy
model might be also appropriate in other cases.

A buggy model can also be possible for JIT defect localization.
However, a clean model is a better choice on average.

4.3 RQ3: Performance of cross-project model
Approach: For each target project, we build our approach
by learning from all the other projects in our study. Similar
to RQ2, we focus on the clean model since we observed
that the clean model is better than the buggy model. And
we focus on identified-buggy changes, since they are more
realistic for using our approach.

In our cross-project setting, we build the N-gram model
by learning from all the clean corpus of other projects. To
do so, we first combine all the clean source lines of other
projects as one multi-project training corpus. Second, we
build the N-gram model by learning on the combined multi-
project corpus using the same modeling setting as used for
answering RQ1. Third, we apply the multi-project model on
the testing set which consists of a single target project. We
then compare the performance of our cross-project setting
with our default within-project setting.
Results: Table 8 presents the effectiveness of cross-project
modeling. The results show that:

(1) On average across the 14 projects, the cross-project
model achieves a comparable performance compared to
within-project model. There is no statistical significance
between them.

(2) We can observe that cross-project model can slightly
improves the performance on average. From the above ob-
servation, we can conclude that cross-project is also doable.
The reason might be that the training corpus in cross-
project is much larger than the corpus for the within-project
setting. For example, when targeting the Deeplearning4j
project, the total tokens in the training corpus is 3,110K and
40,620K (above 10 times larger) in within-project and cross-
project setting respectively. In other words, the cross-project
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TABLE 8: The performance cross-project (CP) vs. within-project (WP) model considering identified-buggy changes.

MRR MAP Top-1 Top-5
Project WP CP WP CP WP CP WP CP
Deeplearning4j 0.533 0.571 0.449 0.475 0.383 0.427 0.730 0.752
Jmeter 0.443 0.460 0.405 0.417 0.274 0.311 0.681 0.666
H2o 0.326 0.336 0.297 0.308 0.196 0.206 0.459 0.474
Libgdx 0.541 0.516 0.510 0.488 0.422 0.394 0.682 0.671
Jetty 0.440 0.425 0.378 0.373 0.312 0.282 0.592 0.592
Robolectric 0.450 0.471 0.389 0.404 0.315 0.339 0.598 0.630
Storm 0.283 0.315 0.261 0.277 0.152 0.201 0.422 0.447
Jitsi 0.275 0.236 0.230 0.209 0.166 0.135 0.363 0.315
Jenkins 0.529 0.523 0.500 0.498 0.376 0.363 0.717 0.732
Graylog2-server 0.370 0.383 0.324 0.333 0.232 0.244 0.532 0.530
Flink 0.289 0.285 0.254 0.250 0.165 0.162 0.425 0.415
Druid 0.378 0.385 0.344 0.347 0.260 0.284 0.508 0.478
Closure-compiler 0.244 0.271 0.211 0.195 0.150 0.175 0.300 0.325
Activemq 0.436 0.445 0.391 0.398 0.300 0.293 0.604 0.628
Average 0.396 0.401 0.353 0.355 0.265 0.273 0.544 0.547
W/T/L 5/0/9 6/0/8 6/0/8 6/1/7
p-value >0.05 >0.05 >0.05 >0.05
Cliff’s Delta 0.04(N) 0(N) 0.06(N) 0.02(N)

model achieves comparable or better performance by using
approximately a 10 times larger training corpus than the
within-project model.

Cross-project modelling can achieve comparable performance
compared to within-project model by learning on a much larger
training corpus.

5 DISCUSSION

5.1 Effectiveness of fusing the clean and buggy mod-
els

In this subsection, we explore whether we can improve the
performance of our framework by fusing the clean and
buggy models. We investigate two fusing methods, i.e.,
fusing by entropy value (F-value) and fusing by rank (F-
rank).
Fusing by entropy value (F-value). In this fusing method,
we simply update the entropy for each line by subtracting
the entropy of the buggy model from the entropy of the
clean model. In detail, we compute the fused line entropy
(denoted as HF value as Formula 6 shows. The reason for
this calculation method is due to the difference between
the clean and buggy models. In the clean model, a higher
entropy means a higher defectiveness likelihood, we sort the
lines in descending order according to their entropy value.
In the buggy model, a lower entropy means a higher de-
fectiveness likelihood, we sort the lines in ascending order
according to their entropy value. In this fusing method, we
use the subtraction method. As a result, the sorting method
is the same as the one used in the clean model (i.e., in
descending order according to HF value).

F value = HClean −HBuggy (6)

Fusing by rank (F-rank). Additionally, we explore an-
other fusing method using the entropy rank rather than
the entropy value of each line. The fused rank (F-rank)
is calculated as Formula 7 shows. Then, we sort the lines
by the fused entropy rank. For example, suppose a change
introduced three lines of code (Line A, B, and C), the entropy
rank (in ascending order) for each line in the clean model
is {1, 2, 3} respectively (i.e., Line C is the most defective
line in the clean model). The entropy rank (in ascending

order) of entropy for each line in a buggy model is {3, 2, 1}
respectively (i.e., Line C is also the most defective one in
buggy model). The fused rank for each line is {−2, 0, 2}
respectively. Then, we sort the lines in descending order
according to the fused rank. As a result, Line C is also the
most defective one in this fusing method.

F rank = RankClean −RankBuggy (7)

Table 9 presents the results for the F-value and F-rank
models, and their differences compared to the clean model.
From the table, we observe that the clean model outper-
forms F-value and F-rank on average. There is a statistically
significant difference (p − value < 0.05) between the clean
model and the fused models in terms of MRR, MAP and
Top-5 accuracy. There is no statistically significant difference
(p− value > 0.05) in terms of Top-1 accuracy.

In summary, fusing the buggy and clean models cannot
improve the performance compared to the clean model on
average.

5.2 Impact of different methods for using entropy

In localization step, we sort the added lines according to
the entropy of each line. By default, we calculate the line
entropy by combining the average entropy and the max
entropy among all the tokens of a line following Formula 4
for the clean model (i.e., Avg+Max). In the buggy model, we
calculate the line entropy by combining the average entropy
and min entropy among all the tokens of a line following
Formula 5 (i.e., Min-Avg). In this subsection, we investigate
the effectiveness of three other methods for using the line
entropy.

Average (Avg). We use the average entropy of all the tokens
in a line to represent the line entropy. This method can be
used in both the clean and buggy models. Additionally, we
use max/min as a tie-breaker for sorting when the average
entropy of two lines are equal.

Max/Min. We use the max entropy of all the tokens in a line
to represent the line entropy. The max entropy is used in the
clean model. We use the min entropy of all the tokens in a
line to represent the line entropy. The min entropy is used in
the buggy model. Additionally, we use the average entropy
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TABLE 9: The performance of fusing the buggy and clean models. F-value indicates the fusing method using the entropy
value of the buggy and clean models. F-rank indicates the fusing method using the entropy rank of the buggy and clean
models.

MRR MAP Top-1 Top-5
Project F-value F-rank Clean F-value F-rank Clean F-value F-rank Clean F-value F-rank Clean
Deeplearning4j 0.482 0.478 0.533 0.416 0.416 0.449 0.332 0.326 0.383 0.675 0.675 0.730
Jmeter 0.410 0.413 0.443 0.383 0.386 0.405 0.255 0.257 0.274 0.583 0.581 0.681
H2o 0.329 0.326 0.326 0.289 0.287 0.297 0.216 0.214 0.196 0.441 0.436 0.459
Libgdx 0.490 0.495 0.541 0.470 0.472 0.510 0.373 0.376 0.422 0.635 0.644 0.682
Jetty 0.382 0.381 0.440 0.342 0.342 0.378 0.251 0.251 0.312 0.515 0.513 0.592
Robolectric 0.435 0.433 0.450 0.374 0.373 0.389 0.315 0.311 0.315 0.598 0.594 0.598
Storm 0.301 0.307 0.283 0.256 0.258 0.261 0.176 0.176 0.152 0.426 0.434 0.422
Jitsi 0.281 0.282 0.275 0.236 0.231 0.230 0.170 0.170 0.166 0.377 0.394 0.363
Jenkins 0.491 0.492 0.529 0.473 0.473 0.500 0.350 0.350 0.376 0.655 0.662 0.717
Graylog2-server 0.355 0.351 0.370 0.314 0.313 0.324 0.222 0.217 0.232 0.512 0.512 0.532
Flink 0.296 0.298 0.289 0.244 0.245 0.254 0.179 0.183 0.165 0.407 0.404 0.425
Druid 0.353 0.355 0.378 0.316 0.317 0.344 0.262 0.265 0.260 0.437 0.440 0.508
Closure-compiler 0.239 0.223 0.244 0.186 0.181 0.211 0.100 0.100 0.150 0.400 0.350 0.300
Activemq 0.407 0.411 0.436 0.364 0.369 0.391 0.278 0.284 0.300 0.549 0.551 0.604
Average 0.375 0.375 0.396 0.333 0.333 0.353 0.249 0.249 0.265 0.515 0.514 0.544
p-value <0.05 <0.05 <0.01 <0.01 >0.05 >0.05 <0.05 <0.05
Cliff’s Delta 0.12(N) 0.12(N) 0.14(N) 0.14(N) 0.06(N) 0.06(N) 0.16(S) 0.17(S)

TABLE 10: The performance of different methods for calculating the line entropy in the clean model.

MRR MAP Top-1 Top-5
Project Avg Max Avg+Max Avg Max Avg+Max Avg Max Avg+Max Avg Max Avg+Max
Deeplearning4j 0.468 0.543 0.533 0.416 0.466 0.449 0.313 0.388 0.383 0.674 0.748 0.730
Jmeter 0.436 0.488 0.443 0.399 0.437 0.405 0.287 0.332 0.274 0.600 0.689 0.681
H2o 0.326 0.317 0.326 0.297 0.292 0.297 0.204 0.198 0.196 0.454 0.441 0.459
Libgdx 0.525 0.546 0.541 0.503 0.508 0.510 0.410 0.431 0.422 0.662 0.673 0.682
Jetty 0.405 0.410 0.440 0.363 0.367 0.378 0.277 0.271 0.312 0.544 0.566 0.592
Robolectric 0.424 0.472 0.450 0.379 0.404 0.389 0.287 0.354 0.315 0.579 0.594 0.598
Storm 0.314 0.289 0.283 0.272 0.258 0.261 0.184 0.184 0.152 0.467 0.369 0.422
Jitsi 0.298 0.285 0.275 0.241 0.235 0.230 0.176 0.183 0.166 0.415 0.363 0.363
Jenkins 0.525 0.534 0.529 0.489 0.505 0.500 0.374 0.381 0.376 0.724 0.726 0.717
Graylog2-server 0.341 0.353 0.370 0.312 0.318 0.324 0.200 0.224 0.232 0.498 0.495 0.532
Flink 0.281 0.293 0.289 0.246 0.254 0.254 0.155 0.184 0.165 0.415 0.407 0.425
Druid 0.374 0.377 0.378 0.347 0.346 0.344 0.267 0.272 0.260 0.487 0.475 0.508
Closure-compiler 0.258 0.293 0.244 0.218 0.230 0.211 0.150 0.225 0.150 0.325 0.350 0.300
Activemq 0.439 0.427 0.436 0.393 0.402 0.391 0.313 0.282 0.300 0.584 0.604 0.604
Average 0.387 0.402 0.396 0.348 0.359 0.353 0.257 0.279 0.265 0.531 0.536 0.544
p-value >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
Cliff’s Delta 0.09(N) 0.08(N) 0.02(N) 0.04(N) 0.03(N) 0.12(N) 0.11(N) 0.04(N)

TABLE 11: The performance of different methods for calculating the line entropy in the buggy model.

MRR MAP Top-1 Top-5
Project Avg Min Min-Avg Avg Min Min-Avg Avg Min Min-Avg Avg Min Min-Avg
Deeplearning4j 0.443 0.406 0.483 0.403 0.383 0.422 0.286 0.249 0.325 0.643 0.577 0.682
Jmeter 0.411 0.379 0.422 0.376 0.364 0.384 0.268 0.240 0.279 0.581 0.532 0.587
H2o 0.291 0.271 0.305 0.274 0.258 0.286 0.183 0.160 0.188 0.397 0.358 0.415
Libgdx 0.519 0.493 0.523 0.497 0.475 0.500 0.404 0.382 0.401 0.651 0.610 0.665
Jetty 0.379 0.367 0.391 0.344 0.339 0.351 0.245 0.249 0.255 0.533 0.491 0.563
Robolectric 0.430 0.382 0.443 0.385 0.366 0.391 0.295 0.264 0.307 0.575 0.520 0.602
Storm 0.323 0.278 0.326 0.269 0.256 0.272 0.205 0.168 0.201 0.467 0.381 0.471
Jitsi 0.239 0.272 0.212 0.202 0.229 0.194 0.135 0.152 0.100 0.343 0.388 0.304
Jenkins 0.488 0.464 0.494 0.469 0.450 0.474 0.332 0.305 0.339 0.697 0.670 0.712
Graylog2-server 0.334 0.285 0.358 0.303 0.272 0.318 0.190 0.163 0.219 0.502 0.429 0.515
Flink 0.263 0.250 0.266 0.237 0.231 0.240 0.140 0.135 0.140 0.398 0.367 0.418
Druid 0.348 0.341 0.352 0.321 0.315 0.322 0.246 0.241 0.253 0.423 0.407 0.442
Closure-compiler 0.212 0.234 0.211 0.200 0.199 0.201 0.150 0.150 0.150 0.225 0.300 0.200
Activemq 0.422 0.410 0.430 0.378 0.361 0.385 0.287 0.282 0.298 0.575 0.565 0.584
Average 0.365 0.345 0.373 0.333 0.321 0.339 0.240 0.224 0.247 0.501 0.471 0.512
p-value <0.05 <0.05 <0.01 <0.01 >0.05 <0.05 >0.05 >0.05
Cliff’s Delta 0.09(N) 0.17(S) 0.07(N) 0.14(N) 0.08(N) 0.19(S) 0.1(N) 0.24(S)
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TABLE 12: The performance of the likelihood method based on a classifier that is trained from the avg, min and max
entropy values in the clean model.

MRR MAP Top-1 Top-5
Project Likelihood Avg+Max Likelihood Avg+Max Likelihood Avg+Max Likelihood Avg+Max
Deeplearning4j 0.439 0.533 0.412 0.449 0.277 0.383 0.642 0.730
Jmeter 0.410 0.443 0.387 0.405 0.264 0.274 0.591 0.681
H2o 0.320 0.326 0.296 0.297 0.196 0.196 0.438 0.459
Libgdx 0.517 0.541 0.499 0.510 0.394 0.422 0.653 0.682
Jetty 0.400 0.440 0.360 0.378 0.273 0.312 0.546 0.592
Robolectric 0.415 0.450 0.375 0.389 0.287 0.315 0.539 0.598
Storm 0.263 0.283 0.247 0.261 0.139 0.152 0.389 0.422
Jitsi 0.298 0.275 0.246 0.230 0.183 0.166 0.405 0.363
Jenkins 0.529 0.529 0.498 0.500 0.372 0.376 0.732 0.717
Graylog2-server 0.385 0.370 0.331 0.324 0.246 0.232 0.537 0.532
Flink 0.277 0.289 0.250 0.254 0.160 0.165 0.393 0.425
Druid 0.368 0.378 0.346 0.344 0.255 0.260 0.475 0.508
Closure-compiler 0.262 0.244 0.216 0.211 0.150 0.150 0.325 0.300
Activemq 0.438 0.436 0.390 0.391 0.319 0.300 0.573 0.604
Average 0.380 0.396 0.347 0.353 0.251 0.265 0.517 0.544
p-value <0.05 >0.05 >0.05 <0.05
Cliff’s Delta 0.15(S) 0.08(N) 0.10(N) 0.13(N)

TABLE 13: The performance of the likelihood method based on a classifier that is trained from the avg, min and max
entropy values in the buggy model.

MRR MAP Top-1 Top-5
Project Likelihood Min-Avg Likelihood Min-Avg Likelihood Min-Avg Likelihood Min-Avg
Deeplearning4j 0.496 0.483 0.435 0.422 0.353 0.325 0.687 0.682
Jmeter 0.531 0.422 0.450 0.384 0.406 0.279 0.683 0.587
H2o 0.296 0.305 0.275 0.286 0.180 0.188 0.405 0.415
Libgdx 0.485 0.523 0.471 0.500 0.365 0.401 0.624 0.665
Jetty 0.362 0.391 0.333 0.351 0.227 0.255 0.504 0.563
Robolectric 0.396 0.443 0.361 0.391 0.272 0.307 0.524 0.602
Storm 0.293 0.326 0.256 0.272 0.172 0.201 0.414 0.471
Jitsi 0.299 0.212 0.251 0.194 0.176 0.100 0.419 0.304
Jenkins 0.514 0.494 0.496 0.474 0.378 0.339 0.673 0.712
Graylog2-server 0.358 0.358 0.316 0.318 0.229 0.219 0.493 0.515
Flink 0.267 0.266 0.235 0.240 0.144 0.140 0.388 0.418
Druid 0.354 0.352 0.323 0.322 0.251 0.253 0.447 0.442
Closure-compiler 0.253 0.211 0.235 0.201 0.150 0.150 0.375 0.200
Activemq 0.390 0.430 0.355 0.385 0.249 0.298 0.569 0.584
Average 0.378 0.373 0.342 0.339 0.254 0.247 0.515 0.512
p-value >0.05 >0.05 >0.05 >0.05
Cliff’s Delta 0.03(N) 0.00(N) 0.01(N) 0.05(N)

as a tie-breaker for sorting when the max/min entropy of
two lines are equal.

Likelihood. We compute a likelihood value based on a
classifier learned from avg, max, and min entropy values
of a line. In this method, we calculate the avg, min and
max entropy values of each line in both the training and
testing set by using the built clean/buggy model. Using the
avg, min and max entropy values, we build a classifier (i.e.,
Logistic Regression) learned from the training set. Then, the
likelihood of a line in the testing set (with avg, min and
max entropy values) being buggy is predicted using such a
classifier. Finally, we sort in descending order the lines in
each change that appears in the testing set.

Tables 10 and 11 present the results of the different line
entropy calculation methods that we considered, and the
best performing one is highlighted in bold for each project
and each performance measure. From these two tables, we
observe that: (1) In the clean model, considering the average
scores across the projects, the Max method can achieve
comparable or better performance than the other methods.
However, there is no statistically significant difference in
the effectiveness scores of Max, Avg and Max+Avg (p-
value>0.05). (2) In the buggy model, the Min-Avg method
outperforms the Avg and Min methods for most cases. In
terms of MRR and MAP, the Min-Avg method outperforms
the Avg and Min methods in a statistically significant way

(p-value<0.05).
Tables 12 and 13 present the performance of the likeli-

hood methods in the clean and buggy models. From these
two tables, we observe that: (1) In the clean model, the
Avg+Max method outperforms the likelihood method on
average and in a statistically significant way in terms of
MRR and Top-5 accuracy. There is no statistically significant
difference observed in terms of MAP and Top-1 accuracy.
(2) In the buggy model, the likelihood method can achieve
comparable or better performance compared to the Min-
Avg method. The likelihood method outperforms Min-Avg
method on average, but with no statistically significant
difference.

In summary, a pure Max method using average only
as the tie-breaker can achieve a comparable performance
compared to our originally used method in the clean model.
The likelihood (predicted by using a classifier based on
min, avg and max entropy values) method can achieve a
comparable performance compared to our originally used
method in the buggy model.

5.3 The impact of using different configurations of N-
gram
The different N-gram configurations might affect the effec-
tiveness of modeling [24], [51]. In the prior RQs, we used
the default configuration as suggested by Hellendoorn and
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Fig. 3: The impact of the N-gram length on the clean and buggy models.

TABLE 14: The impact of using different smoothing methods on the clean and buggy models.

Clean model Buggy model
Measure JM AD ADM WB JM AD ADM WB
MRR 0.396 0.402 0.398 0.400 0.381 0.370 0.369 0.369
MAP 0.353 0.358 0.354 0.356 0.344 0.338 0.337 0.337
Top1 0.265 0.268 0.266 0.269 0.255 0.241 0.240 0.240
Top5 0.544 0.555 0.541 0.544 0.516 0.512 0.508 0.509

Devanbu [24]. In this subsection, we investigate the impact
of different N-gram configurations, i.e., smoothing method
and N-gram length.

Smoothing is a technique essential in the construction
of n-gram models. Smoothing is used to make distributions
more uniform, by adjusting low probabilities such as zero
probabilities upward, and high probabilities downward.
Not only does smoothing generally prevent zero proba-
bilities, but it also improves the accuracy of the model as
a whole [24], [31]. N-gram length refers to the length of
the considered token sequences. N-gram models assume
that each token depends on the previous N − 1 tokens.
Bigger length may be more specific, but correspondingly
less frequent in the corpus, smaller length occur more of-
ten, but may lose information. Thus, we are interested in
how these configurations impact the performance of our
model and which choice is better. We consider four popular
smoothing methods. We briefly introduce their ideas below.
For more detailed description of these smoothing methods
please refer to the work by Chen and Goodman [31].

Smoothing methods:

Jelinek-Mercer (JM). JM involves a linear interpolation of the
maximum likelihood model with the collection model, using
a coefficient to control the amount of smoothing. It is a
linear interpolation method for combining the information
from lower-order n-gram models for estimating higher-
order probabilities.

Witten-Bell (WB). WB smoothing is developed for the task
of text compression and is considered as an instance of the
Jelinek-Mercer smoothing. WB also uses linear discounting
but differs in that it incorporates the interpolation coefficient
based on the average frequency of events seen in a context.

Absolute Discounting (AD). AD method lowers the proba-
bility of seen words by subtracting a constant from their
counts. Different from the Jelinek-Mercer method, AD dis-
counts the seen word probability by subtracting a constant
instead of multiplying it by a coefficient.

Absolute Discounting Modified (ADM). ADM is a modified

AD. ADM improves AD by using three separate discounts,
for events seen once, twice and more than twice [24].

N-gram length. In terms of the N-gram length, we built N-
gram models with lengths from one (i.e., unigram) to ten
in order to investigate the impact of the N-gram length on
the model performance. We conducted the experiments in
this discussion using the same dataset, keeping the same
validation setting and smoothing method as used in RQ1.

Table 14 presents the results of different smoothing
methods. In terms of both the buggy and clean models,
we list the average performance of all projects by using
different smoothing methods. From this table, we observe
that the smoothing method has no substantial impact on
the average performance. In general, for the buggy model,
the best choice is Jelinek-Mercer (JM) smoothing. For the
clean model, the best choice is Absolute Discounting (AD)
smoothing. Figure 3 presents the average performance of all
projects across different N-gram length. We can observe that
the N-gram length has no substantial impact on the average
performance. In general, bigger lengths (e.g., 8-gram) tend
to perform better.

In summary, the n-gram configuration has no substantial
impact on the average performance. In general, the Jelinek-
Mercer (JM) smoothing tends to be better for the buggy
model. The Absolute Discounting (AD) smoothing tends
to be better for the clean model. A bigger N-gram length
(e.g., 8-gram) tends to perform better for both the clean and
buggy models.

5.4 Implications

Usage scenarios, benefits and costs of using our tool.
Our tool consists of a JIT defect identification phase and
a JIT defect localization phase. The typical usage scenario
of our tool is to provide suggestions on suspicious buggy
code lines introduced by a buggy change at check-in time.
For example, Bob is a developer in a large project team,
and his main responsibility is to inspect code changes that
are submitted by other developers. He is typically assigned
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to inspect more than 50 code changes in a single day. By
default, we can suppose Bob used the current JIT defect
identification tool as described in Section 2.

Without our tool. Following the recommendations of the
used JIT defect identification tool, Bob needs to inspect 20
likely buggy changes that are identified as buggy in a day.
Suppose one change introduced 180 lines on average, he
needs to inspect 20 · 180 = 3, 600 lines of code. He finds
that it is hard for him to focus when he reviews more than
1,000 lines of code, and he often introduces errors when
inspecting the remaining lines.

With our tool. Bob uses the same JIT defect identification
tool (i.e., the first phase is the same). Thus, Bob also needs
to inspect 20 likely buggy changes. With our tool, he may
only need to inspect a small list of lines for each of these 20
changes (e.g., top-5 or top-10 lines as suggested by our tool).
As a result, he can pay more attention to inspect the most
suspicious lines of code in each change. In this way, he can
spend less time and effort to locate the exact bug positions.

The benefits is to save the inspection time and effort,
especially when there is limited time and source for inspect-
ing code changes. The cost is that we may miss a few bugs
and waste the effort on false positives. Since our approach is
the following step after JIT defect identification, the cost of
our approach is associated with the performance of the JIT
defect identification step. Hence the cost of our approach in-
cludes that: (1) we missed 15.7% of the buggy changes, since
these truly buggy changes are not identified correctly in the
first step; (2) we wasted inspection effort on 28.4% of the
clean changes, since they are false positives. Additionally,
developers cannot simply analyze the warned buggy lines
in isolation, but rather, they need the surrounding context
lines to fully understand them.

Implications for practitioners. First, we found that in most
of the buggy changes, the ratio of buggy lines among all the
added lines is smaller than 0.25; half of them is near 0.125.
This data highlights the necessary for JIT defect localization,
since it is impractical to inspect all the changed lines for each
change with limited inspection effort. Second, using our ap-
proach, possibly buggy lines can be highlighted in an early
stage (i.e., at check-in time), developers can inspect them
early when they are still fresh with the context. The benefit is
that developers can locate the defect by only inspecting a list
of highly defective lines suggested by our approach. Third,
there are two ways for building a localization model, i.e.,
a clean model and a buggy model. Clean model might be
better for most of the projects, since buggy code tends to be
surprising compared to clean code. Fourth, when applying
our approach on a new project, we can train the localization
model by learning from multiple other available projects.

Implications for researchers. First, JIT defect localization
is a real problem which can be the second phase after JIT
defect identification. Solely investigating JIT defect iden-
tification might be insufficient, since developers cannot
identify where is the defect. We believe that JIT defect
localization can promote the use of JIT defect identification
in practice. Second, software naturalness is effective for JIT
defect localization. Currently, we build a simple solution
using N-gram. Further advanced methods are expected for
improving the performance. Third, both prior clean code

and prior buggy code are potentially useful for JIT defect
location. Prior clean code can be used to detect the defect
which is surprising to clean code, while prior buggy code
can be used to detect the defect which is similar to prior
buggy code.

6 THREATS TO VALIDITY

Threats to internal validity relate to potential errors in our
implementation. First, one potential threat to validity is
the potential errors in our modeling implementation. To
mitigate the threat, we use and enhance the source code
from a previous study to implement the N-gram modeling
on source code [24]. We also double-checked the implemen-
tation and fully tested our code, still there could be errors
that we did not notice.

Threats to external validity relate to generalizability of
our results. Although we have analyzed 177,250 software
changes from 14 open-source Java software projects, we
cannot claim the generality of our observations to projects
written in other programming languages. Instead, the key
message of this paper is that there are many Java datasets
where our observations are statistically significant. When
applying our approach to projects written in other program-
ming languages, some steps (e.g., comments removing and
code tokenization) should be carefully adapted. Further in-
vestigation of even more projects including projects written
in other programming languages is needed to mitigate this
threat.

Threats to construct validity relate to the suitability of
our evaluation. One potential threat is that we use MRR,
MAP and Top-k accuracy as the performance measures,
and use Wilcoxon signed-rank test to investigate whether
the improvement of our proposed model over baselines
is significant. MRR, MAP and Top-k accuracy have been
widely used in past software engineering studies [34]–[37],
[52]. The Wilcoxon sign-rank test has also been used in many
mining software repository studies. Thus, we believe we
have little threats to the validity on evaluation measures.
Additionally, the evaluation for JIT defect localization is
conducted on identified-buggy or all-buggy changes. The
clean changes that are wrongly identified as buggy changes
(i.e., false positives in JIT defect identification) are ignored.
Because in these changes, there is no buggy lines and we
cannot calculate the MRR, MAP and Top-k accuracy. This
issue may represent a construct validity of our study.

7 RELATED WORK

We divide our related work into three parts: defect local-
ization, software naturalness and Just-in-time (JIT) defect
identification.

7.1 Defect Localization
Due to the importance of defect localization, researchers
continue to propose various techniques that can be divided
into two main categories, i.e., information retrieval (IR)
based techniques and spectrum-based techniques.

Information retrieval based method. Lukins et al. [2]
proposed an LDA based technique for automated bug lo-
calization. They build the localization model by performing
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an LDA analysis on source code document collection (e.g.,
comments and identifiers) and bug reports (e.g., bug title
and description). The results indicate that this LDA-based
technique outperforms an LSI-based technique by Poshy-
vanyk et al [53]. Rao and Kak [54] conducted an empiri-
cal study by comparing five generic text models, i.e., the
Unigram Model (UM), the Vector Space Model (VSM), the
Latent Semantic Analysis Model (LSA), the Latent Dirichlet
Allocation Model (LDA), and the Cluster Based Document
Model (CBDM). They found that simple text models such
as UM and VSM are more effective at correctly locating
the relevant buggy files as compared to more sophisticated
models such as LDA. Saha et al. [34] proposed a new
localization technique by combining the bug reports and
the structure of code files. Wang and Lo [55] proposed
an integrated technique for bug localization by combining
version history, similar reports, and structure together.

Spectrum-based based techniques. Jones and Har-
rold [7] proposed the Tarantula technique that uses a sus-
piciousness score to locate buggy elements by using the
pass/fail information of test cases, the entities that were
executed by the test case and the source code for the
program under test. Abreu et al. [8] used another similar
coefficient formula called Ochiai from the biology domain.
They achieved a better performance than Tarantula. Xie et
al. [56] conducted a theoretical investigation on the effec-
tiveness of the risk evaluation formulas for spectrum-based
localization method and found some formulas outperform
others among the 30 studied formulas. Based on this theo-
retical framework, Xie et al. [57] subsequently analyzed the
effectiveness of genetic programming based risk evaluation
formulas proposed by Yoo et al. [58] for defect localization.

Our work is inspired by the above-mentioned studies
but differs in the usage timing. Both IR-based and Spectrum-
based techniques perform the localization based on defect
symptoms. IR based methods rely on analyzing the tex-
tual description in bug reports, while spectrum-based tech-
niques rely on analyzing program spectrum from actual use
of the software system. These techniques are employed long
after a defect is discovered. Our work aims to perform defect
localization at code check in time–serving as an early quality
control step which can complement the current localization
techniques.

7.2 Software Naturalness

Software naturalness was originally proposed by Hindle et
al [18]. It refers to the intuition that programming languages
are highly repetitive. Such repetitiveness can be captured by
statistical language models which are originally from the
natural language processing (NLP) field. Based on this ob-
servation, researchers have leveraged software naturalness
for many software engineering tasks. For example, Hindle et
al. [18] developed a code completion tool for Java by using
software naturalness. Raychev et al. [59] used the APIs to
build the language model for code completion. Tu et al. [23]
proposed the “cache” mode to improve the performance of
code completion by using the locality of software. Allama-
nis et al. [60] proposed a framework that learns the style
of a codebase, and suggests revisions to improve stylistic
consistency using software naturalness. Hellendoorn and

Devanbu [24] proposed an enhanced language modeling
toolkit for source code modeling, they found that carefully
adapting N-gram models for source code can outperform
deep-learning models.

The most similar papers to ours are the ones that use
software naturalness to detect bugs or syntax errors. There
are three most similar papers:

Ray et al. [19] proposed a line-level defect prediction
approach at the release level using software naturalness.
They found that buggy code lines are more “unnatural”
than clean code lines, and this observation can be used
for enhancing the effectiveness of static bug finding tools
(e.g., FindBugs and PMD). Campbell et al. [61] proposed
a Java syntax-error locator using an N-gram model. Their
approach is trained on the prior versions of a project. Their
results show that they can effectively enhance a compiler’s
ability to locate syntax errors. Based on their observation,
Santos et al. [62] proposed the detection and correction of
syntax errors using software naturalness. Their approach
is trained on clean source code and is also evaluated on
many specific revision pairs. Their results show that their
approach can locate and suggest corrections for syntax
errors.

Our work is inspired by the three aforementioned stud-
ies and we do not aim to propose a more advanced approach
to outperform these methods. Instead, we aim to adopt their
idea for a new framework, i.e., JIT defect identification and
localization. Like our work, these previous studies can iden-
tify buggy or syntax-error lines using software naturalness.
However, we each tackle a different problem. The main
differences are as follows.

Ray et al. [19]’s work aims to complement the static
defect identification problem for a release, while our work
aims to identify the defects in software changes just-in-time.
Campbell et al. [61] and Santos et al. [62] aim to detect and
correct syntax errors. Our work differs from them in two
aspects. First, we aim to identify defects but they are focus-
ing on syntax errors. Second, they do not focus on software
changes. Although Santos et al. [62] collected many specific
revision pairs from IDE events data (the revision directly
prior to a failed compilation due to a syntax error, and the
revision immediately following the successful compilation)
for evaluating the detection and correction of syntax errors,
they only used the revision pairs as the ground truth and
they did not conduct the JIT analysis by each change.
In summary, different from the above-mentioned studies,
we aim to address the JIT defect localization problem on
changed content for software changes which is a follow
up for any JIT defect identification approach. The timing
at which each work will be used is different. Our work aims
to identify and locate defects just-in-time when a change is
submitted.

7.3 JIT Defect Identification

Researchers has proposed various methods for JIT defect
identification. Mockus and Weiss [63] proposed a method
for assessing the risk that changes introduce defect in a
telecommunication system. Kim et al. [64] proposed an
approach to predict the buggy entities and files from cached
history at the moment a fault is fixed. Furthermore, Kim
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et al. [65] proposed a model for classifying a change as
clean or buggy by using various change features. Kamei
et al. [9] performed a large-scale empirical study of JIT
defect identification using effort-aware evaluation. Shihab et
al. [11] conducted an industrial study to better understand
risky changes. Yang et al. [13], [14] proposed to use more
advanced modeling techniques for JIT defect identification,
such as ensemble learning and deep learning. Additionally,
many studies investigated the comparison between super-
vised and unsupervised modeling methods for JIT defect
identification [12], [15], [16].

Recently, Nayrolles and Hamou-Lhadj [66] proposed a
two-phase approach (called CLEVER) for intercepting risky
commits using code clone detection. The first phase is to
assess the likelihood that an incoming commit is risky or
not. The second phase is to use clone detection to suggest
fixes when clone code is detected from the risky commit in
the first phase. As a result, 66.7% of the suggested fixes were
accepted by developers at industry. Comparing their work
to this paper, the similarity is that both of us conducted a
two-phase analysis to support how to fix the commits. The
difference is the aim. They aim to suggest the fixes from
prior similar fixes at the moment clone code is detected. We
aim to locate the most suspicious lines in any buggy change
to save the code inspection effort.

Pascarella et al. [67] proposed a fine-grained JIT defect
identification approach which can identify defective files
within changes. They actually conducted a file-level defect
prediction that focus on the changed files in commits. Dif-
ferent from our work, they did not conduct the integrated
analysis on JIT defect identification and localization. Addi-
tionally, they focus on file-level, while we focus on line-level.

Despite the success achieved by the above-mentioned
techniques, there is no attempt for telling developers where
is the most suspicious defective lines after JIT defect identi-
fication. Thus, our work aims to be served as the next step
of JIT defect identification. In other words, our JIT defect
localization phase can be employed when we identify a
change as buggy.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a two-phase framework, i.e., JIT
defect identification and localization. For JIT defect iden-
tification phase, we implement a logistic regression based
approach using 14 change-level features. For JIT defect
localization phase, we use N-gram modeling technique to
build a source code language model training on historical
clean source code. When given a new change, JIT defect
identification phase will identify it as buggy or clean first. If
a new change is identified as buggy, JIT defect localization
phase will compute an entropy value for each line intro-
duced by the change. Then, we can sort all the introduced
lines according to the entropy value. The lines sorted at the
top are more likely to be the defect location. To evaluate
the effectiveness of our framework, we conduct an empir-
ical study on 14 open source projects with totally 177,250
changes.

In summary, the empirical study results show that: (1)
Our framework achieves a reasonable and better perfor-
mance than the baselines (i.e., PMD and RG) in terms of

MRR, MAP and Top-k accuracy. (2) Considering the buggy
changes that are correctly identified by our first phase (i.e.,
identified-buggy changes), our approach can successfully
locate the first buggy line in near 3 lines on average (i.e,
a MRR of 0.396). And our approach can successfully locate
at least one buggy line in top-1 line among 26.5% and in
top-5 lines among 54.4%. (3) A buggy model can also be
possible for JIT defect localization. However, a clean model
is a better choice on average.

Our paper is an important step in studying the effec-
tiveness of JIT defect localization. We envision many future
efforts to extend our work for JIT defect localization as well
as to improve JIT defect identification (and possibly even
crafting approaches that create a feedback loop between
these two approaches). For example, further research can
investigate whether or not the entropy of the changed lines
could be used to enhance (or even replace) the state-of-
the-art JIT defect identification approach. Whether or not
the JIT defect identification and localization are effective on
pull requests needs further investigation, since it is hard
to obtain the ground truth whether commits in unaccepted
pull requests are buggy or clean using the SZZ algorithm
that we leverage in this study. With respect to the language
modeling step, further research can investigate whether or
not a cache model (i.e., considering the locality of changed
content), or a nested model (i.e., combining CP, WP and
Cache models) can improve the effectiveness of JIT defect
localization. With respect to the granularity, further research
can adapt our approach at a wider granularity for the JIT
defect localization (e.g., a block-level defect localization by
considering a larger context of each change). Finally, addi-
tional in depth case studies on JIT defect localization in prac-
tice and the perception of developers should be conducted.
This can help the community obtain a better understanding
of the problem and collect useful information to improve
this task further.
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