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Abstract—Developers usually depend on inserting logging statements into the source code to collect system runtime information.
Such logged information is valuable for software maintenance. A logging statement usually prints one or more variables to record vital
system status. However, due to the lack of rigorous logging guidance and the requirement of domain-specific knowledge, it is not easy
for developers to make proper decisions about which variables to log. To address this need, in this work, we propose an approach to
recommend logging variables for developers during development by learning from existing logging statements. Different from other
prediction tasks in software engineering, this task has two challenges: 1) Dynamic labels — different logging statements have different
sets of accessible variables, which means in this task, the set of possible labels of each sample is not the same. 2) Out-of-vocabulary
words — identifiers’ names are not limited to natural language words and the test set usually contains a number of program tokens
which are out of the vocabulary built from the training set and cannot be appropriately mapped to word embeddings. To deal with the
first challenge, we convert this task into a representation learning problem instead of a multi-label classification problem. Given a code
snippet which lacks a logging statement, our approach first leverages a neural network with an RNN (recurrent neural network) layer
and a self-attention layer to learn the proper representation of each program token, and then predicts whether each token should be
logged through a unified binary classifier based on the learned representation. To handle the second challenge, we propose a novel
method to map program tokens into word embeddings by making use of the pre-trained word embeddings of natural language tokens.

We evaluate our approach on 9 large and high-quality Java projects. Our evaluation results show that the average MAP of our
approach is over 0.84, outperforming random guess and an information-retrieval-based method by large margins.

Index Terms—Log, Logging Variable, Word Embedding, Representation Learning

1 INTRODUCTION

In software development, logging is pervasively used to
record runtime information of software systems [1]. Logs are
important and valuable for various of software maintenance
tasks, such as execution anomaly detection [2], [3], problem
diagnosis [4]-[7], deployment verification [8], etc. Since logs
are mainly produced by the logging statements inserted
by developers in the source code, writing appropriate and
high-quality logging statements are of great importance to
facilitate these maintenance tasks.

As shown in the example below, a logging statement
typically specifies a log level, a static text and one or more
variables [9]-[11]. The log level (e.g., info in our example)
specifies the verbosity level of a log entry. Meanwhile, the
static text (e.g., “Client run completed. Result=" in our ex-
ample) describes some contextual information. Additionally,
the variables (e.g., result in our example, which is the result
of an IO operation), which are the focus of this work,
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contain important system status that needs to be logged for
postmortem analysis.

logger.info(“Client run completed. Result="+ result);

It is not practical for developers to log too many vari-
ables in logging statements, since this may incur perfor-
mance overhead and prevent developers from zooming in
on real problems [1]. In addition, missing logging vital
variables can increase developers’ burden in performing
many corrective software maintenance tasks. For example,
developers may not be able to understand the root cause of
a problem affecting a deployed system well since important
variables are not logged. Therefore, to write high-quality
logging statements, developers need to decide which vari-
ables storing important values to be logged. However, it
is not easy to make such decisions due to the following
reasons. First, there is a lack of rigorous specification to
guide developers’ logging practices. For example, Fu et
al. [10] have shown that even in Microsoft, a leading soft-
ware company, it is hard to find thorough and complete
logging specifications to guide developers’ logging prac-
tices. Second, choosing appropriate variables in most cases
requires domain-specific knowledge. High-level guidelines
of logging variables or logging “rules” learned from one
project may not be practical or appropriate when developers
switch to a new project. Moreover, some empirical studies
have shown that in their studied open source systems, over
25% of the changes to logging statements are related to
variable logging [9], [11]. This highlights the need for a
tool that can recommend logging variables for developers
to help them write high-quality logging statements.

To address this need, in this work, we propose a



learning-based approach to help developers decide which
variables to log during development. Our approach first
learns logging “rules” about variables from existing logging
statements and their contextual source code through a neu-
ral network. Then, given a new code snippet that needs to
be logged, our approach can automatically suggest which
variables should be logged.

The usage scenarios of our proposed tool are as follows:

Without Tool. Bob is a junior developer in a company.
He always adds logging statements in his code according
to the high-level logging guidelines of the company and his
limited development experience. In his workflow, after he
deploys his system in the production environment, he needs
to monitor the system’s status through the produced logs. If
his system performs abnormally or even encounters a fail-
ure, the logs are precious information source for Bob to find
the root cause of the anomaly or the failure. However, Bob
sometimes finds that he did not log some important system
status in the logging statements. So, he needs to modify his
code, add the related variables into the logging statements,
and re-deploy his system. While Bob only makes some
trivial changes to his code, it takes a non-trivial amount of
time to wait for his code passing all the tests and deploying
in the production environment. Moreover, sometimes Bob
can not easily modify the production environment in order
to guarantee the stability of the system. Thus, missing
recording important variables reduces Bob’s productivity
and makes it difficult for Bob to conduct maintenance tasks.

With Tool. Bob adopts our tool. Each time he adds a
logging statement, our tool will recommend a ranked list
of variables which may need to be logged. Bob can quickly
review the list to check whether he misses any important
variables to log. With the help of our tool, Bob can reduce
the likelihood of him to miss recording important variables
in the logging statements at the first time. Therefore, Bob
spends less time making changes to variable logging and
his maintenance work becomes less painful.

Some approaches have been proposed to help develop-
ers make informed logging decisions during development
by learning from existing logging statements, i.e., “learning
tolog” [1], [12]-[14]. Some of them aimed to predict whether
to instrument a code snippet with logging statements, i.e.,
addressing “where to log” issue [1], [12]. As for “what
to log”, Li et al. proposed a technique to learn to sug-
gest appropriate log levels for newly-added logging state-
ments [13]. He et al. characterized the static texts in logging
statements and designed an IR-based method to generate
static descriptions automatically [14]. Different from them,
this work focuses on logging variables, and our approach
can be used to complement them. For example, after a
“where to log” tool predicts that a code snippet should be
logged, our approach can be further used to infer which
variables should be logged, and such variables may help
developers understand why a logging statement should be
inserted here.

Different from other software engineering prediction
tasks (e.g., defect prediction), automatically suggesting log-
ging variables requires us to overcome several challenges:

Dynamic labels. A logging statement will only print out
the values of variables that can be accessed. Since different
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code snippets usually contain different sets of accessible
variables, in this task, for different “samples” (i.e., code
snippets), the sets of possible “labels” (i.e., variables) are
also different. It is not suitable to simply regard this task as
a multi-label classification task, and traditional approaches
for solving multi-label classification tasks, e.g., building a
binary classifier for each label, can not be easily adapted to
solve this problem due to the non-uniform set of possible
labels. Moreover, considering the union of all variables ap-
pearing in all samples as the set of labels will result in poor
performance, as this increases the difficulty of the multi-
label classification task. With these observations, we propose
a novel approach to effectively solve this problem. Our
framework takes a sequence of program tokens as input, i.e.,
a tokenized code snippet. To predict the logging variables,
our framework first learns to represent each program token
as a vector of real numbers through a neural network
with an RNN (recurrent neural network) layer and a self-
attention layer. We expect such token representation can
contain sufficient information to predict whether this token
should be logged or not. Then, our framework predicts the
probability of each identifier being logged through a unified
binary classifier. In this way, the dynamic-labels problem
can be properly solved.

Out-of-vocabulary words. To leverage neural networks
to process program tokens, we first need to build a vo-
cabulary from the training set and represent each program
token in the vocabulary in the vector form. Different from
natural language, code snippets contain numerous tokens
that can be constructed by concatenating multiple simple
tokens following various coding conventions such as camel
casing, snake casing, etc. We refer to such tokens as com-
pound words. It is common that a new code snippet contains
new compound words, e.g., this code snippet declares some
new variables. Such new compound words can not be found
in the training vocabulary, i.e., the out-of-vocabulary issue
happens, and can not be properly represented as word
vectors. To solve this problem, we propose a novel method
to map program tokens into word vectors. First, we split
all compound words into simple tokens according to camel
casing and snake casing coding conventions. These simple
tokens are usually English words or their abbreviations.
Then, we leverage the GloVe [15] pre-trained word embed-
dings to map split simple tokens and non-compound words
to word vectors. For non-compound words, such word vectors
are input to neural networks directly. For a compound word,
we treat the average vector of the word vectors of its split
tokens as its vector representation.

We evaluate our approach on 9 large, high-quality Java
open source projects. Evaluation results show that the av-
erage MAP (Mean Average Precision) of our approach is
over 0.84, outperforming all the baseline methods by large
margins. We also apply our approach to make cross-project
predictions and our experiment results show that the av-
erage MAP of our approach for this setting is over 0.77.
This means our approach is also effective for cross-project
logging variable predictions.

The contributions of this work are as follows:

e We propose a novel method to map program to-
kens to word vectors, which alleviates the out-of-



vocabulary problem incurred by compound words in
programs.

e We propose an approach to suggest proper logging
variables to developers during development.

e We evaluate our approach on 9 large and high-
quality Java open source projects. We also eval-
uate the effectiveness of our approach for cross-
project logging variable predictions. The evaluation
results show that the performance of our approach is
promising.

The remainder of this paper is organized as follows:
Section 2 provides some background knowledge of RNN,
word embedding, and the self-attention mechanism. Sec-
tion 3 formalizes the problem and describes our approach
in detail. Section 4 presents our experimental settings, in-
cluding our studied software systems and the procedures of
data extraction and data preprocessing. In Section 5, we de-
scribe our research questions and corresponding evaluation
results. Section 6 discusses our case studies on real-world
logging bugs, the rationales of some design decisions, how
to apply our approach to low-logging-quality projects and
threats to the validity of our approach. Section 7 surveys the
related work. We conclude this work and point out some
future research directions in Section 8.

2 BACKGROUND

Our approach leverages a novel word embedding method

and a neural network with an RNN layer and a self-
attention layer to recommend proper variables. We first
introduce some background knowledge of these techniques.
Since the input of our approach is a code snippet, ie.,
a sequence of program tokens, to be convenient, we let
x = (v1,22,...,T|4|) represent a sequence of program to-
kens, where | - | denotes the length of a sequence.

2.1 Bidirectional RNN

An RNN is a neural network which is specialized for
processing sequence data [16]. Unlike feedforward neural
networks and CNN (convolutional neural networks), RNNs
can handle sequences of variable length, thus are widely
used in the field of natural language processing (NLP).
Figure 1a shows the basic structure of an RNN. This neural
network takes vectors as input. To process a sequence of
words x using the RNN, we need first map each word into
a vector. Then, the RNN reads such vectors one by one and
outputs a vector to represent the word at each time step.
Specifically, at step ¢, the RNN takes the word vector
e as input, and computes the hidden state h; of this step
according to the previous hidden state h;_; and the input
(S
hy = f(ht—1> €t) 1)

Long short-term memory (LSTM) [17] and gated recurrent
unit (GRU) [18] are two popular implementations of f. Both
of them are capable of learning long-term dependencies. For
most implementations of the RNN, the hidden state h; is
also the output oy at step t. o4 can be regarded as the learned
representation of the word z;, which is able to adaptively
capture the information of the first £ — 1 words (i.e., 1, z2,
ceey l'tfl).
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(a) RNN (b) Bidirectional RNN

Fig. 1: The structures of RNN and bidirectional RNN

However, o; can not capture the information of the
words after x; which is also important for many tasks,
e.g., named entity recognition [19] and part-of-speech tag-
ging [20]. Bidirectional RNNs were invented to meet this
need [21]. Figure 1b presents the structure of a typical
bidirectional RNN. At each time step, the bidirectional RNN
computes both the hidden state h; of the forward sub-RNN
and the hidden state g; of the backward sub-RNN. g; is
computed as follows:

9t = ' (ge41,€¢) V)

In most cases, the output o of the bidirectional RNN is
constructed by concatenating hy and g;.

2.2 Word Embedding

To process words using neural networks, we need first map
words into vectors of real numbers. A simple way is to
represent words as one-hot vectors. But one-hot vectors
do not encode the similarities between words, and usually
suffer from the curse of dimensionality. The second way
is jointly learning word vectors with a target task, e.g.,
language modeling [22], machine translation [18] and etc.
However, when dealing with the tasks without abundant
annotated data, it may be more useful to map words to
vectors through the word embedding pre-trained on large
corpora.

Plenty of approaches are proposed to represent words as
high-dimensional vectors that encode syntactic and seman-
tic regularities between words as the linear relationships
between word representations [15], [23]-[25]. Such high-
dimensional vectors are called “word embeddings”. Skip-
gram [25], [26] and GloVe [15] are the most well-known
unsupervised methods, both of which aim to learn accurate
high-dimensional word embeddings from large unlabeled
corpora. Skip-gram learns word embeddings by training
a prediction model with the objective of predicting the
context of a word given the word itself. GloVe combines
global statistics of the training corpus with local context
window methods, like skip-gram, to learn accurate word
representations. The website of GloVe [27] also publishes
some sets of pre-trained word embeddings to accelerate
related work.

2.3 Self-Attention

Recently, attention mechanisms are widely used for many
tasks, from image classification [28], [29] to neural machine
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Fig. 2: The overall framework of our approach.

translation [30], [31], to help models focus on the important
parts of inputs. The inputs of an attention function are a
query and a set of key-value pairs, which are all vectors. The
output is computed as the weighted sum of the values, and
the weight assigned to each value is calculated by a compat-
ibility function of the query and the value’s corresponding
key. According to how the weights are calculated, there
are three popular attention mechanisms, i.e., the additive
attention [30], the dot-product attention [32] and the scaled
dot-product attention [31]. In this work, we use the scaled
dot-product attention, since it is of good performance and
computationally cheaper [31].

Given a query ¢, a set of keys K of dimension dj and
corresponding values V, the scaled dot-product attention
first computes the dot products of ¢ with all keys, divides
each dot product by v/dj, for scaling and obtains the weights
on the values through a softmax function. Then, it uses
the calculated weights to calculate the weighted sum of the
values as the output. In practice, we usually pack a sequence
of queries together into a matrix (), and compute their
outputs simultaneously. These outputs are called attention
vectors, and are computed as follows:

QK"
Vi,

Self-attention is a special case of attention mechanism,
of which the queries, keys and values are the same, ie.,
Q = K = V. When applied in natural language process-
ing, self-attention can model dependencies between words
without considering their distances in the input or output
sequences, and can capture the syntactic and semantic struc-
ture of sentences [31].

Attention(Q, K, V) = softmax( 4 ©)]

3 APPROACH

In this section, we describe our approach in detail. We
first define and formalize the problem. Then we present the
overall framework and all the components of our approach.
Finally, we describe the details of our implementation and
training process.

3.1 Problem Formulation

We want to recommend logging variables to develop-
ers during development. This problem can be formulated
as follows: given a sequence of program tokens & =
(71,22, ..., T|z|) and the set of variables v = (v1,v2, ..., Vjy|)
which should be logged, find a function f so that f(x) = v.
| - | denotes the length of a sequence or size of a set.

We can regard this problem as a multi-label classification
problem, i.e., treat each possible logging variable as a label
and generate multiple labels for each code snippet. A com-
mon practice for solving multi-label classification problem
is to first collect possible labels (i.e., variables) from the
training set and build a binary classifier for each possible
label; then, given a sample (i.e., a code snippet), predict
the probability of each label being generated through the
corresponding classifier; finally, output the top-k labels with
highest probabilities. However, for the task considered in
this work, the alternative labels of each sample are different,
since a logging statement can only print the variables which
can be accessed, e.g., global variables, class properties and
local variables defined before it, and for different logging
statements, the set of accessible variables are often different.
Moreover, if we only build classifiers for the variables that
appear in the training set, we can not suggest the logging
variables which only appear in the test set. Therefore, it is
not suitable to treat this problem as a traditional multi-label
classification problem.

In this work, given a code snippet, we only try to answer
which variables in the code snippet (i.e., a sequence of
program tokens) should be logged. We simplify the original
problem as an optimization problem: given a sequence of
program tokens x = (x1,2,...,7|5) and the labels of
whether each token should be logged y = (y1,¥2, -+, Y|z|)
find a function f so that f(z) = (¥'1,9'5,...,¥'|5) and
the loss between f(x) and y is minimized. y; € {0,1}.
y'; € [0,1], and denotes the probability of the i, token
being logged.

3.2 Overall Framework

Figure 2 presents the overall framework of our approach. It
contains four layers: the embedding layer, the RNN layer,



the self-attention layer and the output layer. Given a se-
quence of program tokens, our approach first maps each
token into a word vector through the embedding layer. The
word vectors are expected to capture the semantic informa-
tion of the corresponding tokens. Next, the RNN layer learns
to represent each word vector in a new vector space. Then,
for each token, the self-attention layer is used to refine its
word representation output by the RNN layer by focusing
on the contextual tokens that are important for representing
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this token. The RNN layer and the self-attention layer calcu-,

late and refine each token’s representation by considering all

the tokens in the sequence. They are expected to embed the }é
syntactic and semantic information of the whole sequence 13

in the learned word representation of each token. Finally,
our approach leverages a unified binary classifier to predict
the probability of each token being logged according to its
representation learned by the previous layers. In a nutshell,
our approach tries to learn the proper representation of each
token through a multi-layer neural network so that a unified
binary classifier can have sufficient syntactic and semantic
information to make accurate decisions.

3.3 Embedding Layer

To process program tokens using a neural network, we first
map each token into its distributed representation, which
the embedding layer is responsible for. In the NLP commu-
nity, a common practice is to first build a vocabulary from
the training set, and then jointly learn the word embedding
of each word in the vocabulary with the target task. But if
a token only appears in the test set, this method will not be
able to represent it properly. This phenomenon is referred to
as the “out of vocabulary” issue.

When writing programs, developers often name new
identifiers using compound words, which refers to the tokens
that are constructed by concatenating multiple simple to-
kens following camel casing (e.g., inputBuffer) or snake cas-
ing (e.g., input_buffer). Compared to new natural language
sentences, it is more possible for a new code snippet to
contain out-of-vocabulary words. For example, it is common
for a developer to declare some new variables in a new code
snippet. Therefore, when processing code snippets, the out-
of-vocabulary problem is worse.

Fortunately, we notice that in high-quality software
projects, developers usually concatenate multiple English
words and/or their abbreviations following camel or snake
casing to name identifiers. So, given a compound word, we
can construct its word embedding by combining the word
embeddings of its constituent simple tokens. Following this
observation, we propose a new method to map program
tokens to word embeddings. Our method requires a set of
word embeddings pre-trained on natural language corpora.
In this work, we use the GloVe pre-trained word embed-
dings due to its good performance and ease of access [15].
The word embeddings of non-compound words are directly
found from the pre-trained word embeddings. For each
compound word, our method first splits it into several simple
tokens, and then it finds the word embeddings of these sim-
ple tokens from the pre-trained word embeddings. Finally,
the average vector of these simple tokens” word embeddings
is regarded as the word embedding of the compound word.

public static FiCaSchedulerNode getMockNode (String host,
String rack,int port,int memory,int vcores) {
NodeId nodeId=NodeId.newInstance (host,port);
RMNode rmNode=mock (RMNode.class) ;

when (rmNode.getNodeID () ) .thenReturn (nodeld) ;

when (rmNode.getTotalCapability ()) .thenReturn (Resources.
createResource (memory, vcores) ) ;

when (rmNode.getNodeAddress () ) .thenReturn (host + ":" +
port) ;

when (rmNode.getHostName () ) .thenReturn (host) ;

when (rmNode.getRackName () ) .thenReturn (rack) ;

FiCaSchedulerNode node=spy (new FiCaSchedulerNode (rmNode,
false));

LOG.info("node = " + host + " avail="+ node.
getUnallocatedResource());

when (node.getNodelID () ) .thenReturn (nodelId);

return node;

Fig. 3: A method with a logging statement

While the GloVe pre-trained word embeddings include the
word embeddings of numerous common abbreviations, e.g.,
“cnt” for “count” and “ldap” for “Lightweight Directory
Access Protocol”, there may also exist a few uncommon
abbreviations which appear in the source code but are not
included by the GloVe word embeddings. We simply regard
such abbreviations as “unknown”, and map them to the zero
vector.

3.4 RNN Layer

The RNN layer is used to represent the output of the
embedding layer in a new vector space for our task. Word
embeddings can capture the syntactic and semantic rela-
tionships between tokens, while they do not contain the
syntactic, semantic and structural information of a specific
code snippet. Therefore, our approach leverage an RNN to
encode such information into our word representations.

This layer adopts a bidirectional RNN. Given a pro-
gram token, the bidirectional RNN can integrate the in-
formation of the whole code snippet, instead of only the
tokens before it, to represent it. There are many variants of
RNN, e.g., LSTM and GRU. In this work, we choose GRU
since it performs similarly to LSTM but is computationally
cheaper [18].

As described in Section 2.1, given a word embedding e
of a program token w;, the bidirectional GRU will compute
its hidden states of the forward sub-GRU and backward
sub-GRU, i.e., h; and g; respectively, using Equation 1
and 2. The output o; at step ¢ is then constructed by
concatenating hy and gy:

Ot = (hmgt)

3.5 Self-attention Layer

Given a code snippet, it is usually the case that a logging
variable is related to several but not all lines of code pre-
ceding its corresponding logging statement. For example,
Figure 3 is a method extracted from the Hadoop project.
Line 10 is a logging method with two logging variables,
i.e., host and node. We can see that host only appears in
line 1, 2, 6 and 7; node only appears in line 9. Learning to
pay more attention to the related code may be helpful for
accurate variable suggestions. Following this observation,




our approach leverages a self-attention layer to learn to
focus on important parts of the input and refine the word
representations learned by the RNN layer.

The self-attention layer adopts the multi-head attention
mechanism [31] to calculate the attention vectors, which is
depicted in Figure 2. The input, I € RI/*/*9, is a sequence
of vectors, which are also regarded as queries @, keys K
and values V in self-attention. The multi-head attention
mechanism employs h heads to process the inputs in par-
allel in order to focus on different channels of the input
vectors. For each head, queries, keys and values are first
linearly projected to dj, dj, and d,, dimensional vectors with
different, learned linear projections, respectively. Then, we
perform the scaled dot-product attention function described
in Section 2.3 with these projected vectors as input, and
obtain a sequence of d, dimensional vectors or a matrix
output by this head. Formally, the output matrix M; of the
iz, head is calculated as follows:

M; = Attentian(QMQ, KWiK, VVViV)

where the Attention function is defined in Equation 3, the
W,;Q € R¥xdr WK ¢ R4k and WY € R4*4v are the pa-
rameter matrices of the linear projections. Finally, the output
matrices of all the heads are concatenated into one matrix
and are linearly projected once again. The corresponding
formulas are shown below:

M = Concat(My, Ms, ..., My,)
A= MW

where the W4 € R%"*da is the parameter matrix of the last
projection.

The self-attention layer learns to capture the syntactic
and semantic information of a code snippet based on its
ability to learn dependencies between code tokens. A key
factor affecting such ability is the length of the path that the
signal of one token has to traverse forward or backward to
meet the signal of the other token in the neural network
given any pair of tokens [33]. To learn the dependency
between two tokens with k tokens between them, the path
length in the RNN layer is k since a token is only connected
to its previous token and following token and the signal
is passed token by token. However, for the self-attention
layer, each token is directly connected to all tokens in the
code snippet through dot product operations, i.e., QKT in
Equation 3, hence the path length is always 1. This makes
the self-attention layer more efficient than the RNN layer for
learning dependencies, especially long-range dependencies,
between words [31].

3.6 Output Layer

The previous layers learn to properly represent each pro-
gram token into a feature vector. With such vectors as
input, the output layer leverages a unified binary classifier
to predict whether each token should be logged or not. In
this work, we use the sigmoid classifier, which is commonly
used in neural network architectures. Given the input matrix
A, this layer calculates the probability vector y’ as follows:

y' = sigmoid(AW + b)

6

where W € R% and b € Rl are the weights and biases
that need to be learned. The i, element of ¥/, i.e., ¢/, is the
probability of the 7, token x; being logged.

3.7

We implement our framework using PyTorch [34]. The set
of word embeddings used by the embedding layer is pre-
trained using GloVe on the Wikipedia 2014 and Gigaword
5 corpora [27], and their dimension is 100. This set of
word embeddings is powerful enough for our framework
to perform well. We do not update the embedding layer
while training.

The other three layers are jointly trained and updated.
The dimension of the hidden states in the RNN layer is set
to 128. In the self-attention layer, we employ h = 4 parallel
heads, d;, and d,, are set to 64, and d,, is set to 64 x 4 = 256.
We use the Binary Cross Entropy (BCE) as the loss function.
Given the label vector y of the input, the BCE function
first calculates the cross entropy of each program token, as
shown in Equation 4. Then the average of the cross entropy
of all program tokens is regarded as the loss, as shown in
Equation 5.

Implementation and Training

li=—[yi-log(y';) + (1 —wi) - log(1 = ¢/;)] )
||
1
loss = m ;li ®)

We use Adam [35] as the optimizer, and the mini-batch
size is set to be 80. We train our model for a maximum of
200 epochs, and measure the quality of the trained model
after each epoch by calculating the MAP (Mean Average
Precision) score of the model on a held out validation set.
After training, the model that achieves the highest MAP
score is picked as the final model and is tested on the test
set.

4 EXPERIMENT SETUP

This section describes our studied projects and the proce-
dures that we followed to extract and preprocess the data.

4.1 Studied Projects

We evaluate our framework on 9 open source Java projects
of Apache Foundations, i.e., ActiveMQ, Camel, Cassandra,
CloudStack, DirectoryServer, Hadoop, HBase, Hive and
Zookeeper. The reasons for choosing these projects are as
follows: First, they are all large, mature and successful
projects that have been developed for years. Second, they
are from different domains, which ensures that our ap-
proach is not limited to a specific domain. ActiveMQ is a
powerful messaging and integration patterns server, Camel
is a rule-based routing and mediation framework, Cassan-
dra is a distributed NoSQL database management system,
CloudStack is an Infrastructure as a Service (IaaS) cloud
computing platform, DirectoryServer is an embeddable di-
rectory server, Hadoop is a scalable, distributed computing
framework, HBase is a distributed, non-relational database,
which provides big data store for Hadoop, Hive is a data
warehouse software, Zookeeper is a centralized service
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TABLE 1: Statistics of the studied systems
Projects Release =~ LOC  #Methods #(code,log) #(C,V) #(C,V)ien #C,V)par #(C,L,V) Avg. #vars
ActiveMQ 5155 658K 422K 7.0K 5.4K 62 517 49K 1.4
Camel 2.22.0 1936K 128.1K 10.9K 8.7K 179 569 79K 14
Cassandra 3.11.3 572K 34.5K 1.6K 1.3K 58 84 1.1K 1.5
CloudStack 4.11.1.0 895K 55.9K 12.5K 104K 762 248 9.4K 14
DirectoryServer  2.0.0-M24 406K 12.7K 2.1K 1.6K 27 163 1.4K 1.3
Hadoop 3.0.3 2101K 115.2K 14.0K 11.2K 321 649 10.2K 1.5
HBase 2.1.0 969K 55.2K 8.0K 6.4K 246 348 5.8K 1.5
Hive 3.1.0 1728K 104.8K 7.7K 6.5K 265 320 5.9K 14
Zookeeper 3.4.13 105K 6.2K 1.6K 1.3K 34 89 1.1K 1.3

*#(C, V') refers to the number of (code tokens,vars) pairs, #{C, V )jer is the number of the (code tokens,vars) pairs filtered by the length filter and
#(C, V) yar is the number of the (code tokens, vars) pairs filtered by the var filter. #{C, L, V') refers to the number of (code tokens, labels, vars) triples,
and the number of filtered (code tokens, vars) pairs is equal to it. Avg. #vars refers to the average number of logging variables in (code tokens, labels, vars)

triples.

which can provide distributed configuration and synchro-
nization services for large distributed systems. In addi-
tion, these projects extensively use standard Java logging
libraries, e.g., Log4j [36], SLF4] [37] and Apache Commons
Logging [38], to perform logging. The uniform formats of
these libraries” APIs (e.g., logger.info(message)) can help us
extract logging statements accurately. Table 1 presents some
statistics of our studied projects.

4.2 Data Extraction

This work aims to suggest logging variables according to
the contextual code snippet when a developer is adding a
logging statement. In this scenario, the code succeeding such
logging statement may not exist. Therefore, our approach
takes the k lines of code preceding the logging statement as
input. In this work, we set k to 15 by default. In addition,
we also need to extract the logging variables of each logging
statement for training and evaluation.

Figure 4 presents the overview of our data extraction
process. This process aims to extract the (code, vars) pairs
from the source code of each project to build its dataset,
where code refers to the k lines of code preceding a logging
statement, and vars denotes the variables printed by such
logging statement. For each project, first, we download its
source code from its official website or git repository and
extract all the Java methods from the source code using
the Eclipse Java development tools (JDT) [39]. We also
delete the comments and the Javadoc in each method. Then,
since each project extensively follows the uniform formats
defined by the standard Java logging libraries to write
logging statements, we construct a set of regular expressions
to automatically identify the logging statements in each
extracted method. For each identified logging statement, we
record it with the k lines of code preceding it to form a
(code,log) pair where log refers to the logging statement.
A code line with only one or more right curly brackets, i.e.,
}, is not counted as a line. If there are less than k lines of

code from the method declaration (inclusive) to the logging
statement (exclusive), we record all of them as the code.
The (code,log) pairs which contain non-ASCII characters
are also ignored. In addition, since developers may write
multiple logging statements in one Java method, the code
in a (code, log) pair may contain some logging statements
preceding the log. We keep such logging statements in the
code for they also provide contextual information. Finally,
we leverage JDT again with a sequence of heuristic rules
to extract variables from each logging statement, delete
the (code,log) pairs with no logging variable, and convert
the remaining (code,log) pairs to (code,vars) pairs. The
number of extracted (code, log) pairs and (code, vars) pairs
are shown in Table 1.

4.3 Variable Extraction

Given a logging statement, we first pick up all of its argu-
ments through JDT. Then for each argument, we apply the
following 5 rules to record the logging variables:

1) RULE 1: If the argument is a constant value (e.g.,
“End position is”), we ignore it.

2) RULE 2: If the argument is a simple identifier, e.g.,
requestld, we directly record it as a variable.

3) RULE 3: If the argument is a method invocation
without arguments (e.g., request.toString()), or a field
access (e.g., this.result), we record the first identifier
that is not this (i.e., ThisExpression in JDT) as a
variable.

4) RULE 4: If the argument is a method invocation
with arguments (e.g., Integer.toString(position)), we
iteratively extract variables from its arguments us-
ing the 5 rules. If we do not record any variable from
its arguments (e.g., all the arguments are constant
values), we will treat it as a method invocation with-
out arguments, and apply RULE 3 to it. Specially,
if the argument is a get method invocation (e.g.,
list.get(i)), we will extract variables from both its
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log.info ("End position is: ", Integer.toString(start +
request.offset + request.length()));

Fig. 6: A logging statement

expression (e.g., list) and its arguments according
to RULE 1-4.

RULE 5: If the argument fails to meet RULE 1-4
(e.g., it is an infix expression (“start at” + length)),
we iteratively apply the 5 rules to each of its AST
children to find variables. If this argument is a leaf
node, e.g., a this expression (i.e., this), we ignore it.

5)

Finally, all the recorded variables are merged together as the
logging variables of this logging statement, and duplicate
variables are removed.

For example, if we want to extract the logging variables
of the logging statement shown in Figure 6, we first pick
up its two arguments and then process each argument
using the 5 rules. The first argument is “End position is”,
which is a string literal, so we simply apply RULE 1 and
ignore it. The second argument is Integer.toString(start +
request.offset + request.length()) which is a method invocation
with an argument. Therefore, we apply RULE 4 which
guides us to recursively process its argument. Since its
argument is an infix expression, RULE 5 is used, which asks
us to iteratively process the three AST children, i.e., start,
request.offset and request.length(). According to RULE 2 and
RULE 3 respectively, we extract start and request from the
first two children as logging variables. The last children is a
method invocation without arguments, thus we also extract
request from it based on RULE 3. At last, we obtain a list
of three variables, which is (start, request, request). After
removing duplicate variables, the final set of variables, i.e.,
vars, is (start, request).

The intuitions of RULE 1 and 2 are obvious. We design
RULE 3-5 based on the following reasons: For compound
identifiers described in RULE 3, the first simple identifier
is usually the key object, while the remaining parts are a
method or a property of the key object. For example, for
request.offset, request is the main object of this expression,
and offset is just a property of request. If we record offset as
a variable, developers may be confused since there may be
a local identifier named offset too. It is also not practical to
record the whole compound identifier as a variable, because
the identifier may be very complicated or not able to be
inferred from the contextual code snippet. For example, for
the statement in Figure 6, request must be an accessible
object, but we may not know that request has a property
named offset according to the contextual code snippet. As
for RULE 4-5, an argument of a logging statement can be a
complicated expression, it is difficult to design rules for all
possible situations. Therefore, in RULE 4 and RULE 5, we
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Fig. 7: The mean and the standard deviation of the number
of logging variables in (code tokens,labels,vars) triples
with various code length. For example, the leftmost point
and error bar present that the average number of logging
variables in (code tokens,labels,vars) triples with code
length of 0 to 20 is about 1.3, and the corresponding stan-
dard deviation is about 0.64.

recursively process the descendants of those complicated
expressions, and extract variables from the descendants
which meet RULE 1-3.

4.4 Data Preprocessing

After data extraction, we obtain a set of (code,vars) pairs
from each project. To meet the requirements of our ap-
proach, we need to further preprocess these pairs. Figure 5
presents the procedure of our data preprocessing. For each
pair, we tokenize its code, delete all string and number
literals from the code tokens, and mark all the identifiers
(i.e., TokenNameldentifier in JDT) in the code tokens using
JDT. Then, we remove the pairs with code lengths of more
than 200 (i.e., length filter) and the pairs of which none of
the vars appears in corresponding code tokens (i.e., var
filter). The numbers of the removed pairs are presented in
Table 1. We limit the code length to 200 for better training
the RNN layer in our framework. Finally, given a pair, by
comparing each code token with each variable in the vars,
we can obtain the label sequence, whose length is equal
to the length of the code tokens. Each label is either 1 or
0, representing whether the corresponding code token is
logged or not. We keep the vars in our preprocessed dataset
for computations of our evaluation metrics (see Section 5.1).

For each project, we obtain a set of
(code tokens,labels,vars) triples. The number of the
triples and the average number of vars for the triples in
each project are presented in Table 1. The average number
of vars is between 1.3 and 1.5. Figure 7 shows the mean
and the standard deviation of the number of vars for the
triples in all projects with various code length. We can see
that for the triples with different code length, the average



number of vars is between 1.3 to 1.6, and the corresponding
standard deviation is between 0.64 and 0.96.

To build our dataset, for each project, we randomly select
10% of them for testing, 10% of them for validation and the
remaining 80% for training. As described in Section 3.7, our
approach uses the Binary Cross Entropy (BCE) as the loss
function, which regards the average of the cross entropy of
all code tokens, including tokens that are not identifiers, as
the loss of each iteration. However, since only identifiers
can be logged, our approach filters out tokens that are not
identifiers and only outputs a ranked list of identifiers while
inferring.

5 EVALUATION

In this section, we evaluate the performance of our ap-
proach. We first describe the evaluation metrics and the
baselines, and then present our research questions and
corresponding experiment results.

5.1 Evaluation Metrics

With a code snippet as input, our approach predicts the
probability of each identifier being logged in the corre-
sponding logging statement. It will output multiple prob-
abilities for an identifier if the identifier appears at multiple
positions in the code snippet. Our approach ranks all dis-
tinct identifiers according to their highest probabilities. The
higher an identifier’s probability is, the higher its rank is. To
evaluate our approach, we calculate top-k accuracy, Mean
Reciprocal Rank (MRR) and Mean Average Precision (MAP)
scores based on such ranked lists.

5.1.1

Top-k accuracy is the percentage of code snippets of which
at least one logging variable is in the set of the top-k
variables returned by an approach. Given a code snippet,
if at least one of the top-k variables recommended by an
approach is actually logged in the corresponding logging
statement, we consider the recommendation to be successful
and set success(code, top-k) to 1; else we regard the recom-
mendation to be unsuccessful and set success(code, top-k)
to 0. Given a set of code snippets C, its top-k accuracy
Accuracy@k is calculated as:

Top-k Accuracy

> codecc success(code, top-k)
C]|

where |C| refers to the number of code snippets in C.

The higher the top-k accuracy is, the better a logging
variable recommendation approach performs. As shown in
Table 1, for each studied project, the average number of
logging variables in each sample is between 1.3 and 1.5. So
in this work, we set k to 1 and 2.

Accuracy@k =

5.1.2 Mean Reciprocal Rank (MRR)

MRR is a popular metric used to evaluate an information
retrieval technique [40]. Given a query (in our case: a code
snippet), its reciprocal rank is the multiplicative inverse of
the rank of the first correct document (in our case: a variable)
in a rank list produced by a ranking technique (in our case:
a logging variable recommendation approach). Given a set
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of code snippets C, its MRR score is the average of the
reciprocal ranks of all code snippets in C:

1 1
MRR(C) = Il CO§GC rank(code)

where rank(code) is the rank of the first correct logging
variable returned by an approach for code.

5.1.3 Mean Average Precision (MAP)

MAP is a single-figure measure of quality, which has been
shown to have good discrimination and stability to evaluate
ranking techniques [41]. Different from MRR which only
considers the first correct result, MAP considers all correct
results in each ranked list. For a code snippet, its average
precision is defined as the mean of the precision values
obtained for different sets of top-k variables that were
retrieved before every logged variable is retrieved, which
is computed as:

AP(code) = 22k=1 P(R) X Bel (k)

lvars|

where n is the number of variables in the ranked list, Rel(k)
indicates whether the variable at position %k is actually
logged or not, and P(k) is the precision at the given cut-
off position k and is computed as:

_ |vars in top-k|
B k

where top-k denotes the set of top-k variables returned by
our approach, and |vars in top-k| refers to the number of
the logging variables that appear in the top-k variables.

The MAP of a set of code snippets C is then the mean of
the average precision scores for all code snippets in C"

Zcodeec AP(COde)
Cl
Developers may log several variables in a logging state-
ment. The MAP value can measure the average performance
of our approach to suggest all logged variables.

P(k)

MAP(C) =

5.2 Baselines

We use Random Guess (RG) and an information-retrieval
(IR)-based method as baselines.

5.2.1 Random Guess

Given a sequence of code tokens, the random guess method
collects all of its distinct identifiers, shuffles these identifiers
and outputs the shuffled identifiers as a ranked list.

5.2.2 IR-based method

Given a sequence of code tokens in the test set, the IR-based
method first finds the most similar code token sequence, i.e.,
its nearest neighbor, from the training set, and then treats the
vars of the nearest neighbor as output. According to how
to find the nearest neighbors, we consider four variants of
the IR-based method, which we refer to as IR-comp, IR-flat,
IR-mix and IR-WE.

The first three variants all represent each sequence of
code tokens in the form of “bag-of-words”, and measure the
similarity between two sequences by calculating the cosine



TABLE 2: The Effectiveness Level of Cliff’s Delta

Cliff’s delta (|4]) Effectiveness Level

|0] < 0.147 Negligible
0.147 < 6] < 0.33  Small
0.33 < |5 < 0.474 Medium
0.474 < |4| Large

similarity between their “bag-of-words” vectors. They differ
from each other in the way they cope with the compound
words in sequences. IR-comp treats the compound words as
they are. In contrast, IR-flat splits each compound word into
several simple tokens before mapping a sequence to a “bag-
of-words” vector. IR-mix keeps both the compound words and
their constituent simple tokens to form the “bag-of-words”
vectors.

The last variant IR-WE leverages word embeddings to
calculate the similarities between code token sequences
and find the nearest neighbors. For each code token, IR-
WE leverages our word embedding method to construct
its word vector. Then, IR-WE uses the method proposed
in [42] to calculate the similarity between two code token
sequences based on the word vectors. The nearest neighbors
are then selected according to such similarities.

5.3 RQ1: The Effectiveness of Our Approach

Motivation. We want to investigate how effective our ap-
proach is and how much performance improvement our
approach can achieve over the baselines.

Approach. We apply our approach and the baseline meth-
ods (i.e., random guess and the IR-based methods) on the
dataset of each project, and compare their performance in
terms of Accuracy@1, Accuracy@2, MRR and MAP. We also
conduct Wilcoxon signed-rank tests [43] at the confidence
level of 95% to check whether the performance differences
between our approach and the baseline approaches are
significant. For each approach, we collect 9 scores (one for
each project) considering every evaluation metric. For each
pair of competing approaches, the Wilcoxon signed-rank
test is conducted considering the 9 scores for each of the
approaches. Moreover, we use an effect size measure named
Clift’s delta (J) to analyze the magnitude of the observed
differences. According to the guidelines in [44], the Cliff’s
Delta values are interpreted based on Table 2.

Results. The Accuracy@1, Accuracy@2, MRR and MAP for
our approach and the baseline methods are shown in Table 3
and Table 4. For each project, our approach outperforms
all the baselines in terms of the four metrics by large
margins. On average, the performance improvements of our
approach over the baselines are all no less than 43% in terms
of all the metrics.

Table 5 presents the p-values and Cliff’s delta () when
we compare our approach with the baseline approaches
in terms of each metric. We consider our approach to be
statistically significantly better than the baseline approaches
at the confidence level of 95% if the corresponding p-value
is less than 0.05. We can see that all the p-values are
less than 0.05 and all the § values are greater than 0.474,
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which means our approach significantly improves over the
baseline approaches with large effect size on all the metrics.

Compared to random guess and the IR-based methods,
our approach tries to learn what information is important
for an identifier to be logged, and encodes such information
into a vector of real numbers to represent the identifier.
The good performance of our approach indicates that our
approach is effective in representing identifiers to suggest
proper variables to be logged.

5.4 RQ2: The Effects of Main Components

Motivation. To model code snippets, we first propose a
novel method to map code tokens into word vectors. Then,
a bidirectional RNN is used to learn to incorporate the
information of a code snippet into the representations of its
code tokens. We also leverage the self-attention mechanism
to focus on important parts of a code snippet and refine the
representations learned by the RNN layer. We want to inves-
tigate the impacts of these components on the performance
of our approach.

Approach. To understand the importance of these compo-
nents, we compare our approach with four of its incomplete
variants:

1) NE+RNN+Attn (for short, NRA) makes use of the
RNN layer and the self-attention layer, but replaces
our embedding (OE) layer with a normal embed-
ding (NE) layer. The normal embedding layer first
builds a vocabulary from the training set. The word
embeddings of the tokens in the vocabulary are then
jointly learned with the target task.

2) OE+Attn removes the RNN layer from our ap-
proach.

3) OE+RNN removes the self-attention layer from our
approach.

4) OE+Uni-RNN+Attn (for short, OURA) uses a uni-
directional instead of bidirectional RNN in the RNN
layer.

By comparing our approach with NRA, we can understand
the effect of our embedding method. Comparing our ap-
proach with OE+Attn and OE+RNN helps us measure the
performance improvements achieved due to the incorpora-
tion of the RNN layer and the self-attention layer, respec-
tively. The performance differences between our approach
and OURA can demonstrate how important the information
of the code tokens after a token is for learning this token’s
representation. Accuracy@1, Accuracy@2, MRR and MAP
are used to evaluate our approach and the four variants.
The Wilcoxon signed-rank test is conducted and the Cliff’s
delta () is computed.

Results. Table 6 and Table 7 present the effectiveness of the
four variants in terms of Accuracy@l, Accuracy@l, MRR
and MAP. We can see that on average, our approach outper-
forms the four variants on each metric. For the nine studied
projects, our approach performs better than the variants in
terms of Accuracy@l and MAP, is more or as effective in
terms of MRR, and improves the variants in most cases in
terms of Accuracy@?2.

Specifically, compared to the variant which uses the nor-
mal embedding layer, i.e., NRA, the average performance



TABLE 3: Comparisons of our approach (Ours) with each baseline in terms of Accuracy@1 and Accuracy@2

Accuracy@1 Accuracy@2

Projects

RG IR-comp IR-flat IR-mix IR-WE Ours RG IR-comp IR-flat IR-mix IR-WE Ours
ActiveMQ 0.165 0.557 0.565 0.561 0.561 0.860 0.287 0.581 0.584 0.581 0.592  0.936
Camel 0.132 0.634 0.626 0.623 0.621 0.866 0.263 0.678 0.666 0.666 0.670  0.941
Cassandra 0.140 0.553 0.561 0.561 0.570  0.789 0.281 0.596 0.605 0.605 0.623  0.904
CloudStack 0.100 0.595 0.571 0.577 0.617  0.830 0.198 0.639 0.617 0.624 0.658  0.919
DirectoryServer  0.103 0.566 0.596 0.581 0.625  0.846 0.228 0.640 0.654 0.640 0.706  0.926
Hadoop 0.121 0.471 0.463 0.462 0.464  0.786 0.234 0.516 0.502 0.501 0.512  0.898
HBase 0.133 0.515 0.494 0.496 0.527  0.793 0.247 0.572 0.547 0.553 0.585  0.895
Hive 0.135 0.497 0.496 0.501 0.520  0.796 0.213 0.547 0.554 0.557 0.574  0.893
Zookeeper 0.186 0.584 0.575 0.575 0.637  0.788 0.319 0.593 0.593 0.593 0.655  0.903
Average 0.135 0.552 0.550 0.549 0.571 0.817  0.252 0.596 0.591 0.591 0.619  0.913
Improved 505.3% 47.9% 48.7%  49.0% 43.0% - 261.9% 53.2% 54.4%  54.4% 47.4% -

*RG refers to the random guess method.

TABLE 4: Comparisons of our approach (Ours) with each baseline in terms of MRR and MAP

MRR MAP

Projects

RG IR-comp IR-flat IR-mix IR-WE Ours RG IR-comp IR-flat IR-mix IR-WE Ours
ActiveMQ 0.346 0.570 0.576 0.573 0578 0912 0312 0.539 0.545 0.539 0.545  0.864
Camel 0.321 0.657 0.648 0.646 0.647  0.919 0.291 0.607 0.601 0.600 0.600  0.879
Cassandra 0.338 0.583 0.591 0.591 0.605 0870 0311 0.531 0.540 0.540 0.556  0.829
CloudStack 0.272 0.618 0.595 0.602 0.638  0.895  0.251 0.576 0.556 0.561 0.596  0.862
DirectoryServer  0.291 0.603 0.625 0.610 0.665  0.906  0.269 0.577 0.596 0.581 0.631  0.867
Hadoop 0.302 0.494 0.484 0.484 0.490 0.867  0.276 0.443 0.432 0.432 0.437  0.827
HBase 0.308 0.548 0.525 0.528 0.558  0.866  0.275 0.490 0.465 0.470 0.504  0.821
Hive 0.289 0.525 0.527 0.531 0.549 0870  0.256 0.488 0.489 0.490 0.509  0.830
Zookeeper 0.360 0.594 0.590 0.590 0.649  0.868 0.339 0.562 0.555 0.555 0.611  0.840
Average 0.314 0.577 0.573 0.573 0.598  0.886  0.287 0.535 0.531 0.530 0.554  0.847
Improved 182.0% 53.6% 54.5%  54.7% 48.2% - 195.3% 58.3% 59.4%  59.8% 52.7% -

*RG refers to the random guess method.

TABLE 5: P-value and Cliff’s delta (0) for our approach compared with each baseline

Accuracy@1 Accuracy@2 MRR MAP
Ours vs. Baseline
p-value 0 p-value 0 p-value 0 p-value )

Ours vs. RG 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)
Ours vs. IR-comp 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)
Ours vs. IR-flat 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)
Ours vs. IR-mix 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)
Ours vs. IR-WE 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)

*RG refers to the random guess method, and Lar refers to large effect size.

TABLE 6: Effectiveness of each incomplete variant of our approach in terms of Accuracy@1 and Accuracy@2

Accuracy@1 Accuracy@2

Projects

NRA OE+Attn OE+RNN OURA Ours NRA OE+Attn OE+RNN OURA Ours
ActiveMQ 0.816 0.606 0.829 0.808  0.860 0.913 0.751 0.926 0.903  0.936
Camel 0.844 0.673 0.843 0.824  0.866 0.929 0.792 0.928 0922  0.941
Cassandra 0.772 0.596 0.754 0.684  0.789  0.860 0.711 0.877 0.868  0.904
CloudStack 0.817 0.652 0.827 0794  0.830 0.909 0.791 0.920 0.902 0919
DirectoryServer  0.809 0.699 0.824 0.809  0.846 0.934 0.831 0.912 0912  0.926
Hadoop 0.763 0.539 0.765 0.707  0.786  0.880 0.694 0.885 0.840  0.898
HBase 0.777 0.558 0.767 0732 0.793  0.884 0.712 0.869 0.846  0.895
Hive 0.765 0.608 0.748 0736 0.796  0.879 0.748 0.867 0.859  0.893
Zookeeper 0.699 0.611 0.726 0.743  0.788 0.823 0.752 0.858 0.841 0.903
Average 0.785 0.616 0.787 0.760  0.817  0.890 0.754 0.894 0.877  0.913

Improved 4.1% 32.7% 3.8% 7.6% - 2.5% 21.1% 2.2% 4.1% -
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TABLE 7: Effectiveness of each incomplete variant of our approach in terms of MRR and MAP

MRR MAP

Projects

NRA OE+Attn OE+RNN OURA Ours NRA OE+Attn OE+RNN OURA Ours
ActiveMQ 0.885 0.728 0.896 0.878  0.912 0.838 0.676 0.849 0.833  0.864
Camel 0.903 0.773 0.904 0.892 0919 0.860 0.722 0.863 0.848  0.879
Cassandra 0.847 0.715 0.847 0.812  0.870 0.807 0.685 0.810 0.784  0.829
CloudStack 0.884 0.766 0.895 0.873  0.895 0.850 0.724 0.861 0.838  0.862
DirectoryServer  0.887 0.806 0.893 0.885  0.906 0.843 0.759 0.849 0.839  0.867
Hadoop 0.849 0.674 0.852 0.810  0.867 0.809 0.621 0.811 0.767  0.827
HBase 0.857 0.685 0.852 0.824  0.866 0.813 0.632 0.806 0.781 0.821
Hive 0.849 0.725 0.841 0.830  0.870 0.810 0.670 0.798 0.788  0.830
Zookeeper 0.807 0.726 0.827 0.828  0.868 0.781 0.694 0.795 0.794  0.840
Average 0.863 0.733 0.867 0.848  0.886  0.823 0.687 0.827 0.808  0.847
Improved 2.6% 20.8% 2.1% 4.5% - 2.8% 23.2% 2.4% 4.8% -

TABLE 8: P-value and Cliff’s Delta () for our approach compared with the incomplete variants of

our approach

Accuracy@1 Accuracy@2 MRR MAP
Ours vs. Constructed
p-value 0 p-value 0 p-value 6 p-value 0
Ours vs. NRA 0.002 0.48 (Lar) 0.004 0.41 (Med) 0.002 0.48 (Lar) 0.002 0.53 (Lar)
Ours vs. OE+Attn 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar) 0.002 1.00 (Lar)
Ours vs. OE+RNN 0.002 0.48 (Lar) 0.006 0.40 (Med) 0.007 0.44 (Med) 0.002 0.48 (Lar)
Ours vs. OURA 0.002 0.53 (Lar) 0.002 0.57 (Lar) 0.005 0.51 (Lar) 0.005 0.58 (Lar)

*Lar and Med refer to large and medium effect size, respectively.

improvement of our approach on each metric is over 2.5%.
Among the 9 projects, the largest improvements (over 7.5%)
of our approach in terms of the four metrics are all achieved
on Zookeeper, which is the project with the minimal number
of training samples. These results show that our embedding
method can boost the performance of predicting which vari-
ables to log, and is helpful for projects with limited numbers
of samples. The remarkable performance improvements
(more than 20% on average) of our approach over OE+Attn
on each metric highlight the importance of the RNN layer
for learning the representations of code tokens. Our ap-
proach also outperforms OE+RNN in terms of each metric
by over 2.1% on average, which highlights the value of the
self-attention layer for refining code token representation.
In addition, our approach improves OURA by over 4.1% on
average, which means the code tokens after a token play an
important role in learning the token’s representation. This
result is also intuitive. For example, given a statement “int
status = answer.getStatus();”, the meaning and the role of
“status” should be related to both “int” and the tokens after
it, i.e., “answer” and “getStatus”.

The p-values and Cliff’s delta values for our approach
compared with the variants are presented in Table 8. We can
see that our approach significantly performs better than the
four variants with at least medium effect size in terms of the
four metrics.

In summary, our embedding layer, the RNN layer, the
self-attention layer and the bidirectional setting of the RNN
layer are effective and helpful to boost the effectiveness of
our approach.

5.5 RQ3: Cross-Project Prediction

Motivation. Different from mature projects, new projects of-
ten lack sufficient training data. Thus it is difficult to directly
apply our approach to a new project. This problem may be
overcome through the cross-project prediction, which uses
the data collected from mature projects (a.k.a. source projects)
to train a model, and applies the trained model to make
suggestions on which variables to log for new projects (a.k.a.
target projects). We want to investigate whether our approach
is still effective for the cross-project setting.

Approach. We conduct a cross-project prediction exper-
iment for each of our studied projects. Each time, our
approach is first trained and validated on 8 projects,
i.e., source projects, and then tested on the remaining
project, i.e., the target project. Specifically, we merge the
(code tokens,labels,vars) triples of all source projects,
randomly select 10% of the triples as the validation set,
and regard the rest of the tuples as the training set. The
test set contains all the (code tokens,labels,vars) tuples
of the target project. Accuracy@l, Accuracy@2, MRR and
MAP are used to measure the effectiveness of cross-project
predictions.

Results. Table 9 shows the results of our cross-project
predictions. The projects listed in the first column are the
target projects of our experiments, and the Ratio columns
present the ratios of the performance of cross-project pre-
dictions to the performance of corresponding within-project
predictions on each metric. We can see that the cross-project
predictions can achieve 78%-97% of the performance of
corresponding within-project predictions in terms of the
four metrics. Moreover, in most cases, the Ratios are greater
than 85%. These results show that our approach can also be
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TABLE 9: Comparisons of cross-project predictions with within-project predictions in terms of Accuracy@1, Accuracy@2,

MRR and MAP
Accuracy@1 Accuracy@2 MRR MAP

Target Projects

Within Cross Ratio Within Cross Ratio Within Cross Ratio Within Cross Ratio
ActiveMQ 0.860 0.687 79.9% 0.936 0.826 88.2% 0.912 0.799 87.6% 0.864 0.750 86.8%
Camel 0.866 0.677 78.2% 0.941 0.818 86.9% 0.919 0.793 86.3% 0.879 0.750 85.3%
Cassandra 0.789 0.731  92.6% 0.904 0.869  96.1% 0.870 0832  95.6% 0.829 0.786  94.8%
CloudStack 0.830 0.677  81.6% 0.919 0.827  90.0% 0.895 0.793  88.6% 0.862 0.756  87.7%
DirectoryServer 0.846 0.677  80.0% 0.926 0.859 92.8% 0.906 0.803 88.6% 0.867 0.759 87.5%
Hadoop 0.786 0.713 90.7% 0.898 0.855 95.2% 0.867 0.819 94.5% 0.827 0.768 92.9%
HBase 0.793 0712  89.8% 0.895 0.847  94.6% 0.866 0815 94.1% 0.821 0.760  92.6%
Hive 0.796 0742  93.2% 0.893 0.862  96.5% 0.870 0.835  96.0% 0.830 0.789  95.1%
Zookeeper 0.788 0.755 95.8% 0.903 0.867 96.0% 0.868 0.843 97.1% 0.840 0.806 96.0%
Average 0.817 0.708  86.9% 0.913 0.848  92.9% 0.886 0.815  92.0% 0.847 0.769  91.0%

TABLE 10: A test sample in cross-project predictions

Code Snippet:
|protected int doPoll ()
2 class ExcludePathFilter implements PathFilter {

3 public boolean accept (Path path) {
4 return ! (path.toString() .endsWith (config.

throws Exception {

getOpenedSuffix()) || path.toString().
endsWith (config.getReadSuffix()));}}

5 int numMessages = 0;

6 HdfsInfo info = setupHdfs(false);

FileStatus fileStatuses][];

8 if (info.getFileSystem() .isFile(info.getPath())) {

9 fileStatuses = info.getFileSystem() .globStatus (
info.getPath());

10 } else {

11 Path pattern = info.getPath().suffix("/" + this.
config.getPattern());

12 fileStatuses = info.getFileSystem() .globStatus (
pattern, new ExcludePathFilter());}

13 for (FileStatus status : fileStatuses) {

14 if (normalFileIsDirectoryNoSuccessFile (status,
info)) {

15 continue; }

16 if (config.getOwner () != null) {

17 if (!config.getOwner () .equals (status.getOwner

0)) |
18 if (log.isDebugEnabled()) {

Logging Statement:

"

log.debug ("Skipping file: as not matching owner: ",
status.getPath () .toString(), config.getOwner());
Top-3 Variables Predicted by Our Approach:

config, status, path

* This code snippet is extracted from Camel, and our approach is trained using
the other eight projects. We present all the code preceding the logging statement in
the corresponding Java method, but please note our approach only takes as input
15 lines of code (i.e., line 4 to line 18).

useful when it is applied to new projects by leveraging data
from other projects.

Our studied projects are from different domains. Intu-
itively, different domains have different logging practices,
hence it is a little surprising that our approach can obtain
such good performance in cross-project predictions. To fig-
ure out the reason, we manually inspect the test results of
the cross-project predictions. We find that projects in various
domains share some common and domain-independent log-
ging patterns, and our approach can learn such patterns and
transfer them over different project domains. The example
in Table 10 presents some of such patterns. One pattern
is that if a logging statement is placed in a for loop, it
usually needs to record the loop variable, e.g., line 13 and
“status” in the code snippet. Another pattern is that the

variables used in adjacent conditional statements are more
likely to be logged, e.g., line 16, line 17 and “config”. Also,
the semantics of variable names affects the probability of
them being logged. For example, in Table 10, the top-3 vari-
ables recommended by our approach, i.e., “config”, “status”
and “path”, are often logged in different contexts. We can
see that these logging patterns are common and domain-
independent; hence it is possible for our approach to learn
and transfer them over various projects and application

domains.

5.6 RQ4: The Effects of Different Fitness Measures

Motivation. While training, we use a fitness measure to
assess the quality of the trained model after each epoch.
After training, the model with the greatest fitness score is
chosen as the best trained model. By default, we set the
fitness measure as MAP. In this research question, we want
to investigate the impact of varying the fitness measure on
the effectiveness of our approach.

Approach. For each project, we calculate four different
fitness measures, i.e.,, Accuracy@l, Accuracy@2, MRR and
MAP, after each training epoch. After training, we pick
the four models with the best Accuracy@l, Accuracy@2,
MRR and MAP on the validation set, and refer to them
as Ours?€C1 Ours2992, QursMER and OursMAP, respec-
tively. The four models are evaluated on the test set in terms
of Accuracy@]1, Accuracy@2, MRR and MAP.

Results. Table 11 and Table 12 present the Accuracy@1, Ac-
curacy@2, MRR and MAP for our approach using different
fitness measures on the studied projects. We can see that the
performance differences between the four models are small.
On average, Ours™ % and Ours™ 4" perform slightly bet-
ter than Ours?¢C?! and Ours“¢“? on each metric. However,
for different projects, the best variants in terms of a metric
are also different. In summary, the variants of our approach
using different fitness measures are almost equally effective
on average. In practice we recommend users to choose the
fitness measure according to their own dataset.

5.7 RQ5: Time Costs of Our Approach

Motivation. Our approach needs to be trained before being
adapted to recommend logging variables to developers. The
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TABLE 11: Effectiveness of our approach using different fitness measures on Accuracy@1 and Accuracy@2

Accuracy@1 Accuracy@2
Projects
) Ours?¢Cl  Qurs?¢C?  QursMEE  QursMAP  QOursACC!  QursA¢C?  OursMBE  QursMAP
ActiveMQ 0.852 0.852 0.860 0.860 0.940 0.936 0.936 0.936
Camel 0.851 0.866 0.866 0.866 0.938 0.941 0.941 0.941
Cassandra 0.781 0.781 0.781 0.789 0.912 0.912 0.912 0.904
CloudStack 0.835 0.830 0.835 0.830 0.936 0.919 0.936 0.919
DirectoryServer 0.838 0.853 0.838 0.846 0.912 0.941 0.912 0.926
HBase 0.788 0.786 0.801 0.793 0.879 0.898 0.900 0.895
Hadoop 0.782 0.781 0.786 0.786 0.888 0.902 0.898 0.898
Hive 0.785 0.811 0.794 0.796 0.886 0.891 0.896 0.893
Zookeeper 0.788 0.770 0.788 0.788 0.903 0.850 0.903 0.903
Average 0.811 0.814 0.817 0.817 0.910 0.910 0.915 0.913
TABLE 12: Effectiveness of our approach using different fitness measures on MRR and MAP
MRR MAP
Projects
Ours“CCl  QursA¢C2  OQursMEE  QursMAP  QursACC!  OQursA©C?2  QursMEE  QursMAF

ActiveMQ 0.909 0.909 0.912 0.912 0.863 0.860 0.864 0.864
Camel 0.911 0.919 0.919 0.919 0.868 0.879 0.879 0.879
Cassandra 0.867 0.867 0.867 0.870 0.829 0.829 0.829 0.829
CloudStack 0.902 0.895 0.902 0.895 0.871 0.862 0.871 0.862
DirectoryServer 0.902 0.912 0.902 0.906 0.861 0.876 0.861 0.867
HBase 0.863 0.866 0.873 0.866 0.816 0.816 0.825 0.821
Hadoop 0.863 0.863 0.867 0.867 0.820 0.826 0.827 0.827
Hive 0.862 0.877 0.870 0.870 0.817 0.836 0.828 0.830
Zookeeper 0.868 0.848 0.868 0.868 0.840 0.817 0.840 0.840
Average 0.883 0.884 0.887 0.886 0.843 0.845 0.847 0.847

TABLE 13: Time costs of our approach

Projects Train Test Test One
ActiveMQ 04h 7.7s 0.02s
Camel 1.0h 167s 0.02s
Cassandra 02h 27s 0.02s
CloudStack 1.3h 115s 0.01s
DirectoryServer 02h  34s 0.03s
HBase 0.8h 104s 0.02s
Hadoop 1.3h 170s 0.02s
Hive 1.0h 100s 0.02s
Zookeeper 02h 22s 0.02s

training process is conducted offline only once, but recom-
mendations are made online many times. In this research
question, we want to investigate the training time cost and
the test time cost of our approach to better understand its
practicality.

Approach. For each studied project, we record the start time
and the end time of the training process and the test process,
calculate the time cost of each project and the average test
time of each test sample. We conduct our experiments on a
computer with a 3.6 GHz Intel Core i7 CPU, 64 GB RAM
and 4 NVIDIA GeForce GTX 1080 GPUs with 8GB memory.
For each project, we only use one GPU to train and test our
approach.

Results. The time costs of our approach on each project are
presented in Table 13. We can see that the training time of
our approach ranges from 0.2 hours to 1.3 hours. The larger
a project’s training set is, the more time it takes to train the

model. It takes less than 20 seconds to test our approach on
each project. Moreover, it only takes less than 0.05 second
for our approach to recommend variables to log for one code
snippet.

6 DiscussioN

In this section, we discuss our case studies on two real-
world logging bugs, the rationales of some design decisions,
how to apply our approach to low-logging-quality projects
and threats to the validity of our approach.

6.1

To investigate the usefulness of our approach in practice,
we manually find two issues related to logging variables
from Hadoop's issue tracking system': HADOOP-7159 and
HADOOP-10702%. The Java method related to HADOOP-
7159 reads and processes an RPC (Remote Procedure Call)
message from a client. HADOOP-7159 describes that de-
velopers missed logging “the client hostname when read
exception happened”, which made it hard to find “mis-
matched clients”. Developers fixed this issue by adding the
client object “c” in the corresponding logging statement.
The Java method related to HADOOP-10702 initializes an
“authentication handler instance” using “the principal and
keytab specified in the configuration”. A previous change
modified the behavior of this method and made it possible

Case Studies on Real Logging Bugs

1. https:/ /issues.apache.org/jira/projects/HADOOP /issues
2. https:/ /issues.apache.org/jira/browse/HADOOP-7159
3. https:/ /issues.apache.org/jira/browse/ HADOOP-10702
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TABLE 14: The recommendations of our approach for two Hadoop issues

| HADOOP-7159

| HADOOP-10702

Before Fixing

After Fixing
Cross-Project Model
Within-Project Model

[getName, e, count]

[getName, e, ¢, count]

[e, getName, ieo, key, ¢, count]
[c, getName, e, count, ieo, key]

[keytab, principal]

[keytab, spnegoPrincipal]

[spnegoPrincipal, principal, keytab, nameRules, spnegoPrincipals, trim]
[spnegoPrincipal, principal, keytab, spnegoPrincipals, nameRules, config]

*For each issue, the last four rows refer to the variables used in its logging statement before and after it was fixed and the logging variables predicted by
our cross-project prediction model and within-project prediction model. We only present the top-6 recommendations of our approach.

to “load multiple principal names or all HTTP principals in
the key tab”. But HADOOP-10702 reports that developers
forgot to revise the related logging statement and did not
“log the principal names correctly”. Developers fixed this
issue by replacing the wrong logging variable “principal”
with the correct one “spnegoPrincipal” in the corresponding
logging statement.

We investigate whether our approach can help avoid
such issues by suggesting proper logging variables for the
logging statement modified in each issue using both within-
project prediction and cross-project prediction. For cross-
project prediction, we use the prediction model mentioned
in RQ3 (Section 5.5) with Hadoop as the target project. For
within-project prediction, since the two issues are fixed in
different releases, we train two new models for them. For
each issue, we first build a dataset based on the source
code before the issue is fixed. The Java method that was
modified to fix this issue is removed from the dataset
for avoiding noise. Next, we randomly select 90% of the
samples for training and 10% for validation. Then, we train
our approach on the new dataset and recommend logging
variables for the logging statement in the issue using the
trained model. Please note that our approach does not take
the logging statement as input, so it does not know which
variables were logged by developers before and after the
issue was fixed. Finally, we post-process the ranked list of
identifiers output by our approach. The identifiers that are
class names are removed.

Table 14 shows the experimental results. We can see that
in HADOOP-7159, developers missed logging the variable
“c”. Our cross-project prediction model recommends “c” as
the fifth logging variable, and all four logged variables are
covered in the top-6 recommendations. Our within-project
prediction model performs better. It suggests “c” as the first
logging variable, and its top-4 suggested variables are ex-
actly the four logged variables. Developers fixed HADOOP-
10702 by replacing “principal” with “spnegoPrincipal”. Both
our cross-project model and within-project model predict
“spnegoPrincipal” as the variable with the highest proba-
bility to be logged. All logged variables are covered in the
top-3 recommendations of the two models.

We can see from the two abovementioned examples
that developers may miss logging important variables or
log wrong variables. Our approach aims to learn common
logging “rules” from existing logging statements, and such
learned “rules” can help developers avoid mistakes and
improve the logging quality. Specifically, for HADOOP-
7159, developers may not realize that the client informa-
tion is necessary for problem diagnosis when writing the
corresponding logging statement. The logging statement is

TABLE 15: Number of exception instances in studied sys-
tems

Projects #Exceptions  #Logged Ratio
ActiveMQ 4926 1064 21.6%
Camel 6538 838 12.8%
Cassandra 2220 394 17.7%
CloudStack 6408 3046 47.5%
DirectoryServer 2040 252 12.4%
Hadoop 12258 2585 21.1%
HBase 5619 1856 33.0%
Hive 9391 2212 23.6%
Zookeeper 1166 483 41.4%
Average 5618 1414 25.7%

*#Exceptions refers to the number of exception instances
declared in catch clauses, #Logged refers to the number of
such exception instances which are logged, and Ratio is the
ratio of the #Logged to the corresponding #Exceptions.

"

placed in a catch clause. “c” appears in the corresponding try
clause and is usually used to name a client object in Hadoop.
After manual inspection, we think the reason that our ap-
proach can successfully recommend “c” may be that our
prediction model, especially the within-project prediction
model, learns the patterns that the variables appearing in a
try clause are likely to be logged in the corresponding catch
clauses and that developers often log client such informa-
tion in Hadoop. For HADOOP-10702, developers forgot to
revise the logging statement after the behavior of the related
Java method is changed, which resulted in a wrong logging
variable. In the changed method, the logging statement is
placed in a for loop and “spnegoPrincipal” is the loop vari-
able. According to our manual inspection, our prediction
model learns the pattern that a logging statement in a for
loop usually logs the loop variable. Therefore, our approach
is able to successfully recommend “spnegoPrincipal” as the
first logging variable.

In summary, the two real-world examples show that
our approach can help developers avoid issues related to
logging variables and make us believe that our approach
can be useful in practice.

6.2 Exception Instances

After an exception occurs, developers will sometimes record
the corresponding exception instance in logs for post-
mortem analysis. Exception instances are usually named fol-
lowing similar patterns. For example, an Exception instance
is often named as e, and a Throwable instance is usually
named as t. Thus, compared to other variables, learning
to suggest exception instances is relatively easy. However,
not every exception instances should be logged. Table 15



presents the number of exception instances (e.g., catch (Ex-
ception e)) and the number of logged exception instances in
catch clauses in each project. We can see that there are on
average only 25.7% of exception instances are logged. Zhu et
al. also presented that in their dataset, the majority of excep-
tions are not logged [1]. According to developers’ feedback,
they also pointed out that logging every exception is not
practical [1]. These facts show that deciding whether to log
an exception instance is non-trivial, and it is worthwhile to
learn logging practices from exception instances. Therefore,
we do not remove exception instances from our dataset.

6.3 The Effects of Different Settings of Parameter K

Our approach takes as input k lines of code preceding a
logging statement. By default, k is set to 15. We conduct
a sensitivity study to investigate the effects of different
settings of parameter k on the effectiveness of our approach.

We first set k to 1-20 and build corresponding datasets
for each studied project. When extracting logging state-
ments from source code, we assign a unique ID to
each logging statement. The ID of a sample (ie, a
(code tokens,labels,vars) triple) is set to the ID of its
corresponding logging statement. In the datasets of a project
with different settings of k, we regard the samples with the
same ID as the same sample regardless of whether they have
the same code tokens and labels. As described in Section 4.4,
we use two filters, i.e., the length filter and the var filter,
to preprocess our dataset. However, for the datasets of a
project with different settings of k, the length filter and the var
filter may cause them to contain different test sets. Because
the longer k is, the more code tokens a sample may have,
and the smaller k is, the more likely it is that the code tokens
of a sample cover none of its vars. Different test sets result
in unfair comparisons.

To fairly compare the performance of our approach with
respect to different settings of k, we slightly modify our
preprocessing procedures. Given a project, we first use the
length filter to identify the samples that fail to meet the code
length requirement in the dataset with the largest k (in
our case, 20), and mark such samples as long-code samples.
Then, we remove the long-code samples (identified by IDs)
from all datasets to ensure the project’s datasets contain the
same set of samples after using the length filter. Finally, we
divide each dataset into training, validation and test sets
using the same random seed and only use the var filter to
process the training and validation sets, keeping the test
set unchanged. The reason is that the samples of which the
code tokens cover none of the vars (referred to as none-var
samples) are useless for training and validation due to their
all-zero labels. However, we need to keep none-var samples
in test sets to guarantee that the datasets with different
settings of k contain the same set of samples as their test
sets. Obviously, none-var samples will obtain a score of 0 for
each metric during testing.

We evaluate our approach on the datasets of each project
with different settings of k in terms of Accuracy@1, Accu-
racy@2, MRR as well as MAP, and calculate the average
score of the nine studied projects in terms of every metric
with each k. The corresponding average scores are plotted
in Figure 8. We can see that the average scores of our
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Fig. 8: The effects of different settings of parameter k

approach in terms of each metric increase with k when k
is less than 8. When k is between 8 and 20, the scores are
relatively stable. These results indicate that most logging
variables can be inferred from the 8 lines of code preceding
their corresponding logging statements, and k can be set
to any number from 8 to 20 in general. However, due to
the length filter and the var filter, both large k and small k
may limit the number of samples in a dataset. Therefore, our
approach sets k to 15 by default for balance. In addition, we
also notice that different projects have different preferences
of k in terms of diverse metrics. We suggest users choose
the best k according to their own project characteristics and
evaluation metrics that they deem to be more important.

6.4 The Effects of Different Word Embedding Tech-
niques

There are three commonly used word embedding tech-
niques, i.e., word2vec [26], [45], GloVe and fastText [46],
[47]. To investigate the impacts of different word embedding
techniques on our approach, we replace GloVe in our em-
bedding layer with word2vec and fastText and construct
two variants of our approach, respectively. Word2vec only
provides one set of pre-trained word embeddings with
300 dimensions (for short, word2vec-300). For fastText,
we use the set of word vectors trained with subword
information on Wikipedia 2017, UMBC webbase corpus
and statmt.org news dataset, of which the dimension is
also 300 (for short, fastText-300). Our approach uses
100-dimensional GloVe word vectors (for short, GloVe-100)
by default, but word2vec and fastText only provide 300-
dimensional vectors. For fair comparisons, we construct
another variant of our approach using the 300-dimensional
word vectors pre-trained using GloVe (for short, GloVe-300).

We evaluate the four variants which use GloVe-100,
GloVe-300, word2vec-300 and fastText-300 respectively
on our dataset in terms of MAP. Table 16 presents our
experimental results. We can see that on average, the vari-
ants using GloVe outperform those using Word2Vec and
fastText, and the variant using word2vec performs worst.
But the variants using GloVe do not perform best on all
projects. Two projects prefer fastText-300. On the other
hand, the performance differences between the variants
using GloVe are small on most projects. On average, the
variant using GloVe-100 (our default setting) obtains the
equal MAP score to that using GloVe-300 with less compu-
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TABLE 16: The effects of different types of pre-trained word embeddings

Embeddings ActiveMQ Camel Cassandra CloudStack DirectoryServer HBase Hadoop Hive Zookeeper Average
GloVe-100 0.864 0.879 0.829 0.862 0.867 0.821 0.827 0.830 0.840 0.847
GloVe-300 0.869 0.880 0.841 0.857 0.871 0.824 0.829 0.822 0.828 0.847
word2vec-300 0.847 0.865 0.794 0.862 0.859 0.810 0.810 0.807 0.800 0.828
fastText-300 0.850 0.876 0.800 0.865 0.855 0.821 0.830 0.825 0.831 0.839

tation cost. Therefore, our default choice to use GloVe-100 is
reasonable.

6.5 The Effects of Different Pooling Operators in Our
Embedding Layer

In the embedding layer of our approach, given a compound
word, we use the average vector of its split tokens” word
embeddings as its word vector. We also construct two
variants of our approach by using two alternative pooling
operators, i.e., sum and max, to build word vectors for
compound words. We evaluate our default setting and the
two variants, which are referred to as Ours,,cqn, OUrSsum
and Ours,,,, respectively, on our dataset in terms of MAP.
The evaluation results are shown in Table 17. We can see
that on average, Ours,,cqn performs best, while Oursgym,
performs worst. The reason may be that summing up word
embeddings may magnify the bias in each word’s embed-
ding, and only keeping the max value in each dimension
of word embeddings may lose some information about the
relationship between words, while using the average vector
equilibrates the information in each word’s embedding. In
addition, Ours,,cq, Obtains best MAP scores on 6 out of
9 projects. These results indicate that average vectors can
better represent compound words than sum vectors and max
vectors. Therefore, it is reasonable to use average vectors in
our embedding layer.

6.6 How to Apply Our Approach to Projects With Low
Logging Quality

Our approach aims to learn common logging practices
about variables from existing logs. For low-logging-quality
projects, it may not be appropriate to use our approach for
within-project predictions. However, as we have shown in
RQ3 (Section 5.5), our approach can be useful and effective
for cross-project predictions. Therefore, if the logging qual-
ity of a target project is low, users can first select several
projects with high logging quality to train our approach,
and then use the trained model to make recommendations
for the target project.

6.7 Threats to Validity

First, due to the use of pre-trained natural-language word
embeddings, our word embedding method may not be
suitable for projects which do not obey the common naming
conventions, i.e., naming an identifier by using a meaningful
word or by combining multiple common dictionary words
and/or their abbreviations considering camel and snake
casing. However, the framework of our approach is flexible,
and users can replace our embedding method with a normal
embedding layer to meet the requirements of such projects.
Although using a normal embedding layer may reduce the

performance of our approach to some extent, according
to the evaluation results of RQ2 (Section 5.4), the reduced
performance is still decent and our approach can still be
helpful.

Second, in this work, given a code snippet, we only try
to predict which variables in this code snippet should be
logged, and can not suggest the accessible variables that are
not in this code snippet, e.g., global variables. To avoid this
constrain introducing bias into our evaluation results, we
keep all logging variables in our preprocessed dataset (i.e.,
the vars in (code tokens,labels,vars) triples) no matter
whether they appear in corresponding code snippets or not
for computations of our evaluation metrics. In future work,
we plan to improve our approach to handle all accessible
variables.

Another threat to validity is that our approach presumes
our training data is representative of common and good
logging practices, so that the trained model can represent
high-quality logging specifications and generalize well for
new code snippets. However, there is no “ground truth”
for which variables to log given a code snippet. To mitigate
this threat, we choose 9 mature, actively maintained Java
projects that are of different domains and sizes as our subject
projects. We believe the quality of the logging practice in
these projects is high and the logging knowledge learned
from them can guide the logging practices of other projects.
To some extent, the good performance of our approach in
the within-project prediction scenario and the cross-project
prediction scenario supports our argument.

In addition, our variable extraction rules (described in
Section 4.3) only regard the variables appearing in logging
statements as logging variables. If developers concatenate
variables using string concatenation operators or Java APIs
like StringBuffer or StringBuilder and assign the concate-
nated string to a new variable for logging, our rules will
only extract the new variable. However, in our dataset, such
cases are much less than those where logging variables are
directly concatenated in logging statements. Specifically, in
the datasets of our studied projects, the percentages of the
samples where the logging variables contain at least one
instance of StringBuffer or StringBuilder are all less than
1%. Therefore, the threat is limited.

7 RELATED WORK

This section describes the related studies on log analysis,
logging practice and improving the logging quality.

7.1 Log Analysis

A great deal of runtime information of software systems is
recorded in their execution logs. Prior research has lever-
aged log analysis to facilitate diverse software maintenance
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TABLE 17: The effects of different pooling operators in our word embedding layer

Operations  ActiveMQ Camel Cassandra CloudStack DirectoryServer HBase Hadoop Hive Zookeeper Average
Mean 0.864 0.879 0.829 0.862 0.867 0.821 0.827 0.830 0.840 0.847
Sum 0.859 0.875 0.809 0.870 0.859 0.808 0.816 0.828 0.813 0.837
Max 0.866 0.875 0.796 0.874 0.866 0.817 0.821 0.831 0.816 0.840

tasks, including execution anomaly detection [2], [3], prob-
lem diagnosis [4]-[7], deployment verification [8], etc. For
instance, Xu et al. [3] proposed an approach to extract com-
posite features from logs by combining source code analysis
and information retrieval, and built a machine learning
model which can detect runtime problems efficiently based
on such features. To reduce the deployment verification
efforts of Big Data Analytics Applications, Shang et al. [8]
proposed a method which can recover execution sequences
from logs and identify deployment failures by comparing
such sequences between test deployment and cloud de-
ployment. These tasks highlight the requirement of proper
logging practices and motivate our work to help developers
write high-quality logging statements by recommending
which variables to log during development.

7.2 Logging Practice

Researchers have empirically studied diverse aspects of
software logging practices [9]-[12], [48]-[53]. Fu et al. [10]
analyzed two large industrial systems to explore where de-
velopers log, and summarized five categories of logged code
snippets. Pecchia et al. [50] studied the logging practices in
a company and highlighted the need for standardizing a
logging policy in such company. Li et al. [12] empirically
studied the logging practices in six open source systems,
and found whether a code snippet contains logging state-
ments is strongly related to its topic. The insightful infor-
mation offered by these studies cast lights on the design
of our approach. In addition, Shang et al. [49] have shown
that the functionality of log processing applications is often
affected by the changes of logging statements, and resources
also need to be allocated to maintain such applications with
the evolution of logs. Kabinna et al. [53] performed a study
on the stability of logging statements, and found that over
20% logging statements in four open source projects were
changed at least once. Yuan et al. [9] also found that more
than 30% of logging statements in four open-source software
were modified at least once, and they pointed out that
one fourth of such modifications were to variable logging.
Chen et al. [11] conducted an empirical study on 21 Java-
based open source projects, and also found that 27% of
after-thought logging changes (i.e., the changes to logging
statements that are independent of other changes) were
related to variable logging. Such prior findings motivate our
work towards assisting developers in logging appropriate
variables at the first time.

7.3

Some prior work focuses on improving the logging quality,
which can be divided into two categories: “where to log”
and “what to log”. “Where to log” studies aim to suggest
the placement of logging instructions [1], [52], [54], [55].

Improving Logging

For example, Cinque et al. [54] distilled a set of rules to
guide the placement of logging statements based on system
design artifacts. Zhu et al. [1] proposed a tool named LogAd-
visor, which applies machine learning techniques to learn
common logging practices from existing logging instances
and suggest whether a code snippet should be logged. In
contrast, the objective of “what to log” studies is the content
of logging statements [13], [14], [48], [56], i.e., the log levels,
the static text and the logging variables. For example, Li
et al. [13] proposed an approach which leverages ordinal
regression models to automatically recommend proper log
levels for newly-added logging statements. He et al. [14]
leveraged an information retrieval method to automatically
generate natural language descriptions for logging instruc-
tions based on existing logging instances. Unlike them, our
work focuses on logging variables.

Yuan et al. proposed a tool, named LogEnhancer, to
ease the diagnosis of software failures by automatically
inferring and inserting more causally-related variables, i.e.,
variables which may affect whether a logging statement will
be executed, into existing logging statements [56]. It tries to
add many variables (on average 14.6 variables per logging
statement) before compiling to help recover the execution
paths of the failures occurred in the future. Our approach
is different from LogEnhancer in the following aspects: 1)
Usage Scenarios. Our approach aims to help developers
decide which variables to log during development, while
LogEnhancer is expected to be used offline prior to soft-
ware release to enhance existing logging messages [56]. 2)
Input and output. LogEnhancer takes the source code of a
program as input and enhances its existing logging state-
ments by exhaustively adding causally-related variables.
The added variables are not visible in the source code,
often far more than what developers would record and
not prioritized. Different from LogEnhancer, our approach
takes as input code snippets (which may not be compilable)
and prioritizes accessible variables to help developers write
high-quality logging statements at the first time. 3) Target
logs. LogEnhancer needs to add many variables and may
introduce performance overhead, hence it is more suitable
for error or fatal logs. However, our approach focuses on
recommending and prioritizing logging variables and can
be used for all kinds of logs. 4) Implementation. Currently,
LogEnhancer is implemented for C programs, while our
data extraction procedures are designed for Java programs
and our approach is programming language agnostic.

Since the objective and/or the usage scenarios of our
approach differ from those of existing tools, we believe our
work is a complement, instead of a competitor, to them.

8 CONCLUSION AND FUTURE WORK

This work aims to suggest proper variables to log for
developers during development. We point out two chal-



lenges of solving this problem, i.e., dynamic labels and out-
of-vocabulary words, and propose a neural-network-based
approach to handle these challenges. To handle dynamic
labels, we treat this problem as a representation learning
problem instead of a multi-label classification problem. Our
approach first leverages a multi-layer neural network to
learn to represent program tokens, and then uses a unified
binary classifier to predict whether an identifier should be
logged based on such learned representations. To deal with
out-of-vocabulary words, our approach does not jointly
learn word embeddings with the target task from scratch.
Instead, we propose a novel method to map program tokens
into word embeddings with the help of pre-trained natural-
language word embeddings. We evaluate our approach on 9
mature open source Java projects. Our experimental results
show that our approach outperforms five baselines, i.e.,
random guess and four variants of an IR-based method, by
large margins.

For now, our approach only takes as input the code
preceding a logging statement and only considers the vari-
ables in the preceding code as candidates. However, the
code succeeding a logging statement can also be helpful
for logging variable recommendation and the variables not
appearing in the preceding code may also be logged, e.g.,
global variables. In the future, we plan to investigate the ef-
fect of the succeeding code on recommending logging vari-
ables and improve our approach to consider all accessible
variables for more accurate suggestions on which variables
to log. The training of our proposed model relies on one or
more projects with high logging quality. Nevertheless, to the
best of our knowledge, there is no prior work focusing on
quantifying and assessing the logging quality of an existing
project, which can be an interesting direction for future
work. Also, future work could integrate our approach and
other approaches that address “where to log” and “what
to log” issues. Such integrated approach can automatically
provide comprehensive logging guidance for developers,
and its components may benefit from one another and result
in better performance.
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