
1

How does Machine Learning Change Software
Development Practices?
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Abstract—Adding an ability for a system to learn inherently adds un-
certainty into the system. Given the rising popularity of incorporating
machine learning into systems, we wondered how the addition alters
software development practices. We performed a mixture of qualitative
and quantitative studies with 14 interviewees and 342 survey respon-
dents from 26 countries across four continents to elicit significant dif-
ferences between the development of machine learning systems and
the development of non-machine-learning systems. Our study uncovers
significant differences in various aspects of software engineering (e.g.,
requirements, design, testing, and process) and work characteristics
(e.g., skill variety, problem solving and task identity). Based on our
findings, we highlight future research directions and provide recommen-
dations for practitioners.

Index Terms—Software engineering, machine learning, practitioner,
empirical study

1 INTRODUCTION

Machine learning (ML) has progressed dramatically over
the past three decades, from a laboratory curiosity to a prac-
tical technology in widespread commercial use [19]. Within
artificial intelligence, machine learning has emerged as the
method of choice for developing useful software systems
for computer vision, speech recognition, natural language
processing, robot control, and other applications. Machine
learning capabilities may be added to a system in several
ways, including software systems with ML components and
ML frameworks, tools and libraries that provide ML func-
tionalities. A wide-spread trend has emerged: developing
and deploying ML systems1 is relatively fast and cheap, but
maintaining them over time is difficult and expensive due
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1. In this paper, unless otherwise mentioned, we use ML systems to

refer to either software frameworks, tools, and libraries that provide
ML functionalities, or software systems that include ML components.

to technical debt [19]. ML systems have all of the problems
of non-ML software systems plus an additional set of ML
specific issues. For instance, probabilistic modeling provides
a framework for a machine to learn from observed data and
infer models that can make predictions. Uncertainty plays
a fundamental role in probabilistic modeling [14]: Observed
data can be consistent with various models, and thus which
model is appropriate given the data is uncertain. Predictions
about future data and the future consequences of actions are
uncertain as well. To tackle the ML specific issues, recent
studies have put effort into building tools for testing [26],
[30], [36], [39] and debugging [16], [27], [28] of machine
learning code, and creating frameworks and environments
to support development of ML systems [3], [6].

Despite these efforts, software practitioners still struggle
to operationalize and standardize the software develop-
ment practices of systems using ML2. Operationalization
and standardization of software development practices are
essential for cost-effective development of high-quality and
reliable ML systems. How does machine learning change
software development practices? To systematically explore
the impact, we performed a mixture of qualitative and quan-
titative studies to investigate the differences in software
development that arise from machine learning. We start
with open-ended interviews with 14 software practitioners
with experience in both ML and non-ML, who have an
average of 7.4 years of software professional experience.
Through the interviews, we qualitatively investigated the
differences that were perceived by our interviewees and
derived 80 candidate statements that describe the differ-
ences. We further improved the candidate statements via
three focus group discussions and performed a survey with
342 software practitioners from 26 countries across four
continents to quantitatively validate the differences that
are uncovered in our interviews. The survey respondents
work in various job roles, i.e., development (69%), testing
(24%) and project management (7%). We investigated the
following research questions:

RQ1. How does the incorporation of ML into a system
impact software development practices?
Is developing ML systems different from developing non-
ML systems? How does it differ? If developing ML systems
is indeed different from non-ML software development,
past software engineering research may need to be ex-

2. https://twitter.com/AndrewYNg/status/1080886439380869122
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panded to better address the unique challenges of develop-
ing ML systems; previous tools and practices may become
inapplicable to the development of ML systems; software
engineering educators may need to teach different skills for
the development of ML systems.

Our study found several statistically significant differ-
ences in software engineering practices between ML and
non-ML development:

• Requirements: Collecting requirements in the devel-
opment of ML systems involves more preliminary
experiments, and creates a need for the predictable
degradation in the performance.

• Design: Detailed design of ML systems is more time-
consuming and tends to be conducted in an inten-
sively iterative way.

• Testing and Quality: Collecting a testing dataset
requires more effort for ML development; Good
performance3 during testing cannot guarantee the
performance of ML systems in production.

• Process and Management: The availability of data
limits the capability of ML systems; Data processing
is more important to the success of the whole process.

RQ2. How do the work characteristics from applied
psychology, like skill variety, job complexity and problem
solving, change when incorporating ML into a system?
How does the context of software development (e.g., skill
variety, job complexity and problem solving) change, when
practitioners involve ML in their software development
practices? Our study identified several statistically signif-
icant differences in work characteristics between ML and
non-ML development:

• Skill Variety: ML development intensively requires
knowledge in math, information theory, and statis-
tics.

• Job Complexity and Problem Solving: ML practi-
tioners have a less clear roadmap for building sys-
tems.

• Task Identity: It is much harder to make an accurate
plan for the tasks for ML development.

• Interaction: ML practitioners tend to communicate
less frequently with clients.

Based on the findings, we present the causes behind
the identified differences as discussed by our interviewees
- the uncertainty in requirements and algorithms, and the
vital role of data. We also provide practical lessons about
the roles of preliminary experiments, reproducibility and
performance reporting, and highlight several research av-
enues such as continuous performance measurement and
debugging.

This paper makes the following contributions:

• We performed a mixture of qualitative and quantita-
tive studies to investigate the differences in software
practices and practitioners’ work due to the impact
of machine learning;

• We provided practical implications for researchers
and outlined future avenues of research.

3. In this paper, unless otherwise mentioned, we use performance to
refer to model performance.

The remainder of the paper is structured as follows. Sec-
tion 2 briefly describes the processes and concepts regarding
ML development. In Section 3, we describe the methodology
of our study in detail. In Section 4, we present the results of
our study. In Section 5, we discuss the implications of our
results as well as any threats to the validity of our findings.
In Section 6, we briefly review related work. Section 7 draws
conclusions and outlines avenues for future work.

2 BACKGROUND

The development of machine learning systems is a multi-
faceted and complex task. Various forms of processes of ML
development have been proposed [2], [11], [12], [35]. These
processes share several common essential steps: context un-
derstanding, data curation, data modeling, and production
and monitoring.

In the context understanding step, ML practitioners iden-
tify areas of business that could benefit from machine
learning and the available data. ML practitioners would
communicate with stakeholders about what machine learn-
ing is capable and not capable of to manage expectations.
Most importantly, ML practitioners frame and scope the
development tasks by conducting preliminary experiments
in a particular application context.

The data curation step includes data collection from differ-
ent sources, data preprocessing, and training, validation and
test dataset creation. Since data often come from different
sources, ML practitioners should stitch together data, and
deal with missing or corrupted data through data preprocess-
ing. To create an appropriate dataset for supervised learning
techniques, data labeling is required to assign ground truth
labels to each record.

The data modeling step includes feature engineering, model
training, and model evaluation. Feature engineering refers to the
activities that transform the given data into a form which is
easier to interpret, including feature extraction and selection
for machine learning models. During model training, ML
practitioners choose, train, tune machine learning models
using the chosen features. Model tuning includes adjusting
parameters and identifying potential issues in the current
model or the previous steps. In model evaluation, practition-
ers evaluate the output model on the test dataset using pre-
defined evaluation measures.

During the production and monitoring step, ML practition-
ers export the model into a pre-defined format and usually
create an API or Web application with the model as an end-
point. ML practitioners also plan for retraining the model
with updated data. The model performance is continuously
monitored for errors or unexpected consequences, and input
data are monitored to identify if they change with time in a
way that would invalidate the model.

We use the process above of ML development and re-
lated terminology as the vocabulary for discussions in this
work.

3 METHODOLOGY

Our research methodology followed a mixed qualitative and
quantitative approach as depicted in Fig. 1. We collected
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Fig. 1: Research methodology.

data from different sources4: (1) We interviewed 14 software
practitioners with experience in both ML development and
non-ML development; (2) We derived a list of 80 candidate
statements from the results of interviews, and conducted
three focus group discussions to reduce our list to 31 final
statements for our survey; (3) We surveyed 342 respondents,
which we describe below. To preserve the anonymity of
participants, we anonymized all items that constitute of
Personally Identifiable Information (PII) before analyzing
the data, and further considered aliases as PII throughout
our study (e.g., refer to the interviewees as P1 - P14).

3.1 Interviews
3.1.1 Protocol
The first author conducted a series of face-to-face interviews
with 14 software practitioners with experience in both ML
development and non-ML development. Each interview
took 30-45 minutes. According to Guest et al. [15], conduct-
ing 12 to 15 interviews of a homogeneous group is adequate
to reach saturation. We observed a saturation when our
interviews were drawing to a close.

The interviews were semi-structured and made use of
an interview guide5. The guide contains general groupings of
topics and questions, rather than a pre-determined specific
set and order of questions.

The interview comprised four parts. In the first part, we
asked some demographic questions about the experience
of the interviewees in both ML development and non-
ML development. We covered various aspects including
programming, design, project management, and testing.

In the second part, we asked an open-ended question
about what differences the interviewee noticed between ML
development versus non-ML development. The purpose of
this part was to allow the interviewees to speak freely about
differences without the interviewer biasing their responses.

In the third and fourth part, we presented interviewees
with two lists of topics and asked them to discuss the topics

4. The interviews, focus group and survey were approved by the
relevant institutional review board (IRB). Participants were instructed
that we wanted their opinions; privacy and sensitive resources were
not explicitly mentioned.

5. Interview Guide Online: https://drive.google.com/file/d/
1ZOXwbSKY6zPnuOEzGlzFMJ3DIERYD8YG

that they have not explicitly mentioned. One of the list
comes from the Guide to the Software Engineering Body of
Knowledge (SWEBOK) [7], which consists of 10 knowledge
areas, e.g., software design and software testing. The other
list comes from general work characteristics [18] in applied
psychology, which consists of 21 work characteristics, e.g.,
skill variety and problem solving. We chose SWEBOK to ensure
that software engineering topics were comprehensively dis-
cussed, and general work characteristics to ensure that we
covered a breadth of potential differences. In the third part,
interviewees were asked to choose three topics from the two
lists to discuss. In the fourth part, interviewer selected three
topics from the two lists that had been discussed the least in
previous interviews, to ensure coverage of the topics.

At the end of each interview, we thanked the interviewee
and briefly informed him/her of our next plans.

During the interviews, each interviewee talked about a
median of 6 topics where he/she shared his/her perceived
difference between ML development and non-ML software
development (min: 1, max: 12, mean: 6.6, sd: 3.2). The
topics mentioned by the interviewees include: SWEBOK:
Requirements (9 interviewees), SWEBOK: Design (6 intervie-
wees), SWEBOK: Construction (10 interviewees), SWEBOK:
Tools (7 interviewees), SWEBOK: Testing (9 interviewees),
SWEBOK: Quality (5 interviewees), SWEBOK: Maintenance (4
interviewees), SWEBOK: Process (8 interviewees), SWEBOK:
Configuration Management (3 interviewees), Work: Skill Vari-
ety (10 interviewees), Work: Job Complexity (5 interviewees),
Work: Problem Solving (4 interviewees), Work: Task Identify (7
interviewees), Work: Autonomy (1 interviewees), Work: Inter-
dependence (4 interviewees), and Work: Interaction Outside the
Organization (1 interviewees).

3.1.2 Participant Selection
We recruited full-time employees with experience in both
ML systems and non-ML systems from three IT companies
based in Hangzhou, China, namely Alibaba, Bangsun6, and
Hengtian7. Bangsun is a technology provider which has
more than 400 employees and develops real-time risk con-
trol systems for the financial sector and anti-fraud products.

6. https://www.bsfit.com.cn
7. http://www.hengtiansoft.com/?lang=en
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TABLE 1: Number of interviewees with “extensive” experi-
ence in a particular role.

Role Machine Learning non-Machine-Learning
Programming 5 6
Design 5 3
Management 2 2
Testing 2 3

Hengtian is an outsourcing company which has more than
2,000 employees and focuses on outsourcing projects from
US and European corporations (e.g., State Street Bank, Cisco,
and Reuters). Interviewees were recruited by emailing our
contact in each company, who was then responsible for dis-
seminating news of our study to their colleagues. Volunteers
would inform us if they were willing to participate in the
study with no compensation. With this approach, 14 volun-
teers contacted us with varied experience in years. In the
remainder of the paper, we denote these 14 interviewees as
P1 to P14. These 14 interviewees have an average of 7.6 years
of professional experience (min: 3, max: 16, median: 6, sd:
4), including 2.4 years in ML system development (min: 1,
max: 5, median: 2, sd: 1.6) and 5.2 years in non-ML software
development (min: 2, max: 11, median: 4.5, sd: 2.6). Table
1 summarizes the number of interviewees who perceived
themselves with “extensive” experience (in comparison to
“none” and “some” experience) in a particular role.

3.1.3 Data Analysis
We conducted a thematic analysis [8] to process the recorded
interviews by following the steps below:
Transcribing and Coding. After the last interview was
completed, we transcribed the recordings of the interviews,
and developed a thorough understanding through review-
ing the transcripts. The first author read the transcripts
and coded the interviews using NVivo qualitative analysis
software [1]. To ensure the quality of codes, the second
author verified initial codes created by the first author and
provided suggestions for improvement. After incorporating
these suggestions, we generated a total of 295 cards that
contain the codes - 15 to 27 cards for each coded interview.
After merging the codes with the same words or meanings,
we have a total of 128 unique codes. We noticed that when
our interviews were drawing to a close, the collected codes
from interview transcripts reached a saturation. New codes
did not appear anymore; the list of codes was considered
stable.
Open Card Sorting. Two of the authors then separately
analyzed the codes and sorted the generated cards into
potential themes for thematic similarity (as illustrated in
LaToza et al.’s study [24]). The themes that emerged during
the sorting were not chosen beforehand. We then use the
Cohen’s Kappa measure [10] to examine the agreement
between the two labelers. The overall Kappa value between
the two labelers is 0.78, which indicates substantial agree-
ment between the labelers. After completing the labeling
process, the two labelers discussed their disagreements to
reach a common decision. To reduce bias from two of the
authors sorting the cards to form initial themes, they both
reviewed and agreed on the final set of themes. Finally,
we derived 80 candidate statements that describe the dif-
ferences.

3.2 Focus Groups
To focus the survey and keep it to a manageable size, we
wanted to hone in on the statement that are most likely
to differ when ML is incorporated into a software system.
To determine which of the 80 candidate statements had
this characteristic, the first author conducted three focus
group sessions. Each focus group session lasted for 1.5 to
2 hours and involved 3 participants. The 9 participants
are professionals with experience in both ML and non-
ML development from various IT companies in China (e.g.,
Baidu, Alibaba and Huawei). They were informed about the
purpose of our study and gave their consent to use the focus
group results for research purposes.

During the focus group sessions, the first author went
through the 80 candidate statements, and asked the follow-
ing question “is the statement more true for ML develop-
ment, in comparison with non-ML development”. Based
on the feedback, we removed 7 statements in which the
participants did not understand the difference or did not
think there was a difference for ML vs. non-ML develop-
ment. In addition, we removed 42 statements in which over
half of our focus group participants perceived no obvious
difference between ML and non-ML development. In the
end, we identified a list of 31 statements.

3.3 Survey
3.3.1 Protocol
The survey aims to quantify the differences between ML and
non-ML software development expressed by interviewees
over a wide range of software practitioners. We followed
Kitchenham and Pfleeger’s guidelines for personal opinion
surveys [23] and used an anonymous survey to increase
response rates [37]. A respondent has the option to specify
that he/she prefers not to answer or does not understand
the description of a particular question. We include this
option to reduce the possibility of respondents providing
arbitrary answers.
Recruitment of Respondents. The participants of the survey
were informed about the purpose of our study and gave
their consent to use the survey results for research purposes.

To recruit respondents from both ML and non-ML pop-
ulations, we spread the survey broadly to a wide range
of companies from various locations around the world. To
get a sufficient number of respondents from diverse back-
grounds, we followed a multi-pronged strategy to recruit
respondents:

• We contacted professionals from various countries
and IT companies and asked their help to dissemi-
nate our survey within their organizations. We sent
emails to our contacts in Amazon, Alibaba, Baidu,
Google, Hengtian, IBM, Intel, IGS, Kodak, Lenovo,
Microsoft, Morgan Stanley, and other companies
from various locations around the world, encourag-
ing them to complete the survey and disseminate it to
some of their colleagues. By following this strategy,
we aimed to recruit respondents working in the
industry from diverse organizations.

• We sent an email with a link to the survey to 1,831
practitioners that contributed to 18 highest-rated ma-
chine learning repositories hosted on GitHub (e.g.,
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TensorFlow and PyTorch) and solicited their par-
ticipation. By sending to GitHub contributors to
machine learning repositories, we aimed to recruit
respondents who are open source practitioners in
addition to professionals working in the industry.
We chose this set of potential respondents to col-
lect responses from ML practitioners for contrast;
if ML respondents provide significantly different
responses than non-ML respondents, this provides
quantitative evidence to establish a difference be-
tween ML and non-ML development. Moreover, the
reason for choosing the 18 high-rated machine learn-
ing repositories was that the contributors would
potentially be two types: practitioners of ML frame-
work/tool/library (ML FTL) and practitioners of ML
application8 (ML App). We were unsure whether
high variances in software differences would over-
whelm ML versus non-ML differences. Out of these
emails, eight emails received automatic replies noti-
fying us of the absence of the receiver.

No identifying information was required or gathered from
our respondents.

3.3.2 Survey Design
We captured the following pieces of information in our
survey (the complete questionnaire is available online as
supplemental material9):
Demographics.

We collected demographic information about the respon-
dents to allow us to (1) filter respondents who may not un-
derstand our survey (i.e., respondents with less relevant job
roles), (2) breakdown the results by groups (e.g., developers
and testers; ML practitioners and non-ML practitioners).
Specifically, we asked the question “What best describes your
primary product area that you currently work on?”, and
provided options including (1) ML framework/system/library,
(2) ML application, (3) Non-ML framework/system/library, (4)
Non-ML application, and (5) Other. The respondents selected
one item from the provided options as their primary prod-
uct area. Based on their selections, we divided the survey
respondents into 5 groups.

We received a total of 357 responses. We excluded ten
responses made by respondents whose job roles are nei-
ther development, testing nor project management. Those
respondents describe their job roles as a researcher (5), stu-
dent (3) network infrastructure specialist (1), and university
professor (1). We also excluded five responses made by
respondents who selected Other as major product areas and
specified their major product areas as: ecology (1), physics
(1), or a combination of multiple product areas that do not
seem oriented at the production of a commercially relevant
software product (3). In the end, we had a set of 342 valid
responses.

The 342 respondents reside in 26 countries across four
continents as shown in Fig. 2. The top two countries in
which the respondents reside are China and the United
States. The number of years of professional experience of

8. A software system with ML components.
9. Questionnaire Online: https://drive.google.com/file/d/

124ttMmqSXglilEUuevAMP85jvP4uyVoc

254  (74%)
29    (8%)
10    (3%)
7      (2%)
5      (1%)

China
United States
India
Germany
Japan

Fig. 2: Countries in which survey respondents reside. The
darker the color is, the more respondents reside in that
country. The legend presents the top 5 countries with most
respondents.

0 10 20 30 40 50 60 70 80 90 100

Non-ML App (93)

Non-ML FTL (151)

ML App (59)

ML FTL (39)

Project Management (23) Testing (82) Development (237)

Fig. 3: Survey respondents demographics. The number indi-
cates the count of each demographic group.

the respondents varied from 0.1 to 25 years, with an average
of 4.3 years. Our survey respondents are distributed across
different demographic groups (job roles and product areas)
as shown in Fig. 3.
Practitioners’ Perceptions. We provided the list of 31 final
statements, and asked practitioners to respond to each state-
ment on a 5-point Likert scale (strongly disagree, disagree,
neutral, agree, strongly disagree). To focus the respondents’
attention on a particular area in the survey, they were
explicitly asked to rate each statement with respect to their
experience with the major product area they specified.

We piloted the preliminary survey with a small set of
practitioners who were different from our interviewees,
focus-group participants and survey takers. We obtained
feedback on (1) whether the length of the survey was
appropriate, and (2) the clarity and understandability of
the terms. We made minor modifications to the preliminary
survey based on the received feedback and produced a final
version. Note that the collected responses from the pilot
survey are excluded from the presented results in this paper.

To support respondents from China, we translated our
survey to Chinese before publishing the survey. We chose
to make our survey available both in Chinese and English
because Chinese is the most spoken language and English
is an international lingua franca. We expect that a large
number of our survey recipients are fluent in one of these
two languages. We carefully translated our survey to make
sure there exists no ambiguity between English and Chinese
terms in our survey. Also, we polished the translation by



6

improving clarity and understandability according to the
feedback from our pilot survey.

3.3.3 Data Analysis

We examined distributions of Likert responses for our par-
ticipants and compared the distributions of different groups
of participants using Wilcoxon rank-sum test, i.e., ML vs.
non-ML, and ML framework/tool/library vs. ML appli-
cation. We report the full results in Section 4.3; along the
way in Section 4.1 and 4.2, we link interviewees’ comments
with survey responses by referring to survey statements
like: [S1]. We number statements in the order in which
they appeared in the survey, S1 through S31. We annotate
each with whether they are statistically significant or not as
follows:

• [4 S1] Significant difference between ML devel-
opment and non-ML development that confirms
interviewees’ responses and no significant dif-
ference between the development of ML frame-
work/tool/library and development of ML software
application;

• [4 4 S1] Significant difference between ML devel-
opment and non-ML development, and significant
difference between the development of ML frame-
work/tool/library and development of ML software
application;

• [S1] No significant differences;
• [8 S1] Significant difference between ML develop-

ment and non-ML development, but opposite of inter-
viewees’ responses.

• [8 4 S1] Significant difference between ML devel-
opment and non-ML development, but opposite of in-
terviewees’ responses; and significant difference be-
tween development of ML framework/tool/library
and development of ML software application.

• [4 S1] No significant difference between ML de-
velopment and non-ML development; but signifi-
cant difference between development of ML frame-
work/tool/library and development of ML software
application.

Other outcomes are theoretically possible but did not
occur in our survey results.

4 RESULTS

In this section, we report the results grouped based on
the interview topics. We combined several topics into one
when interviewees had little to say about a particular topic.
In some cases, we have anonymized parts of quotes to
maintain interviewees’ privacy.

4.1 RQ1. Differences in Software Engineering Prac-
tices

4.1.1 Software Requirements

Nearly every interviewee made a strong statement about
differences between the requirements of ML systems versus
the requirements of non-ML systems. In essence, require-
ments of ML systems are generally data-driven - closely

coupled with existing large-scale data of a particular ap-
plication context.

Interviewees noted that requirements are more uncertain
for ML systems than non-ML systems [S1]. As P9 noted,
given “machine learning systems usually aim to improve
or accelerate the decision-making process (of executives
in an organization or a company)”, rather than detailed
functional descriptions, the requirements usually include
a conceptual description about the goal after applying
the machine learning systems. Since the requirements of
machine learning systems are data-driven, different data
would lead to different requirements. Even for the same
data, as P1 and P6 suggested, a different understanding
of the data and different application contexts would lead
to different requirements. Nevertheless, prior knowledge
about the data and application contexts bring determinism
to a certain extent. P6 gave a specific example, suggesting
that how prior knowledge helps to understand the data and
application contexts:

There exists a kind of prior knowledge named “scenario prior
knowledge”. For instance, we know that the data imbalance
problem occurs in the application of fraud detection. This is
because good guys always account for a larger amount of
people than bad guys. As we also know, in the field of online
advertising, the conversion rate10 usually seems low and there
exists a limit.
Instead of functional requirements in non-ML software

systems, quantitative measures comprise the majority of
requirements for ML systems. As P4 pointed out, distinct
types of quantitative measures would be leveraged to define
requirements, e.g., accuracy, precision, recall, F measure and
normalized discounted cumulative gain (nDCG). These quan-
titative measurements could either come from the “cap-
tain’s call” by business stakeholders (P6) or be collected by
project managers through user studies (P5). As P4 put it,
the target scores for quantitative measures could vary from
one application to another. In some safety-critical domains,
the accuracy of ML systems is of great importance. As
a consequence, higher scores of quantitative measures are
expected for safety considerations. P5 echoed this, saying

For online shopping recommendation systems, the quantitative
measures are relatively not so restricted, and lower measures are
tolerable.
In contrast to non-ML systems, requirements for ML

systems usually involve a large number of preliminary ex-
periments [4 S2]. As P6 noted, business stakeholders might
suggest leveraging a number of emerging machine learning
algorithms to solve their business problems. One of the
consequences is that it requires the requirement specialists
to have a strong technical background in machine learning.
The other consequence is that requirement validation pro-
cess involves a larger amount of preliminary experiments.
Those preliminary experiments are conducted by software
engineers and intend to validate and select machine learning
algorithms among various candidates. As P8 explained,

Say A, B and C algorithms might be all suitable for a particular
application context, but the performance closely depends on the

10. The probability that the user who sees the ad on his or her
browser will take an action, i.e., the user will convert [25].
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actual data in practice. Requirements cannot be validated until
preliminary experiments have been conducted.
The requirement should consider the predictable degra-

dation in the performance of ML systems [4 S3]. As P6
noted, most of the ML systems might experience perfor-
mance degradation after a period in production. P6 gave
an example: In a fraud detection application, adversaries
are always trying to find ways to evade detection strategies.
As a result, two inherent requirements are expected for ML
systems. First, ML systems are expected to be degradation-
sensitive, i.e., be capable of perceiving performance degra-
dation. Second, once a performance degradation occurs, ML
system needs to have considerable capability to adapt to
the degradation, either by feeding new data to the learning
algorithm or training a brand new model by using new data.

As we will discuss in subsequent sections, data-driven
and large-scale characteristics of ML systems have several
consequences to the way they are developed, compared to
non-ML systems.

4.1.2 Software Design

Interviewees repeatedly mentioned that the design of ML
systems and non-ML software systems differently place
emphasis in a few ways.

First, the high-level architectural design for ML systems
is relatively fixed [8 S4]. As P3 summarized, the architecture
of ML systems typically consists of data collection, data
cleaning, feature engineering, data modeling, execution, and
deployment. In contrast, the architectural design for non-
ML software systems is a more creative process, which
implements various structural partitioning of software com-
ponents and generates behavioral descriptions (e.g., activity
diagrams and data flow diagrams) (P12). Due to the high
volume of data, the distributed architectural style is widely
preferred for ML systems. Distributed architectural style
usually leads to complexity in architectural and detailed
design.

Second, ML systems place less emphasis on low cou-
pling in components than non-ML software systems [S5].
Although different components in ML systems have sepa-
rate functionalities, they are highly coupled. For instance,
the performance of data modeling is dependent on data
processing. As P14 noted, “‘garbage in and garbage out’ -
I would spend 40% of my time on data processing since
I found that poor data processing could fail any potential
effective [machine learning] models ... I divide the data
processing into multiple steps and may use existing libraries
for each step”.

Third, detailed design is more flexible for ML systems
than non-ML software systems [S6]. P1 noted that data
modeling could contain tens to hundreds of candidates
of machine learning algorithms, which indicates an ample
search space. P6 echoed this, saying

Even for the same machine learning algorithm, various appli-
cation contexts may introduce differences in the dimensions of
data, and further lead to changes in machine learning models.
As a consequence, the detailed design of ML systems

would be time-consuming and conducted in an iterative
way [4 S7]. To design an effective model, software engineers
tend to conduct a large number of experiments.

4.1.3 Software Construction and Tools
Interviewees reported several differences between ML sys-
tems and non-ML software systems in terms of coding
practice. First, the coding workload of ML systems is low
compared to non-ML software systems [S8]. Instead of
coding for implementing particular functionalities in non-
ML software systems, coding in ML systems generally in-
cludes data processing (e.g., transformation, cleansing, and
encoding), feature analysis (e.g., visualization and statistical
testing), and data modeling (e.g., hyperparameters selection
and model training). P14 pointed at the availability of useful
frameworks and libraries for data processing and data mod-
eling. These frameworks and libraries help developers ac-
celerate the coding process. To achieve better performance,
developers can extend these frameworks or libraries to
be adapted for their own use. Second, there is little code
reuse between and within ML systems, compared to non-
ML software systems [S9]. One reason is that ML systems
frequently have a significant emphasis on performance.
However, the performance of ML systems highly depends
on the data; data vary across different application contexts.
Thus, project-specific performance tuning is necessary.

Debugging in non-ML software systems aims to locate
and fix bugs in the code [S10]. Unlike non-ML software
systems, debugging in ML systems aims to improve per-
formance. The performance of ML systems generally cannot
be aware or evaluated “until the last minute when the data
model is finalized” (P13, P14). Efficiently finalizing a data
model is playing an important role in the construction of
ML systems. However, data modeling involves multiple
iterative training rounds. Considering the high volume of
data, each round of training may take a long time, days
or weeks, if complete data are taken. It is infeasible to use
complete data to train models for each round. Thus, several
interviewees suggested a practical data modeling process
(P4, P6, P13):

You need to build several training datasets of different sizes
from small-scale to large-scale. You start with the small-scale
dataset to train models. Till you achieve acceptable results, you
move to a larger scale. Finally, all the way up, you would find
a satisfactory model.

Although this process improves the training efficiency, in-
complete training data might risk introducing inaccuracy in
intermediate results that may lead to bias in models.

Interviewees mentioned that ML systems and non-ML
software systems differ in debugging practice. Debugging
practice of non-ML software systems typically uses step-
by-step program execution through breakpoints. For ML
systems, especially deep learning software systems, “de-
bugging aims to make it more straightforward to translate
ideas from developer’s head into code”. P6 gave a specific
example about “dynamic computational graph”:

Previously, developers prefer to use PyTorch mainly because
of its support for the dynamic computational graph. ‘dynamic
computation’ means that the model is executed in the order you
wrote it. Well, like I am building a neural network, I would add
up layers one by one. Then each layer has some tradeoffs; for
instance, I would like to add an operator layer implementing
normalization. [If a debugging tool does not support dynamic
computational graph,] I cannot evaluate if this addition is
good or not until the neural network is compiled into a model
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and real data go in. The dynamic computational graph allows
debugging on sample data immediately and helps me verify my
idea quickly.

Nevertheless, debugging on the dynamic computational
graph has drawbacks. Once the data volume is extremely
high, computation for each layer takes a long time to finish.
This delays the construction of further layers. In addition,
interviewees also mentioned that creativity appears to be
important in debugging of ML systems [S11]. Part of the
reason appears to be that because ML systems have an
extensive search space for model tuning.

Interviews pointed at several differences in bugs be-
tween ML systems and non-ML software systems. First, ML
systems do not have as many bugs that reside in the code as
non-ML software (P11) [S12]. Instead, bugs are sometimes
hidden in the data (P10). P1 gave a recent example that mis-
using training data and testing data with intensive overlap
results in an incredibly good performance, but indicating
a bug. As P4 suggested, “generalization of data models is
also required to be taken care of”. Second, ML systems have
specific types of bugs when taking data into account. As P11
stated, the mismatch of data dimension order between two
frameworks may cause bugs when integrating these two
frameworks. Third, in contrast to non-ML software systems,
a single failed case is hardly helping diagnose a bug in ML
systems. As P13 explained, sometimes, developers of ML
systems find bugs by just “staring at every line of their code
and try to think why it would cause a bug”.

4.1.4 Software Testing and Quality
Although software quality is important in both ML and non-
ML systems, the practice of testing appears to differ signifi-
cantly. One significant difference exists in the reproducibility
of test results. In contrast to non-ML software systems, the
testing results of ML systems is hard to reproduce because of
a number of sources of randomness [S13]. As P8 explained:

The randomness [in ML systems] complicates testing. You have
random data, random observation order, random initialization
for your weights, random batches fed to your network, random
optimizations in different versions of frameworks and libraries
... While you can seed the initialization, fixing the batches might
come with a performance hit, as you would have to turn-off
parallel batch generation which many frameworks do. There is
also the approach to freeze or write-out the weights after just one
iteration which solves the weight-initialization randomness.

Another difference exists in the testing methods and re-
sulting outputs. Testing practice in ML systems usually
involves running an algorithm multiple times and gather
a population of performance measurements [S14]. As P12
explained,

Testing practice for machine learning software mainly aims
to verify the quantitative measures that indicate performance.
However, machine learning algorithms are stochastic. Thus, we
usually use k-fold cross-validation to do the testing.

As P9 echoed, the testing outputs are expected to be a range
rather than a single value.

The interviewees stated that test case generation for ML
systems is more challenging, compared to non-ML systems.
Automated testing tools are not used as frequently as non-
ML systems [8 4 S18]. The test dataset is essential to the
quality of test cases. Collecting testing datasets is labor

intensive [4 4 S15]. If the application is for general use
where correct answers are known to human users, labeling
tasks could be outsourced to non-technical people outside
the organization, as P5 noted. More details are needed for
these automated methods or tools. However, biases may be
introduced to test dataset through the methods or tools, and
consequently, affect both performance and generalizability.
As P8 put it,

Sometimes, we (developers) generate expected results for the
test cases using the algorithms or models constructed by our-
selves. Paradoxically, this may introduce bias because it is like
we define acceptance criteria for our code.

Moreover, generating reliable test oracle is sometimes infea-
sible for some ML systems. P6 gave a specific example in
the anomaly detection application context:

Clients gave us a test dataset and told us the dataset contains
labeled anomaly cases. However, we have no way to know how
many anomaly cases exactly there are in the dataset, because
some anomalies may not have been recognized and labeled in
the dataset.

Good testing results cannot guarantee the performance of
ML systems in production [4 S17]. The performance in
production to a large extent depends on how similar the
training dataset and the incoming data are (P6).

In ML systems, “too low” and “too high” scores for
performance measures as testing results both indicate bugs
[S16]. P1 gave a recent example of a junior developer who
obtained an F1 score of 99% in his data model. In fact, after
carefully going through the dataset, an extensive overlap
was discovered between training and testing dataset. Some
interviewees reported several specific tactics in testing ML
systems (P13):

We can use a simple algorithm as the baseline, for example,
a random algorithm. If the baseline performs quite well on our
dataset, there might exist bugs in our dataset. If our algorithm
performs worse than the baseline, there might be some bugs in
our code.

4.1.5 Software Maintenance and Configuration Manage-
ment
Interviewees suggested that less effort may be required in
the maintenance for ML systems than traditional software
systems [S19]. One reason is that, different from non-ML
software systems, ML systems run into predictable degrada-
tion in performance as time goes by (P4 and P7). To provide
constantly robust results, ML systems should support “auto-
matic” maintenance. Once performance degradation occurs,
an ML system is designed to perceive the degradation and
trains new data models in an online/offline way using the
latest emerged data. As P6 suggested,

We sometimes define the so-called “health factors” or quantita-
tive indicators, of the status of a machine learning system. They
are associated with a specific application context. The indicators
help machine learning system perceives its performance in the
specific application context.
Interviewees reported that configuration management

for ML systems involves a larger amount of content com-
pared to non-ML software [S20]. One reason is that ma-
chine learning models include not only code but also
data, hyperparameters, and parameters. Developing ML
systems involves rapid experimentation and iteration. The
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performance of models would vary accordingly. To find
the optimal combination of these parts that achieve the
best performance, configuration management is required to
keep track of the varying models and associated tradeoffs,
algorithm choice, architecture, data, hyperparameters. As P4
explained:

It usually happened that my currently trained model performs
badly. I might roll back to the previous model, and investigate
the reasons ... Data in the cloud change over time, including
those we use to train models. Models might degrade due to the
evolving data. We may take a look at current data and compare
them with previous data to see why degradation happens.
As a result, configuration management for ML systems

becomes more complex compared to non-ML software.
Besides code and dependencies, data, model files, model
dependencies, hyperparameters require configuration man-
agement. The models checkpoints and data would take
a large amount of space. As P8 noted, machine learning
frameworks trade off exact numeric determinism for perfor-
mance, “the dependent frameworks can change over time,
sometimes radically”. To reproduce the results, a snapshot
of the whole system may be required.

4.1.6 Software Engineering Process and Management
ML and non-ML systems differ in the processes that are
followed in their development. As P2 suggested, during the
step of context understanding, it is important to communi-
cate with other stakeholders about what machine learning is
and is not capable of. P6 mentioned that some stakeholders
might misunderstand what machine learning is capable of:

They usually overestimate the effect of machine learning
technologies. Machine learning is not a silver bullet; the effect
highly depends on the data they have [4 4 S21].
P14 mentioned that data processing is important to the

success of the whole process [4 S22], “garbage in garbage
out, it is worth spending the time”. P12 noted that data
visualization plays a crucial role in understanding feature
distributions and correlations as well as identifying interest-
ing trends and patterns out of the data. As P6 noted, domain
knowledge is pivotal in understanding data features:

However, sometimes domain experts are reluctant to share their
knowledge. They may be afraid of being replaced by automated
software or do not have any accurate reasoning but intuition.
It is hardly possible to develop a good model in a single

pass (P6). The step aims to find the right balance through
trial and error. Even the best machine learning practitioners
need to tinker to get the models right. Sometimes, practi-
tioners may go back to the data step to analyze errors.

As P3, P4, and P5 mentioned, the practitioners create an
API or Web application with the machine learning model as
an endpoint during production. Practitioners also need to
plan for how frequently the model requires to be retrained
with updated data. During the monitoring step, the perfor-
mance of models is tracked over time. Once data changes
in a way that invalidates the models, the software should
be prepared to respond to the mistakes and unexpected
consequences.

Interviewees suggested that a significant difference be-
tween management of ML versus non-ML development is
that the management of ML development lacks specific and
practical guidance [S23]. In contrast to the development

of non-ML software, development of ML systems is an
iterative optimization task by nature, “there is more than
one right answer” as long as the quantitative measures meet
the expectation (P1). Sometimes, the available data are not
sufficient to support the application context. It is impossible
to achieve the expected quantitative measures no matter
how good the trained model is. P6 explained:

No one knows if the quantitative metrics are achievable until
we finish training our model.

Interviewees also mentioned that the development plan of
ML systems is more flexible than non-ML software systems.
The progress of model training is usually not in a linear way.

4.2 RQ2. Differences in Work Characteristics
In this section, we discuss differences between ML and
non-ML development in terms of work characteristics. No
common themes emerged from several work feature topics
in our interviews or focus groups (work scheduling autonomy,
task variety, significance, feedback from the job, information pro-
cessing, specialization, feedbacks from others, social support, work
conditions, ergonomics, experienced meaningfulness, experienced
responsibility, knowledge of results). Thus we do not discuss
them in this section.

4.2.1 Skill Variety
Interviewees identified two main differences between ML
and non-ML development in terms of skill variety.

First, interviewees noted that developing machine learn-
ing frameworks and applications presented distinct techni-
cal challenges. For example, P10 suggested that, in addition
to programming skills, ML development tends to require
“specialized knowledge in math, information theory and
statistics ” [4 S24]. P13 explained the differences as:

[For the development of non-ML software systems] developers
can write code for a particular business requirement once they
have learned a programming language... [For the development
of ML systems] math and statistics specialized knowledge is a
crucial prerequisite of designing effective models for a particular
business requirement. Nevertheless, proficient programming
skill is still important and could help with model implemen-
tation.
Second, interviewees suggested that a wider variety of

skills is required for ML development [S25], which can make
ML development more challenging if a developer lacks
those skills. As P5 suggested, “in addition to programming
skills, data analysis skill is required for ML development”.
P10 summarized that the data analysis skill consists of the
abilities to acquire, clean, explore, and model data. As P6
noted, the huge volume of data in ML development brings
new challenges to data analysis:

In the context of big data, performing statistical data analysis is
not enough. Developers should be able to handle data analysis
for a huge volume of data. For example, developers need the
skills of writing distributed programs for data analysis and
using distributed computing frameworks.

4.2.2 Job Complexity and Problem Solving
Interviews indicated that ML development and non-ML
development present complexity in different aspects. As
P12 suggested, the job complexity of non-ML development
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resides in architecture design and module partitioning [4
S26]; in contrast, the job complexity of ML development
resides in data modeling [S27]. P14 explained that “the
architectures of distinct machine learning applications are
relatively fixed, they usually consist of several modules,
i.e., data collection, data pre-processing, data modeling, and
testing”.

The difference in job complexity leads to the difference in
problem solving. Interviewees mentioned that, for non-ML
development, a clear roadmap usually exists to produce a
good architecture design and module partitioning [4 S28].
Developers could then follow a step-by-step approach to
implement each module (P5, P6, P8). However, for ML
development, no clear roadmap exists to build effective data
models (P2). As P6 suggested, the problem solving process
in ML development has more uncertainties compared to
non-ML development:

We do not know what results the data can tell, to what extent
a data model can be improved. We would try whatever that we
think may work. Thus, the search space becomes quite large,
and the workload might explode accordingly. Sometimes, more
workload does result in better performance.

4.2.3 Task Identity
Interviewees reported few differences in terms of task iden-
tity. One difference is suggested by P4 and P5, who reported
that it is harder to make an accurate plan for tasks in ML
development [4 S29]. P4 summarized the reasons as:

In non-ML software development, the project can be divided
into distinct tasks according to function points. Developers
could easily tell how long it will take to finish the imple-
mentation of a particular function point. However, in machine
learning development, data modeling is an indivisible task. To
achieve acceptable performance, the search space is usually quite
large. Making an accurate plan for such a task is hard.
Besides, interviewees noted that ML developers have

less control over their task progress towards target perfor-
mance (P9, P10) [S30]. Once starting data modeling in ML
development, hard work may not always consistently lead
to satisfying results (P4).

4.2.4 Interaction Outside the Organization
Interviewees reported that ML developers face more chal-
lenges when communicating with customers [4 S31]. As P2
explained:

It is harder to communicate the project progress for machine
learning development due to the non-linear process of data
modeling... The results of machine learning development are
not straightforward to interpret. For example, it is difficult to
explain why a neural network works for image processing.

4.3 Survey Results
We summarize the survey results in Table 2. The Statement
column shows the statements presented to respondents.
The following column indicates the labels we used to
identify statements throughout the paper. The four Likert
Distribution subcolumns present the distribution of agree-
ment for each group of respondents (ML practitioners -
ML, Non-ML Practitioners - Non-ML, practitioners of ML
Framework/Tool/Library - ML FTL, and Practitioners of

ML Application - ML App). For the Likert distributions,
the leftmost bar indicates strong disagreement, the middle
bar indicates neutrality, and the rightmost bar indicates the
strongest agreement. For example, most machine learning
practitioners strongly agree with S24.

The P-value column indicates whether the differences in
the agreement for each statement are statistically significant
between ML and non-ML in the first sub-column, and ML
FTL and ML App in the second subcolumn. The table is
sorted by the p-values with Benjamini-Hochberg correction
in the first subcolumn. Statistically significant differences at
a 95% confidence level (Benjamini-Hochberg corrected p-
value < 0.05) are highlighted in green.

The Effect Size column indicates the difference between
ML and non-ML in the first sub-column, and the difference
between ML FTL and ML App in the second subcolumn. We
use Cliff’s delta to measure the magnitude of the differences
since Cliff’s delta is reported to be more robust and reliable
than Cohen’s delta [32]. Cliff’s delta represents the degree of
overlap between two sample distributions, ranging from −1
to +1. The extreme value ±1 occurs when the intersection
between both groups is an empty set. When the compared
groups tend to overlap, Cliff’s Delta approaches zero. Effect
sizes are additionally colored on a gradient from blue to
orange based on the magnitudes of difference as referring
to the interpretation of Cliff’s delta in Table 3: blue color
means the former group is more likely to agree with the
statement, and orange color means the latter group is more
likely to agree with the statement.

Overall, the results of the survey confirm some dif-
ferences in interviewees’ claims. Based on the observed
statistically significant differences between ML and non-ML
development, we can say with some certainty that:

• Requirements: Collecting requirements in the devel-
opment of ML systems involves more preliminary
experiments, and creates a need for the predictable
degradation in the performance. [4 S2, 4 S3]

• Design: Detailed design of ML systems is more time-
consuming and tends to be conducted in an inten-
sively iterative way. [4 S7]

• Testing and Quality: Collecting a testing dataset
requires more effort for ML development; Good per-
formance during testing cannot guarantee the per-
formance of ML systems in production. [4 4 S15, 4

S17]
• Process and Management: The availability of data

usually limits the capability of ML systems; Data
processing tends to be more important to the success
of the whole process. [4 4 S21, 4 S22]

• Skill Variety: ML development intensively requires
knowledge in math, information theory, and statis-
tics. [4 S24]

• Job Complexity and Problem Solving: ML practi-
tioners have a less clear roadmap for building sys-
tems. [4 S28]

• Task Identity: It is much harder to make an accurate
plan for the tasks for ML development. [4 S29]

• Interaction: ML practitioners tend to communicate
less frequently with clients. [4 S31]

The survey results cannot confirm several of intervie-
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TABLE 2: Survey Results. Orange cells indicate where the former group (ML practitioners/ML FTL practitioners)

disagrees more strongly with the statement than the latter group (non-ML practitioners/ML App practitioners); blue
cells indicate where the former group agrees more strongly. Green cells represent statistically significant differences. The
number in “()” indicates the size of each group.

Likert Distributions Cliff’s Delta P-values
ML ML FTL ML ML FTL

ML Non-ML ML FTL ML App vs. vs. vs. vs.
Statement (98) (244) (39) (59) Non-ML ML App Non-ML ML App

Developing my software requires knowledge in math, information theory and statistics. S24 0.45 -0.19 4 .000 .320
Detailed design is time-consuming and conducted in an iterative way. S7 0.32 0.18 4 .000 .271

Requirements should consider predictable degradation in the performance of software. S3 0.29 0.11 4 .000 .433
It is easy to make an accurate plan for the development tasks of my software. S29 -0.32 0.03 4 .000 .779

Data processing is important to the success of the whole development process. S22 0.26 -0.20 4 .000 .271
Collecting testing dataset is labor intensive. S15 0.27 -0.26 4 .000 .188

Developing my software requires frequent communications with the clients. S31 -0.29 -0.14 4 .000 .577
My software is tested by using automated testing tools. S18 0.26 0.48 8 .000 4 .001

Good testing results can guarantee the performance of my software in production. S17 -0.23 0.09 4 .001 .482
Available data limit the capability my software. S21 0.22 -0.48 4 .001 4 .001

Collecting requirements involve a large number of preliminary experiments. S2 0.20 0.09 4 .002 .577
A clear roadmap exists to build my software. S28 -0.24 0.07 4 .002 .661

High level architectural design is relatively fixed. S4 -0.20 0.07 8 .017 .719
Creativity is important during debugging. S11 0.12 0.07 .064 .719

My team puts a lot of effort into maintenance of my software. S19 -0.15 0.21 .065 .188
The higher the performance measures are, the better my software is. S16 0.08 0.19 .068 .271

Architecture design is complicated for my software. S26 0.10 0.32 .069 4 .047
Data modeling is complicated for my software. S27 0.07 -0.15 .077 .471

Detailed design is flexible. S6 0.08 0.11 .107 .459
Requirements of my software are uncertain. S1 0.10 0.11 .151 .482

Testing involves multiple runs of my software to gather a population of quantitative measures. S14 0.07 0.06 .152 .719
My coding workload is heavy. S8 0.07 0.08 .223 .665

I have control over the progress towards the target performance. S30 0.06 0.02 .265 .756
Code reuse happens frequently across different projects. S9 0.06 -0.12 .265 .482

Debugging aims to locate and fix bugs in my software. S10 0.06 -0.01 .358 .943
Creating my software requires a team of people, each with different skills. S25 0.04 0.09 .540 .482

Testing results of my software are hard to reproduce. S13 0.04 0.04 .546 .787
Low coupling in the components of my software is important. S5 -0.01 0.08 .861 .459

Configuration management are mainly for the code. S20 -0.07 -0.14 .894 .943
Software engineering management lacks practical guidance for my software. S23 -0.01 -0.20 .894 .482

Bugs in my software usually reside in the code. S12 -0.01 -0.05 .979 .787

TABLE 3: Interpretation of Cliff’s delta value.

Cliff’s Delta Value Interpretation
|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.330 Small
0.330 ≤ |δ| < 0.474 Medium
|δ| ≥ 0.474 Large

wees’ claims about differences between ML and non-ML.
For example, requirement is deterministic across ML system
development and non-ML software development [S1]. One
explanation is that although there is uncertainty in aspects
of the models that ML developers ship, requirements them-
selves are deterministic.

5 DISCUSSION

5.1 Implications
Embracing Uncertainty. As mentioned by our interviewees,
uncertainty lies in various aspects of the development of ML
systems.

First, uncertainty comes from the data as part of the
requirement. Although a development team of ML system
has a target to attain, e.g., building a speech recognition
software with absolute precision, a bunch of preliminary
experiments is required to make sure the goal is achievable,
and the available data suffice for the target. Understanding
application contexts, quick data visualization and hands-on
experimental data modeling on a small-scale dataset could
be helpful to accelerate the progress of preliminary exper-
iments during requirement gathering and analysis phase.
Instead of trying a number of tools, it might be wiser for
machine learning practitioners to focus on a few tools to
learn and use [22]. The exploratory process of preliminary
experiments in ML development is similar to scientific
programming [9] and may benefit from the lessons learned
from scientific programming.

Second, uncertainty originates in the inherent random-
ness of machine learning algorithms. Machine learning prac-
titioners should shift their mindset and embrace uncertainty.
For instance, a machine learning algorithm may be initial-
ized to a random state; random noise helps to effectively
find optimized solution during gradient descent (stochastic
gradient descent). To reduce uncertainty, machine learning
practitioners could achieve reproducibility to some extent
by using the same code, data, and initial random state. Thus,
version control toolchains for code, data and parameters are
essential to achieve reproducibility [5]. However, storing all
states may introduce significant overhead and slow down
the development process. Thus, the effectiveness of such
toolchains is subject to future investigation. In addition, to
evaluate the performance of a machine learning algorithm,
practitioners usually randomly split the data into a training
and test set or use k-fold cross-validation. The performance
of a machine learning algorithm should be reported as
a distribution of measures, rather than a single value, as
emphasized by our participants.

Handling Data. As discussed by our interviewees, data play
a vital role in the development of ML systems. The large
quantity of training data can have a tremendous impact
on the performance of ML systems. As confirmed by our
participants, data collection becomes one of the critical
challenges for the development of ML systems. Data collec-
tion literature focuses on three lines of research [31]: data
acquisition techniques to discover, augment, or generate
datasets, data labeling techniques to label individual data
points, and transfer learning techniques to improve exist-
ing datasets. Future studies could integrate existing data
collection techniques into the process of ML development.
In addition, existing data collection techniques tend to be
application or data specific. More effort is needed to gen-
eralize those proposed techniques to various applications.
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ML practitioners also used distributed platforms to process
a large quantity of data in parallel. Debugging the parallel
computations for data modeling is time-consuming and
error-prone. As illustrated in [16], future studies could put
more effort to facilitate interactive and real-time debugging
for ML systems.

Along with data quantity, quality is also critical to build
a powerful and robust ML system. “Garbage in, garbage
out”, what practitioners obtain from the machine learning
software is a representation of what they feed into the
software. Real-world data is comprising of missing val-
ues, imbalanced data, outliers, etc. It becomes imperative
that machine learning practitioners process the data before
building models. Future research could develop data vi-
sualization tools that give an overview of the data, help
in locating irregularities, enable practitioners to focus on
where the data actually needs cleansing. However, high-
quality datasets during development cannot ensure the high
performance of machine learning systems eternally. Within
a rapidly evolving environment, a machine learning system
degrades in the accuracy as soon as the software is put in
production [34]. Practitioners need to recognize that there is
never a final version of a machine learning system, which
needs to be updated and improved continuously over time
(e.g., feeding new data and retrain models). Online feedback
and performance measurement of ML systems are fertile
areas for future research.

5.2 Threats to Validity

Internal Validity. It is possible that some of our survey
respondents had a poor understanding of the statements
for rating. Their responses may introduce noise to the data
that we collected. To reduce the impact of this issue, we in-
cluded an “I don’t know” option in the survey and ignored
responses marked as such. We also dropped responses that
were submitted by people whose job roles are none of
these: software development, testing and project manage-
ment. Two of the authors translated our survey to Chinese
to ensure that respondents from China could understand
our survey well. To reduce the bias of presenting survey
bilingually, we carefully translated our survey to make sure
there is no ambiguity between English and Chinese terms.
We also polished the translation by improving clarity and
understandability according to the feedback from our pilot
survey.

The effect sizes of statistically significant differences
between ML and non-ML development reported in this
work range from negligible to medium. The negligible effect
size indicates that a particular difference between machine
learning and non-machine learning development is trivial,
even if it is statistically significant. To mitigate this threat,
we did not emphasize those differences in our results.

As we selected survey respondents, we sent invitations
to a variety of potential respondents that might involve in
different parts of ML ecosystems (ML frameworks, tools,
and libraries, software applications with ML components).
We mixed the responses from those ML respondents when
we studied the differences between ML and non-ML de-
velopment. It is possible that differences exist in the per-
ceptions of these two groups, and overwhelm ML versus

non-ML differences. To prevent this threat, we compared
the differences in distributions of Likert responses between
these two groups.

To recruit respondents from both ML and non-ML pop-
ulations, we spread the survey broadly to a wide range of
companies from various locations around the world. In the
beginning of the survey, we articulated that the purpose
of our study is to understand whether and how machine
learning changes software engineering practices. This de-
scription may attract more attention from a part of the non-
ML population, who know about ML, but ML is not part of
their daily work. In addition, the description may generate
a tacit presumption that machine learning changes software
engineering practices. The presumption may mislead the
respondents to exaggerate the differences they perceived.
External Validity. To improve the generalizability of our
findings, we interviewed 14 interviewees from three compa-
nies, and surveyed 342 respondents from 26 countries across
four continents who are working for various companies
(e.g., Amazon, Alibaba, Baidu, Google, Hengtian, IBM, Intel,
IGS, Kodak, Lenovo, Microsoft, and Morgan Stanley) or
contributing to open source machine learning projects that
are hosted on GitHub, in various roles.

We wish though to highlight that while we selected em-
ployees from three Chinese IT companies for our interviews,
we improved the responses from interviews through focus
group discussions that involved more IT companies, and the
surveyed population is considerably wide. The improved
responses from the interviews were used to bootstrap the
statements to rate in our survey. The survey permitted
respondents to add additional comments whenever appro-
priate via free-form fields; looking at the responses in such
fields we do not observe any signs of missing statements.

In addition, some reported claims from our interviewees
were not validated through the survey and might be prema-
ture.

6 RELATED WORK

Some prior work provides prescriptive practices for the
development of machine learning systems (e.g., [29]). Some
discuss the realistic challenges and best practices in the
industry, e.g., machine learning model management at Ama-
zon [33], and best practices of machine learning engineer-
ing at Google [40]. Some investigated machine learning
related questions on Stack Overflow [38]. These works are
based on the experience of the authors and largely do not
contextualize machine learning development as a special
type of software engineering. In contrast, our findings are
based on empirical observations that explicitly focus on the
differences between ML and non-ML development.

Like our work, several researchers have conducted em-
pirical studies of software engineering for data science.
Some focus on how data scientists work inside a company
via interviews to identify pain points from a general tooling
perspective [13], and explore challenges and barriers for
adopting visual analytic tools [20]. Other focus on char-
acterizing professional roles and practices regarding data
science: Harris et al. [17] surveyed more than 250 data
science practitioners to categorize data science practitioners
and identify their skill sets. Kim et al. interviewed sixteen
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data scientists at Microsoft to identify five working styles
[21], and supplement Harris et al.’s survey with tool usage,
challenges, best practices and time spent on different activ-
ities [22]. In contrast to this prior work, our paper studies
broad differences between ML and non-ML development.

Most similar to our study is an empirical investigation
of integrating AI capabilities into software and services and
best practices from Microsoft teams [4]. From their proposed
ML workflow, they identified 11 challenges, including 1)
data availability, collection, cleaning, and management, 2)
education and training, 3) hardware resources, 4) end-to-
end pipeline support, 5) collaboration and working culture,
6) specification, 7) integrating AI into larger systems, 8)
guidance and mentoring, 9) AI tools, 10) scale, and 11)
model evolution, evaluation, and deployment. The identi-
fied challenges emerge across different software develop-
ment practices. Our findings differ from theirs in a number
of areas:

• Design. Both studies agree that maintaining modu-
larization in ML development is difficult. Their study
[4] summarized the reasons as the low extensibility
of an ML model and the non-obvious interaction
between ML models. In contrast, we found ML de-
velopment places comparable emphasis on low cou-
pling in components as non-ML development [S5].
Both studies agree that the rapid iterations exist in
the detailed design of ML systems [4 S7].

• Construction and Tools. Both studies agree that
code reuse in ML development is challenging due to
varying application context and input data. Despite
the challenge of code reuse in ML development, we
found that code reuse happens in ML development
as frequently as in non-ML development [S9].

• Process and Management. Both studies agree that
management of ML development is challenging due
to the involvement of data, and that the availability
of data usually limits the capability of ML systems
[4 4 S21].

• Configuration Management. Both studies agree that
data versioning is required in ML development. De-
spite the necessity of data versioning, we found that
current configuration management activities in ML
development still focuses on code versioning [S20].
In addition to data versioning, the earlier study [4]
suggested to keep track of how data is gathered and
processed.

As discussed above, our study confirms some of the find-
ings reported in Amershi et al.’s work. Being different
from Amershi et al.’s work, since our study followed the
SWEBOK and considered work characteristics from ap-
plied psychology domain in our interviews, we recognized
the differences between ML and non-ML development in
other aspects, e.g., requirement gathering, job complexity,
problem solving process, and task identity. Moreover, we
collected perceptions from broader population groups, e.g.,
involving open source practitioners and professionals from
various software industries.

7 CONCLUSION

In this work, we identified the significant differences be-
tween ML and non-ML development. The differences lie in
a variety of aspects including software engineering prac-
tices (e.g., exploratory requirements elicitation and iterative
processes in ML development) and the context of software
development (e.g., high complexity and demand for unique
solutions and ideas in ML development). The differences
originate from inherent features of machine learning - un-
certainty and the data for use.

To tackle uncertainty, ML practitioners should shift their
mindset, and embrace the uncertainty in preliminary ex-
periments and the randomness of ML algorithms. They
could learn the lessons from scientific programming, which
also involves exploratory processes in the development.
In addition, version control toolchains for code, data and
parameters could play a vital role for ML practitioners to
achieve reproducibility. ML practitioners should also devote
sufficient effort to handle the data for use. Future studies
could put more effort to provide interactive and real-time
debugging tools to facilitate efficient development of ML
systems. To deal with the rapid evolution of data, online
feedback and performance measurement for ML systems are
fertile areas for future research.

In a larger sense, this work represents a step towards un-
derstanding software development not as a homogeneous
bulk, but as a rich tapestry of varying practices that involve
people of diverse backgrounds across various domains.
Precise differences may reside in different kinds of ML
architectures. We leave these questions to future studies.
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