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Abstract—A software system’s design determines many of its properties, such as maintainability and performance. An understanding
of design is needed to maintain system properties as changes to the system occur. Unfortunately, many systems do not have
up-to-date design documentation and approaches that have been developed to recover design often focus on how a system works by
extracting structural and behaviour information rather than information about the desired design properties, such as robustness or
performance. In this paper, we explore whether it is possible to automatically locate where design is discussed in on-line developer
discussions. We investigate and introduce a classifier that can locate paragraphs in pull request discussions that pertain to design with
an average AUC score of 0.87. We show that this classifier, when applied to projects on which it was not trained, agrees with the
identification of design points by humans with an average AUC score of 0.79. We describe how this classifier could be used as the
basis of tools to improve such tasks as reviewing code and implementing new features.

Index Terms—Design Discussions, Latent Design, Conversations, Prediction Model, Design Recovery

F

1 INTRODUCTION

THE design of a software system dictates many of its
properties, such as performance, extensibility, robust-

ness, and maintainability. To uphold desired properties in
a system, developers must be aware of, and make choices
consistent, with its design. When developers are not aware
of a system’s design, choices they make can cause desired
system properties to erode [58].

Unfortunately, developers often do not have access to
information about a system’s current design. Despite many
notations and approaches for expressing design, it is often
not captured explicitly [44]. Even when recorded, a project’s
design is often not kept current with the evolving sys-
tem [36]. When design documentation is not explicit or not
current, newcomers to a project find it difficult to contribute
to the system [48], [50]. In open source projects, delays
in making contributions and failed contributions can slow
growth and impact the health of the project [10].

One approach to providing design information is to
recover design automatically from project artifacts [4]. Most
of the existing recovery approaches focus either on inferring
the system’s structure (e.g., [35]) or its behaviour (e.g., [8]).
These approaches generally aim to describe large parts of
a system’s design and typically focus on describing how
a system currently works. Such information can help a
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software developer change a system, but it does not provide
the developer information about other aspects of the design,
such as the intent guiding why certain choices were made.

Such information is available in other project artifacts.
Recently, Brunet et al. and Tsay et al. have identified that
developer discussions, captured in project artifacts, such as
issue reports, include discussions of design [6], [56]. Tsay
et al. have further showed that these discussions can be a
major factor in deciding how a system evolves, suggesting
that the discussions include information that goes beyond
how a system works. Our recent work also indicates that
the design discussed in developer discussions considers
why certain choices were made, such as to address robust-
ness [60].

Imagine if it was possible to locate and interpret the
design information in developer discussions automatically.
Consider, for instance, pull request #12081 submitted to the
Rust1 project. This pull request was submitted on February
6, 2014 and, after a discussion involving 11 individuals
posting 303 comments, was merged on March 12, 2014. If
a developer spends only 2 minutes to read each comment
in this pull request to access design information, reading
the pull request would consume 10 hours of a developer’s
time. Given the pressures on developers, it is unlikely
that amount of time would be spent, causing any design
information contained in such discussions to go unused
and developers to work without being aware of it. Instead
of a developer spending the hours to read discussions to
understand the intent of the design, what if it was possible
to learn the design properties of interest for a system from
the discussions? When a new pull request is made to the

1https://github.com/rust-lang/rust/pull/12081

https://github.com/rust-lang/rust/pull/12081
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system, a tool could draw on this information to generate a
comment automatically of the form:

“Thank you for your contribution to Rust. To help
facilitate the timely review of your pull request,
please consider if your changes affect any of the
following project specific design concerns: main-
tainability and robustness”.

This prompt would provide the contributor an opportunity
to alter their contribution to reflect the comments or to
add a comment to the pull request discussion specifically
addressing the concerns. Either of these actions may help
decrease the time to process a pull request.

To make this scenario a reality, we need to be able to lo-
cate latent design information in developer discussions. But,
what is design? In the literature, design manifests in many
ways, including as large-scale architecture [22], as low-
level design patterns [13], as compliance to international
standards [1] and as the choice of specific algorithms [14], to
name just a few.

In this paper, we do not presuppose any single notion of
design, focusing instead on separating design information
from other kinds of information present in a discussion. For
this separation, we introduce the concept of a design point,
which we consider as a piece of a discussion relating to a
decision about a software system’s design that a software
development team needs to make [60]. Design points thus
include a wide variety of design as outlined above, encom-
passing structural, functional and non-functional aspects of
the system.

We investigate the idea of design points on a dataset
in which 10,790 paragraphs appearing in pull request dis-
cussions from multiple systems were manually labeled as
having, or not having, a design point. We focus on pull
request discussions as a target as they represent a kind
of discussion where it has been shown that developers
consider design [56]. To support the identification of design
points automatically, the annotation of each design point
includes a set of labels describing attributes and context of
the design point (Section 3).

Using this dataset, we built a classifier that can locate
design points, at the granularity of paragraphs, in pull
requests across multiple systems (Section 4). This classifier
can locate design points with an AUC score of 0.87, meaning
that our classifier will always rank paragraphs with design
points higher than these without design points. Romano et
al. concluded that a prediction model with an AUC score
above 0.7 is often considered to have adequate classification
performance [46].

Given that design is inherently a slippery concept, a
classifier for locating design points can only be the basis
for tools if it recognizes places in a discussion that human
developers agree discuss design. To investigate this ques-
tion, we compared the classifier to a gold standard formed
based on the agreement of at least three human developers
on the presence or absence of design point in five systems on
which the classifier had not been trained. We found that the
classifier agreed with the human developers with an AUC
of 0.79 (Section 5).

In this paper, we make the following contributions:

1) We provide a data set about design points in 10,790
paragraphs from 34 pull requests from three different
open source projects.

2) We present a classifier that can locate when a design
point occurs in a paragraph of a pull request discussion,
constituting a fundamental building block for tools
that make use of latent design information in design
discussions.

3) We report on the classification features that are most
important for automated design point location at the
paragraph level in pull requests.

4) We show that the classifier finds similar design points
as identified by human developers.

Data detailing the annotation of the 10,790 paragraphs
and all the remaining data used in Sections 3 is available at
https://www.cs.ubc.ca/∼vivianig/annotation.zip.

2 RELATED WORK

In the context of software engineering, design is tradition-
ally understood both as a process [12] in which a develop-
ment team engages and as the resulting specifications [40]
that the team produces. Researchers have investigated how,
over the natural evolution of a software system, small
changes accumulate, causing the actual design of the system
to differ from what was originally documented, a process
known as design erosion [58]. At the same time, the overall
knowledge of a system’s design by software developers is
often subject to “evaporation,” which causes the developers’
to gradually lose knowledge of the design over time [43].

To help combat design erosion and evaporation, tech-
niques for design recovery have long been discussed in the
literature [4]. Often, design recovery has focused on reverse
engineering [7] and has been centered around inferring
structural (e.g., [35]) or behavioural (e.g., [8]) designs from
largely code-related or execution-related software artifacts,
such as code and logs. Design can also be recovered outside
the code itself; for instance, by establishing traceability
links between code and documentation [3]. More recently,
there have been attempts to recover architectural design by
combining source code with commits and issues [47].

Our approach complements these earlier approaches by
looking beyond technical software artifacts and attempting
to recover design information from the social context of
software development. An important component of this
social context is developer discussions, in which design is
a frequently discussed topic [6]. Concerns related to design
are often raised during pull request discussions [56], and
are in fact crucial factors for deciding whether to accept pull
requests [16].

The idea that useful design information may occur in
discussions is also supported by the literature on design
rationale. Toulim introduced a model to describe argu-
mentation [55] that later led to the description of design
rationale as “the explicit listing of decisions made during a
design process and the reasons why those decisions were
made” [20, p. 577]. Initial research on design and its ratio-
nale focused on how to create a useful representation [30],
generally involving either an observer being present at the
moment the design was discussed or an act of reconstruction
executed after the design phase had been completed [25].

https://www.cs.ubc.ca/~vivianig/annotation.zip
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Listing 1: Example of a paragraph containing a design point
from pull request #12422, Node.js project

1 This PR means that we’re unable to safely rely on
the existing error handling semantics, namely not
swallowing errors by defaultor affecting post-mortem
debugging. Again, I can’t stress howcritical the
existing error handling semantics are regarding
operating our Node stack in the critical Netflix
streaming path at scale. It’s imperative to us that
the Node runtime continues to work with the existing
error handling best practices. After all, we’re
relying on Node in some of our most critical systems
here at Netflix, where reliability and
debuggability are our top priority.

Listing 2: Example of a paragraph where a design point is not
present from pull request #12422, Node.js project

1 @yunong I appreciate you speaking up on this matter,
but I’ve replied to Julien’s comment above as well
at yours at nodejs/CTC#12 (comment). As noted above,
that’s a better place for more general concerns
about improved Promise support in Node core.

Our work complements these earlier approaches by consid-
ering an automated approach applied to on-line developer
discussions.

Developer discussions about design have been studied
in two contexts to date. One context is written discussions
as occur in issue reports. Brunet and a colleague manually
coded 1,000 discussions and trained a classifier to identify
which discussions included design. The identification of
whether design was discussed was at the level of the entire
discussion. As we have reported, design can be isolated
to smaller parts of a discussion, with roughly 22% of the
paragraphs appearing in a discussion containing design
information [60]. In this paper, we focus on this context and
consider how to automate the detection of those paragraphs
dealing with design in written developer discussions as
they appear in pull requests. The second context of design
is in-person conversations and whiteboard design sessions.
Within this context, researchers aim to study software de-
sign in its “natural setting” and aim to describe the activities
involved in the process of design [38]. This paper does not
consider this context, leaving investigations to future work.

Discussions involving developers have also been studied
to extract other kinds of information related to software
development. Knauss et al. created a catalogue of com-
munication patterns that are characteristic to clarification
of requirements in online discussions and developed au-
tomation to detect them [21]. Rodeghero et al. studied tran-
scripts of discussions between developers and their clients
to automatically generate requirements in the form of user
stories [45]. We use some of their ideas in the development
of our own automated classifier, described in Section 4.

3 A DESIGN POINTS DATASET

Our goal is to locate design points automatically. To study
the presence of design points, we create a dataset consist-
ing of 10,790 paragraphs from 34 pull requests from the
Node.js (14), Rails (10) and Rust (10) projects, in which
each paragraph was manually annotated as to whether it

Listing 3: Discussion snippet from Rails pull request #505. This
paragraphs contains a design point and the enhanced labels are
shown

1 ;##D54 We should jsut add an option per patch and
deal with the default later

2 ;##ROLE PM
3 ;##INV T
4 ;##FORM SOL
5 ;##REL ELAB D43
6

7 As I mentioned earlier, we should simply add an
option for users who want to use PATCH to be able to
use it, and move on with our lives. We can address
the defaults in some far distant release once we
actually have real experience with the benefits.

includes a design point. Each paragraph was labelled by one
of three annotators, all of whom are authors of this paper.

Before starting the annotation, we developed a code-
book to guide the annotation process. This codebook was
developed in three steps. In an initial phase, two authors
annotated independently the same three pull request dis-
cussions. Each one created a codebook to document their
annotations. This was followed by a consolidation phase,
where the same authors merged the two codebooks. Dur-
ing this phase, we opted to delimit the search of design
points to paragraphs. On the one hand, working with entire
comments is too coarse, since different paragraphs within a
comment sometimes discuss different topics. On the other
hand, working with single sentences is too fine, as a design
point can easily span over multiple sentences. As part of the
iterative development of the codebook, the annotators iden-
tified guidelines to recognize which paragraphs are design
points and which are discussing other issues. Examples of
these guidelines are the use of speculative language, or the
presence of a rationale to justify the statements being made.2

Following this phase, another author joined the annota-
tion and each annotated four pull requests, and computed
the Fleiss’s Kappa Coefficient over the resulting annotation.
This results in a value of 0.52, commonly understood as
“moderate agreement” level [23], [24]. Finally, we proceeded
to annotated the 34 pull requests previously mentioned.
None of the pull requests used in the first phase to create
the codebooks were included in the final set.

To provide a sense of this dataset, Listing 1 provides
an example of a paragraph with a design point from pull
request #12422 from the Node.js project. Listing 2 provides
an example of a paragraph without a design point from the
same pull request.

The mere presence or absence of a design point does
not provide much context about the design point. As a
result, during the annotation process, we also labeled three
kinds of additional information about each paragraph: the
developers’ level of expertise, the form of the language
used to express a design point, and the logical relationships
between design points. We elaborate on each of these kinds
of information below.

First, given that in a software development project, de-
velopers typically have areas of the code in which they have
more expertise than others, we wanted to capture informa-

2The codebook can be found with the dataset at https://www.cs.
ubc.ca/∼vivianig/annotation.zip

https://www.cs.ubc.ca/~vivianig/annotation.zip
https://www.cs.ubc.ca/~vivianig/annotation.zip
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tion about the role of the paragraph author in the project.
We annotated three values: whether the paragraph author
was the owner of the pull request, whether the author was
a core project member, or playing another role. We also
labeled whether the author was invited to the discussion,
which was only possible if the author was not the pull
request owner. Listing 3 shows a paragraph from Rails
pull request #505 annotated with this information: each
annotation starts with ;##. The line marked ;##D54 marks
the paragraph below has a design point, identified with id
54, with a short summary of the design point. The next
two lines are information about the author of the comment:
the line marked ;##ROLE PM indicates the paragraph was
penned by a project member whereas the line marked ;##
INV T indicates that the project member was invited to the
discussion. (Table 1 summarizes the labels annotated.3)

To give a sense of the final dataset, Table 2 reports on the
distribution of labels across the paragraphs. Interestingly,
the roles associated with design points are roughly split
between the three categories: Owner (27%), representing the
users that opened the pull request, Member (38%) represent-
ing users that are identified as core members of the project,
and Other (35%), representing users without any affiliation
to the project. Only a minority of paragraphs containing
design points were generated by users invited (INV) in the
discussion (37.3%). This seems to indicate that the actors
participating in design discussion are both core members
of the projects and generic contributors, not officially recog-
nized as part of the team, who join the discussions on their
own accord.

Second, we considered the ways in which developers
use language in the discussions. Based on our reading of
developer discussions, we chose to label whether a design
point takes the form of: 1) an assertion of a solution, 2) an
open question, or 3) a closed question, which generally takes
the form of an enumeration. In Listing 3, the design point
takes the form of a solution (i.e., ;##FORM SOL). Table 2
shows that the majority (76.6%) of design points appear as
Solutions, followed by Questions (21.4%). We found very
few (2%) cases of Enumerations (2%), indicating that there
was little evidence of developers brainstorming multiple
solutions when posting a comment.

Finally, we were interested in whether there is logical
structure in a discussion [59]. We used the REL label to

3The codebook can be found with the dataset at https://www.cs.
ubc.ca/∼vivianig/annotation.zip

capture the logical structure of the discussion by making
explicit the relationships between design points. Because
design points in an asynchronous discussion should only
be related to design points previously added, we annotated
without looking ahead in the discussion. Some design points
may have no relationships to previously seen design points,
and are labeled “new”. Design points may “elaborate” on
a previous point and respond to concerns or expand on
premises, or “generalize” previous design points and come
to a conclusion. Finally a design point can “reframe” another
design point if it highlights different aspects of it, without
generalizing or elaborating it. In Listing 3, the design point
annotated elaborates a previous design point paragraph that
is labeled as D43.

As Table 2 shows, we found that large numbers (43%) of
design points are either unrelated to others or Elaborate
on previous design points (36.2%); one interpretation of
these values is that a large number of design points have
at least one followup. Reframes are less common (18.1%)
and Generalize are rare (3.9%).

4 LOCATING DESIGN POINTS AUTOMATICALLY

To be able to access and leverage design points in written
developer discussions, we need to be able to automatically
locate them. We consider two research questions:

RQ1 Can we effectively locate design points auto-
matically in discussions on pull requests?

RQ2 Which features are most important to locate
design points?

Building on the dataset described in the previous section,
we describe a machine learning approach for locating which
paragraphs in a pull request discussion contain a design
point. We begin by describing the features—measurable
properties that are potential indicators of the presence of a
design point in a paragraph (Section 4.1). We then describe
the approach we took to build and evaluate various classi-
fiers (Section 4.2) before presenting the results (Section 4.3).
In evaluating classifiers, we focus on the first research ques-
tion (RQ1) which asks whether design points can be effec-
tively located automatically. For us, effective means whether
the design points can be located accurately and whether
the classifier can apply across different software projects. A
classifier that locates design accurately, but requires training

TABLE 1: Labels applied to paragraphs from pull requests

Code Description Values
D[ID][Summary] Identify a design point using a unique number and a

descriptive summary.
ROLE[Role] Define the role of the author of the paragraph contain-

ing the design point.
Pull request Owner, Core Project Mem-
ber, Other

INV[Invited] Indicate if the author of the design point been invited
to the discussion (i.e., was tagged in the discussion
before her first comment).

True or False

FORM[Form] Define the form the design point takes inside the
paragraph.

Solution, Open Question or Enumera-
tion

REL[Relationship] Indicate whether the design point is related to a previ-
ously posted design point.

Elaborates, Generalizes or Reframes
another design point, or is New

https://www.cs.ubc.ca/~vivianig/annotation.zip
https://www.cs.ubc.ca/~vivianig/annotation.zip
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TABLE 2: Annotation Distribution

Annotation Distribution
Dimension Label Count Percentage
ROLE Owner 669 27%

Member 949 38%
Other 857 35%

INV True 924 37%
False 1551 63%

FORM Solution 1897 77%
Question 530 21%
Enumeration 48 2%

REL New 1065 43%
Elaborate 889 36%
Generalize 74 3%
Reframe 447 18%

for every new project is not effective, as it would not be
applicable to real-world scenarios. To ensure effectiveness,
we evaluate our classifier on projects that were not used for
training it.

4.1 Features
When we annotated paragraphs manually, we found a vari-
ety of information of interest to characterize a design point,
such as the role of the author of the comment containing
a paragraph. We use this analysis, as well as knowledge of
the literature of similar techniques to define 19 features on
which to investigate a machine learning approach. Table 3
summarizes the 19 features that we investigate, grouped in
4 dimensions: process, position, text, and content.

4.1.1 Process Dimension:
Similar to discussions in other contexts, such as emails [49],
pull request discussions involve multiple individuals in
different roles. For example, a participant may be heav-
ily involved in the project and considered a core devel-
oper [64] or the individual may have been asked to join
the discussion because someone already involved in the
discussion believes their expertise is needed. We observed
how these process aspects varied per paragraph of a dis-
cussion through the annotations we performed (Section 3).
We investigate three process features based on our earlier
analysis: whether the paragraph author is a project member
(isProMem), whether the paragraph author was invited to
the discussion (IsInvited) and whether the paragraph author
is the pull request originator (IsOriginal). The fourth feature
we investigate, NumCom, relates to the level of activity of
the author of the paragraph in the discussion; this feature
is similar to one used by Rodeghero et al. when building a
classifier for turning conversations into user stories [45].

4.1.2 Position Dimension:
Machine learning-based classification has been applied to
discussions to perform other tasks, such as extractive sum-
marization (e.g., [37]). As well, the features used for general
email discussions have also been found to be useful for
text produced as part of the software engineering process
(e.g., [41]). The features we define in the position dimension
are inspired by the positional features used by such classi-
fiers. PosInCom measures the position of the paragraph in
a comment. PosInPR measures the position of the comment

containing the paragraph in the entire pull request discus-
sion.

4.1.3 Text Dimension:
The features of this dimension measure textual characteris-
tics of a paragraph as indications for the presence of design
point. Building on features defined by Correa and Sureka,
we consider the size of the paragraph (NumOfWords) and
the presence of capitalized words (HasCapWord) [9]. Based
on heuristics found to be useful by Li et al., we also consider
the presence of words indicative of speculative language
(e.g., HasShould, HasMay, etc.) [27]. Finally, we also measure
the density of interrogative sentences directly, by counting
the number of questions in a paragraph (NumQues) using
the heuristic approach developed by Li et al. [27].

4.1.4 Content Dimension:
The vocabulary that an author uses in a paragraph can also
indicate the presence of a design point. With the features in
the text dimension, we considered simple vocabulary fea-
tures, such as using specific speculative words. We also want
to consider whether a wider set of words might indicate the
presence of a design point. Given the broad vocabulary used
in any discussion, we cannot simply treat every word that
appears in a pull request discussion as a separate feature.
In the data mining literature, the large amount of words
indicates the problem of the curse-of-dimensionality [19].
To attack this problem, we follow previous studies (e.g.,
[57], [63]), by converting the words in a paragraph to a
simple textual score, called a “content score”. The higher
the value of the content score, the higher the chance that the
paragraph will contain a design point.

To compute the content score, we use the following
procdure, also depicted in Figure 1. First, we pre-process
the text in paragraphs using standard approaches, including
removing stop-words (e.g., “and” and “the”) and stemming
(e.g., reduce “reading” and “reads” to “read”). Second, for
each paragraph in the dataset (Section 3), we extract the
tokens and create a word frequency table, which records the
number of times each token appears across all paragraphs.
Third, to help avoid biasing the design point classifier
(hereafter referred to as the “main” classifier), we train three
helper classifiers C1, C2, and Cp, each of which predicts
a content score from the tokens of a given paragraph.
Specifically, C1 and C2 are used to compute the content
score for half of the paragraphs respectively in the training
set T used to train the main design point classifier, while
Cp is used to compute the content score for paragraphs in
the test set P of the main design point classifier (label C
in Figure 1). This strategy of multiple classifiers avoids bias
from the training sets [57]; otherwise, our models may lead
to optimistic (unrealistic) values for the textual scores.

To compute the content score for paragraphs in T , we
split it into two subsets t1 and t2 using stratified random
sampling so that they each have the same distribution and
number of paragraphs with and without design points.
Then, C1 is trained using t1 and used to predict the content
scores of the paragraphs in t2 to produce t′2 (label A in
Figure 1). For each paragraph in t1, C1 computes the content
score based on its word frequency table and whether the
paragraph contains a design point or not. Conversely, C2 is
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TABLE 3: Features used to identify design points in a paragraph

Dim Feature Type Definition Rationale

Process

IsProMem Boolean Whether the author is a core
project member

IsInvited Boolean Whether the author was
invited to the discussion

IsOriginal Boolean Whether the author submitted
the pull request

The role of the author of the comment may influence the
likelihood that the paragraph contains design point. A core

project member [64] or an invited developer is more likely to
have the expertise needed for involving in the pull request

discussion

NumCom Numeric
Number of comments posted

by the author in the
discussion

The number of comments relates to the level of the activity of
the author, which can characterize the role of the author [45].

Position
PosInPr Numeric Position of the containing

comment in the discussion

PosInCom Numeric Position of the paragraph in
the containing comment

Positional features were found to be useful for classifying
discussions [37], [41]. We assume that paragraphs appearing

early will have a higher chance to contain design points.

Text

NumOfWords Numeric Number of words in the
paragraph

A larger paragraph is more likely to be informative and it is
more likely to contain design point.

HasCapWord Boolean
Whether the paragraph
contains any capitalized

words

Developers may use capitalized words to highlight the key
points they want to express.

HasShould Boolean
Whether the paragraph

contains the word
“shall/should”

HasHow Boolean Whether the paragraph
contains the word “how”

HasWhat Boolean Whether the paragraph
contains the word “what”

HasWhy Boolean Whether the paragraph
contains the word “why”

HasCan Boolean
Whether the paragraph

contains the word
“can/could”

HasMay Boolean
Whether the paragraph

contains the word
“may/might”

As observed in Section 3, developers may use assertive or
speculative language when discussing design. The words

“should”, “how” “what” “why” “can” or “may” are indicative
of speculative language [27], and their presence in a paragraph

may increase its likelihood of containing a design point.

NumQues Numeric Number of questions in the
paragraph

The presence of a high number of interrogative sentences [27]
indicates the presence of speculative language (cf. previous).

Content

NBScore Numeric Naive Bayes score of the
paragraph

NBMScore Numeric Naive Bayes multinomial
score of the paragraph

COMPScore Numeric Complement Naive Bayes
scores of the paragraph

RFScore Numeric Random forest score of the
paragraph

The textual content of the paragraph may indicate the presence
of a design point. NBScore, NBMScore, COMPScore and

RFScore are the likelihood scores of a paragraph containing a
design point calculated based on the textual content of the

paragraph by four classifiers [19], [57], [63] (see Section 4.1.4).

trained using t2 and used to predict the content scores of
the paragraphs in t1 to produce t′1 (label B in Figure 1). This
way, we get the new training dataset T ′ =t′1

⋃
t′2, where

paragraphs are represented by their content score. In other
words, the content score of each paragraph in the training
set is generated from either C1 or C2.

To compute the content score for paragraphs in the test
set P , we train the helper classifier Cp. Specifically, Cp is
trained on T and used to predict the content score for a new
unseen paragraph from P , that we identify as P ′ (label A
in Figure 1). The difference with C1 and C2 is that when
predicting a new content score, Cp does not know whether
the new paragraph contains a design point. In other words,
the main design point classifier uses the content scores in
T ′ created by C1 and C2, and invokes Cp to get the content
scores of paragraphs not seen in the training set, as show in
label D in Figure 1.

We investigate four different algorithms for the classi-
fiers, using the same algorithm for each of C1, C2, and
Cp: a naive Bayes classifier [33], a naive Bayes multinomial
classifier [33], a complement naive Bayes classifier [42], and
a random forest classifier [5]. We use the implementations

of these algorithms provided by the default Weka distribu-
tion [18]. We denote their respective features as NBScore,
NBMScore, COMPScore, and RFScore.

The four classifiers can leverage the textual content of a
paragraph in different ways. We opted to use the different
classifiers to better characterize the textual content of a
paragraph, combining the likelihood scores from different
classifiers. This approach can also help dealing with the
inherent biases of each classifier, such as the strong inde-
pendence assumption of the naive Bayes classifier.

4.2 Approach
To determine whether a paragraph contains a design point,
we investigate four different classifiers: Random Forest
(RF)4 [5], Naive Bayes (NB) [33], Support Vector Machine
(SVM) [19] and K-Nearest Neighbor (KNN, with K =
5) [19]. We use Weka to implement the algorithms.

In our study, we use the Area Under the Receiver Oper-
ating Characteristic Curve [11] (AUC) to evaluate the per-
formance of our prediction models. AUC scores range from

4To reduce the effect of overfitting, in our study, we set the depth
of the decision trees built in random forest as 10.
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TABLE 4: Average AUC for classifiers built on all of
the proposed features (Random Forest, Naive Bayes, SVM,
and KNN), and content classifiers (ContentNB , ContentNBM ,
ContentCOMP , and ContentRF ) (mean ± Standard variance)

Approach AUC Approach AUC

Random Forest 0.87±0.06 ContentRF 0.80±0.04
Naive Bayes 0.84±0.08 ContentNB 0.73±0.04

SVM 0.67±0.15 ContentNBM 0.67±0.09
KNN 0.77±0.10 ContentCOMP 0.56±0.12

0 to 1, with 1 representing perfect prediction performance.
A classifier using random prediction has an AUC score of
0.5; thus if the AUC score for a classifier is larger than 0.5,
it performs better than random prediction. AUC measures
the prediction performance across all the thresholds and it is
insensitive to cost and class distributions [39]. Lessmann et
al. recommended that AUC should be used as the primary
accuracy indicator to compare the performance of prediction
models [26]. Romano et al. concluded that a prediction
model with an AUC score above 0.7 is often considered
to have adequate classification performance [46]. In a re-
cent work, Tantithamthavorn and Hassan recommended
that threshold-independent measures (e.g., AUC) should
be used in lieu of threshold-dependent measures (e.g., F1-
score), since F1-score is sensitive to the used probability
threshold [52]. In our context, the AUC score measures
the probability the classifier will rank a randomly selected
paragraph with a design point higher than a randomly
selected paragraph without a design point.

Fig. 1: Diagram of how our approach works, including the
calculation of the content scores using C1 C2 and Cp

4.3 Results
To determine if the classifier can effectively locate design
points in developer discussions (RQ1), we evaluate the per-

formance of each of the four classifiers using a cross-project
approach. In this approach, we train a prediction model by
using annotated pull requests from two projects and test the
classifier using the pull requests in the remaining project.
This approach helps consider the evaluation of the classifier
under realistic conditions as it is conceivable that data from
a small number of projects might be manually labeled (as
we have done for the dataset presented in Section 3) as long
as the classifier trained from such data is applicable across
a range of projects.

To help determine if a simpler set of features might
suffice for detecting design points, we also built predic-
tions models based on term frequency scores computed
by treating each paragraph as a bag-of-words. Following
Section 4.1.4, we leverage naive Bayes, naive Bayes multi-
nomial, complement naive Bayes, and random forest to
build the prediction models, and we refer to these four
classifiers based on the content of paragraphs as content
classifiers, and denote them as ContentNB , ContentNBM ,
ContentCOMP , and ContentRF , respectively.

Table 4 shows the average and distributions of AUC
for each of the four classifiers (RF, NB, SVM, and KNN)
based on all of the features we proposed, compared with the
four content classifiers on the 10,790 paragraphs from the 34
pull requests in our dataset. The AUC values are averages
from running and averaging over all combinations of cross-
project validation. Overall, Random Forest (RF) based on all
of the proposed features achieves the best results with AUC
of 0.87. We confirmed the dominance of the RF approach
using a Wilcoxon signed-rank test with Bonferroni correc-
tion; the improvement of RF based on all of the features
over other approaches is statistically significant at the 95%
confidence level. Compared with our proposed approach
with the content classifiers, we still find that RF based on
all of the features improve them statistically significantly. In
practice, RF based on all of the proposed features is the best
choice for identifying design points in pull requests.

We believe this result is due to the nature of random
forests. A random forest is constructed using a multitude of
decision trees, each learned separately at training time, and
outputs the mode of the prediction of each tree. By doing
this, RF is able to overcome overfits and is robust against
noises and outliers in the training dataset.

Our second research question (RQ2) asks which features
are important in enabling the classifier to discern which
paragraphs have a design point. To answer this question,
we use a four step process.

Step 1: Correlation Analysis. We first look for collinearity
among the features by using variable clustering analysis.
Out of the 19 features, there are 4 features belonging to two
groups of variables that have correlations larger than 0.7.
The two groups are {NBScore, RFScore}, and {NBMScore,
COMPScore}. Randomly removing one feature from each
group (RFScore and COMPScore respectively), we are left
with 17 features.

Step 2: Redundancy Analysis. Having reduced collinearity
among the features, we use R to determine redundant fea-
tures, which do not have unique signal relative to the other
features. With this analysis, we did not find any redundant
features.
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TABLE 5: Importance of the 17 features as ranked according to
the Scott-Knott ESD test results. The second and third columns
correspond to P-values, and Cliff’s Delta for the features.
Statistically significance at confidence level of 95% and non-
negligible effect size are in bold

Group Feature P-value Cliff’s Delta
1 IsInvited <0.001 0.36 (Medium)
2 NumOfWords <0.001 0.56 (Large)
3 PosInPR <0.001 -0.15 (Small)
4 NBMScore >0.05 0.00
5 NumCom <0.001 -0.10
6 PosInCom <0.001 -0.17 (Small)
7 NBScore >0.05 0.00
8 HasCan <0.001 0.16 (Small)
9 NumQues <0.01 0.10
10 IsProMem >0.05 0.02
11 HasShould <0.001 0.10
12 IsOriginal <0.001 -0.09
13 HasCapWord <0.001 0.13
14 HasWhat <0.001 0.07
15 HasMay <0.001 0.06
16 HasWhy <0.001 0.04
17 HasHow <0.001 0.05

Step 3: Important Feature Identification. Next, we apply “out-
of-bag” (OOB) estimation to estimate the internal error of
a random forest used to estimate the internal error of a
random forest classifier [61]. The main idea is to permute
each feature randomly one by one and see whether the OOB
estimates will be reduced significantly or not.

For each run of a 10 times 10-fold cross validation, we
get an importance value for each feature. To determine the
features that are the most important for the whole dataset,
we take the importance values from all 10 runs and apply
the Scott-Knott Effect Size Difference (ESD) test [28], [53],
[62].

Table 5 presents the importance of the 17 features as
ranked according to the Scott-Knott ESD test. We find that
IsInvited (whether the paragraph author is invited to the
discussion), NumOfWords (number of words in the para-
graph), PosInPR (position of the paragraph in the pull
request), NumCom (number of comments the developer
posted previously in the pull request), NBMScore (naive
Bayes multinomial score of the paragraph), and PosInCom
(position of the paragraph in the comment) are the six most
important features that influence the random forest model.
These features help most in discriminating paragraphs with
design points from these without design points.

Step 4: Effect of Important Features. To understand the effect of
the six most important features, we compare their values in
paragraphs with design points and in paragraphs without
design points. To analyze the statistical significance of the
difference between the two groups of paragraphs, we apply
the Wilcoxon rank-sum test [31] at 95% significance level.
To show the effect size of the difference between the two
groups, we calculate Cliff’s Delta5 [29], which is a non-
parametric effect size measure. A positive effect indicates
that a higher level of a feature corresponds to an increase

5Cliff defines a delta of less than 0.147, between 0.147 to 0.33,
between 0.33 and 0.474, and above 0.474 as negligible, small, medium,
and large effect size, respectively.

in the likelihood of a paragraph containing design points,
while a negative effect indicates that a higher level of
a feature corresponds a decrease in the likelihood of a
paragraph containing design points. Table 5 presents the
p-values and Cliff’s Delta for the 17 features. We notice
that IsInvited, NumOfWords, PosInPR, and PosInCom show
non-negligible effect size on the two groups of paragraphs
with and without design points, while NBMScore shows
negligible effect size. Based on the findings in Table 5, we
conclude that:
• IsInvited has a medium positive effect: invited developers

are more likely to propose Design Points.
• NumOfWords has a large positive effect: longer para-

graphs have a higher chance to contain Design Points
than shorter ones.

• PosInPR has a small, non-negligible negative effect: para-
graphs posted earlier in the discussion have a higher
chance of containing Design Points than those posted
later.

• PosInCom has a small, non-negligible negative effect: de-
velopers tend to express Design Points at the beginning
of a comment.
In summary, we extracted 19 features from pull re-

quests, categorized in four dimensions: process, position,
text and content. Experimental results show that random
forest achieves the best performance with an average AUC
value of 0.87. Moreover, statistical tests show that IsInvited,
NumOfWords, PosInPR, and PosInCom are the four most
important features to locate paragraphs with design points;
these features are in the process, text, and position dimen-
sions. It might beneficial to focus in the future on investi-
gating these four features to both simplify and improve the
classifier.

5 DEVELOPERS AND DESIGN POINTS

An approach for automatically locating design points is
much more useful if it can find design points in pull requests
for projects on which it was not trained and that still
agree with what a human developer would identify as a
design point. To investigate whether the classifier we devel-
oped generalizes to pull requests from other projects and
whether the design points automatically identified agree
with a broader set of human developers than the three
annotators used to build the classifier, we performed an
experiment. The experiment consisted of creating a gold
standard dataset based on pull requests from projects not
used to develop the classifier and then comparing the results
of applying the classifier to the dataset.

5.1 Gold Standard

To generate our gold standard dataset, we selected 5 among
the most popular projects on Github: Bootstrap, React,
FreeCodeCamp, TensorFlow, Electron. From each project,
we selected the 10 most commented pull requests and
randomly sampled 50 paragraphs for each project, to a total
of 250 paragraphs.

We then recruited five Computer Science students to
annotate the presence of design points in these paragraphs.
Four of the students had between three and six years of
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experience working in software development, averaging
4.75 years; the remaining student had no significant expe-
rience in industry, but has been a teaching assistant for
a software engineering course involving a large codebase.
Each evaluator was assigned three samples from the dataset,
or 250 paragraphs each. Overall, these assignments were
made in such a way that each sample was assigned to three
evaluators. Each evaluator was given the definition of a
design point (Section 1) and asked to mark whether each
paragraph contained a design point or not.

From these annotations, we formed a gold standard by
selecting only the paragraphs for which all three evaluators
agreed either did or did not contain a design point. The
resultant gold standard consists of 181 paragraphs (out
of 250 paragraphs) for which there was agreement by all
annotator. 19 of these paragraphs were identified as design
points and 162 as paragraphs without design information.

5.2 Classifier Evaluation
Having the gold standard as ground truth, we proceeded
to evaluate the classifier against it. We applied the previ-
ously trained classifier to the 50 pull request discussions.
The classifier was used to predict the presence of design
information in every paragraph in the discussions, rather
than just those from the gold standard, as the classifier
uses information from an entire discussion and cannot be
applied to paragraphs independent from their context. We
then extracted whether the classifier predicted (or not) if
each of the 181 paragraphs of interest were design points,
and compared the resultant predictions to the gold standard.

TABLE 6: Results of the comparison between the classifier and
the gold standard

Paragraphs
181

Design Points Not Design Points
19 162

True False True False
Positive Negative Negative Positive

13 6 150 12
AUC 0.81

Table 6 shows the results of this evaluation. Overall, the
classifier was able to correctly identify 163 paragraphs out
of 181 as either being design points or not. The classifier
failed to identify correctly 18 paragraphs: 6 of which were
missed as design points and 12 which were incorrectly
identified as design points. The classifier tends to create false
positives - incorrectly identifying a paragraph as having a
design point when it does not - when the language used is
similar to design points but is really about implementation
details. Listing 4 shows an example of a paragraph from
the false positives. Note that all three annotators agreed this
paragraph does not discuss design. The language used in
this paragraph is similar to the one normally seen in design

Listing 4: Example of a paragraph containing a design point
from pull request #12422, Node.js project

1 You may want to explain somewhere why you put
parenthesis here. The only reason is to prevent
automatic semi-colon insertion in return.

points (such as having a implicit question followed by some
rationale), but this particular paragraph is discussing an im-
plementation detail that is not a piece of design information.

The classifier also misses identifying some paragraphs
as a design point (false negatives); several of these missed
design points consist of short sentences, which might be dif-
ficult cases for the classifier to identify features as indicating
a design point.

The evaluation resulted in AUC of 0.81, which is compa-
rable to the results of experiments on the classifier reported
earlier in this paper Section 4.3. This result provides evi-
dence that the classifier can generalize to pull requests from
other projects.

6 DISCUSSION

We have shown that the automatic location of design points
at the level of paragraphs in pull request discussions is
possible. Locating the design points is useful only if tools
can be built to then extract and represent the design point
information in ways that improve tasks performed by soft-
ware development personnel. In this section, we take the
first steps towards investigating tools built on design points
by sketching tools that might build on paragraphs identified
as containing design points. We also consider how design
point paragraphs might be interrelated and the implications
that the structure that exists between design points may
have on techniques needed to extract design information.
Finally, we discuss how the techniques described in this
paper might apply to detecting design points in other forms
of written developer discussions.

6.1 Tool Ideas

We describe three kinds of tools that could be built if design
points can be located automatically.

As one kind of tool, design point paragraphs might
be used to enhance current approaches for recommending
reviewers of pull requests. Existing approaches focus on the
expertise of reviewers based on the source code they have
contributed to the system (e.g., [54], [65]). This information
might be augmented with what kinds of design discussions
the developers participate in so that if a particular review
discussion begins to talk about that design consideration,
the developer could be invited. An advantage over source
code based recommenders for reviewers is more ability
to provide recommendations within the current focus and
topic of the review discussion.

Another possible tool would be to reconstruct the state
of the design of the project. Open source software projects
often feature thousands of pull requests over their lifes-
pan: for example, the Rust project has had nearly 25,000
pull requests on GitHub. Learning about the design of the
system by reviewing these pull requests is impossible for a
newcomer. For an existing contributor, it is also hard to keep
up with the state of the design based on latent information
in the pull requests. One possible approach is to investigate
the extraction of design topics. In earlier work, we described
what design topics might be determined from design points
identified manually [60], such as maintainability, testing or
performance. With an automated approach to design point
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location, design topics could be extracted from more dis-
cussions and used to create an easily accessible archive of
design information.

Finally, links could be introduced automatically between
pull requests to help developers traverse similar design top-
ics in discussions. At present, developers can be unaware of
relevant discussions. For instance, sometimes, pull requests
are closed due to being duplicates of other pull requests,
potentially losing access to valuable discussions [15]. At
other times, the discussion on a pull request can transition
over time to a topic already covered in detail in the past;
contributors might not be aware of the other discussions.
To aid developers in following and finding relevant dis-
cussions, a tool could be built to automatically reference
previous discussions that might be relevant to the current
pull request or topic being discussed.

6.2 Other Forms of Latent Design
In this paper, we have been using information extracted
from each paragraph to attempt to detect where design
is being discussed automatically. However, we have not
considered how such information is structured across an
entire discussion. A few researchers have attempted to
model the structure of design discussions. Mashiyat et al.
used a simplified version of Rhetorical Structure Theory [51]
to model a small design discussion [32]. Black et al. studied
recordings of design sessions and created a framework of
“agent moves” for expressing events such as a participant
initiating a discussion on a design point or supporting a
particular design alternative. In previous work, we studied
three pull request discussions and identified different types
of relationships between various design related events, such
as “rationalization”, “elaboration”, and “justification” [59].
These studies point to the conclusion that developer discus-
sions contain rich structures of latent design information.

We envision using the automated location of design
points as a building block of a comprehensive approach to
building models of design discussions, which can in turn
be used to manage design discussions in multiple ways. On
the one hand, similar to the work of Knauss et al. [21], such
models can be used to focus design related communication
patterns and to monitor the progress of design discussions
to detect problems such as stalling, bikeshedding, and
groupthink. On the other hand, structuring relationships be-
tween different design points can help in identifying design
alternatives and more generally extracting design spaces
from discussions. Such information can be used to assist the
design discussion by leveraging techniques such as design
space exploration [2], or be used for future reference, e.g.,
by allowing developers in future discussions to reevaluate
previously discarded designs. Finally, they can be used to
recover and document design rationale [34].

6.3 Design Points in Other Discussion Forms
Our focus in this paper is on discussions generated from
pull requests. Pull requests have been frequently studied
in the context of investigating the presence of design in-
formation [6], [56]. Nonetheless, there are other kinds of
discussions that we would like to investigate in the future.
Recently, Gousios et al. surveyed developers about their

preferred channel of communication to propagate changes:
the top two responses were Issue Trackers and Pull requests,
with Emails claiming a third spot.

While issues and pull requests are fairly similar entities
in Github, emails might provide a new way to expand this
investigation. Previous work has already shown how mail-
ing lists can be a fertile ground for gathering information.
Gousios et al. found that many experienced contributors
use mailing lists to maintain awareness on the state of a
project [15], and Sorbo et al. developed a semi-supervised
approach to identify the purpose of an email [49]. While we
believe that the language utilized by developers does not
change significantly, email differs from pull requests discus-
sions in not having clearly defined discussion boundaries
and in having a smaller presence of core members in the
discussions [17].

7 THREATS TO VALIDITY

To investigate latent design information in developer dis-
cussions, we created a dataset of design points (Section 3)
and used the resultant dataset as a base for a supervised
learning approach (Section 4). We then compared the results
of the classifier to a gold standard formed from human con-
siderations of discussions on projects on which the classifier
had not been trained (Section 5). There are threats to validity
that arise for each of these approaches.

Internal and Construct Validity. For the annotation process,
we had a total of three individuals involved in labeling
the existing design points (Section 3). A shared codebook
was developed and used to annotated over ten thousand
paragraphs with five labels. This annotation process helped
inform the occurrence of various kinds of information that
could be used in a supervised learning process. For the
classifier, we relied on information, such as ROLE extracted
automatically from the discussions. We leave the investi-
gation of more difficult to extract information, such as the
language used and structure of design points, for future
work (Section 6).

We formed the gold standard used to evaluate the clas-
sifier (Section 5) with five students. To mitigate any risk of a
lack of development knowledge in these students, we chose
individuals with extensive coding and design experiences;
four out of five had spent many years working as software
developers.

External Validity The dataset annotated and used by
the classifier comprises 10,790 paragraphs across 34 pull
requests from 3 projects. By considering pull requests from
3 projects, we mitigate bias to any particular project.

With the classifier, we considered 19 features categorized
into 4 dimensions. In choosing the features to investigate,
we focused on features related to development process,
discussion structure and the content of discussions to avoid
features that might only apply to a specific project. Features
related to the content dimension depend on the range of vo-
cabulary represented by the projects on which the classifier
is trained; further study is needed to determine how these
features perform across a wider range of projects.
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8 SUMMARY

Developers discuss design issues both in-person [38] and
in on-line discussions [6], [56]. In this paper, we focus on
one kind of online discussion, pull requests, and investigate
how to locate the points of the discussion where developers
discuss design. We introduced the concept of design points,
defined as “a piece of a discussion relating to a decision
about a software system’s design that a software develop-
ment team needs to make”. We apply supervised machine
learning to build a classifier that can locate design points
automatically in pull requests at the level of paragraphs.
This classifier can locate design points with high accuracy
(average AUC score is 0.87).

To demonstrate that the classifier locates design points
beyond the dataset we created, we apply the classifier to pull
requests on which it was not trained or tested and compared
to a gold standard created by five students with develop-
ment experience using five generic projects from GitHub.
We found that the classifier was still able to locate design
points in projects it was not trained with high accuracy
(average AUC score is 0.79).

This paper shows that there is useful design information
latent in on-line developer discussion and provides a means
to locate this information at a coarse granularity. Future
research can determine how to locate more specific and
nuanced design information and investigate how to seman-
tically model the information to produce even more useful
tools for developers.
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