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Perceptions, Expectations, and Challenges in
Defect Prediction
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Abstract—Defect prediction has been an active research area for over four decades. Despite numerous studies on defect prediction,
the potential value of defect prediction in practice remains unclear. To address this issue, we performed a mixed qualitative and
quantitative study to investigate what practitioners think, behave and expect in contrast to research findings when it comes to defect
prediction. We collected hypotheses from open-ended interviews and a literature review of defect prediction papers that were published
at ICSE, ESEC/FSE, ASE, TSE and TOSEM in the last 6 years (2012-2017). We then conducted a validation survey where the
hypotheses became statements or options of our survey questions. We received 395 responses from practitioners from over 33
countries across five continents. Some of our key findings include: 1) Over 90% of respondents are willing to adopt defect prediction
techniques. 2) There exists a disconnect between practitioners’ perceptions and well supported research evidence regarding defect
density distribution and the relationship between file size and defectiveness. 3) 7.2% of the respondents reveal an inconsistency
between their behavior and perception regarding defect prediction. 4) Defect prediction at the feature level is the most preferred level of
granularity by practitioners. 5) During bug fixing, more than 40% of the respondents acknowledged that they would make a
“work-around” fix rather than correct the actual error-causing code. Through a qualitative analysis of free-form text responses, we
identified reasons why practitioners are reluctant to adopt defect prediction tools. We also noted features that practitioners expect
defect prediction tools to deliver. Based on our findings, we highlight future research directions and provide recommendations for
practitioners.
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1 INTRODUCTION

Software quality assurance is a resource-constrained ac-
tivity due to its conflict with time-to-market requirements
[48]. With the growth of software scale and complexity,
the cost and duration of quality assurance activities have
dramatically increased. Previous studies observed that the
majority of defects in a software system are in a small num-
ber of software modules [7]. Thus a significant number of
prior studies have focused on the prioritization of software
quality efforts.

A key focus, defect prediction, has emerged as an active
research area for over four decades [2]. Defect prediction
techniques build models based on various types of metrics
(e.g., code, process, and developer [27], [83], [90]) and pre-
dict defects at different granularity levels, e.g., change, file,
or module levels. These techniques can be used to effectively
allocate quality assurance resources [79].

Despite numerous defect prediction studies, the poten-
tial value of defect prediction in practice remains unclear.
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Addressing this issue can provide insight for both prac-
titioners and researchers. Practitioners can use empirical
evidence on defect prediction to make informed decisions
about when to use defect prediction and how it would best
fit into their development process. Researchers can enhance
defect prediction techniques based on the expectations of
practitioners and adoption challenges that they face.

To gain insights into the practical value of defect pre-
diction, we performed a mixed qualitative and quantitative
study to investigate what practitioners think, behave and
expect in contrast to research findings when it comes to
defect prediction. The process is as follows:

1) We started with open-ended interviews with 16 se-
nior software practitioners. Through the interviews, we
qualitatively investigated the factors that might affect
practitioners’ willingness to adopt defect prediction
techniques.

2) To explore the hypotheses behind existing defect pre-
diction research, we performed a literature review. We
first collected the titles of papers that were published
at ICSE, ESEC/FSE, ASE, TSE and TOSEM during a
time period of 6 years (2012 - 2017) from the DBLP
computer science bibliography1. We then used the key-
words “defect”, “fault”, “bug” and “predict” to search
for papers related to software defect prediction, and
downloaded relevant papers from the ACM or IEEE
digital libraries. We read the abstract of each paper to
validate its relevance. Finally, we identified 41 defect
prediction papers. We further went through these i-
dentified papers and extracted the hypotheses behind

1. http://dblp.uni-trier.de
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the defect prediction techniques as proposed in these
papers.

3) We performed a survey to validate the hypotheses that
were uncovered in our interviews and literature review.
The hypotheses became the statements that we asked
our survey respondents to rate and the options for
multiple-choice questions in our survey. We invited
thousands of practitioners from various backgrounds
through emails, including those who work in corpora-
tions and those who contribute to open source projects
hosted on GitHub. We received 395 responses from 33
countries across five continents.

Our survey revolves around the following research ques-
tions:

• RQ1. Will practitioners adopt defect prediction tech-
inques? Does practitioners’ willingness to adopt vary
across different demographics, e.g., job roles, experi-
ence levels, project sizes and major programming lan-
guage?

• RQ2. How do practitioners perceive a number of factors
related to defect prediction? We consider the following
factors: strategies of prioritizing code inspection/test-
ing effort, defect density distribution, relationship be-
tween file size and defect proneness, as well as metrics
that are associated with defect proneness.

• RQ3. What are practitioners’ expectations regarding de-
fect prediction, i.e., granularity level on which a defect
prediction technique works and the expected features
of a defect prediction tool?

• RQ4. Which factors do practitioners consider as the
main adoption challenges? The challenges can influence
the performance of a defect prediction technique and
hinder practitioners from adopting it in practice.

We consider RQ1 to understand the willingness of practi-
tioners to adopt a defect prediction technique and under-
stand how various demographic factors influence their will-
ingness of adoption. RQ2 investigates practitioners’ percep-
tions regarding defect prediction. Answers to RQ2 enable us
to discover disconnects between empirical evidence in prior
studies and practitioners’ perceptions. We check if empirical
evidence goes against practitioners’ intuition. Connection
between intuition and empirical evidence highlights the im-
portance and value of such research. In contrast, disconnect
indicates a problem of adoption since people might be more
apprehensive of things that go against their prior beliefs and
intuitions. RQ3 explores what practitioners expect from de-
fect prediction. Answers to RQ3 help better understand the
disconnect between research and practitioners’ expectation.
In RQ4, we consider the practitioners’ behavior during bug
fixing that may affect the performance of a defect predic-
tion technique. We also consider the preferred measures of
performance evaluation and adoption barriers. Answers to
RQ4 can help researchers find areas for improvement for
existing defect prediction techniques so they can increase
the likelihood of them being adopted by practitioners.

Some of our key findings include: 1) Over 90% of respon-
dents are willing to adopt defect prediction techniques. 2)
There exists a disconnect between practitioners’ perceptions
and research evidence regarding defect density distribution
as well as the relationship between file size and defective-

ness. 3) 7.2% of the respondents reveal an inconsistency
between their behavior and perception regarding defect
prediction. 4) Defect prediction at the feature level (i.e., iden-
tifying defective features2 in a software system) is the most
preferred level of granularity by practitioners. 5) During bug
fixing, more than 40% of respondents acknowledged that
they would make a “work-around” fix rather than correct
the actual error-causing code.

This paper makes the following contributions:
1) We perform a mixed qualitative and quantitative study

to investigate practitioners’ willingness of adoption,
perceptions, expectations and adoption challenges re-
garding defect prediction.

2) We present our findings from a validation survey of 395
practitioners from 33 countries across five continents.

3) We explore the factors that affect practitioners’ willing-
ness of adoption of defect prediction tools.

4) We recognize disconnect between research and practi-
tioners’ perceptions regarding defect prediction.

5) We provide implications for researchers and outline
future avenues of research considering practitioners’
expectations and their perceived challenges regarding
defect prediction.

The remainder of the paper is structured as follows. In
Section 2, we describe the methodology of our study in
detail. In Section 3, we present the results of our study.
In Section 4, we discuss the implications of our results as
well as any threats to validity of our findings. In Section 5,
we briefly review related work. Section 6 draws conclusions
and outlines avenues for future work.

2 METHODOLOGY

2.1 Overview
Our research methodology followed a mixed qualitative and
quantitative approach as depicted in Fig. 1. We collected
data from different sources: (1) We interviewed 16 senior
software practitioners; (2) We conducted a literature review
of recent defect prediction studies; (3) We surveyed 395
respondents. The procedure and transcripts of our inter-
views, as well as questionnaire and responses of our survey
are publicly available at https://github.com/shengying/
defect prediction survey.

2.2 Open-Ended Interviews
We present the protocol, participants selection, and data
analysis of our open-ended interviews as follows.

2.2.1 Protocol
The first author conducted 16 face-to-face interviews with
16 senior software practitioners, each interview taking 30-45
minutes. The interviews were semi-structured and made use
of an interview guide. The guide contained general groupings
of topics and questions, rather than a pre-determined exact
set and order of questions. We iteratively refined the guide
after each interview by clarifying unclear questions and
making them easy to understand in subsequent interviews.

2. A feature is a unit of functionality of a software system that satisfies
a requirement and represents a design decision [4].
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Fig. 1: Research methodology.

The interview was comprised of four parts. In the first
part, we introduced the concepts of defect prediction, and
ensured that the interviewees understood how defect pre-
diction techniques work and how they can help software
practitioners. In the second part, we asked some demo-
graphic questions about the experience of the interviewees
in software development/testing/project management, and
about projects in which they were recently involved.

In the third part, we asked open-ended questions to
understand interviewees’ experience and expectations re-
garding defect prediction techniques. The purpose of this
part was to allow the interviewees to speak freely about
defect prediction without any bias. Specifically, we asked
questions as follows:

1) Do you know about research regarding defect predic-
tion? Have you ever used any defect prediction tech-
nique?

2) How do you decide which file needs more code inspec-
tion/testing effort? Which factors do you consider?

3) Which granularity levels (e.g., method, file, component)
do you work on to prioritize your code inspection/test-
ing effort?

4) Which metrics do you consider when looking for the
most defect-prone entities in your code base?

5) Which factors affect your adoption of a defect predic-
tion technique?

In the fourth part, we picked a list of factors related to
tool adoption. We asked the interviewees to discuss and
rank the factors that they have not explicitly mentioned. To
comprehensively investigate factors of adoption, we follow
diffusion of innovation (DOI) research [74]. DOI is a field that
investigate how innovations spread, how individuals make
adoption decisions, and what factors promote or prevent
adoption. Since 1960s, DOI has been applied to the adoption
of a number of technologies, as diverse as personal worksta-
tions, corn breeds, and dance moves. Our work draws upon
parts of the theory that name factors influencing adoption
as a part in our interview. The factors include:

• Complexity: how complex is the tool?

• Compatibility: how compatible is the tool with the
working environment of a practitioner?

• Trialability: how easy can a practitioner try the tool out?
• Relative advantage: what advantages does the tool offer

a practitioner over other tools?
• Reinvention: can a practitioner configure or customize

the tool?
At the end of each interview, we thanked the interviewee

and briefly informed him/her of our next plans.

2.2.2 Participant Selection
We selected full-time employees from two IT companies in
China, namely Insigma Global Service (IGS)3 and Heng-
tian4, as interview participants. We noticed that a recent
work also ran a case study and surveyed software engineers
within a single company to understand their perceptions
about working in monolithic repos [31]. IGS and Hengtian
are two outsourcing companies which have more than
500 and 2,000 employees, respectively. IGS mainly works
on outsourcing projects for Chinese vendors (e.g., Chinese
commercial banks, Alibaba, and Baidu). Hengtian focuses
on outsourcing projects from US and European corporations
(e.g., State Street Bank, Cisco, and Reuters). Note that in
these two companies, around 60% of projects are developed
onsite, i.e, the project teams work in the site of client. We
cannot perform a face-to-face interview with employees
that are currently working in onsite projects. Thus, we
removed the onsite employees from the interviewee pool.
Interviewees were recruited by emailing each project lead-
er, who was then responsible for disseminating news of
our study to senior technical employees working on the
projects. Volunteers would inform us if they were willing
to participate in the study with no compensation. We ended
up having 19 volunteers that contacted us with varied job
roles, including development, testing, project management,
and business analyst.

We recruited 16 interviewees with varied job roles,
including development, testing, and project management.

3. http://www.insigmaservice.com
4. http://www.hengtiansoft.com/en
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TABLE 1: Professional experience (in years) and role of the
16 interviewees.

ID Experience Role
P1 8 Development
P2 6 Testing
P3 7 Project Management
P4 3 Development
P5 10 Development
P6 11 Development
P7 10 Development
P8 7 Project Management
P9 2 Development
P10 5 Testing
P11 4 Testing
P12 6 Testing
P13 3 Testing
P14 10 Development
P15 12 Development
P16 10 Development

The interviewees participated in various projects located in
United States, Canada, Japan, Ireland and Germany. The
interviewees need to follow the development practices and
leverage the development tools and techniques requested
by the project clients. To ensure each interviewee had e-
nough knowledge to answer our questions, we restrict the
interviewees to employees with technical roles (no sales or
marketing employees). In the remainder of the paper, we
denote these 16 interviewees as P1 to P16.

Table 1 presents the number of years of professional
experience that each of the 16 interviewees had, along with
their job roles. These 16 interviewees have a varying number
of years of professional experience, ranging from 3 to 12
years. The average number of years that an interviewee
worked as a professional software practitioner is 6.5 years.
The interviewees had diverse background and experience
on different types of projects. The diversity of our intervie-
wees helps improve the generalizability of our findings.

2.2.3 Data Analysis
To collect interviewees’ perceptions, expectations and per-
ceived adoption challenges regarding defect prediction, we
processed the recorded interviews by following the steps
below:
Transcribing and Coding. After the last interview was com-
pleted, we transcribed the recordings of the interviews. The
first author read the transcripts and coded the interviews us-
ing the QDA Miner Lite qualitative analysis software [1]. To
ensure the quality of codes, the second author verified initial
codes created by the first author and provided suggestions
for improvement. After incorporating these suggestions, we
generated a total of 338 cards that contain the codes - 18 to
25 cards for each coded interview. After merging the codes
with same words or meanings, we have a total of 133 unique
codes. We noticed that when our interviews were drawing
to a close, the collected codes from interview transcripts
reached a saturation. New codes did not appear anymore;
the list of codes was considered stable.
Open Card Sorting. The first and second authors then
separately categorized the generated cards for thematic
similarity (as illustrated in LaToza et al.’s study [47]). The
themes that emerged during the sorting were not chosen
beforehand. We then use the Fleiss Kappa measure [19]
to examine the agreement between the two labelers. The

TABLE 2: Interpretation of Kappa values.

Kappa Value Interpretation
< 0.00 Poor Agreement
[0.00, 0.20] Slight Agreement
[0.21, 0.40] Fair Agreement
[0.41, 0.60] Moderate Agreement
[0.61, 0.80] Substantial Agreement
[0.81, 1.00] Almost perfect Agreement

interpretation of the Kappa measure is shown in Table 2. The
overall Kappa value between the two labelers is 0.63, which
indicates substantial agreement between the labelers. After
completing the labeling process, the two labelers discussed
their disagreements to reach a common decision. To reduce
bias from the first and second authors sorting the cards to
form initial themes, they both reviewed and agreed on the
final set of categories.

2.3 Literature Review

To explore the hypotheses behind prior defect prediction
research, we performed a literature review by following the
steps below.
Paper Selection. First, we collected the titles of full re-
search track papers that were published in six venues from
2012 to 2017 - the ACM/IEEE International Conference on
Software Engineering, the ACM SIGSOFT Symposium on
Foundations of Software Engineering, the Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on Foundations of Software
Engineering, the IEEE/ACM International Conference on
Automated Software Engineering, the IEEE Transactions on
Software Engineering, and the ACM Transactions on Soft-
ware Engineering Methodology - from the DBLP computer
science bibliography. These 4 conferences and 2 journals
are premier publication venues in the software engineering
research community. We believe that state-of-the-art find-
ings are likely to be published in these conferences and
journals. Second, we used the “defect”, “fault”, “bug” and
“predict” keywords to search for papers regarding software
defect prediction, and downloaded relevant papers from the
ACM or IEEE digital libraries. Third, we read the titles and
abstracts of these papers and judged whether each paper is
related to defect prediction. Finally, we identified 14, 6, 4,
15, and 2 papers from ICSE, ESEC/FSE, ASE conferences,
and TSE and TOSEM journals, respectively, for a total of 41
papers.
Categorization and Summarization. We grouped the identi-
fied 41 papers with similar topics and identified 7 categories
(followed by identified papers):

• Prediction models and learning approaches ( [14], [20],
[21], [32], [35], [53], [75], [76], [84], [86])

• Metrics in defect prediction models ( [8], [13], [25], [48],
[78], [90], [96], [98], [99], [102])

• Cross-project/cross-company defect prediction ( [33],
[60]–[62], [65], [71], [94], [100])

• Imbalance, mislabeling, bias and noise ( [30], [34], [72],
[82], [83])

• Granularity of defect prediction ( [27], [37], [97])
• Privacy ( [64], [66])
• Performance evaluation ( [49], [57])
• Literature review ( [24])
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For each defect prediction paper, we summarized the main
hypotheses behind the proposed technique, e.g., proposed
metrics in the prediction models, employed measures to
evaluate performance, and defect characteristics. Later, we
validated these hypothesis using an online survey – turning
these hypotheses into statements for our survey respondents
to rate or options for multiple-choice questions in our sur-
vey.

2.4 Validation Survey

The goal of the final step is to validate the hypotheses
that emerged from the previous steps. Towards this goal,
we created an online survey to gather opinions from a
wide range of respondents. We followed Kitchenham and
Pfleeger’s guidelines for personal opinion surveys [39] and
used an anonymous survey to increase response rates [88].
A respondent has the option to specify that he/she prefers
not to answer or does not understand the description of a
particular question. We include this option to reduce the
possibility of respondents providing arbitrary answers.

Before sending our survey to a large number of potential
respondents, we piloted the survey with a small set of
practitioners as pilot respondents. The pilot respondents
gave feedback on (1) whether the length of the survey is
appropriate, and (2) the clarity and understandability of
the terms. We made minor modifications to the preliminary
survey based on the received feedback and produced a final
version. Note that the collected responses from the pilot
survey are excluded from the presented results in this paper.

To support respondents from China, we translated our
survey to Chinese before publishing the survey. We chose
to make our survey available both in Chinese and English
because Chinese is the most spoken language and English
is an international lingua franca. We expect that a large
number of our survey recipients are fluent in one of these
two languages. We carefully translated our survey to make
sure there exists no ambiguity between English and Chinese
terms in our survey. In addition, we polished the translation
by improving clarity and understandability according to the
feedbacks from our pilot survey.

To prevent the respondents from being confused about
defect prediction tools and static analysis tools, at the begin-
ning of the survey we gave a definition of defect prediction
and explained the differences between defect prediction and
static analysis. Much of our results show overall strong
trends and our analysis is focused on such trends instead
of specific answers protecting us from some possible misun-
derstanding by a small number of respondents (something
that is possible with any type of survey).

2.4.1 Survey Design
We capture the following pieces of information:

Demographics:
• Professional software engineer: Yes / No
• Involvement in open source development: Yes / No
• Role: Development / Testing / Project Management /

Other (Pick all that apply)
• Experience in years (decimal value)
• Current country of residence

Collecting demographic information about the respon-
dents allows us to: (1) filter respondents who may not un-
derstand our survey (i.e., respondents with less relevant job
roles), (2) breakdown the results by groups (e.g., developers,
testers, etc).

Most recent project:
• People involved: 1-5 / 6-10/ 11-20 / 20-40 / Other (Pick

one)
• Primary programming language
• Usage of static analysis tools: Yes / No
Project size and primary programming language may

play a role in how people decide to perform quality assur-
ance activities. The usage of static analysis tools may also
shed light on the willingness of a practitioner to adopt defect
prediction tools.

Static analysis and defect prediction have emerged from
parallel and disparate traditions of intellectual thought [70]:
one driven by algorithm and abstraction over code, and
other by statistical methods over large defect datasets. In
practice, the two approaches tackle the same problem: im-
proving inspection efficiency, finding minimal, potentially
defective regions in source code.

Compared with static analysis tools, defect prediction
tools are independent of language and build procedures,
and easy to implement: once adequate history is available,
programming language, build environment, platform evo-
lution are immaterial. In contract, static analysis tools are
language and platform specific, and can be very difficult
to deploy. Prior work found that static analysis and defect
prediction tools do find different defects in some cases [70].
Thus it might be worthwhile to use both in practice.

Willingness of adoption:
To understand practitioners’ willingness of adoption, we

asked respondents if they would adopt a defect prediction
tool. To prevent bias due to respondents’ unfamiliarity with
defect prediction, we provided a description about defect
prediction, including typical usage scenarios, input and
output of defect prediction. To make the description easy
to understand, we polished the description according to the
feedbacks during the pilot survey. In addition, to reduce the
impact of a poor understanding of defect prediction from
respondents, we provided an “I don’t know” option. For
the “unwilling” responses, we asked a follow-up question:
why are you unwilling to adopt a defect prediction tool? To
identify common observations, we took the responses and
performed an open card sort to cluster the reasons into
groups.

Practitioners’ perceptions:
Prioritizing resources for code inspection/testing. To under-

stand how practitioners prioritize resources for code inspec-
tion/testing, we provided respondents with 10 strategies
of how they could prioritize resources for code inspec-
tion/testing. The 10 strategies were derived from file related
metrics in our literature review. Note that similar types
of metrics can be extracted at different granularity levels,
e.g., component, method and commit. We only provided
file related strategies in order to focus on respondents’
perceptions about metrics in defect prediction. We explored
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Fig. 2: Probability density function curves of defect density
distributions (defect density is the number of defects per
file).

practitioners’ expected granularity levels of defect predic-
tion in subsequent “practitioners’ expectations” piece.

We asked the respondents to rank the frequency with
which they follow these strategies using the following rat-
ings: very often, often, sometimes, rarely, and very rarely. The
strategies include:

• Most recent buggy file
• Most recently changed file
• File changed by more developers
• File changed by fewer developers
• File with more LOCs
• File with fewer LOCs
• File created/changed by junior developers or newcom-

ers
• File created/changed by senior developers
• File called by many other files
• File that calls many other files

To capture the origins behind the use of such strategies, we
asked respondents to rank possible factors that influence
their opinion formation:

What factors played a role in your previous answer?
Please choose the relevant factors from the list below,
and rank them from most to least important.

Respondents were given a choice of “personal experience”,
“what I hear from my peers”, “what I hear from my mentors/man-
agers”, “articles in industry magazines”, “research papers”, and
“other”. We then gathered the ranks given for each of the
above factors. Thus, we had a collection of factor ranks for
the prioritization strategies – the lower the ranks, the more
important a strategy is rated.

Defect density distribution. Defect density is an impor-
tant indicator of software quality. A good understanding
of defect density allows software practitioners to invest
resources proactively and efficiently to improve software
quality before delivery. To capture practitioners’ perceptions
of defect distribution in a project, we asked respondents to
select a curve of probability density function that matched
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Fig. 3: Relations between file size (LOC) and defect prone-
ness.

their perception. The options of distributions include normal
distribution, uniform distribution, long tail distribution, and
other as shown in Fig. 2. If the other option is selected,
we asked the respondent to provide a specific distribution.
To capture the reasons behind a selection, we included
a follow-up question and asked respondents to elaborate
the reasons behind their choice. In addition, we checked
if respondents’ perceptions on defect density connect with
research and explored how respondents’ experience affects
their perceptions on defect density.

File size vs. defect proneness. A good understanding of the
size-defect correlation is essential for software practitioners
[81]. We asked respondents to select a curve that represents
the relationship between file size (measured in terms of lines
of code) and defect proneness. We used the relationships
between file size and defect proneness as described in Syer
et al.’s work [81] as options in our survey, i.e., inverted
“U” shape and “U” shape. We also used the relationships
mentioned in our interviews as options, i.e., constant and
linear growth. The curves of the relationships are shown
in Fig. 3. In addition, we provided an other option. If the
other option is selected, we asked the respondent to provide
a specific relationship. To capture the reason behind the
selections, we included a follow-up question and asked
respondents to elaborate the reasons behind their choice.
In addition, we checked if respondents’ perceptions on size-
defect correlation connect with research and explored how
respondents’ experience affects their perceptions on size-
defect correlation.

Defect prediction metrics. To understand the metrics that
practitioners deemed effective to identify defect proneness,
we provided respondents some statements about defect
proneness metrics that are extracted from our literature
review. The metrics are divided into 3 groups, code met-
rics [90], process metrics [83] and ownership metrics [27],
[83], respectively. For each of these statements, we asked
practitioners to respond on a 5-point Likert scale (strongly
disagree, disagree, neutral, agree, strongly agree). We also asked
respondents to explain the origins of their view as we do
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for the first question. Furthermore, we asked respondents
to rank the groups of metrics according to their perceived
impact on defect proneness.

Practitioners’ expectations:
Granularity levels. To understand the preferred granulari-

ty levels of a defect prediction tool, we asked respondents to
select one or more from a list of granularity levels. The list
of granularity levels is extracted from our interviews and
literature review. We ranked the list of granularity levels
from most coarse-grained to most fine-grained, i.e., feature
level, component level, file level, method level, commit level and
session level5. Accordingly, the options include identify buggy
feature, identify buggy component, identify buggy file, identify
buggy method, identify buggy commit and identify buggy session.
An other option was provided if respondents preferred other
granularity level not included in our list. If the other option
is selected, we asked the respondent to provide a specific
granularity level.

Expected features. We asked respondents to enumerate the
expected features of a defect prediction tool. Respondents
could enter free-form text to express their thoughts; the
question was optional.

Challenges:
Bug fixing. Defect prediction techniques usually leverage

previous bug reports and related code changes and fixes.
Their performance is validated not on the actual defects
but on bug fixes [46]. Therefore, models of how developers
fixed bugs may affect the performance of defect prediction
techniques. To learn practitioners’ bug fixing models, we
provided respondents with some statements about bug fix-
ing as included in Murphy-Hill et al.’s work [58]. These
include the following statements:

1) Sometimes the real error lies too deep. So risk of introducing
new errors is too high to solve the real error;

2) Some defects are not fixed by correcting the “real” error-
causing component, but rather by a “work-around” some-
where else.

For each of these statements, we asked practitioners to
respond by providing a rating on a 5-point Likert scale
(strongly disagree, disagree, neutral, agree, strongly agree).

Performance evaluation. To understand practitioners’ pre-
ferred evaluation measures, we provided respondents with
some options that were extracted from our previous inter-
views and literature review. We asked respondents to pick
all the applicable options, including false alarm rate, recall,
combination of false alarm rate and recall, top k% LOC precision,
initial false alarm count, other and I don’t know.

Adoption barrier. We asked respondents what they believe
are the barriers for wide adoption of defect prediction tools.
The options include the barriers that were identified in our
previous interviews, for instance: cost of collecting historic
data, lack of IDE integration, lack of code review tool integration,
and lack of continuous integration support. For integration into
code review tool, interviewees mentioned that it is necessary
to allow the outputs of defect prediction techniques to be
used to prioritize code inspection effort, which is a valuable
use case of defect prediction. For support of continuous

5. A session is a period of time between two successive “save”s by a
developer.

integration, interviewees mentioned that it is necessary to
enable defect prediction tools to run automatically and
provide continuous results of defect proneness. An other
option is provided for respondents to specify other barriers.

2.4.2 Recruitment of Respondents

In order to get a sufficient number of respondents from
diverse backgrounds, we followed a multi-pronged strategy
to recruit respondents:

• We contacted professionals from various countries and
IT companies and asked their help to disseminate our
survey within their organizations. We sent emails to
our contacts in Microsoft, Amazon, Google, Baidu, IBM,
Morgan Stanley, Hengtian, IGS and other companies
from various locations around the world, encouraging
them to complete the survey and disseminate it to some
of their colleagues. By following this strategy, we hope
to recruit respondents working in industry from diverse
organizations.

• We sent an email with a link to the survey to 4,850
practitioners that contribute to open source projects on
GitHub and solicited their participation. Out of these
emails, 17 emails received automatic replies notifying
us of the absence of the receiver. By sending to GitHub
developers, we hope to recruit respondents who are
open source practitioners in addition to professionals
working in industry.

No identifying information was required or gathered
from respondents. Separate from their survey responses,
respondents could enter their email addresses into a raffle
to win two $50 Amazon gift cards.

2.4.3 Data Analysis

We computed several statistics to answer our research ques-
tions. For use of prioritization strategies, we first converted
the ratings into scores. Specifically, we converted very rarely,
rarely, sometimes, often and very often to 1, 2, 3, 4 and 5 respec-
tively. We then computed the mean and standard deviation
for all the scores. For ratings of statements, we calculated the
percentage of respondents who strongly agree or agree with
each statement (% strongly agree+% agree). We also com-
puted a conflict factor for each statement. The conflict factor
is a measure of disagreement between respondents, which
is calculated for each statement by the following equation:
(% strongly agree + % agree)/(% strongly disagree +
% disagree).

To group free-form answers of questions, we performed
an open card sort [80]. Our card sort consisted of two
phases: in the preparation phase, we created one card for
each response to a question. In the execution phase, cards
were sorted into meaningful groups with a descriptive title.
We had no predefined groups; instead, we let the groups
emerge and evolve throughout the sorting process.

3 RESULTS

In this section, we present the results of our study.
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CHN 246 (62%)

USA 63 (16%)

GBR 14 (4%)

CAN 7 (2%)

GER 7 (2%)

Fig. 4: Countries in which survey respondents reside. The
darker the color is, the more respondents that reside in that
country. The legend presents the top 5 countries with most
respondents.

3.1 Overall Impressions
We received a total of 402 responses, and the respondents
reside in 33 countries across five continents as shown in Fig.
4. The top two countries in which the respondents reside are
China and the United States.

We excluded 7 responses made by respondents whose
job roles are neither development, testing nor project man-
agement. Those respondents described their job roles as:
vulnerability analyst6 (1), business analyst (2), data scientist
(1), network infrastructure (1), and legal affairs (1). At the
end, we had a set of 395 responses.

The number of years of professional experience of the re-
spondents varied from 1 year to 29 years, with an average of
6.8 years. Among the respondents, 320 (81.0%), 162 (41.0%)
and 85 (21.5%) described their job roles as development,
testing, and project management respectively. Note that the
percentages do not add up to 100% since some respondents
might perform multiple roles, especially for respondents
in small to medium sized corporations, or respondents
from open-source projects. The job role combinations of the
respondents include “development + project management”,
“development + testing”, “development + testing + project
management”, “testing + project management”. Thus, we
have seven groups of job roles for our respondents.

3.2 Willingness to Adopt
Fig. 5 shows the percentage of practitioners who are will-
ing/unwilling to adopt defect prediction tools across dif-
ferent demographics. We consider the following demographic
groups:

• All respondents (All),
• Respondents who are developers (Dev),
• Respondents who are testers (Test),
• Respondents who are project managers (PM),
• Respondents who are developers and testers (De-

v+Test),

6. The main duties of a vulnerability analyst include writing vul-
nerability reports and analyzing software vulnerabilities using black
box testing, source code examination, and attack reproduction. Thus,
we do not consider a vulnerability analyst to be a developer. (https:
//www.appone.com/maininforeq.asp?R ID=945477)

• Respondents who are developers and project managers
(Dev+PM),

• Respondents who are testers and project managers
(Test+PM),

• Respondents who are developers, testers and project
managers (Dev+Test+PM),

• Respondents with low experience, which we define as
the bottom 25% with the least experience in years and
worked for 1-2 years (ExpLow),

• Respondents with medium experience and worked for
2-10 years (ExpMed),

• Respondents with high experience, which we define
as the top 25% with the most experience in years and
worked for 10-29 years (ExpHigh),

• Respondents who recently worked in a project with 1-5
members (SizeT),

• Respondents who recently worked in a project with 6-
10 members (SizeS),

• Respondents who recently worked in a project with 11-
20 members (SizeM),

• Respondents who recently worked in a project with 21-
40 members (SizeL),

• Respondents who recently worked in a project with
more than 40 members (SizeH),

• Respondents who use static analysis tools (StaticY),
• Respondents who do not use static analysis tools (Stat-

icN).

From Fig. 5, we observe that across all demographics
more respondents are willing to adopt a defect prediction
tool as compared to those who are not willing to. Across all
respondents, only 7.8% are unwilling to adopt defect pre-
diction tools. Furthermore, we observe several differences
among the demographic groups:

• There is little difference across various job roles of
development, development + testing, development + project
management, and development + testing + project manage-
ment. Testers are slightly more willing to adopt a defect
prediction tool than other job roles. Respondents with
job roles of project management and testing + project man-
agement are more unwilling to adopt a defect prediction
tool than those with other job roles. To check whether
the differences of willingness across the seven job roles
are statistically significant, we performed a Fisher’s
exact test [18]. The null hypothesis is that respondents
with different roles are equally willing to adopt defect
prediction tools. We found no statistically significant
difference (p-values max: 1, min: 0.07, median: 0.18,
mean: 0.37).

• Respondents with the most experience are least willing
to adopt a defect prediction tool. We can especially
observe a sharp increase in the percentage of unwilling
respondents between ExpMed and ExpHigh groups.
Again, we performed a Fisher’s exact test. The null
hypothesis is that the ExpMed and ExpHigh groups
are equally willing to adopt defect prediction tools.
We found that the difference between ExpHigh and
ExpMed is significant (p-value = 0.0001).

• There is little difference across various project sizes.
As project size increases, the unwillingness of adoption
among respondents slightly decreases. The null hypoth-
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Fig. 5: Percentage of respondents who are willing/unwilling to adopt defect prediction tools across various demographics.
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Fig. 6: Percentage of respondents who are willing/unwilling to adopt defect prediction tools across various programming
languages.

esis is that the respondents across various project sizes
are equally willing to adopt defect prediction tools. A
Fisher’s exact test indicates no statistically significant
difference (p-values max: 1, min: 0.10, median: 0.53,
mean: 0.57).

• There is little difference between respondents who use
or do not use static analysis tools. The null hypothesis
is that the respondents who use or do not use static
analysis tools are equally willing to adopt defect predic-
tion tools. A Fisher’s exact test indicates no statistically
significant difference (p-value = 0.83).

Fig. 6 shows the percentage of practitioners who are
willing/unwilling to adopt defect prediction tools across
various programming languages. We observe that prac-
titioners who use Scala, R and golang as their primary
programming languages are the top-3 groups who are un-
willing to adopt a defect prediction tool. Scala is a Java-
like programming language which unifies object-oriented
and functional programming. R is an interpreted language
and widely used for statistics and data analysis. Golang
is a statically typed language with garbage collection and
memory safety. The three programming languages are quite
new since they are released in the early 21st century. We
have a few respondents who use these languages as their
primary programming languages. We performed a Fisher’s
exact test [18] with the null hypothesis - the respondents

who use Scala, R and golang as primary programming
languages are equally willing to adopt defect prediction
tools. The result shows no statistically significant difference
due to using Scala, R and golang as primary programming
languages in willingness to adopt defect prediction tools (p-
value = 0.1258, 0.4777, 0.0675).

To investigate the impact of various demographic factors
to adoption willingness, we built a decision tree classifier
by using the function ctree in the party R package. The
constructed decision tree is shown in Fig. 7. Note that the
respondents do not add up to 395 since we dropped respon-
dents who do not provide specific programming languages.
From the decision tree, we notice that high-experience re-
spondents who use C/C++ as their primary programming
languages account for the majority of the unwilling popula-
tion. High-experience respondents are likely to have a deep
understanding of their projects and may tend to trust their
intuition rather than a defect prediction tool. C/C++ pro-
vides facilities for low-level memory manipulation, which
is usually used for system programming with performance
as a design highlight. Some respondents mentioned that
“projects written in C/C++ tend to be too complicated for a defect
prediction tool to achieve high performance”. Thus respondents
who use C/C++ are less willing to adopt a defect predic-
tion tool because they are unsure that defect prediction
techniques can deal with the complexities involved in the
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Fig. 7: Decision tree of factors that influence practitioners’
willingness of adoption. “Yes” labels represent the responses
that will adopt a defect prediction tool; “No” labels repre-
sent the responses that will not adopt a defect prediction
tool.

programs that they write.
Furthermore, we adopted classification techniques to ex-

amine the importance of demographics features on adoption
willingness. We adopted random forest since it is one of the
most commonly used classification techniques and it is quite
robust for noisy data [87]. We used the randomForest R
package to implement random forest models. We bootstrap
the data set by sampling the same size of our data set (with
replacement) 1,000 times. The mean AUC of the random
forest models is 0.7270 with a standard deviation 0.0182
and a standard error 0.0006 (min: 0.6718, median: 0.7273,
max: 0.7803). To extract the demographics features that
are important for the adoption willingness, we used the
importance function in the randomForest R package
to calculate variable importance measures as suggested in
[22]. The importance function [51] implements two algo-
rithms for calculating variable importance measures in the
randomForest R package. The first algorithm calculates the
Gini variable importance measure. The second algorithm
calculates the mean decrease in accuracy using the out-of-
bag observations. We leveraged the second algorithm as
suggested in [22]. The mean variable importance measure
of each factor is shown in Fig. 8. We found that C/C++
as primary programming languages (Language(C/C++)) and
experience in years (Experience) are the top two important
factors that influence the random forest models.

To further analyze those factors, we apply Scott-Knott
Effect Size Difference (ESD) test [86] to group the 28 factors
into statistically distinct groups according to their variable
importance. Notice that each random forest model generates
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Fig. 8: Mean decrease in accuracy of each factor that affects
willingness of adoption in random forest models.

a vector of variable importance. We input the variable
importance of those models into the Scott-Knott ESD test.
The Scott-Knott ESD test evaluates the treatment means of
variable importance scores for each factor. The null hypothe-
sis is that the treatment means between variable importance
scores of two factors are similar. The Scott-Knott ESD test
then partitions the set of treatment means into statistically
distinct groups (α = 0.05), and merge any two statistically
distinct groups that have a negligible effect size into one
group. Table 3 presents the 28 factors as ranked according
to the Scott-Knott ESD test in terms of variable importance.

We identified 5 categories of reasons in unwilling cases
as discussed below:
R1. A defect prediction tool is not needed. This group
consists of comments where the practitioner perceived a
defect prediction tool as not useful to their daily work. The
respondents deemed that current state-of-practice is good
enough and believed that no additional support is necessary.

L ... my software projects are not extremely large or complex.
L We don’t have a bug problem. HTTP semantics + microser-

vice architecture + strong testing = simple and few bugs.
L I don’t see how most institutions I’ve worked at would be

able to use this kind of thing in a sensible way ... I have no
interest in introducing any more process.

L I have not seen any reason to do so. We automatically test all
of our code and manually test/inspect practically none of our
code ...

R2. Incompatibility. Practitioners mentioned that a defect
prediction tool may be incompatible with their personal or
organizational development environments.

L I prefer a simple development environment ...
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TABLE 3: Groups of factors that affect willingness of adop-
tion created by Scott-Knott ESD test.

Factor Mean of Variable Importance
Group 1
Language (C/C++) 7.04
Group 2
Experience 5.86
Group 3
Language (JavaScript) 1.74
Language (Golang) 1.64
Group 4
Language (Swift) 1.50
Group 5
Language (Clojure) 1.22
Group 6
Language (R) 1.09
Language (Perl) 1.09
Role (Test) 1.05
Project Size 0.95
Group 7
Language (Objective-C) 0.58
Language (.NET) 0.48
Group 8
Language (Shell) 0.33
Language (Rust) 0.27
Group 9
Language (Ruby) 0.10
Language (Cm-lang) 0.00
Language (CoffeeScript) 0.00
Language (Elixir) 0.00
Language (Haskell) 0.00
Language (Julia) 0.00
Language (Kotlin) 0.00
Group 10
Language (Java) -0.59
Group 11
Role (PM) -0.84
Group 12
Language (TypeScript) -0.99
Group 13
Language (Python) -1.19
Group 14
Role (Dev) -2.42
Language (Scala) -2.55
Group 15
Language (PHP) -3.09

L ... useful for me personally but a horrible nightmare when
integrated into an institutional workflow ...

L Not allowed to prioritize fixing code that is not broken.
R3. Cost outweighs benefits. Practitioners deemed the cost
of using a defect prediction tool to be higher than the
benefits gained from using the tool.
L It’s cheaper (on my time) to let users find and report the

defects.
R4. Disbelief in defect prediction. Some practitioners had
strong disbelief in defect prediction techniques, including
the heuristics, benefits, value and actionability.
L At this point, I’m quite suspicious this kind of heuristic can

ever be useful ...
L ... instead of being a tool to help developers be more confident

in their approach, it becomes a tool for oppressing technical
people with “objective” metrics that can clearly be gamified.

L Would need to prove value.
L They don’t provide useful information; they don’t tell me

anything I don’t already know.
R5. Another solution seems better. Some practitioners
believed that it is better to work on alternative solutions
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Fig. 9: Percentages of respondents specifying various rea-
sons of adoption unwillingness.

that are likely to resolve the problem that is addressed by
defect prediction.
L It would be easier, cheaper, and more effective to eradicate

error-prone programming languages like C and Java, but
instead we are trying to fix software engineering from the
outside with more tools and more heuristics ...

L I would rather invest in raising a team to code in Haskell
then invest a team in tooling over a PHP, Ruby, Python or
the mess of JS.

L The kinds of static analysis tools we use are more narrowly
domain focused than a general “defect prediction” tool.

Fig. 9 shows the percentage of respondents who provided
reasons of unwillingness across various concerns. R4 disbelief
in defect prediction is the biggest reason for unwillingness.

3.3 Perceptions of Practitioners
We present practitioners’ perceptions regarding defect pre-
diction in our study as follows.

3.3.1 Resource Prioritization
Table 4 presents the average score and variance for all the
prioritization strategies. The strategies are sorted in terms
of their average score (descending), followed by their score
variance (ascending). The higher the average score of a
strategy is, the more frequently the strategy is used; the
higher the score variance is, the more controversial the
strategy is. We observe that respondents believed that the
most recently changed file and the most recent buggy file
have the highest chance to have defects. Meanwhile, the
most controversial strategy of all is related to files that are
called by many other files.

Furthermore, we analyzed the score distribution of
each strategy across experience levels of respondents. To
check whether the difference of distribution between ex-
perience levels are statistically significant, we performed
the Kolmogorov-Smirnov test. The null hypothesis is that
the respondents with different experience levels have same
score distribution of each strategy. We found no significant
difference in score distribution across experience levels (p-
values max: 1, min: 0.82, median: 1, mean: 0.93).

We further broke down the frequency ratings in Fig. 10,
and observed the following:

• Almost 70% of the respondents indicated that they
would very often or often select most recently changed
file and most recent buggy file for code inspection/test-
ing to find potential buggy files.
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TABLE 4: Frequency of strategies that practitioners use to prioritize resources for code inspection/testing. Ratings have
been converted to numeric scores (very rarely = 1, rarely = 2, sometimes = 3, often = 4, very often = 5). An answer score of
3 indicates neutrality. Variance is a measure of disagreement between respondents. “Total” is the number of respondents
who rate a strategy and did not select I don’t know.

Prioritization Strategy Total Score Variance
T1 Most recently changed file 391 3.80 0.71
T2 Most recent buggy file 386 3.80 0.72
T3 File created/changed by junior developers or newcomers 389 3.69 0.87
T4 File changed by a large number of developers 389 3.58 0.81
T5 File called by many other files 385 3.55 1.08
T6 File that calls many other files 386 3.48 0.90
T7 File with more LOC 387 3.44 0.75
T8 File changed by few developers 387 2.93 0.75
T9 File created/changed by senior developers 386 2.76 0.79
T10 File with fewer LOC 386 2.50 0.69

Frequency

S
tr

at
eg

y

T10

T9

T8

T7

T6

T5

T4

T3

T2

T1

300 200 100 0 100 200 300

53 (14%) 119 (31%) 184 (48%)

59 (15%)      8 (2%) 

29 (8%)  1 (0%)

34 (9%) 100 (26%) 185 (48%)

20 (5%) 90 (23%) 186 (48%) 81 (21%) 10 (3%)

   11 (3%)  28 (7%) 164 (42%) 148 (38%) 36 (9%)

    12 (3%)  36 (9%) 146 (38%) 138 (36%) 54 (14%)

17 (4%)   45 (12%) 98 (25%) 161 (42%) 64 (17%)

8 (2%) 32 (8%) 129 (33%) 167 (43%) 53 (14%)

13 (3%) 21 (5%) 107 (28%) 180 (46%) 68 (17%)

7 (2%) 16 (4%) 95 (25%) 197 (51%) 71 (18%)

6 (2%) 19 (5%) 93 (24%) 203 (52%) 70 (18%)

Very Rarely Rarely Sometimes Often Very Often

Fig. 10: Frequency of the strategies that practitioners use to prioritize resources for code insepction/testing.

• More than 50% of the respondents mentioned that they
would very often or often select files changed by junior
developers, changed by more developers, and called by
many other files for code inspection/testing.

• Around 50% of the respondents were on the fence and
chose sometimes for prioritizing a file that is changed by
fewer developers, created/changed by senior develop-
ers, and with fewer LOCs.

In addition, we did solicit (as described earlier) practi-
tioners’ statements on how they formed their opinions. For
the practitioners who expressed the strongest opinion (very
often and very rarely), we gathered a collection of ranks of
possible factors in their opinion formation. The results are
shown in Fig. 11.

The highest ranked factor influencing respondents’ opin-
ion on a given strategy is personal experience which was
selected 229 times. A look at the plot in Fig. 11 shows that
personal experience was almost always ranked at the top,
and a handful of times at other positions. Next is what I
hear from my peers, which was selected 161 times, ranked
second in terms of median rank. Next is what I hear from my
mentors/managers, selected 128 times, ranked third in terms
of median rank. The lowest ranked is other, selected 9 times.
The factors affecting opinion are consistent with earlier
work of Devanbu et al. [15]. In their work, the respondents
gave the strongest weight to personal experience, then to
peers, and then to mentor and managers. Furthermore, their
respondents appeared to be influenced by trade journals
rather than research papers.

To figure out if respondents who chose personal experience
were senior enough to form a reliable opinion, we plotted
the experience in years of those respondents in Fig. 12.
Among those respondents, we found the median experience
in years is 5 years; 31.7% of them are software practitioners
with more than 10 years of experience. Additionally, a
total of 215 respondents expressed strong opinions (those
selected very often or very rarely) based on personal experience,
accounting for 69%, 58% and 51% of respondents with high,
medium and low experience respectively. Thus the more
senior a respondent is, the more likely he/she formed a
strong opinion based on personal experience.

Furthermore, we investigated how high-experience re-
spondents who formed a strong opinion based on personal
experience use prioritization strategies. We plotted the fre-
quency of used strategies by high-experience respondents
who formed a strong opinion based on personal experience
as shown in Fig. 13. The prioritization strategies that are
concerned with the number of developers (T4 and T8)
[91], code (T7 and T10) [104], process (T1 and T2) [38]
and complexity (T5 and T6) [104] are preferred by high-
experience respondents. These prioritization strategies are
consistent with research results in prior work. However, for
strategies T3 and T9 that are concerned with the experience
of developers, there exists a disconnect between the practice
of high-experience respondents and research. As shown in
Fig. 13, the high-experience respondents would prioritize
files created or changed by low-experience developers over
files created or changed by senior developers. However, an
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Fig. 12: Violin plot of experience in years of respondents
that selected “Personal experience” factor in their opinion
formation.

experienced developer might be overconfident in his/her
approach to unfamiliar code, and thus lower the code qual-
ity. In prior work, Rahman and Devanbu found that the
lack of general experience is not consistently associated with
defect proneness [68].

3.3.2 Defect Density Distribution
Defect density is an important indicator of software qual-
ity. A good understanding of defect density allows project
managers to invest resources proactively and efficiently to
improve software quality before delivery [40]. Fig. 14 shows
the percentage of respondents’ different belief regarding
defect density of files in a project. We observe that close
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Fig. 13: Violin plots of frequency of strategies of senior
respondents who formed a strong opinion based on personal
experience (very rarely = 1, rarely = 2, sometimes = 3, often = 4,
very often = 5).
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density distributions.
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to 50% of the respondents considered a normal distribution,
i.e., defect densities are randomly distributed across files in
a project; 26% of respondents considered a long tail distri-
bution, i.e., most files have a few defects and most defects
appear in a small number of files in a project; less than 10%
of the respondents considered a uniform distribution, i.e.,
bugs are distributed equally across files in a project.

Prior studies show that defects are distributed within a
project according to the Pareto principle [3], [17], which is
a long tail distribution. However, in total, nearly half of the
respondents did not consider a long tail distribution; 15%
of the respondents had no opinions about defect density
distribution. There exists an obvious disconnect between
research and practice.

To further analyze the impact of experience on the opin-
ion of respondents, we grouped the distribution selections
relative to the experience of respondents. Fig. 15 shows
how the distribution selection varies as a function of the
experience level of respondents. By observing the variation
of defect prediction selection percentage across different
experience levels, we found a 15% increase from low ex-
perience to medium experience and a 17% increase from
medium experience to high experience in the population
which selected long tail distribution. Specifically, nearly
half of the high-experience respondents selected long tail
distribution, accounting for around 42% of respondents who
selected long tail distribution. In contrast, only 9.7% of the
low-experience respondents selected long tail distribution.
Practitioners’ experience has a significant effect on the per-
ception of defect density distribution. Surprisingly, 28% of
high-experience respondents chose I don’t know. Some of
them mentioned that “defect density distribution is too
complicated to be represented by the curves”. As shown
in Fig. 15, respondents are more willing to say I don’t know
as they become more senior.

Future studies are needed to better understand the dis-
connect between research and practitioners’ perception. In
addition, our findings suggest a large demand of defect pre-
diction solutions for inexperienced software practitioners
and novices. Defect prediction solutions could help inex-
perienced software practitioners and novices learn effective
ways to identify defect-prone files in turn improving the
effectiveness of their code inspection/testing efforts.

3.3.3 File Size vs. Defect Proneness
A good understanding of the size-defect correlation is essen-
tial for software practitioners [81]. Fig. 16 shows the percent-
age of different belief of respondents regarding relationship
between file size and defect proneness. We observed that
59% of the respondents considered a linear growth correla-
tion between file size and defect proneness, i.e., probability
of defect proneness would increase proportionally as file
size increases. 14% of the respondents considered an inverted
“U” shape correlation between file size and defect proneness,
i.e., smallest files and largest files are less defect-prone. 9%
of the respondents selected “U” shape (i.e., smallest files and
largest files are more defect-prone) and 6% selected constant
(i.e., file size does not affect defect proneness) correlations.
In addition, 7% of the respondents had no idea about the
relationship between file size and defect proneness.

We further analyzed the effect of respondents’ experi-
ence on their perception of relationship between size and
defect proneness. Fig. 17 shows how the perceptions of the
relationship between size and defect proneness varies as a
function of the experience levels of respondents. For inverted
“U” shape relationship, we found a 12% decrement from
low experience to medium experience and a 5% decrement
from medium experience to high experience. Over half of
the respondents in each experience level perceived a linear
size-defect relationship.

The work of Koru et al. has been instrumental in the
recent understanding of size-defect relationship [43]–[45].
In contrast to the perception of most practitioners, findings
of Koru et al. suggested a nonlinear size-defect relation-
ship where defect proneness increases with size at a slower
rate. Thus smaller instances are proportionally more defect
prone; that is a “U” shaped relationship between size and
defect proneness. Syer et al. [81] replicated the work of Koru
et al. and reached contradicting findings: defect proneness
has an inverted “U” shaped pattern (i.e., defect density
increases in smaller files, peaks in the small/medium-sized
files, then decreases in medium-sized and larger files).

As shown in Fig. 16, a total of 14% of the respondents
perceived an inverted “U” shaped relationship between size
and defect proneness. Fig. 17 shows that the percentage is
even lower (7%) for the high-experience respondents. There
exists an obvious disconnect between research and practi-
tioners’ perceptions. Our findings suggest that more efforts
should be taken to expand prior studies [43]–[45], [81] and
provide more evidence regarding the need to disseminate
empirical findings to software practitioners.

3.3.4 Defect Prediction Metrics
Metrics in defect prediction research are used as indepen-
dent variables of defect prediction models. Table 5 presents
the percentages of agreement and conflict factors for all
the statements regarding the studied metric groups. In each
metric group, statements are sorted in terms of their percent-
ages of agreement (descending), followed by conflict factors
(descending). The higher the percentage of agreement is,
the more the agreement is with the statement; the lower
the conflict factor is, the more the conflict of opinion is
within respondents for a particular statement. Fig. 18 shows
respondents’ agreement levels for each of the statements.
We made the following observations:
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7 (7%) 4 (4%) 5 (5%) 62 (66%) 10 (11%) 6 (6%)

23 (12%)    16 (9%)  14 (7%) 115 (61%) 9 (5%)  10 (5%)

             22 (24%) 13 (14%)  5 (5%) 45 (48%) 1 (1%) 7 (8%) 

Inverted U Shape U Shape Constant Linear Growth Other I don't know

Fig. 17: Percentages of respondents specifying the different file size vs. defect proneness correlations relative to experience
levels.

TABLE 5: Respondents’ ratings on statements related to defect prediction metrics. “Total” is the number of respondents
who rated a statement and did not select I don’t know. “% Agreement” is the percentage of respondents who strongly
agree or agree with each statement (% strongly agree + % agree). “Conflict Factor” is a measure of disagree-
ment between respondents, which is calculated for each statement by the following equation: (% strongly agree +
% agree)/(% strongly disagree+% disagree).

Metric Statement Total % Agreement Conflict Factor
Code Metrics

S1
Semantic information is more capable of distin-
guishing one code region from another than syntax
information.

365 62.46 9.49

Process Metrics

S2 A file with a complex code change process tends to
be buggy. 386 76.17 22.60

S3 A file with frequent changes tends to be bug-prone. 389 62.21 8.64
S4 A file with more added lines is more bug-prone. 389 61.95 7.30

S5 A file with more bug-fix changes tends to be more
bug-prone. 390 61.80 5.74

S6 A file recently co-changed with bug-introduced files
tends to be buggy. 382 61.26 9.35

S7 Recently changed files tend to be buggy. 390 58.72 5.72

S8 A commit that involves more added and removed
lines is more bug-prone. 388 57.98 5.11

S9 Recently created files tend to be buggy. 389 52.70 4.18
S10 Recently bug-fixed files tend to be buggy. 389 49.62 3.78

S11 A file with more fixed bugs tends to be more bug-
prone. 387 48.06 2.95

S12 A file with more commits is more bug-prone. 389 46.27 2.34
S13 A file with more removed lines is more bug-prone. 389 35.73 1.30

Ownership Metrics

S14 A file that is changed by more developers is more
bug-prone. 386 64.51 8.89

S15 Files with fewer lines contributed by their owners
(who contribute most changes) are more bug-prone. 376 30.59 1.47

• The top 3 statements that the respondents agreed with
are S2, S14 and S1, whose percentages of agreement are
76.17, 64.51 and 62.46 respectively.
The statement S2 is concerned with the complexity of
code change process. The result is consistent with prior
work by Hassan who designed metrics to measure
the complexity of change processes using Shannon’s
Entropy [26]. His work reported that a complex code
change process negatively affects the quality of soft-
ware: the more complex changes to a file, the more like-
ly that the file will be defect-prone. Their results further
indicated that change process complexity metrics are
better to predict proneness than other process metrics.
The statement S14 is concerned with the number of de-

velopers for a software system. The result is consistent
with Weyuker et al.’s findings [91]. The metrics related
to the number of developers had a positive, statistically
significant relationship with defect proneness.
The statement S1 is related to the semantic information
of code region. The result is consistent with prior work.
In a recent study, Wang et al. leveraged deep learning
algorithm to learn semantic information of programs
from source code [90]. Their results on ten open source
projects showed that their learned semantic information
significantly improve defect prediction compared to
traditional features.

• The top 3 statements that have conflict in the opinions
of respondents are S13, S15 and S12, whose conflict
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5 (1%)  44 (11%) 135 (35%) 174 (45%) 31 (8%)

5 (1%)  39 (10%) 119 (31%) 183 (47%) 42 (11%)

3 (1%) 37 (9%) 121 (31%) 203 (52%) 26 (7%)

 5 (1%)   20 (5%) 123 (32%) 197 (52%) 37 (10%)

5 (1%)   37 (9%) 107 (27%) 201 (52%) 40 (10%)

4 (1%)  29 (7%) 115 (30%) 207 (53%) 34 (9%)

4 (1%)  24 (6%) 119 (31%) 207 (53%) 35 (9%)

2 (1%)  22 (6%) 113 (31%) 

3 (1%)  10 (3%) 79 (20%) 194 (50%) 100 (26%)

182 (50%) 46 (13%)

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 18: Practitioners’ agreement levels for statements related to defect prediction metrics.

factors are 1.30, 1.47 and 2.34 respectively.
The statements S13 and S12 are concerned with pro-
cess metrics. The statement S13 is concerned with the
number of deleted lines in a file. The statement S12
is regarding the number of commits made to a file.
However, Rahman and Devanbu found that metrics
related to commit count and deleted line count had
good predictive power of defect proneness [69].
The statement S15 is related to code ownership. The
conflict about code ownership is consistent with find-
ings in prior studies. On the one hand, Raymond [73]
claimed that increasing the number of collaborators
would accelerate defect diagnosis. On the other hand,
Martin et al. [67] observed that “too many cooks” work-
ing on the software leads to unfocused, defect-prone
contributions. Researchers also found that these over-
heads can slow down development [28] and increase
defects [11].

• The statements S3, S4, S5, S6, S7, S8 show similar
agreement levels.

The strategies that developers adopt to prioritize code
inspection/testing efforts reflect practitioners’ behavior re-
garding defect prediction. To investigate if practitioners’
behavior always corresponds with their perceptions, we
built mappings between prioritization strategies and defec-
tiveness metrics (as shown in Table 4 and Table 5): Statement
S7 and Strategy T1 are both concerned with “recently changed
file”; Statement S10 and Strategy T2 are both concerned with
“recent buggy file”; Statement S14 and Strategy T4 are both
concerned with “file that is changed by more developers”. We
then separately ranked the 3 strategies (i.e., T1, T2 and T4)
according to their mean scores and 3 statements (i.e., S7,
S10 and S14) according to their percentages of agreement.
Among the 3 statements, statement S14 ranked at the top
with the greatest percentage of agreement. However, its
corresponding strategy T4 ranked the third. The agreement
rank of a statement is not exactly in line with the frequency
of our respondents use of the corresponding strategies. In
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Other
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12%
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1% 2%

Fig. 19: Percentage of respondents who selected various
granularity levels as their topmost preferred granularity
levels.

addition, we found that 13 respondents out of 249 who
strongly agreed or agreed with statement S14 very rarely or
rarely used strategy T4; 7 out of 28 who strongly disagreed
or disagreed with statement S14 very often or often used
strategy T4. In total, 7.2% of the respondents reveal an
inconsistency between their behavior and their perception.

3.4 Expectations of Practitioners

We present practitioners’ expectations regarding defect pre-
diction in our study as follows.

3.4.1 Preferred Granularity Levels
Defect prediction techniques can predict defects at differ-
ent granularity levels, e.g., feature, component, file (class),
method, commit and session (every time one saves a file).
Fig. 19 shows practitioners’ topmost preferred granularity
levels when prioritizing code inspection/test efforts. We
observe that the top-3 preferred granularity levels are fea-
ture (48%), commit (20%) and component (13%). Feature
is a clear winner among the preferred granularity levels.
Some respondents picked “other” as their topmost preferred
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Fig. 20: Percentage of respondents with high experience
who selected various granularity levels as their topmost
preferred granularity levels.

granularity level. Among these respondents, some of them
specified that they preferred a tool that can predict defective
pull requests and the exact defective logic branch.

We further analyzed the topmost preferred granularity
levels of the high-experience respondents. The top-3 pre-
ferred granularity levels are feature (32%), commit (25%)
and component (17%) as shown in Fig. 20. The ranking is
consistent with the ranking of preferred granularity levels
of all respondents. Although feature level is still the most
preferred granularity level, the percentage of respondents
who preferred feature level defect prediction decreased by
16%.

3.4.2 Expected Features
A total of 67 respondents provided free-form text com-
ments regarding expected features. We found groups of
features that the respondents expected (followed by their
corresponding frequency) as follows:

• Integration with IDE/editor (7)
L IDE/editor-plugin with inline visual marking of errors and

explanations of why an error is considered an error.
L Nice IDE with nice highlighted LOC on possible buggy

code ...
L IDE integration that shows warnings whenever the dan-

gerous place in a file is modified, tooltips and notes by the
IDE to help navigate through the possible defective places
in the code.

• Integration into CI (7)
L Needs to be very, very easy to configure in standard

continuous integration setups ...
L Integration with Jenkins and other CI tools would be

awesome.
L I would try them out if I could integrate them into a CI

tool like Jenkins.
L It would be ideal for the functionality of the tool to run ...

also on a CI server as a fallback.
• Integration with code review tools (7)
L ... Code review helper, typically show most risky files/part

of code, first with color codes.
L While reviewing code in a pull request, I can visually see

in the changes that are prone to being buggy based on this
analysis.

• Ability to provide rationale (6)
L ... ideally with the reasoning (i.e., see these lines in this

pair of commits) for why it’s a likely defect.
L ... and explanations of why an error is considered an error.
L ... Tell me why certain lines are potentially wrong.
L ... The tool would have to make a very compelling case for

spending extra review effort.
L ... Anything flagged would have a concrete, context rele-

vant example ... help developers of all skill levels under-
stand why the code is suspect, so they can learn to avoid
making the same mistake in the future.

• Full programming language support (6)
L language specific ”known bugs” and language indepen-

dent attack vectors should be checked.
L Should be fully integrated into the language.

• Simplicity (5)
L Keep it simple, keep it a command-line tool with a good

command-line interface ...
L I’d prefer a simple tool that can analyse history and metrics

that arise from software engineering process ...
• Integration with software configuration management

systems (4)
L Easy to plug in with github so it analyzes every commit in

every branch.
L Github widget which annotates the review web page for

me with notes on what to also note. The history between
me the reviewer and the code author - how have I reviewed
their code before?

L ... Integration with SCM via github and/or bitbucket.
• Ability to provide actionable guidance (4)
L ... recommendation for refactoring, recommendation for

usage of more suitable data structure ...
L ... Suggested solutions for easy fixes (off by one, typos, etc.)

• Cooperation with coverage analysis (4)
L Another thing I miss on defect prediction tools is integra-

tion with code coverage that shows more than an obvious
percentage.

L I would expect something that I have now with test
coverage tools ...

• Online prediction (4)
L ... flags changes that worsen metrics.
L ... give a risk grade for the change, making the engineer

aware of what he is doing.
L continuously analyzing code to detect the error asap while

you develop.
L Defect prediction must be ONLINE. It must react to

change.
• Low false positives (3)
L I want it to provide as little noise as possible (I’d rather

learn less than have false positives.
L ... if a framework provides some mitigation, it’s effective-

ness must be taken into account. This should lower critical
warnings.

L ... False positive rate must be low.
• Efficiency (2)
L I would like it if it were fast enough to run over modified

files for every save of file, on the order of hundreds of
milliseconds or less.
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• Scalability (1)
L Something that can process a whole github.com.

• Others (4)
L Must integrate with and respect existing process.
L Track developer proficiency in languages (number of intro-

duced bugs in a given language by a developer in the past
per LOC), and use that to prioritize what part of the code
to check more for potential defects.

L ... I would like a defect prediction tool that could recognize
semantic constructs that are frequently the source of bugs
in *other* people’s code. In this way, I could benefit from
the knowledge of the entire community, rather than just
my or my team’s past projects.

L ... you can also perhaps predict per developer, what faults
they might be more prone to introduce. That way, you can
focus in a more targeted way.

3.5 Adoption Challenges
We present practitioners’ adoption challenges regarding de-
fect prediction in our study as follows.

3.5.1 Bug Fixing
Table 6 presents the percentages of agreement and conflict
factors for all the statements related to bug fixing. State-
ments are sorted in terms of their percentages of agreement
(descending), followed by the conflict factors (descending).
The higher the percentage of agreement is, the more the
agreement is with the statement; the lower the conflict factor
is, the more the conflict of opinion is within respondents
for a particular statement. Fig. 21 shows respondents’ a-
greement levels of the statements. We made the following
observations:

• The statement with which respondents disagreed the
most was “S6: Sometimes a try-catch block could be placed
anywhere between where the exception was originally thrown
and the user interface.” (% Agreement = 35.38); this state-
ment also incited the most disparity in respondents’
agreement (Conflict Factor = 1.33). The statement S6
corresponds to one design dimension of bug fixes - “da-
ta propagation (across components)” [58]. “Data prop-
agation” describes how far information is allowed to
propagate across a piece of software, where developers
have the option of fixing a bug by intercepting the data
in any of the components of the software. The results
are inconsistent with the findings of Murphy-Hill et al.
[58]. In their interviews, interviewees mentioned that
placement of try-catch block at any locations between
where the exception was originally thrown and the user
interface would have fixed the bug from the end-user’s
perspective.

• The statement with which most respondents agreed
was “S1: The same bug can be fixed in multiple ways” (%
Agreement = 79.70); which was also the least contro-
versial statement related to bug fixing (Conflict Factor
= 20.92). Note that the statement S1 is the assumption
that was explored by Murphy-Hill et al. [58]. Based on
this assumption, they explored the design dimensions
of bug fixes.

• 52% of our respondents claimed that “Location in the
software at which I fix a bug is the location at which an

FAR + Recall
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Top k% LOC precision
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Recall Other
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Fig. 22: Percentage of respondents who selected various
measures as their preferred measure for evaluating defect
prediction tools.

error was made” (S3); whereas 43% of the respondents
mentioned that “Some defects are not fixed by correcting
the ‘real’ error-causing component, but rather by a ‘work-
around’ somewhere else.”(S5). This result gives evidence
to support an assumption in Murphy-Hill et al.’s s-
tudy [58]: fixed bugs in the past may not capture the
true cause of failures, instead they may capture work-
arounds.

• 66% of our respondents strongly agreed or agreed that
“Sometimes the real error lies too deep. So risk of introducing
new errors is too high to solve the real error” (S2). The
statement may help to understand under what circum-
stances S5 come into existence.

3.5.2 Performance Evaluation
Fig. 22 shows practitioners’ preferred measures to evalu-
ate performance of defect prediction tools. Note that the
percentages do not add up to 100% since a respondent
can select 1-5 options as their preferred measurements. We
can observe that the top-3 preferred measurements are a
combination of false alarm rate and recall (57%, “FAR +
Recall” in Fig. 22) , false alarm rate (38%, “FAR” in Fig.
22) and Top k% LOC precision (35% in Fig. 22). False alarm
rate represents the proportion of non-defective files among
all the inspected files. A higher false alarm rate indicates
that users would encounter more false alarms. Recall is the
proportion of flagged defective files among all the actual de-
fective files. A lower recall indicates that less defective files
could be detected. Top k% LOC precision is the proportion
of defective files inspected when k% LOC are inspected; a
lower value indicates that, after inspecting the same number
of LOC (k%), developers need to inspect more files.

3.5.3 Adoption Barriers
Fig. 23 presents the adoption barriers of defect prediction
tools from practitioners’ perspective. Note that the percent-
ages do not add up to 100% since a respondent can select 1-4
options as their adoption barriers. We observe that the top-3
adoption barriers are “lack of continuous integration support”
(64%, “CI” in Fig. 23), “lack of code review tool integration”
(61%, “CR” in Fig. 23) and “lack of IDE integration” (53%,
“IDE” in Fig. 23). There is no clear winner among these three
barriers, with respondents slightly more concerned about
support of continuous integration.
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TABLE 6: Respondents’ ratings on statements related to bug fixing. “Total” is the number of respondents who rated a
statement and did not select I don’t know. “% Agreement” is the percentage of respondents who strongly agree or agree
with each statement (% strongly agree+% agree). “Conflict Factor” is a measure of disagreement between respondents,
which is calculated for each statement by the following equation: (% strongly agree+% agree)/(% strongly disagree+
% disagree).

Bug Fixing Statement Total % Agreement Conflict Factor
S1 The same bug can be fixed in multiple ways. 394 79.70 20.92

S2 Sometimes the real error lies too deep. So the risk of
introducing new errors is too high to solve the real error. 392 66.07 3.41

S3 Location in the software at which I fix a bug is the
location at which an error was made. 391 52.17 3.19

S4
To fix a bug, I prefer to change the code I am familiar
with rather than the code for which I have no owner-
ship.

391 43.47 1.47

S5
Some defects are not fixed by correcting the “real” error-
causing component, but rather by a “work-around”
somewhere else.

389 43.45 1.59

S6

Sometimes a try-catch block could be placed anywhere
between where the exception was originally thrown and
the user interface (Placement of the block at any of these
locations would have fixed the bug from the perspective
of end-users by eliminating the exception being thrown).

376 35.38 1.33
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Fig. 21: Practitioners agreement levels of statements related to bug fixing.
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Fig. 23: Percentage of respondents who selected various
factors as barriers to adopt defect prediction tools.

4 DISCUSSION

We summarize the results in our study, and discuss impli-
cations and threats to validity in this section.

4.1 Summary of Results

For each of the research questions, we summarized our
results in Table 7 and Table 8.

4.2 Implications

We discuss the implications of our results as follows.

4.2.1 Perception vs. Evidence

Defect density distribution. Practitioners’ experience has
a significant effect on their perception of defect density
distribution. Nearly half of the high-experience respondents
selected the long tail distribution, accounting for 42% of
respondents who selected long tail distribution. In contrast,
only 9.7% of the low-experience respondents selected long
tail distribution. Future studies are needed to provide more
evidence on defect density distribution. In addition, our
observations suggest a large demand for defect prediction
education and solutions for inexperienced software practi-
tioners and novices. Defect prediction solutions could help
them learn effective ways to identify defect-prone files and
thus improve the effectiveness of their code inspection/test-
ing efforts.

File size vs. defect proneness. A total of 14% of the
respondents perceived an inverted “U” shaped relationship
between size and defect proneness. The percentage is even
lower (7%) for the high-experience respondents. There ex-
ists an obvious disconnect between research findings and
practitioners’ perceptions. Our findings suggest that more
efforts is needed to expand prior studies [43]–[45], [81] and
provide more evidence regarding the need to disseminate
empirical findings to software practitioners.
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TABLE 7: Summary of Results: Answers to RQ1 and RQ2.

RQ1. Willingness of adoption
Overall findings:

• Only 7.8% are unwilling to adopt defect prediction tools.
Differences in willingness of adoption across demographic factors:

• Testers are slightly more willing to adopt a defect prediction tool than other job roles.
• More experienced respondents are less willing to adopt a defect prediction tool.
• Practitioners who use Scala, R and golang as their primary programming languages are the top-3 groups who are

unwilling to adopt a defect prediction tool.
In unwilling cases:

• High-experience respondents who use C/C++ as their primary programming languages are the majority of the
unwilling population.

• The reasons of unwillingness include “a defect prediction tool is not needed”, “incompatibility”, “incompatibility”,
“disbelief in defect prediction”, and “another solution seems better”.

RQ2. Perception
Resource prioritization
Overall findings:

• Most frequently used strategy: near 70% of the respondents select “most recently changed file” and “most recent
buggy file” for code inspectation/testing.

• Most controversial strategy: select “files that called by many other files” for code inspectation/testing.
Impact of experience:

• No significant differences across experience levels of respondents.
Senior practitioners:

• The more experienced a respondent is, the more likely he/she formed a strong opinion based on personal
experience.

• High-experience respondents who formed a strong opinion based on personal experience frequently use strategies
that are concerned with number of developers, code, process and complexity.

• High-experience respondents are inclined to prioritize files created or changed by low-experience developers over
files created or changed by high-experience developers.

Defect density distribution
Overall findings:

• close to 50% of the respondents selected a normal distribution.
• 26% of respondents selected a long tail distribution.
• less than 10% of the respondents selected a uniform distribution.

Impact of experience:
• In the population who selected long tail distribution, we observed a 15% increase from low experience to medium

experience and a 17% increase from medium experience to high experience.
• Nearly half of the high-experience respondents selected long tail distribution, accounting for around 42% of

respondents who selected long tail distribution. In contrast, only 9.7% of the low-experience respondents selected
long tail distribution.

File size vs. defect proneness
Overall findings:

• 59% of the respondents considered a linear growth correlation between file size and defect proneness.
• 14% of the respondents considered an inverted “U” shape correlation between file size and defect proneness.
• 9% of the respondents selected “U” shape and 6% selected constant correlations.

Impact of experience:
• Only 7% of the high-experience respondents perceived an inverted “U” shaped relationship between size and defect

proneness.
• For inverted “U” shape relationship, we found a 12% decrement from low experience to medium experience and a

5% decrement from medium experience to high experience.
• Over half of the respondents in each experience level perceived a linear size-defect relationship.

Defect prediction metrics
Overall findings:

The top 3 statements that the respondents agreed with are:
• Statement S2 which is concerned with the complexity of code change process.
• Statement S14 which is concerned with the number of developers for a software system.
• Statement S1 which is related to the semantic information of code region.

The top 3 statement that have conflict in the opinions of respondents:
• Statement S13 which is concerned with the number of deleted lines in a file.
• Statement S12 which is regarding the number of commits made to a file.
• Statement S15 which is related to code ownership.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

TABLE 8: Summary of Results: Answers to RQ3 and RQ4.

RQ3. Expectation
Preferred granularity levels
Overall findings:

• The top-3 preferred granularity levels are feature (48%), commit (20%) and component (13%).
Senior practitioners:

• The top-3 preferred granularity levels of the high-experience respondents are feature (32%), commit (25%) and
component (17%).

Expected features

• Integration with IDE/editor
• Integration into CI
• Integration with code review tools
• Integration with software configuration management systems
• Cooperation with coverage analysis
• Ability to provide rationale
• Ability to provide actionable guidance
• Full programming language support
• Online prediction
• Simplicity
• Low false positives
• Efficiency
• Scalability

RQ4. Challenges
Bug fixing

• The statement that respondents disagreed most with and incited the most disparity in agreement was concerned
with “S6: Sometimes a try-catch block could be placed anywhere between where the exception was originally
thrown and the user interface”.

• The statement that most respondents agreed with and was least controversial was “S1: The same bug can be fixed
in multiple ways”.

• 52% of our respondents claimed that “Location in the software at which I fix a bug is the location at which an error
was made” (S3).

• 43% of the respondents mentioned that “Some defects are not fixed by correcting the real error-causing component,
but rather by a work- around somewhere else”(S5).

• 66% of our respondents strongly agreed or agreed that “Sometimes the real error lies too deep. So risk of introducing
new errors is too high to solve the real error” (S2).

Performance evaluation
The top-3 preferred measurements are a combination of false alarm rate and recall (57%) , false alarm rate (38%) and
Top k% LOC precision (35%).
Adoption barriers
The top-3 adoption barriers are “lack of continuous integration support” (64%), “lack of code review tool integration”
(61%) and “lack of IDE integration” (53%).

4.2.2 Behavior vs. Perception
The strategies that developers adopt to prioritize code in-
spection/testing efforts reflect practitioners’ behavior re-
garding defect prediction. To investigate if practitioners’
behavior always corresponds with their perception, we built
mappings between prioritization strategies and defective-
ness metrics (as shown in Table 4 and Table 5): Statement S7
and Strategy T1 are both concerned with “recently changed
file”; Statement S10 and Strategy T2 are both concerned with
“recent buggy file”; Statement S14 and Strategy T4 are both
concerned with “file that is changed by more developers”. We
then separately ranked the 3 strategies (i.e., T1, T2 and T4)
according to their mean scores and 3 statements (i.e., S7,
S10 and S14) according to their percentages of agreement.
Among the 3 statements, statement S14 ranked at the top
with the greatest percentage of agreement. However, its
corresponding strategy T4 ranked the third. The agreement
rank of a statement is not exactly in line with the frequency

at which our respondents used the corresponding strategy.
In addition, we found that 13 respondents out of 249 who
strongly agreed or agreed with statement S14 very rarely or
rarely used strategy T4; 7 out of 28 who strongly disagreed
or disagreed with statement S14 very often or often used
strategy T4. In total, 7.2% of the respondents reveal an
inconsistency between their behavior and their perception.

Future defect prediction tools should provide rationales
that explicitly describe the connection between defective-
ness metrics and prioritization strategies. The rationales
may help software practitioners to better prioritize code
inspection/testing effort.

4.2.3 Expectations
Granularity levels. Surprising, almost half of our respon-
dents preferred feature level defect prediction (requirement
or conceptual concerns [10] proposed by customers/users).
Our finding differs from the conclusion of a prior study
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[36] which concluded that the practical value of prediction
decreases as the granularity level increases. Although defect
prediction of fine granularity facilitates defect localization,
coarse granularity would help practitioners gain an insight
into overall quality.

Researchers have proposed various metrics based on
source code entities (e.g., methods, classes, or components).
These metrics largely ignored features, i.e., the conceptual
concerns, of a software system [10]. Unlike a method or
a class, a feature may span components, creating feature
interdependencies. The boundary of features could be un-
clear. Dependency analysis could be used to gain a better
understanding of how a feature is implemented. Extraction
of feature level metrics must consider such feature inter-
dependencies. In addition, in agile programming practice,
team members usually specify, develop, and test each new
feature during each release cycle. Future studies are needed
to examine the feasibility of feature level defect prediction.
Features. Integration into continuous integration, code re-
view software, popular IDE is practitioners’ frequently ex-
pected feature. In our survey, lack of integration with CI,
CR software and IDE is perceived as the top-3 adoption
barriers of defect prediction techniques. Several industrial
studies have been conducted to investigate defect predic-
tion techniques at Microsoft [12], [59], [103], Google [50],
Avaya [56], BlackBerry [37], [77] and Cisco [82]. There is a
need for a community-wide effort to encourage integrating
state-of-the-art defect prediction techniques into continuous
integration, code review software and IDEs.

We observe there is high preference among practitioners
for sensible, interpretable and actionable metrics when ap-
plying defect prediction models in a practical setting. Future
studies are needed to explore the relationships between
metrics and defect proneness in order to provide under-
standable insights and inform decisions in various phases
of software practice.

Some of the respondents in our survey expect online
defect prediction. However, a limited number of prior stud-
ies apply defect prediction techniques in an online manner
[82]. Future studies are needed to investigate online defect
prediction models in practice.

4.3 Threats to Validity
Internal Validity. It is possible that some of our survey
respondents had a poor understanding of defect prediction
or of our questions. Their responses may introduce noise
to the data that we collected. To reduce the impact of this
issue, we included an “I don’t know” option in the survey
and ignored responses marked as such. We also dropped
responses that were submitted by people whose job roles
are none of these: software development, testing and project
management. The first and second authors translated our
survey to Chinese to ensure that respondents from China
could understand our survey well. To reduce the bias of
presenting survey bilingually, we carefully translated our
survey to make sure there is no ambiguity between English
and Chinese terms. We also polished the translation by
improving clarity and understandability according to the
feedbacks from our pilot survey.

Some findings reported in this work depend on our
understanding about respondents’ perception from their

comments. To minimize this threat, we read the comments
several times, and followed a process to help improve the
quality of our conclusions.

External Validity. To improve the generalizability of our
findings, we interviewed 16 interviewees from two com-
panies, and surveyed 395 respondents from 33 countries
across five continents who are working for various compa-
nies (e.g., Microsoft, Amazon, Google, Baidu, IBM, Morgan
Stanley, Hengtian and IGS) or contributing to open source
projects that are hosted on GitHub, in various roles. We
wish though to highlight that while we selected employees
from two Chinese IT companies for our interviews, the
surveyed population is considerably wide. The responses
from the interviews were used to bootstrap the options in
our survey questions. The survey permitted respondents to
add additional comments whenever appropriate via free-
form fields; looking at the responses in such fields we do
not observe any signs of missing options. Moreover, our
surveyed population represents one of the most diverse
population of any software engineering study in recent
history. In contrast, much of the recent studies focus on
impression within a single company (e.g. Google [31], or
Microsoft [15]). Moreover, given the consulting positions
of these interviewed employees, the interviewed practition-
ers bring a much wider perspective given that they have
worked on projects around the globe, namely in Canada,
Australia, Japan, Ireland, Germany and USA. These practi-
tioners continue to work with many companies around the
globe (e.g., Microsoft, Honda, Bosch, IBM, Cisco, Alibaba,
and DST). Finally, we do also note that as our interviews
were drawing to a close, the collected codes from interview
transcripts came to saturation. New codes did not appear
anymore; the list of codes was considered stable. This is also
noted by Guest et al. [23] that conducting 12 to 15 in-depth
interviews of a homogeneous group is adequate to reach
saturation. We also provide various details about our survey
(e.g., the actual survey) to ease future replications. Still,
our findings may not generalize to represent the perception
of all software practitioners. However, to the best of our
knowledge, this work is the largest and widest study to date
on this topic.

In our survey, we only considered several barriers that
may hinder the adoption of defect prediction tools, includ-
ing “cost of collecting historic data”, “lack of IDE integration”,
“lack of code review tool integration” and “lack of continuous
integration support”. Through our open card sort, we identi-
fied other specific barriers from the respondents’ free-form
text comments, i.e, answers to why won’t you adopt a defect
prediction tool. The other barriers include “lack of awareness”,
“language support”, “false alarms”, “accuracy”, “developer over-
head” and “learning curve”. Future studies can reduce this
threat by including these barriers, performing a second
round of surveys by inviting more respondents.

Our survey can only assess practitioners’ perceived will-
ingness to adopt. However, perceived willingness of adop-
tion is one factor that leads to actual adoption [42]. Actual
adoption typically depends on various other factors, e.g.,
social, culture, education and exposure [92], [95]. Many of
these factors are often external to the actual technique.
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5 RELATED WORK

We briefly review the related work in this section.

5.1 Surveys of Software Practitioners
There have been several prior studies of surveys of soft-
ware practitioners in several settings. Surveys have explored
practitioners’ attitudes, such as work habits [47] and moti-
vation [29] as well as behavior [41]. Begel and Zimmermann
[5] used a survey methodology to find questions that were
of most interest to developers. Our work surveyed the
perception of software practitioners and focused on topics
related to defect prediction.

There exists a considerable body of work that surveyed
the perception of software practitioners. Lo et al. surveyed
hundreds of practitioners in Microsoft on how they perceive
the relevance of 571 papers that were published in ICSE,
ESEC/FSE and FSE from 2009 to 2014 [52]. They asked
each respondent to rate 40 randomly selected papers by
answering a question: In your opinion, how important are the
following pieces of research? Different from them, we surveyed
a more diverse population of software practitioners, who are
from multiple corporations over 33 countries across 5 conti-
nents. Carver et al. replicated Lo et al. study to understand
how practitioners perceived ESEM research [9]. Devanbu
et al. surveyed hundreds of practitioners at Microsoft on
their belief of empirical findings from software engineer-
ing research [16]. They compared the belief with actual
empirical evidence and reported a large set of findings.
We also compared global practitioners’ belief with findings
in previous studies on defect prediction. In addition, we
particularly considered more in-depth questions on barriers
for adoptions and expectations about defect prediction.

5.2 Adoption Factor Exploration
Tool adoption and spread within organizations and com-
munities is a well-studied problem in software engineering
and other research communities. Diffusion of Innovation
theory is a popular framework for studying the transmission
of ideas through communities [74]. Xiao et al. applies this
framework to security tools [95]. Meyerovich and Rabkin
investigated the factors related to spread and adoption of
programming languages [55]. Wang et al. investigated the
usefulness of information retrieval based techniques for
real-world fault localization [89]. Kochhar et al. investi-
gated practitioners’ expectations of fault localization tools
and estimated the adoption threshold [42]. Xia et al. [93]
revisited the usefulness of spectra-based fault localization
techniques with professionals. Parnin and Orso investigated
how developers use and benefit from automated debugging
tools through a set of human studies [63]. To our knowledge,
we are the first to explore the factors that affect the adoption
of defect prediction tools.

5.3 Empirical Studies on Defect Prediction
Factors affecting performance. Prior research examined
the relationship between performance and some factors
including data set [21], [30], [53], [72], [83], and input
metrics [25], [96], [98], [101], [102]. Rahman et al. conducted
an empirical analysis using simulated datasets to explore

whether bias or size would affect performance of defect
prediction more. Their results suggested size always matters
just as much as bias direction, and much more than bias
direction when considering information-retrieval measures
[72]. Tantithamthavorn et al. studied whether mislabeling
in defect prediction is random, and the impact of realistic
mislabelling on the performance through a case study [83].
Herzig et al. discovered that misclassification introduces
bias in defect prediction models and investigated the impact
of misclassification on defect prediction studies [30]. Ghotra
et al. used both a clear dataset and a noisy and biased
dataset to evaluate the impact of classification techniques
on the performance of defect prediction models [21]. Bet-
tenburg et al. [6] and Menzies et al. [53], [54] generated
and compared the lessons of defection prediction and effort
estimation from local project, clustered projects, and all the
projects. Shepperd et al. compared the relative contribution
of factors that influence the performance of defect predic-
tion, including learning technique, data set, input metrics,
and research group [76]. Later Tantithamthavorn et al. per-
formed an alternative investigation of Shepperd et al.’s data
and made further observations and conclusions [85].
Metrics in models. Yang et al. conducted an empirical
study to examine the usefulness of slice-based cohesion
metrics in defect prediction [98]. Zhou et al. investigated
the confounding effect of class size in defect prediction
[102]. The work of Koru et al. has been instrumental in the
recent understanding of size-defect relationship [43]–[45].
However, in Koru et al.’s work, the use of survival analysis
in the context of defect modelling has not been well studied.
Thus Syer et al. [81] replicated Koru et al.’s work and
revisited the size-defect relationship. Hall et al. investigated
the relationship between defects and code smells [25]. Zhao
et al. conducted an empirical study to investigate the value
of considering client usage context in package cohesion
metrics in defect prediction [101]. Yang et al. investigated
the relationship between inter-dependent program elements
and function-level defect proneness [96].
Industrial studies. Industrial studies evaluated the actual
adoption of defect prediction techniques. Nagappan and
Ball presented an empirical approach to predict the actual
pre-release defect density for Windows Server 2003 [59].
Zimmermann et al. investigated cross-project defect pre-
diction and conducted large scale experiments on commer-
cial systems from Microsoft, namely Direct-X, IIS, Printing,
Windows Clustering, Windows File system, SQL Server
2005 and Windows Kernel [103]. Lewis et al. conducted
a case study in Google to verify the effectiveness of sev-
eral defect prediction algorithms, and further investigated
whether an experimental defect prediction tool changed
developers’ behaviors [50]. Monden et al. conducted a case
study in a software purchaser-side company to assess the
cost effectiveness of defect prediction in test effort allocation
[57]. Change-level defect prediction has been successfully
adopted by industrial teams at Avaya [56], BlackBerry [37],
[77] and Cisco [82].

6 CONCLUSION AND FUTURE WORK

This paper explores the potential value of defect prediction
in practice. We propose a mixed qualitative and quantitative
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approach to explore practitioners’ perceptions, expectations
and adoption challenges of defect prediction. We collect-
ed hypotheses regarding defect prediction from our open-
ended interviews and papers that were published in the
top-tier conferences and journals over a five year period.
We conducted a survey to investigate those hypotheses
and received 395 responses from practitioners from over
33 countries across five continents. Our results suggest that
over 90% respondents are willing to adopt defect prediction
techniques; but there is room for future research including
fulfilling practitioners’ expectations and resolving adoption
challenges that are faced by practitioners.

Future studies should carefully compare our observa-
tions with state-of-the-art defect prediction studies and an-
swer questions such as how many studies are doing feature
level defect prediction and how are defect prediction “models”
evaluated nowadays. Future work should consider developing
defect prediction techniques that can bring current state-of-
research closer to the expectations of practitioners highlight-
ed in this work. Taking into account the response quality
(i.e., respondents are less likely to give response of high
quality for a very long survey), we tried to ensure an
appropriate length for the survey done in this work. Future
studies could answer other research questions, e.g., how
the primary programming language of practitioner affects his/her
willingness of adoption, why practitioners prefer coarse granular-
ity of defect prediction, and why more experienced practitioners
are less enthused on defect prediction techniques.
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