
deGraphCS: Embedding Variable-based Flow Graph for
Neural Code Search
CHEN ZENG, School of Computer, National University of Defense Technology, China
YUE YU∗ and SHANSHAN LI∗, School of Computer, National University of Defense Technology, China
XIN XIA, College of Computer Science and Technology, Zhejiang University, China
ZHIMING WANG, MINGYANG GENG, LINXIAO BAI, and WEI DONG, School of Computer,
National University of Defense Technology, China
XIANGKE LIAO, School of Computer, National University of Defense Technology, China

With the rapid increase of public code repositories, developers maintain a great desire to retrieve precise
code snippets by using natural language. Despite existing deep learning-based approaches provide end-to-end
solutions (i.e., accept natural language as queries and show related code fragments), the performance of code
search in the large-scale repositories is still low in accuracy because of the code representation (e.g., AST) and
modeling (e.g., directly fusing features in the attention stage).

In this paper, we propose a novel learnable deep Graph for Code Search (called deGraphCS) to transfer
source code into variable-based flow graphs based on an intermediate representation technique, which can
model code semantics more precisely than directly processing the code as text or using the syntax tree
representation. Furthermore, we propose a graph optimization mechanism to refine the code representation
and apply an improved gated graph neural network to model variable-based flow graphs. To evaluate the
effectiveness of deGraphCS, we collect a large-scale dataset from GitHub containing 41,152 code snippets
written in the C language and reproduce several typical deep code search methods for comparison. The
experimental results show that deGraphCS can achieve state-of-the-art performance and accurately retrieve
code snippets satisfying the needs of the users.

CCS Concepts: • Software and its engineering→ Software development techniques;

Additional Key Words and Phrases: intermediate representation, graph neural networks, code search, deep
learning

ACM Reference Format:
Chen Zeng, Yue Yu, Shanshan Li, Xin Xia, ZhimingWang, Mingyang Geng, Linxiao Bai, Wei Dong, and Xiangke
Liao. 2022. deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search. 1, 1 (May 2022),
28 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Corresponding author

Authors’ addresses: Chen Zeng, School of Computer, National University of Defense Technology, China, zengcheng15@
nudt.edu.cn; Yue Yu, yuyue@nudt.edu.cn; Shanshan Li, shanshanli@nudt.edu.cn, School of Computer, National University
of Defense Technology, China; Xin Xia, College of Computer Science and Technology, Zhejiang University, China, xin.
xia@acm.org; Zhiming Wang, wangzhiming14@nudt.edu.cn; Mingyang Geng, gengmingyang13@nudt.edu.cn; Linxiao Bai,
linxiao_b@nudt.edu.cn; Wei Dong, wdong@nudt.edu.cn, School of Computer, National University of Defense Technology,
China; Xiangke Liao, xkliao@nudt.edu.cn, School of Computer, National University of Defense Technology, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/5-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Chen Zeng and Yue Yu, et al.

1 INTRODUCTION
Code search has received increasing attention in recent years [7, 10, 20, 41, 42, 58, 64]. The goal of
code search is to retrieve code fragments that best meet developers’ needs by performing natural
language queries over a large code corpus. With the availability of immense and rapidly growing
source code repositories such as GitHub 1 and GitLab 2, it is more convenient for developers
to search the needed code with certain functionality and reuse it in their programs. However,
increasingly complex and diverse code implementations also create considerable challenges in
performing a precise code search.
In the early stage, code search approaches are proposed on the basis of information retrieval

techniques, especially keyword matching mechanisms [4, 8, 9, 28, 34, 39, 45–47]. However, a
common problem in these works is the lack of structural or semantic information from the source
code since they simply consider code and queries as plain texts. Recently, deep learning technologies
have been applied to represent code and queries as vectors for code search [7, 10, 20, 58, 64] to
address the above issues. The typical approach, called DeepCS [20], presents a code search engine by
learning a joint embedding of a method description and its corresponding code snippet. Moreover,
Wan et al. [64] design a multimodal attention network (MMAN) to capture various code features
simultaneously, such as code tokens, abstract syntax trees (ASTs) and statement-based control-flow
graphs (S-CFGs).
However, existing deep learning-based approaches are still limited in two major aspects. First,

code with different syntax may achieve the same functionality, while code with similar structural
features may express totally different code semantics. Thus, the token (e.g., method name or
identifiers) and structural features (e.g., AST or S-CFG) have difficulty in precisely expressing the
in-depth semantics of source code in various forms (as shown in Fig. 1 and Fig. 2). Second, existing
methods cannot fully exploit multiple valuable features extracted from the source code. Specifically,
some models do not fuse different source code modalities effectively, which does not bring much
improvement yet increases the complexity. For example, in [64], MMAN uses the single token-based
modality and gets MRR (mean reciprocal rank) of 0.437 and SuccessRate@1 of 0.327. In contrast,
MMAN proposes an attention network to assign learnable weights to three different source code
modalities (i.e., Token + AST + S-CFG) and gets MRR of 0.452 and SuccessRate@1 of 0.347. As the
results show, the improvement to the single token-based modality is not very significant, about
4.63% and 4.62% in terms of MRR and SuccessRate@1.

These aforementioned limitations inspire us to design a model to effectively integrate deep
semantic information and learn a precise code representation. In our work, we explore a novel code
representation based on data and control flow extracted from LLVM IR (intermediate representa-
tion) [35], one type of intermediate code acquired from source code. Compared with the existing
statement-based data and control flow representation method [3], we refine the variable-based flow
graph construction to better describe the dependencies between code variables. Specifically, the
graph nodes represent the tokens that appear in LLVM IR, and the edges represent the data and
control dependencies between the tokens. Furthermore, we design an optimization mechanism
while modeling the graph to remove the redundant information created by LLVM IR without
changing the semantics. Finally, we employ an attentional gated graph neural network to embed
the flow graph into a high-dimensional vector space to further perform code search tasks. Through
this procedure, code multiple semantic features, i.e., tokens, variable-based data and control flow,
can be simultaneously represented and accurately express the deep semantics of code.

1https://github.com
2https://gitlab.com

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://github.com
https://gitlab.com

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 3

get_sum

//get sum of an array which
use 0 as the terminator
int get_sum(int* array){

int* ptr;
int sum;
sum = 0;
ptr = array;
while(*ptr != 0){

sum += *ptr;
ptr ++;}

return sum;
}

(d) Source Code

get_sum

while

sum 0

=

!=

ptr 0

compound

+= ++

sum *ptr ptr

get_sum

for

!=

ptr 0

compound

+=

sum *ptr

ptr array

=

ptr array

= ++

ptr

(a) AST (b) AST

get_sum

sum 0

=

ptr array

= if

!=

ptr 0

=

sum +

*ptr call

ptr

+

1
(c) AST

//get sum of an array which use 0 as the
terminator
int get_sum(int* array){

int* ptr;
int sum;
sum = 0;
for(ptr = array; *ptr != 0; ptr++){

sum += *ptr;
}
return sum;

}

(e) Source Code

//get sum of an array which use 0 as the
terminator
int get_sum(int* array){

int* ptr;
int sum;
sum = 0;
ptr = array;
if(*ptr != 0){
 sum = *ptr + get_sum(ptr +1);}
return sum;

}

(f) Source Code
get_sum

array

ptr 0

cmp

label_true label_false

ptr_1

sum_1

sum

0

add

getelement

return

(g)Variable-based Flow Graph

get_sum

array

ptr 0

cmp

label_true label_false

sum_1

sum

0

add

return

(h) Variable-based Flow Graph

getelement

sum 0

=

Fig. 1. The first illustrative example shows the code snippets with the same semantics and their corresponding
ASTs and variable-based flow graphs. The difference between the ASTs is highlighted in red and yellow. The
nodes in the variable based flow graph are tokens of the intermediate code and the edges either represent
data dependencies (shown in solid line of light blue) or control dependencies (shown in dotted line of red).

To evaluate the effectiveness of our proposed model, we collect our dataset from GitHub con-
taining 41,152 code snippets written in the C language and perform code search experiments.
Experimental results show that deGraphCS improves the top-1 code search hit rate from 34.05%
to 43.05% when compared with the state-of-the-art methods. To simulate an actual code search
scenario, we design an online code search tool, which takes 50 practical descriptions randomly
chosen from the test set as candidate queries. For each query, 5 experienced participants manu-
ally label the relevant results they need returned by our proposed model deGraphCS and three
competitive approaches (i.e., DeepCS, UNIF and MMAN). The results of automatic evaluation and
manual evaluation both confirm the effectiveness of deGraphCS.
The main contributions of this paper are summarized as follows:

, Vol. 1, No. 1, Article . Publication date: May 2022.

4 Chen Zeng and Yue Yu, et al.

• We propose a novel semantic code representation method called deGraphCS, which can
integrate tokens, data flow and control flow into a variable-based graph to represent semantic
of the code more precisely than traditional approaches (e.g., AST). All of our code and data
are available at https://github.com/degraphcs/DeGraphCS.
• We design a graph optimization mechanism to streamline the graph representation by
reducing 51.88% of the redundant nodes, which significantly improves the deGraphCS
performance by 13.77% and 18.92% in terms of MRR and SuccessRate@1.
• We collect a large-scale dataset from GitHub containing 41,152 code snippets written in the
C language and reproduce several competing code search models to make comparisons.
• We conduct experiments on the trained models, and the results of automatic evaluation
demonstrate that deGraphCS outperforms the state-of-the-art method (i.e., MMAN) by
19.14% and 26.43% in terms of MRR and SuccessRate@1. In addition, deGraphCS achieves
the best performance in our qualitative user study.

The remainder of this paper is organized as follows. In Section 2, we present two motivating
examples. In Section 3, we first provide an overview of our proposed model and then describe the
details of each part in our model. In Section 4, we describe the experimental setup and report the
experimental results. In Section 5, we briefly review the related works. Finally, in Section 6, we
conclude our study and future work.

2 MOTIVATING EXAMPLE
Due to the diversity of syntax and programming styles of code, the gaps are widespread between
syntax and semantics in code. The gaps bring the following challenges to traditional code represen-
tations: 1). same semantic code is represented as different because of different code style, resulting
in false negatives during searching code. 2). different semantic code is represented as similar be-
cause of similar code style and model limitations, resulting in false positive during searching code.
To overcome these challenges, we propose a semantic-based code representation method, which
can eliminate gaps caused by syntax and code style and widen gaps caused by semantics. In this
section, we show two motivating examples in Fig. 1 and Fig. 2 to illustrate our semantic based code
representation can represent programs better in dealing with two challenges.

Fig. 1 shows three C example code snippets with same semantics (sum the values in the specified
array) and corresponding ASTs and VFGs (abbreviation of our proposed code representation:
Variable-based Flow Graph). Fig. 2 includes two C example code snippets with different semantics
and corresponding ASTs and VFGs. AST is consist of basic syntax unit. For the convenience
of observation, the difference between the ASTs is highlighted in red and yellow. Our variable-
based flow graph is constructed from LLVM IR. Here, nodes in the flow graph are tokens of the
intermediate code and the edges either represent data dependencies (shown in solid line of light
blue) or control dependencies (shown in dotted line of red). Data dependencies of tokens refer to
tokens that have dependencies through data processing statement. For example, in Fig. 1, “sum_1”
has data dependency with “ptr” because of the data processing statement “𝑠𝑢𝑚+ = 𝑝𝑡𝑟”. Control
dependencies of tokens refer to the execution of some tokens depends on other tokens. For example,
in Fig. 1, the execution of statement “𝑠𝑢𝑚+ = 𝑝𝑡𝑟” depends on the condition statement “𝑝𝑡𝑟 ! = 0”,
and the execution of token “sum_1” also depends on the result of “cmp”. Therefore token “sum_1”
has a control dependency relationship with token “cmp”.

In Fig. 1(d-f), we can see that the three code with same semantics have different written formats (
“for”, “while” and recursive loops separately), resulting in completely different ASTs in Fig. 1(a-c).
However, in Fig. 1(g-h), when exploiting our variable-based flow graph, the three code snippets are
represented almost the same. We can see that Fig. 1(g) and Fig. 1(h) are very similar. In Fig. 1(g) and

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://github.com/degraphcs/DeGraphCS

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 5

Fig. 2. The second illustrative example shows the code snippets with different semantics and their corre-
sponding ASTs and flow-based graphs. The difference between the ASTs is highlighted in red and yellow. The
nodes in the variable based flow graph are tokens of the intermediate code and the edges either represent
data dependencies (shown in solid line of light blue) or control dependencies (shown in dotted line of red).

Fig. 1(h), except for node “ptr_1” and “ptr”, every node in Fig. 1(g) can find corresponding node
in Fig. 1(h). Compared with the node in Fig. 1(g), the corresponding node has the same control
dependency and data dependency. It illustrates that our VFG can represent different programs
better.

In Fig. 2(c) and Fig. 2(d), although the two code examples are consist of the same statements, the
difference of order will lead to different functionalities. In Fig. 2(a) and Fig. 2(b), we can see that
the only difference of two corresponding ASTs are the positions of the two subtrees (connected
in red/yellow respectively). In the existing works, such as MMAN, will finally establish the same
representation when applying Tree-LSTM [62]. Therefore, we can regard the representations of
ASTs are almost same. However, the corresponding variable-based flow graphs differ significantly
in Fig. 2(e) and Fig. 2(f), because of the underlying data dependencies between variables. It demon-
strates that our variable-based flow graph can distinguish different semantic codes more accurately.

, Vol. 1, No. 1, Article . Publication date: May 2022.

6 Chen Zeng and Yue Yu, et al.

s

Fig. 3. The overall workflow of deGraphCS, containing offline data preparation, online inference and the
network architecture.

The two examples show that our proposed variable-based flow graph representation can represent
precise semantics of code while the syntactic structures fail.
Inspired by the above two examples, we conclude that data and control dependencies can

complement the drawbacks of structural feature-based code representation methods. However, the
existing works [3, 61] extract data and control flows on the basis of statements, obtaining vector
representations of code snippets by applying word embedding techniques such as skip-grams.
A prominent problem is that coarse-grained statements usually cannot accurately capture the
correlation between the code and query tokens. Therefore, we propose our fine-grained variable-
based flow graph method to precisely model the relationship between tokens in code snippets.

3 THE PROPOSED MODEL
In this section, we first introduce an overview of our proposed network architecture. Then, we
present our neural code representation mechanism, including the compilation background and
LLVM IR, the variable-based flow graph building mechanism and the optimization mechanism.
Finally, we present our comment description representation and model learning mechanism in
detail.

3.1 An Overview
Fig. 3 is an overview of the workflow of the deGraphCS model, which is composed of three parts:
the upper left part denotes the offline data preparation process, the bottom left part denotes the
online inference process, and the right part denotes the details of the network architecture. For
the network architecture, deGraphCS first embeds the neural code and comments to the vector
representations and then learns the relationship by minimizing the ranking loss function in the
training process. We describe each part of the architecture in the following sections.

3.2 Neural Code Representation
For code representation, we first integrate data dependencies and control dependencies into graphs
by analyzing different kinds of LLVM IR instructions. Specifically, we construct the data dependen-
cies based on the address operation instructions (e.g., “load”, “store”) and the computation-related
constructions (e.g., “add” and “sub”). In addition, the control dependencies are constructed based
on the jump instructions (e.g., “br”) and address operation instructions. The goal of code search is
to better match the code semantics with the keywords in the queries, and excessive information
may hinder the model from learning the fine-grained relationship between the source code and

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 7

Fig. 4. An illustrative example shows a code snippet with its LLVM IR equivalent and our graph building as
well as the optimization.

queries. Therefore, we propose several mechanisms to optimize the graph to decrease the noise in
the model training process and improve the training efficiency. Finally, we feed the graph into a
GGNN [40] with an attention mechanism to learn the vector representation of the code. To better
explain our proposed neural code representation method, an illustrative example code associated
with its IR and our variable-based flow graph building and optimizing result is shown in Fig. 4.

3.2.1 Compilation and LLVM IR. Most popular compilers, such as LLVM and GCC, support mul-
tiple programming languages and hardware targets. To avoid duplications in code optimization
techniques, the compilers require a strict separation among the source language, IR, and the target
machine code, which is mapped to a specific hardware. LLVM IR supports various architectures and
can inherently represent optimized code. Compared with source code, LLVM IR can help us analyze
syntax and semantic of code conveniently. The IR in LLVM is given in static single assignment
(SSA) form [13], which guarantees that every variable is assigned only once. SSA can help us
to infer where the variables in code are defined and where they are used. As shown in Fig. 4(b),
LLVM divides the IR statements into several blocks represented by the corresponding labels shown
in different colors. For the instructions, regarding the third line in “label 9”, an instruction (IR
statement) in our algorithm is composed of three parts: opcode (“sub”), operand (%10, %11) and
result (%12).

3.2.2 Building Variable-based Flow Graph (VFG). To derive a precise semantic representation of
the source code, we construct the graph at the variable granularity to capture source code token
information. Specifically, we build data dependencies and control dependencies between variables
to capture the data and control flow information from the source code. It is noted that our graph
construction is an intra-procedural method since our dataset do not provide implementation details
of called function. An illustrative example of the variable-based flow graph is shown in Fig. 4(c),
which is the initial graph constructed from the LLVM IR shown in Fig. 4(b). The nodes in our graph
can be variables, opcodes or label identifiers, appearing in the figure as rectangles. Correspondingly,
an edge either represents a data dependency (in blue solid line) or control dependency (in red
dotted line). Given the LLVM IR, the whole graph building process is recorded in Algorithm 1.
Specifically, we first extract the identifiers in each IR instruction as nodes. Then, we build data

, Vol. 1, No. 1, Article . Publication date: May 2022.

8 Chen Zeng and Yue Yu, et al.

Algorithm 1: Variable-based flow graph building process
Input: LLVM IR (shown in Fig. 4(b)).
Output: the constructed variable-based flow graph (shown in Fig. 4(c)).
1: for read the IR instructions by line do
2: Case Computation instructions:
3: Case “call/invoke”:
4: Build an edge parameters−→ function name.
5: Default:
6: Build an edge operands −→ opcode.
7: Build an edge opcode−→ result.
8: Case Address instructions:
9: for each load instruction operated on 𝑎𝑑𝑑𝑟 (i.e., a = load addr) do
10: value_list = SearchCFG(𝑎𝑑𝑑𝑟 , 𝑖𝑛𝑠𝑡).
11: Build edge value_list −→ 𝑎.
12: end for
13: for all instructions “store 𝑥 addr” do
14: Connect 𝑥 sequentially according to the order in CFG.
15: end for
16: Case “br” (i.e., br %𝑣𝑎𝑙 , label 1,label2):
17: Build edge condition −→ labels.
18: Build edge labels −→ “store” variables.
19: end for

dependencies and control dependencies between nodes according to different types of instructions
as follows.
Data dependency. Data dependencies exist in the computation-related constructions (e.g., “add”,
“sub”) and the address operation instructions (e.g., “load”, “store”). First, we build data dependencies
according to instructions that are related to computation such as “add” and “sub”. For example,
regarding the third line in the second block shown in green in Fig. 4(b) (“%8 = add nsw i32 %6,
%7”), we build data dependencies by linking the operands (%6 and %7) to the opcode (“add”) and
then linking the opcode (“add”) to the result (%8) shown in the green square in Fig. 4(c). It is noted
that “nsw” is refer to “No Signed Wrap” which is related to the variable type. We overlook these
keywords such as “nsw” since these keywords are not relevant to code semantics. We specifically
deal with the “call/invoke” instruction since the operands are the parameters of the corresponding
function. Specifically, when we build a graph for the current function (e.g., “get_sum”), we treat
the function call instruction in two situations. First, if the called function is an external function
that is not the current function (“get_sum”), we treat the name as opcode instead of “call/invoke”
and link the operands to the called function name. Second, if the called function is the current
function, it is regarded as a recursive call. Thus, we regard a node that links to the “return” node
as the result of the called function, and we link the result to the nodes that use the called function.
Moreover, we regard the input of the called function as passing to the parameter of the current
function; thus, we link the input node to the parameter node. For example, if we construct data
dependency for the function “foo(param1)”, which have one parameter “foo(param1)” and use
a statement “𝑟𝑒𝑠 = 𝑓 𝑜𝑜 (𝑎)” to call itself recursively in function body. We deal with the function
call “foo(param1)” according to the second situation. Specifically, “return” will be linked to “res”,

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 9

which implies “foo” returns a value and assigns the value to “res”. At the same time, we link
variable “a” to “param1”, which implies function “foo” inputs variable “a” into parameter.

Algorithm 2: Search all variables from 𝑎𝑑𝑑𝑟 in 𝑖𝑛𝑠𝑡

Input: 𝑎𝑑𝑑𝑟 , 𝑖𝑛𝑠𝑡 .
Output: value_list.
1: pre_list← the last instructions pointed to inst.
2: for each instruction pre_inst in the pre_list do
3: if pre_inst has been searched then
4: continue
5: else if pre_inst is “store 𝑥 addr” then
6: Append the variable 𝑥 to the value_list.
7: else
8: list = SearchCFG(addr, inst)
9: Append all the values in list to value_list
10: end if
11: end for

Second, we build the variable data dependencies in “load” and “store” instructions. Specifically,
when the variables need to be used, LLVM loads the corresponding values from the allocated address
using the “load” instruction. Similarly, when variables need to be assigned new values, IR stores
the new values in am address using the “store” instruction. The reason to treat “load” and “store”
instructions separately is that in these two instructions, the address may store multiple values
from different variables, and it is difficult to build a one-to-one mapping relationship between each
address and variable. Therefore, we build data dependencies only between variables. For example,
regarding the “load” instructions of the second block shown in green in Fig. 4(b), although the
variables %6 and %7 are loaded from addresses %1 and %𝑏, the edges are connected from variables
%𝑎 and 1, which are the true sources. To achieve this, we need to traverse all the “load” instructions
and handle each instruction following the function in Algorithm 2.
Control dependency. Control dependencies could be found in the jump instructions (e.g., “br”) and
the address operation instructions (e.g., “load”, “store”). We exploit address operation instructions
since multiple variables stored in an address usually maintain a sequential order. Thus, we complete
variable control dependencies through two aspects as follows:

First, we build control dependencies between variables and the condition identifiers. These
conditions appear in condition jump instructions such as the “br” instruction, as shown in the last
purple line in Fig. 4(b). Label identifiers are the entries of basic blocks, and the condition determines
which label to jump to. Thus, we construct control dependencies by linking the condition to all
label identifiers. After that, to connect the whole graph, we build control dependencies between the
label and the corresponding basic block variables. In our algorithm, we link the label identifier to
the variables in the “store” instruction, as shown by the red line from label_true to %8 of Fig. 4(c)
because if a variable updates its value, a new value will be stored in the corresponding address by
a store instruction. To avoid missing some important control dependency, we also link the label
identifier to “cmp” opcode and “function name” in instruction. Because the result of compare
instruction or function call instruction may not be stored into address.

Second, multiple assignments of the same variable will generate different variables to be stored
in the address, and the variables usually maintain a sequential order. Therefore, we build control
dependencies between these variables with the same address. As shown in line 13 of Algorithm 1,

, Vol. 1, No. 1, Article . Publication date: May 2022.

10 Chen Zeng and Yue Yu, et al.

we need to traverse every store instruction which stores a variable to address x, and find the
next “store” instruction that stores a new variable to address x, then build a connection from the
previous variable to the latter variable until all the variables are connected in sequential order.

3.2.3 Optimizing Variable-based Flow Graph. After constructing the variable-based flow graph,
we need to optimize the graph to decrease the noise and improve the training efficiency. The
optimization method is composed of the following four steps.
(1) First, in LLVM IR, variables in the “store” instruction are named with numbers (e.g., %1,%2).

Since the goal of code search is to better match the tokens (e.g., identifiers, function names)
in code with the keywords in queries, excessive numbers may prevent the model from
filtering the critical information of the flow graph. Therefore, we replace the numbers with
the corresponding variable names.

(2) Second, many opcodes are too trivial to represent the code semantics needed for code search.
Therefore, we remove these opcode nodes from the graph by linking the predecessors of
the opcode to their successors. Specifically, the trivial opcode can mainly be divided into
three kinds. The first kind of opcode is that related to memory access and addressing since
they operate on the variable address. The second is opcode related to conversion since they
aim to transform the type of the data (e.g., change “int” type to “string” type). The third is
opcode related to operations on exceptions, since the exceptions operations aim to monitor
the status of variables at run-time, and are always not related to the function semantics.

(3) Third, in LLVM IR, many temporary registers are generated to store the intermediate values,
and these registers have no corresponding variables. Thus, we remove these variable nodes
by linking their predecessors to their successors.

(4) Fourth, we compress the control flow graph by merging the “isolated” blocks. In our
constructed variable-based flow graph, assume block 𝑎 is the predecessor of block 𝑏; if block
𝑎 has only one successor and block 𝑏 has only one predecessor, then we merge the two blocks
to compress the control flow.

3.2.4 Graph2Vec. Since our constructed graph is a directed graph with multiple types of edges,
we utilize an improved Gated Graph Neural Network (GGNN) with an attention mechanism to
learn the vector representation of the code. GGNN is a neural network architecture for embedding
graphs with multiple types of edges. In our graph 𝐺 = (𝑉 , 𝐸), 𝑉 denotes a set of nodes(𝑣, 𝑙𝑣), and
𝐸 denotes a set of edges(𝑣𝑖 , 𝑣 𝑗 , 𝑙 (𝑣𝑖 ,𝑣𝑗)). 𝑙𝑣 denotes the label of node 𝑣 , which consists of the variables
in the IR instructions. 𝑙 (𝑣𝑖 ,𝑣𝑗) denotes the label of the edge from 𝑣𝑖 to 𝑣 𝑗 , which includes two types:
data dependency and control dependency.

GGNN learns the vector representation of𝐺 by the message passing mechanism as follows. First,
we initialize each node 𝑣 ∈ 𝑉 with a one-hot embedding vector (ℎ0𝑣) according to 𝑙𝑣 . Then, we train
the embeddings of all nodes through multiple iterations. In iteration 𝑡 , each node 𝑣𝑖 obtains message
𝑚

𝑣𝑗 ↦→𝑣𝑖
𝑡 from neighbor 𝑣 𝑗 as𝑚

𝑣𝑗 ↦→𝑣𝑖
𝑡 = 𝑊𝑙 (𝑣𝑖 ,𝑣𝑗)

ℎ𝑡−1𝑣𝑗
, where𝑊𝑙 (𝑣𝑖 ,𝑣𝑗)

is the weight matrix specified by
the type of edges. It maps messages from neighbor 𝑣 𝑗 into a shared space. The weight matrix is
learned during the training process. Then, all messages from the neighbors of 𝑣𝑖 are aggregated in
the following equation:

𝑚𝑖
𝑡 = Σ

𝑣𝑗 ∈𝑁𝑒𝑖𝑏𝑜𝑢𝑟 (𝑣𝑖)
(𝑚𝑣𝑗 ↦→𝑣𝑖

𝑡) (1)

Then, GGNN uses GRU (gated recurrent unit) [12] to update the embedding of each node 𝑣𝑖 . GRU
uses aggregated message and past state ℎ𝑡−1𝑣𝑖

to update the current state as ℎ𝑡𝑣𝑖 = 𝐺𝑅𝑈 (𝑚𝑖
𝑡 , ℎ

𝑡−1
𝑣𝑖
).

Finally, since different nodes contribute differently to the code semantics, we exploit the attention
mechanism to calculate the importance of different nodes. We first allocate weights for each node

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 11

𝑣𝑖 as:
𝛼𝑖 = sigmoid(𝑓 (ℎ𝑣𝑖) · 𝑢𝑣𝑓 𝑔) (2)

where 𝛼𝑖 denotes the weight of node 𝑣𝑖 , 𝑓 (·) denotes the linear layer, · denotes the inner project
function and 𝑢𝑣𝑓 𝑔 denotes the context vector, which is a high-level representation of all nodes in
the graph. 𝑢𝑣𝑓 𝑔 is realized as a linear layer that is randomly initialized and jointly learned during
training. Then, we obtain the embedding of the whole graph ℎ𝑣𝑓 𝑔 as:

ℎ𝑣𝑓 𝑔 = Σ
𝑣𝑖 ∈𝑉
(𝛼𝑖ℎ𝑣𝑖). (3)

3.3 Comment Description Representation
For comment representation, we apply LSTM [27] to learn the corresponding representations.
The embedding ℎ𝑑𝑒𝑠𝑖 of each word in the comment is calculated as ℎ𝑑𝑒𝑠𝑖 = 𝐿𝑆𝑇𝑀 (ℎ𝑑𝑒𝑠𝑖−1,𝑤 (𝑑𝑖)),
where 𝑖 = 1, ..., |𝑑 |, |𝑑 | denotes the length of the comment description, and 𝑤 denotes the word
embedding layer to embed each word into a vector. Since different parts of the comment make
different contributions to the final vector representation, we adopt the attention mechanism [1] to
capture the fine-grained relevance between the hidden states and the final comment representation.
Specifically, we apply the attention layer to calculate the attention score 𝛼𝑑𝑒𝑠 (𝑖):

𝛼𝑑𝑒𝑠 (𝑖) =
exp

(
𝑓 (ℎ𝑑𝑒𝑠𝑖) · 𝑢𝑑𝑒𝑠

)∑𝑛
𝑘=1 exp

(
𝑓 (ℎ𝑑𝑒𝑠

𝑘
) · 𝑢𝑑𝑒𝑠

) (4)

where · denotes the inner project of ℎ𝑑𝑒𝑠𝑖 and 𝑢𝑑𝑒𝑠 , 𝑓 (·) denotes a linear layer and 𝑢𝑑𝑒𝑠 denotes the
context vector, which is a high-level representation of all tokens in the comment. The context vector
𝑢𝑑𝑒𝑠 is randomly initialized and jointly learned during training. Then, the final representation of
the comment description 𝐸𝑑𝑒𝑠|𝑑 | is calculated as:

𝐸𝑑𝑒𝑠|𝑑 | =
|𝑑 |∑︁
𝑖=1

𝛼𝑑𝑒𝑠 (𝑖)ℎ𝑑𝑒𝑠𝑖 (5)

3.4 Model Training
Now, we obtain all code representations (𝐶) and description representations (𝐷). To search the
code precisely for each query, the model makes the code representation similar to the correct
description representation and make the code representation different from the incorrect descrip-
tion representation. Specifically, for each code snippet representation 𝑐 ∈ 𝐶 , we regard the only
associated description in 𝐷 as the correct description 𝑑+, and during each training iteration we
randomly choose one description from other descriptions(𝐷 − 𝑑+) as incorrect description 𝑑−.
Through removing the semantically duplicated code and randomly selection, the probability that 𝑑+
and 𝑑− have the same semantics is reduced to a very low level. To make the vector representation
of the pair < 𝑐, 𝑑+ > similar and the vector representation of the pair < 𝑐, 𝑑− > different, we train
the model by minimizing the loss function 𝐿(𝜃) in the formulation of:

𝐿(𝜃) = Σ
𝑐∈𝐶 𝑑+,𝑑−∈𝐷

𝑚𝑎𝑥 (0, 𝛽 − 𝑐𝑜𝑠 (𝑐, 𝑑+) + 𝑐𝑜𝑠 (𝑐, 𝑑−)) (6)

where 𝜃 denotes the model parameters, 𝑑+ denotes the correct description representation, and 𝑑−
denotes the incorrect description representation. The 𝑐𝑜𝑠 (,) function measures the cosine similarity
between two vector representations, and 𝛽 denotes the constant margin.

, Vol. 1, No. 1, Article . Publication date: May 2022.

12 Chen Zeng and Yue Yu, et al.

4 EXPERIMENTS AND RESULTS
In this section, to evaluate the code search performance of deGraphCS, we perform several
experiments to answer the following research questions:
• RQ1: How effective is our proposed deGraphCS?
• RQ2: How effective our VFG representation compared with other code representation on
code search task?
• RQ3: Whether our VFG representation is the better choice to integrate tokens, data flow and
control flow, compared with existing attention-based multi-modal learning method?
• RQ4: How does the attention mechanism in GGNN affect the performance of model?
• RQ5: How does our graph optimizing mechanism affect the final retrieval performance?
• RQ6: How does deGraphCS perform when varying the comment length, code length, VFG
node number and longest path length of VFG?
• RQ7: How does deGraphCS perform for helping developers in actual programming?

RQ1 investigates whether deGraphCS outperforms the state-of-the-art deep code search models.
RQ2 evaluates whether VFG representation outperforms other representations on code search
task. RQ3 verifies that using VFG representation is better than using multi-modal learning to fuse
the token, data flow and control flow information. RQ4 verifies the effect of attention mechanism
in GGNN. RQ5 investigates how our graph optimizing mechanism improves the training results.
RQ6 tests and verifies the robustness of our proposed model when varying the comment length,
code length, VFG node number and longest path length of VFG. RQ7 evaluates the performance of
deGraphCS compared with the state-of-the-art models in manual evaluation.

4.1 Experimental Setup
Here, we first describe our experimental dataset and present three widely used evaluation metrics.
Then, we describe the implementation details and introduce the baseline models for comparison.

4.1.1 Data Collection. As described in Section 3, our deGraphCS model needs a large-scale
training corpus that contains sufficient code fragments and the corresponding comment descriptions.
Unfortunately, we cannot obtain access to the datasets collected by the existing works such as
MMAN and UNIF. We also considered the dataset released by DeepCS, even though this dataset only
contains cleaned Java code. It is hard for us to generate the LLVM IR without raw data. Therefore,
to verify the performance of our proposed VFG representation method and code search model,
we re-construct a corpus of C code snippets, which were crawled from GitHub. We chose C code
snippets because the C language is popular and LLVM IR has been widely used on the C language.
To build the required dataset, we collected high-star C projects from GitHub (a popular open

source project hosting platform). Then, we collected our dataset by selecting the C methods
that contain the corresponding comment descriptions and can be compiled into LLVM IR from
projects. For each C method 𝑐 , we treat the first sentence that appears in the comment as the
corresponding natural language query 𝑞 since it typically describes the functionality implemented
by the method [29, 31]. To verify the first sentence appeared in the comment contains the program
semantic information, we randomly selected 100 pairs of query and code from our extracted dataset,
and we asked three people to check. In the result, we find most (93%) of program semantic can be
found in the first sentence. To reduce as many bad comments as possible, we use regular expressions
to delete some comments that are not related to the method function. For example, we delete the
comments which are start with “Copyright” since these comments always describe the copyright
information of source code. Furthermore, we filter the (𝑞, 𝑐) pairs by the following rules:
• (𝑞, 𝑐) are filtered out if the code snippet 𝑐 is a constructor or a test method.

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 13

(a) the domains of projects in our dataset (b) the domains of projects in SourceForge

Fig. 5. The distribution of project domains

• (𝑞, 𝑐) are filtered out if the length of the query 𝑞 is less than 3 words or longer than 30 words.
The query which is less than 3 words are filtered out since we do not expect such query to be
informative. The query which is longer than 30 words are filtered out since such query is
rare and usually not related to the code function.
• (𝑞, 𝑐) are filtered out if the length of the code snippet 𝑐 is less than 5 lines or longer than 30
lines. The code which is less than 5 lines or longer than 30 lines are filtered out since such
code is rare, and the model training time will greatly increase.
• If a (𝑞, 𝑐) pair appears multiple times in the dataset, we remove the duplication.

After collecting the corpus of commented code snippets, we then extract LLVM IR for our
proposed model and other source code features for the baseline models, i.e., method name, tokens,
AST and S-CFG. Finally, we obtained 41,152 samples, which is more than the 28,527 samples in
MMAN [64]. Since the 41,152 samples are distributed in 1,554 open source projects, we believe
it is general enough to train our model. To verify the generality of our dataset, we recruited 3
experienced graduated students from our school to investigate the domains of all projects in our
dataset. They spent two days in reading official documents and classify each project in our dataset.
Each project is classified into 18 categories according to the categories of projects in SourceForge 3.
As shown in the Fig. 5, we can see that projects in our dataset cover all categories and have similar
distribution with domains of projects in SourceForge. Therefore, we believe that the domains of
our dataset is general. Following [64], we shuffle our dataset and split it into a training set with
39,152 pairs and a test set with 2,000 pairs. In the experiments, we utilized one correct candidate
and 1999 distractors to test models. To avoid bias resulting from evaluation on isolated datasets, we
resort to automatic evaluation metrics on corpora with the ground truth.

Furthermore, to perform the manual evaluation, we first randomly select 100 descriptions from
the test set, and then we carefully choose the 50 descriptions that are the easiest to understand.
We rewrite the 50 descriptions (e.g., add some conjunction) as test queries to ensure that they are
similar enough to real-world user queries. We construct a search codebase containing 30,799 C
code snippets without the training samples to guarantee fairness. Five experienced participants
select the relevant results returned by each model and record the scores.

3https://sourceforge.net/directory/

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://sourceforge.net/directory/

14 Chen Zeng and Yue Yu, et al.

4.1.2 Evaluation Metrics. We choose two commonmetrics to measure the code search performance:
SuccessRate@k and Mean Reciprocal Rank (MRR).

For the automatic and manual evaluations, we adopt both SuccessRate@k and MRR to assess the
performance of a code search model with respect to a set of queries. SuccessRate@k represents the
percentage of queries for which more than one correct snippet exists in the top 𝑘 ranked snippets
returned by a search model, which is calculated as: SuccessRate @𝑘 =

(
1
|𝑄 |

∑𝑄

𝑞=1 𝛿
(
Rank 𝑞 ≤ 𝑘

))
,

where 𝑄 denotes the set of queries in our automatic evaluation, 𝑅𝑎𝑛𝑘𝑞 denotes the highest rank of
the hit snippets in the returned snippet list for the query, and 𝛿 () denotes an indicator function
that returns 1 if the rank of the 𝑞𝑡ℎ query (𝑅𝑎𝑛𝑘𝑞) is smaller than 𝑘 and returns 0 otherwise.
SuccessRate@k is important because a better code search engine will allow developers to find
the desired snippet by inspecting fewer results. Following MMAN, we evaluate SuccessRate@1,
SuccessRate@5, and SuccessRate@10; a higher SuccessRate@k value implies better performance of
the code search model.
We also use MRR to measure the search result ranking of each model. MRR is the average of

the reciprocal ranks of all queries 𝑄 . The reciprocal ranks are the inverse of the highest rank of
the hit code, i.e., rank. The computation of MRR is: MRR = 1

|𝑄 |
∑ |𝑄 |

𝑞=1
1

Rank𝑞 , where 𝑄 denotes the
set of queries in the automatic evaluation, and 𝑅𝑎𝑛𝑘𝑞 denotes the rank of the ground-truth code
corresponding to the 𝑞𝑡ℎ query. The higher the MRR value is, the better the code search performance.
It is noted that we use following formula to evaluate the improvement of performance.

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑃𝑛𝑒𝑤 − 𝑃𝑜𝑙𝑑

𝑃𝑜𝑙𝑑
(7)

In the equation, the 𝑃𝑛𝑒𝑤 is the performance of improved model, the 𝑃𝑜𝑙𝑑 is the performance of
origin model.

4.1.3 Baseline Models. We compare the effectiveness of deGraphCS with 3 state-of-the-art deep
learning-based code search methods:

• DeepCS: DeepCS [20] is a deep code search engine using deep neural networks. Instead of
matching text similarities as traditional works, DeepCS learns a unified vector representation
of both source code and the corresponding natural language query. We use the official
implementation provided by the authors 4.
• CARLCS-CNN: CARLCS-CNN [58] uses a a co-attention mechanism to improve the neural
networks of DeepCS. Generally, CARLCS-CNN learns a correlation matrix between embedded
code and query, and co-attends their semantic relationship.
• Self-Attention: Self-Attention is a baseline model used by [31]. It encodes code and query
with BERT [16] encoder and then computes a similarity score between the representations
of code and query. We use the official implementation by the authors. In self-attention, the
model uses same structure of neural network as the pre-training model in BERT [16].
• UNIF: UNIF [7] is a supervised extension of the base NCS technique [56]. UNIF maintains
significantly lower complexity than previous sequence-of-words-based networks by using a
bag-of-words-based network.
• MMAN: MMAN [64] is a novel multimodal neural network for code search. MMAN uses
an attention mechanism to incorporate multiple features, including code tokens, AST and
S-CFG, to learn a more comprehensive representation for code understanding.

4https://github.com/guxd/deep-code-search

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://github.com/guxd/deep-code-search

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 15

In addition, we combine our representation method with current popular pre-training techniques.
We use two typical pre-trained models, i.e., CodeBERT [18] and CodeT5 [69], and add fine-tune
those models using our dataset.

To answer RQ2 (how effective VFG representation, compared with other code representation on
code search task), we compare our method with different code representations on code search task.
To eliminate the influence of the model, all the code representations are embedded into vector by
GGNN. The details of different code representations as follows:

• CFG: CFG is control flow graph of source code, which is consist of statements and control
flow relationships between statements. We use LLVM to generate CFG of code, and embed
CFG into vector with GGNN refer to MMAN [64].
• AST: AST is abstract syntax tree of source code. We use LLVM to generate AST.
• FA-AST: FA-AST is graph representation of programs called flow-augmented abstract syntax
tree. [68] constructed FA-AST by adding extra control and data flow edges to augment original
AST. Refer to the construction mechanism of [68], we construct FA-AST of C language code.
• IVFG: IVFG is graph representation of programs called interprocedural value-flow graph.
[61] used the statement of LLVM IR as node of graph and used Andersen’s pointer analysis
to construct the edge of graph. Followed by [61], we construct IVFG of our dataset. To better
migrate IVFG to code search, we add variable names on the nodes instead of statements
in [61].

To answer RQ3 (how effective is our graph-based integration compared with multimodal atten-
tion) and RQ4 (how does graph optimization in deGraphCS affect its effectiveness), we compare
deGraphCS with some of its variants as follows:

• MMAN (Token+V-DFG+V-CFG): In this variant, we exploit the features of deGraphCS,
i.e., code tokens, variable-based data and control flow graphs, and fuse them in a multimodal
neural network with an attention mechanism. In other words, the features used in MMAN
are replaced with the features used in deGraphCS. This variant is used to validate that our
graph building and optimizing mechanism is more effective than the previous multi-modal
incorporation mechanism.
• deGraphCS-noGO: In this variant, we remove the graph optimization mechanism from
deGraphCS. This variant is used to validate that it is necessary to remove the redundant
information in the initial constructed graph and verify how this mechanism can improve the
training results.

4.1.4 Implementation Details. To keep more semantic information in source code, we set LLVM
compiler optimization level into “O0”. We use LLVM compiler 9.0 and add argument “-fno-discard-
value-names” to retain variable name in source code. To train our proposed model, we first shuffle
the training data and set the mini-batch size to 16. We build two separate vocabularies for comments
and LLVM IR tokens and limit their vocabulary size to 10,000 and 15,000, respectively, to store the
most frequently appearing tokens in the training dataset. For each batch, comments are padded to
the maximum length with a special token “PAD”, which is set to 30 in our experiments. All tokens
in our dataset are converted to lower case and parsed into a sequence of tokens according to camel
case and “_” if exists. We set the word embedding size to 300. For the LSTM and GGNN units, we set
the hidden size to 512. In addition, we set 5 rounds of iteration for GGNN. The margin is set to 0.6.
We update the parameters via the AdamW optimizer [43] with a learning rate of 0.0003. It is noted
that we follow [64] and do not fine-tune the hyper-parameters of the GGNN and LSTM model.
We mainly fine-tune other hyper-parameters like the learning rate of model. For example, we set
value of learning rate from 0.01 to 0.0001, and observe the performance changes of the model. We

, Vol. 1, No. 1, Article . Publication date: May 2022.

16 Chen Zeng and Yue Yu, et al.

Table 1. Comparison of the overall performance between our model and baselines on automatic evaluation
metrics

Method R@1 R@5 R@10 MRR

DeepCS 0.2350 0.4185 0.5045 0.3268
UNIF 0.3250 0.5175 0.5980 0.4193
CARLCS-CNN 0.2560 0.4825 0.5670 0.3517
Self-Attention 0.3965 0.5910 0.6570 0.4905
MMAN 0.3405 0.5325 0.6130 0.4342
deGraphCS 0.4305 0.6175 0.6810 0.5173

CodeBERT_FT 0.4595 0.6616 0.7421 0.5545
CodeBERT_deGraphCS 0.4647 0.6889 0.7584 0.5680
CodeT5_FT 0.5889 0.7637 0.8189 0.6694
CodeT5_deGraphCS 0.5974 0.7668 0.8242 0.6758

choose the best model performance which is stable in a certain range of values. All the models in
this paper are trained for 200 epochs. All the experiments are implemented using the PyTorch 1.6
framework with Python 3.6, and the experiments are conducted on a server with one NVIDIA Tesla
V100 GPU running on Ubuntu 18.04.

4.2 Experimental Results
4.2.1 RQ 1: Comparison with Baselines. RQ1 investigates whether deGraphCS outperforms the
state-of-the-art deep code search models. We evaluate deGraphCS on the test set, which consists
of 2,000 pairs of code snippets and the corresponding descriptions. In this automatic evaluation, we
treat each description as an input query, and its corresponding code snippet as the ground truth.
We report our evaluation results in Table 1. Columns R@1, R@5, and R@10 show the values of
SuccessRate@k over all queries when 𝑘 is set to 1, 5 and 10, respectively. The column MRR presents
the MRR value of each model.
From Table 1, we can clearly find that deGraphCS beats existing code search methods on

all the metrics. Specifically, deGraphCS obtains an MRR of 51.73%, which is better than that
of DeepCS (32.68%), UNIF (41.93%), CARLCS-CNN(35.17%), Self-Attention(49.05%) and MMAN
(37.97%). For SuccessRate@k, deGraphCS improves the state-of-the-art R@1 score from 34.05%
(obtained by MMAN) and 39.65% (obtained by Self-Attention) to 43.05%. For 43.05%/61.75%/68.10%
of the test queries, the relevant code snippets can be found within the top 1/5/10 returned results
by deGraphCS. The results indicates the effectiveness of deGraphCS.

In addition, to combine our representation method with current popular pre-training techniques,
we use CodeBERT [18] and CodeT5 [69] models to obtain vector embeddings of query and code.
CodeBERT generates high-quality text and code embeddings by pre-training on the CodeSearch-
Net [31] corpus with two tasks, masked language modeling and replaced token detection. CodeT5
is a unified pre-trained encoder-decoder transformer model that better support both code un-
derstanding and generation tasks and allows for multi-task learning. To fuse our semantic map
in the fine-tuning stage, we transform the semantic map into sequences via a depth-first search
algorithm, which is used as additional information for code representations. Specifically, we use two
pre-trained models, CodeBERT and CodeT5, as encoders, respectively. When encoding the code, the
input of the original model is the token sequence of the code, and the modified model uses the token
sequence of the code and the sequence obtained from the depth-first search traversal of the semantic

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 17

Table 2. Effect of VFG representation compared to other typical representations

Method R@1 R@5 R@10 MRR

CFG 0.0945 0.2010 0.2450 0.1455
AST 0.2435 0.4185 0.4910 0.3276
FA-AST 0.2370 0.4115 0.4875 0.3222
IVFG 0.3025 0.4550 0.5710 0.3984
deGraphCS 0.4305 0.6175 0.6810 0.5173

graph as input. The data used in the fine-tuning phase is the same as the DeGraphCS training data.
The results are listed in the second row of Table 1. Among them, CodeBERT_FT and CodeT5_FT
fine-tune the pre-trained model on our data, CodeBERT_deGraphCS and CodeT5_deGraphCS add
semantic graph sequences as additional information in fine-tuning. The results show that: (a) the
pre-trained model greatly improves the performance of code search compared to other deep learn-
ing models (e.g., CodeT5_FT can achieve more than twice as much performance in MRR compared
to DeepCS); (b) adding our semantic graph representation of IR can get additional enhancement
even in the simply way during the fine-tuning stage. It would indicate a promising direction of
understanding source code by combining intermediate representation and pre-training techniques.
We leave a deep investigation in the future work.

4.2.2 RQ 2: Effects of VFG Representation. To demonstrate VFG is a better representation than
other representation (AST, FA-AST, CFG, IVFG) on the code research task. We feed different
representations into the same code search model (i.e., the improved GGNN in this paper). Table 2
shows the performance of different representations.

Our results show that VFG is much better than other representations. In terms of SuccessRate@1,
the performance of deGraphCS is almost twice the performance of AST and FA-AST. The CFG
representation is the worst, is less than the half of the performance of AST and FA-AST. The IVFG
is based on instructions of LLVM IR, we can see that our variable based method is better than
IVFG. In terms of other metrics, VFG also performs better than other representations. For MRR, the
improvements to CFG, AST, FA-AST, IVFG are 255.53%, 57.91%, 60.55% and 29.84%, respectively.
The results show that VFG can capture code semantics more accurately.

4.2.3 RQ 3: Effects of Integration. To evaluate the advantage of our approach in the aspect of inte-
grating tokens, data flow and control flow, we perform experiments on two models, i.e.,deGraphCS
and MMAN (Token+V-DFG+V-CFG). deGraphCS integrate token, data flow and control flow into
one graph, and use GGNN to obtain the representation of graph. MMAN (Token+V-DFG+V-CFG)
use multi-modal to obtain different representations of token, data flow and control flow, and
fuse different representations into one representation. Table 3 shows the performance of the two
approaches.

In Table 3, we can observe that the MRR of MMAN (Token+V-DFG+V-CFG) decreases by 8.96%
compared with deGraphCS. In terms of SuccessRate@k, MMAN (Token+V-DFG+V-CFG) achieves
a SuccessRate@1/5/10 of 33.80%, 52.50% and 59.90%, respectively, much lower than those of de-
GraphCS. This means that more relevant code snippets are returned by deGraphCS. Therefore,
integrating the three features into one graph is a better choice, instead of roughly fusing them by a
single attention layer.

4.2.4 RQ 4: Effect of Attention Mechanism. To evaluate the advantage of attention mechanism
compared with sum mechanism and mean mechanism, we perform experiments on three models,

, Vol. 1, No. 1, Article . Publication date: May 2022.

18 Chen Zeng and Yue Yu, et al.

Table 3. Effect of graph integration

Method R@1 R@5 R@10 MRR

MMAN(Token+V-DFG+V-CFG) 0.3380 0.5250 0.5990 0.4277
deGraphCS 0.4305 0.6175 0.6810 0.5173

Table 4. Effect of attention mechanism

Method R@1 R@5 R@10 MRR

deGraphCS(mean) 0.3380 0.5425 0.6210 0.4516
deGraphCS(sum) 0.3315 0.5275 0.5980 0.4234
deGraphCS(attention) 0.4305 0.6175 0.6810 0.5173

Table 5. Effect of graph optimization

Method R@1 R@5 R@10 MRR

deGraphCS-noGO 0.3620 0.5585 0.6210 0.4547
deGraphCS 0.4305 0.6175 0.6810 0.5173

i.e.,deGraphCS(attention), deGraphCS(sum) and deGraphCS(mean). deGraphCS(attention) utilize
attention network to learn different weights for nodes’ vectors. deGraphCS(sum) sums all nodes’
vectors and deGraphCS(mean) averages all nodes’ vectors.

Those mechanism are all used to integrate the nodes’ information into one graph vector. From
Table 4, we can see that deGraphCS(attention) achieves the best performance on R@1, R@5, R@10
and MRR. We believe that the attention mechanism can focus on the most important nodes in graph
and abandon useless nodes. However, the sum mechanism and mean mechanism may confuse
important information.

4.2.5 RQ 5: Effect of Graph Optimization Component. To demonstrate the effectiveness of the flow
graph optimizing mechanism constructed from LLVM IR, we perform experiments by comparing
deGraphCS with the version with the graph optimization mechanism removed deGraphCS-noGO.
We present the overall comparison results in Table 5.

In Table 5, we can see that deGraphCS-noGO achieves an average success rate of 36.20%, 55.85%,
and 62.10% when the top 1, 5, and 10 results are inspected, respectively. In contrast, deGraphCS
achieves average success rate of 43.05%, 61.75% and 68.10%. The result shows that deGraphCS
returns more relevant code snippets than deGraphCS-noGO. For SuccessRate@1, SuccessRate@5
and SuccessRate@10, the improvements to deGraphCS-noGO are 18.92%, 10.56% and 9.66%. For
MRR, the improvement to deGraphCS-noGO is 13.77%.

The results demonstrate that removing redundant information and optimizing the node contents
of the initial constructed flow graph focuses our proposedmodel more on the useful and fine-grained
correlations between the source code and the comment descriptions. In addition, we performed
statistical analysis and found that the total number of nodes in the optimized graph decreases by
51.88% compared with graph without optimization, which decreases training time by approximately
half.

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 19

Fig. 6. Experimental results of deGraphCS on different metrics w.r.t. varying numbers of nodes and code
lengths.

4.2.6 RQ 6: Model Robustness. To analyze the sensitivity of deGraphCS, we explore four parame-
ters (i.e., comment length, code length, number of VFG nodes, the length of the longest path in
VFG) that may have an impact on the code and comment representation. The comment length
reflects the complexity of comment, and code length, number of VFG nodes, the length of the
longest path in VFG both reflect the complexity of source code. The length of the longest path in
VFG is the maximum distance between the pair of nodes in graph. Fig. 6 illustrates the performance
of deGraphCS based on different evaluation metrics with varying parameters. From Fig. 6(a)(b)(c),
we can find that in most cases, deGraphCS maintains a stable performance even though the
comment length, code length or node number increases dramatically, which can be attributed to the
superiority of our variable-based flow graph. The length of the longest path between any two nodes
is used to measure the complexity of our flow graph. From Fig. 6(d), we can see that as the length
of the longest path increases (i.e., the difficulty of the graph embedding increases), the performance
of deGraphCS decreases slightly but overall maintains a stable level. We can also see some zigzag
behaviors in the four charts, but the fluctuation is very small in Fig. 6(a)(b)(d). The reason why the
fluctuation in Fig. 6(c) is more obvious than other figures is that the length of longest path can
better reflect the code complexity than the number of VFG nodes. Therefore, we believe that the

, Vol. 1, No. 1, Article . Publication date: May 2022.

20 Chen Zeng and Yue Yu, et al.

Table 6. Comparison of the overall performance between our model and baselines on manual evaluation
(SuccessRate@10|MRR)

Method P1 P2 P3 P4 P5 Aveg.

DeepCS 0.40|0.21 0.34|0.18 0.34|0.17 0.52|0.36 0.48|0.35 0.42|0.26
UNIF 0.52|0.36 0.52|0.27 0.48|0.29 0.60|0.39 0.58|0.39 0.54|0.34
MMAN 0.58|0.41 0.52|0.33 0.48|0.37 0.64|0.43 0.64|0.44 0.57|0.40
deGraphCS 0.66|0.47 0.62|0.46 0.56|0.36 0.70|0.51 0.70|0.61 0.65|0.48

performance decreases slowly with the increase of code complexity or query complexity. Overall,
the results in this subsection further verify the robustness of our proposed model.

4.2.7 RQ 7: Human Evaluation. deGraphCS shows great utility in the aforementioned automatic
evaluation experiments. However, in reality, the questions of the usefulness of a returned code
snippet are likely best answered by human programmers. Thus, we conduct a user study where 5
experienced programmers are asked to grade the utility of code fragments returned by the baseline
methods, i.e., DeepCS, UNIF, MMAN and our proposed model deGraphCS.

Specifically, we first build a search platform that includes a search codebase of 30,799 C language
functions and 50 queries selected from the test set as benchmarks. By using different models, the
platform will recommend the top 10 code snippets to users according to the query. Then, we recruit
5 graduate students from our school who have rich experience in C projects and are competent
enough to perform the user study to evaluate the effectiveness of these models. To evaluate the
models fairly, the 5 recruited students are not part of authors.
To simulate real scenarios, we allowed the 5 participants (denoted as P1 to P5) to use the four

models in turn to search the related code of 50 queries. All participants had over 2 years/5 projects
in C programming experience. During the evaluation, we ensured that participants did not know
which model the returned the results. For each query, they inspected the top 10 results returned by
each model and labeled those results they believed were relevant to the query. Table 6 shows the
overall performance achieved by each model in terms of SuccessRate@10 and MRR.
From Table 6, we can draw the following conclusions: (a) under the experimental setting, de-

GraphCS answers more user queries with an average SuccessRate@10 of 0.65, and the improve-
ments compared withMMAN, UNIF and DeepCS are 14%, 20% and 55%, respectively; (b) deGraphCS
achieves a better code search performance with an average MRR of 0.48. In conclusion, our proposed
model maintains a higher practical value in the simulated code search scenario.
We further chose several examples to illustrate the superiority of deGraphCS on the search

results. Fig. 7 shows the searched results of deGraphCS, DeepCS, UNIF and MMAN on the query
“allocate memory for the file descriptors”. We can see that the result returned by deGraphCS is
exactly what the users need. However, the results returned by DeepCS, UNIF and MMAN do not
realize the queried function and only focus on the shallow information (i.e., keyword “fd”, which is
related to file descriptor). Specifically, the core functionality related to the keywords in the query is
outlined red. The baseline methods can only retrieve the functions that realize file creation, open
or memory allocation for other data structures instead of file descriptors. In addition, Fig. 8 shows
the rank 1 and rank 2 searched results of deGraphCS on the query “calculate checksum of
checkpoint”. We can see that both retrieved code snippets realize the function of buffer checking
and computing. However, compared with the rank 1 result, whose tokens are well named (i.e.,
checksum, buffer) and obviously matched with the keywords in the query, the variables in the rank
2 code snippet are much more obscure (i.e., cksum, b). Since the tokens in the rank 2 code are not

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 21

Fig. 7. An illustrative example shows the comparison between the searched results of (a) deGraphCS, (b)
DeepCS, (c) UNIF and (d) MMAN on the query “allocate memory for the file descriptors”.

named following natural language rules, it is hard for the models to utilize the token information
for matching. The fact that deGraphCS can retrieve the obscure code snippet related to the query
on the semantics demonstrates that the data and control flow features are essential in code search
and that deGraphCS can fully exploit the useful information in our variable-based flow graph.

4.3 Threats to Validity
deGraphCS may suffer from three threats to validity. The first lies in the scalability of our proposed
approach. The LLVM IR can only be extracted from a whole program with complete dependencies.
Therefore, it is difficult to extend our precise code representation model to some sources where
LLVM IR cannot be successfully extracted, such as many single code snippets in StackOverflow. The
difficulty can be solved by automatically adding an interface for missing class objects and methods.
We plan to overcome this compilation problem to generate more datasets in the near future. The
second threat is that deGraphCS is currently trained and tested only on C programs. However,
our work is based on the LLVM IR of the code, which is independent of the source programming
language. Thus, our code representation method can be easily transferred to other languages such

, Vol. 1, No. 1, Article . Publication date: May 2022.

22 Chen Zeng and Yue Yu, et al.

Fig. 8. The rank 1 and rank 2 searched results of deGraphCS on the query “calculate checksum of checkpoint”.

as Python and Java. For example, to transfer our work to the Java language, we can use Soot 5 (a
Java optimization framework) to generate Jimple, which is an intermediate representation of Java.
To transfer to the Python language, we can analyze and utilize the Python bytecode. We can build
a variable-based flow graph based on the above intermediate representations. The third threat lies
in the model generalization ability. We constructed a test dataset consisting of only 2,000 C code
snippets, which may not be sufficient to represent most programming tasks. We plan to extend the
dataset in the near future. The last threat is the reliability of dataset. According to our statistics,
few (7%) of program semantic cannot be found in the first sentence of the comment, which would
exert few negative impact on our model.

5 RELATEDWORK
5.1 Code Search
As vast repositories of open source code have become available, many works have been proposed to
search code to help developers. There are many works that attempt to search code according to user
queries. Traditional code search methods are mainly based on information retrieval and natural
language processing technologies [2, 9, 28, 34, 39, 45–47], which consider source code text and
structural characteristics. [2] proposes a code search engine Sourcerer that extracts fine-grained
structural information from source code. [45] proposes CodeHow, a code search technique that
reveals APIs related to user queries according to text similarity, and then applies an extended
Boolean model to utilize API information in code searching. NCS [56] utilizes natural language
processing technologies to embed the code and query into vectors, and then searches the code
snippet by comparing the similarity of the vector representations. The above information retrieval-
based methods treat both source code and query as natural language. It is difficult to deeply
understand the semantic information of source code.
Since traditional code search based on syntactics often returns vague or irrelevant results,

many works [36, 38, 55, 59, 67] have been proposed for semantic code search, which depends on
specifications. For example, to search semantically related code, [55] proposes an architecture for
semantics-based code search. The architecture utilizes many different specifications, including
keywords, method signatures and test cases. The semantic search based on specifications performs
well for finding relevant code but requires developers to write complex specifications. To reduce
the specification requirement, [59] proposes a new approach in which programmers are required
only to specify lightweight, incomplete specifications that are in the form of input/output pairs

5https://github.com/soot-oss/soot

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://github.com/soot-oss/soot

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 23

and/or partial program fragments. Then, the approach uses an SMT solver to automatically identify
programs. However, it also requires extra specifications to understand code semantics. Compared
with the prior semantic code search, our method uses a static code-level analysis on source code,
without the need to input extra specifications or run code snippets. Our work focuses on scenarios
in which users can simply use natural language to describe their intent. Finally, we obtain code
semantics by using a deep learning model to learn a code representation instead of depending on
the input and analysis of specifications.

Many works have been proposed to enrich query information by refining queries, including query
expansion and reformulation [17, 22, 25, 26, 37, 44, 66, 67]. Specifically, [22] trains a recommender
(Refoqus) based on machine learning technologies, and Refoqus can recommend a reformulation
strategy according to query properties. [44] utilizes synonyms generated from WordNet to extend
queries. [67] utilizes user feedback to reformulate queries, and [66] generates semantic enriched
queries using reinforcement learning.

Recently, to understand the deep semantics of the code and queriers, deep learning technologies
have been applied to code search [7, 10, 15, 20, 21, 24, 30, 56, 58, 64]. [10] proposes BVAE including
two variational autoencoders (VAEs) to model source code and natural language, and jointly trains
two models to capture the similarity between the latent variables of the code and description. Many
works measure the semantic similarity of the source code and query through joint embedding and
deep learning technologies. CODEnn [20] extracts code tokens, filenames and API sequences as
the features and embeds this information and queries into a shared space so that code snippets
could be retrieved by query vectors. CARLCS-CNN [58] uses a co-attention mechanism to improve
the neural networks of DeepCS. UNIF [7] extends NCS and further fine-tunes code and query
embeddings by joint deep learning. [31] proposes multiple models (Bag of Words (Neural BoW),
RNN, 1D-CNN, and Self-Attention) to encode tokens and mine code semantic for code search task.
To utilize more source code information, [64] proposes MMAN, which uses a multimodal (tokens,
AST and CFG) to represent source code. [23] proposes a multi-perspective cross-lingual neural
framework and inputs the code sequence and AST sequence to train model. Similarly, we embed
the source code and query into a common space to mine the semantic relationship. However, these
works cannot precisely represent source code semantics.

5.2 Code Representation
Deep learning techniques for program analysis have attracted increasing attention. Many works
focus on source code representation to perform further software engineering research [14, 32, 33, 48,
53, 54, 63, 65, 70, 71]. [54] adopts an RNN and n-gram model for code completion. To capture code
structural information, [48] proposes a novel tree-based convolutional neural network (TBCNN) to
represent source code ASTs. [70] proposes a framework (CDLH) that incorporates an AST-based
LSTM to exploit lexical and syntactical information. More recently, to extract more information,
[64] proposes MMAN to combine multiple semantic information of code, which includes source
code tokens, AST, and CFG. These studies focus on different source code representations to capture
the structural, syntactical and semantic information. However, they cannot precisely represent the
code on semantics. Therefore, we focus on the code semantics and propose our variable-based flow
graph method.
Several recent works [6, 11, 57, 60] have attempted to utilize intermediate representation to

represent code. [60] constructs a dependency graph to represent code based on Java bytecode
instructions. They use graphs to record data and control dependencies between instructions to
detect code similarity by using a subgraph isomorphism algorithm to analyze the similarity of
the dependency graph. [11, 61] both focus on building a graph based on LLVM IR to represent
code. [11] uses a skip-gram model to learn the graph representation and apply to code task, [61]

, Vol. 1, No. 1, Article . Publication date: May 2022.

24 Chen Zeng and Yue Yu, et al.

uses Andersen’s pointer analysis to construct graph and represents code to the code summary and
code category task. They achieve good performance by utilizing intermediate representation to
represent code. [19] also utilizes the data dependency and control dependency of statements and
constructs a dependency matrix. Through the dependency matrix, [19] improves the performance
of code search. Different from these works, we aim to make a more precise code search; thus,
we construct a different graph based on variables instead of instructions, which ensures that the
granularity of both comments and code representations in code search are consistent. Compared
with the previously used methods, we use a deep learning model (GGNN) to learn the code semantic
representation. Furthermore, to obtain a more precise code representation, we optimize the graph
to decrease the noise and improve the training efficiency.
Many works [49–52] have been proposed to mine Object/API usage. They recommended Ob-

ject/API patterns to assist developer in real-time programming. These works are similar to the
techniques of code search, which also retrieval useful code for code developer. Many Object/API
usage miners represent code as graph, and construct the graphs based on the usage orders of
objects/API’s actions. Then, the traditional methods like graph isomorphism algorithm or boolean
model are used to mine object/API usage pattern on graph. Compared with the approaches of
searching object/API usage, we focus on all useful tokens include API, variable names and opcode
names, since we believe all of these tokens are related to code semantic. Then we propose a novel
variable-based graph construction method to represent control- and data- flow information.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a deep graph neural network named deGraphCS for code search. Instead
of considering source code structural features such as AST, deGraphCS proposes a new code
representation method for code search task which can represent the semantics of code more
precisely. Furthermore, we propose an optimization to remove the redundant information of the
graph, followed by a gated graph neural network with an attention mechanism to capture the
critical code information. In addition, we use a unified framework to learn the representation of
natural language queries and corresponding code snippets. We conduct several experiments on
trained models, and the results of automatic evaluation and manual evaluation both demonstrate
that our proposed approach is effective and outperforms the state-of-the-art approaches.

In the future, we plan to overcome the compilation problems of code snippet and investigate the
performance of deGraphCS on other datasets of different programming languages, e.g., Python and
Java. We aim to apply our variable-based flow graph construction method to inter-procedural and
represent more complicated code snippets precisely. We also plan to extend the variable-based flow
graph we designed to solve other software engineering problems, e.g., code translation[11], API
recommendation [5, 30], and code clone detection [71]. As the pre-trained model developing, we
also plan to train a unified large-scale pre-trained model for multiple languages including the source
code corpus of C, C++, Java, Python and so on. Also, we would further explore the fine-tuning and
prompt strategies to improve the performances of pre-trained model by combing the source code
token and semantic-based graph data.

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China (2020AAA0103504), National
Natural Science Foundation of China (No.61690203 and No.61872373), and the Major Key Project of
PCL.

, Vol. 1, No. 1, Article . Publication date: May 2022.

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 25

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align

and translate. arXiv preprint arXiv:1409.0473 (2014).
[2] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes. 2006. Sourcerer:

a search engine for open source code supporting structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. 681–682.

[3] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural Code Comprehension: A Learnable
Representation of Code Semantics. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 3585–3597. http://papers.
nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf

[4] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010. Example-centric programming: integrating
web search into the development environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 513–522.

[5] Liang Cai, Haoye Wang, Qiao Huang, Xin Xia, Zhenchang Xing, and David Lo. 2019. BIKER: A Tool for Bi-Information
Source Based API Method Recommendation (ESEC/FSE 2019). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3338906.3341174

[6] P. M. Caldeira, K. Sakamoto, H. Washizaki, Y. Fukazawa, and T. Shimada. 2020. Improving Syntactical Clone Detection
Methods through the Use of an Intermediate Representation. In 2020 IEEE 14th International Workshop on Software
Clones (IWSC). 8–14. https://doi.org/10.1109/IWSC50091.2020.9047637

[7] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code
search. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 964–974.

[8] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code snippet content assist via natural language
tasks. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 628–632.

[9] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API subgraph via text phrases. In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. 1–11.

[10] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and summarization of source code. In 2018
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 826–831.

[11] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree Neural Networks for Program Translation. In Advances
in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Eds.). Curran Associates, Inc., 2547–2557. http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-
for-program-translation.pdf

[12] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014). arXiv:1412.3555 http://arxiv.org/abs/1412.3555

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991),
451–490. https://doi.org/10.1145/115372.115320

[14] Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016. A deep language model for software code. arXiv preprint
arXiv:1608.02715 (2016).

[15] Daniel DeFreez, Aditya V Thakur, and Cindy Rubio-González. 2018. Path-based function embedding and its application
to specification mining. arXiv preprint arXiv:1802.07779 (2018).

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[17] Timothy Dietrich, Jane Cleland-Huang, and Yonghee Shin. 2013. Learning effective query transformations for enhanced
requirements trace retrieval. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 586–591.

[18] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In
Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (Findings
of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics,
1536–1547.

[19] Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang, Hongyu Zhang, Zenglin Xu, and Michael R Lyu. 2021.
CRaDLe: Deep code retrieval based on semantic dependency learning. Neural Networks 141 (2021), 385–394.

[20] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 933–944.

[21] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 631–642.

, Vol. 1, No. 1, Article . Publication date: May 2022.

http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
https://doi.org/10.1145/3338906.3341174
https://doi.org/10.1109/IWSC50091.2020.9047637
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1145/115372.115320

26 Chen Zeng and Yue Yu, et al.

[22] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies. 2013. Automatic
query reformulations for text retrieval in software engineering. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 842–851.

[23] Rajarshi Haldar, Lingfei Wu, Jinjun Xiong, and Julia Hockenmaier. 2020. A Multi-Perspective Architecture for Semantic
Code Search. arXiv:2005.06980 [cs.SE]

[24] Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vectors: understanding programs
through embedded abstracted symbolic traces. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 163–174.

[25] Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. Improving source code search with natural language phrasal rep-
resentations of method signatures. In 2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). IEEE, 524–527.

[26] Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, and Greg Mallet. 2014. NL-based query refinement and contextu-
alized code search results: A user study. In 2014 Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, 34–43.

[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

[28] Reid Holmes, Rylan Cottrell, Robert J Walker, and Jorg Denzinger. 2009. The end-to-end use of source code examples:
An exploratory study. In 2009 IEEE International Conference on Software Maintenance. IEEE, 555–558.

[29] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC). IEEE, 200–20010.

[30] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API method recommendation without
worrying about the task-API knowledge gap. In 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 293–304.

[31] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet
Challenge: Evaluating the State of Semantic Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http:
//arxiv.org/abs/1909.09436

[32] Hamel Husain and Ho-Hsiang Wu. 2018. How to create natural language semantic search for arbitrary objects with
deep learning. Retrieved November 5 (2018), 2019.

[33] Hamel Husain and Ho-Hsiang Wu. 2018. Towards natural language semantic code search. Retrieved November 5 (2018),
2019.

[34] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code examples. In Proceedings of the 36th
International Conference on Software Engineering. 664–675.

[35] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[36] Otávio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar Masiero, and Cristina Lopes. 2011. A
test-driven approach to code search and its application to the reuse of auxiliary functionality. Information and Software
Technology 53, 4 (2011), 294 – 306. https://doi.org/10.1016/j.infsof.2010.11.009

[37] Otávio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V Lopes. 2014. Thesaurus-based automatic
query expansion for interface-driven code search. In Proceedings of the 11th Working Conference on Mining Software
Repositories. 212–221.

[38] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher. 2007. CodeGenie: : a tool for test-driven
source code search. In Companion to the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr. (Eds.). ACM, 917–918. https://doi.org/10.1145/1297846.
1297944

[39] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. 2016. Relationship-aware code search
for JavaScript frameworks. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 690–701.

[40] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493 (2015).

[41] Zhixing Li, Yue Yu, Tao Wang, Gang Yin, Shanshan Li, and Huaimin Wang. 2021. Are you still working on this an
empirical study on pull request abandonment. IEEE Transactions on Software Engineering (2021).

[42] Zhixing Li, Yue Yu, Minghui Zhou, TaoWang, Gang Yin, Long Lan, and HuaiminWang. 2020. Redundancy, context, and
preference: An empirical study of duplicate pull requests in OSS projects. IEEE Transactions on Software Engineering
(2020).

[43] Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in Adam. CoRR abs/1711.05101 (2017).
arXiv:1711.05101 http://arxiv.org/abs/1711.05101

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://arxiv.org/abs/2005.06980
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.1016/j.infsof.2010.11.009
https://doi.org/10.1145/1297846.1297944
https://doi.org/10.1145/1297846.1297944
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101

deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search 27

[44] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. 2015. Query expansion via wordnet for effective
code search. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 545–549.

[45] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015. Codehow: Effective
code search based on api understanding and extended booleanmodel (e). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 260–270.

[46] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie. 2011. Exemplar: A source code search
engine for finding highly relevant applications. IEEE Transactions on Software Engineering 38, 5 (2011), 1069–1087.

[47] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software Engineering. 111–120.

[48] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2014. Convolutional neural networks over tree structures for
programming language processing. arXiv preprint arXiv:1409.5718 (2014).

[49] Sergio Mover, Sriram Sankaranarayanan, Rhys Braginton Pettee Olsen, and Bor-Yuh Evan Chang. 2018. Mining
framework usage graphs from app corpora. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 277–289.

[50] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2012. GraPacc: A graph-based
pattern-oriented, context-sensitive code completion tool. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 1407–1410.

[51] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr, Anh Tuan Nguyen, Miryung Kim, and Tien N Nguyen. 2010.
A graph-based approach to API usage adaptation. ACM Sigplan Notices 45, 10 (2010), 302–321.

[52] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and Tien N Nguyen. 2009. Graph-based
mining of multiple object usage patterns. In Proceedings of the 7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on the Foundations of Software Engineering. 383–392.

[53] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas Guibas. 2015.
Learning program embeddings to propagate feedback on student code. arXiv preprint arXiv:1505.05969 (2015).

[54] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 419–428.

[55] S. P. Reiss. 2009. Semantics-based code search. In 2009 IEEE 31st International Conference on Software Engineering.
243–253. https://doi.org/10.1109/ICSE.2009.5070525

[56] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018. Retrieval on source
code: a neural code search. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. 31–41.

[57] A. Schäfer, W. Amme, and T. S. Heinze. 2020. Detection of Similar Functions Through the Use of Dominator Information.
In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C).
206–211. https://doi.org/10.1109/ACSOS-C51401.2020.00057

[58] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Improving Code Search with Co-Attentive
Representation Learning. In 28th International Conference on Program Comprehension (ICPC).

[59] K. T. Stolee. 2012. Finding suitable programs: Semantic search with incomplete and lightweight specifications. In 2012
34th International Conference on Software Engineering (ICSE). 1571–1574. https://doi.org/10.1109/ICSE.2012.6227034

[60] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail Kaiser, and Tony Jebara. 2016. Code
Relatives: Detecting Similarly Behaving Software. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). Association for Computing Machinery, New York, NY, USA, 702–714.
https://doi.org/10.1145/2950290.2950321

[61] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: Value-Flow-Based Precise Code Embedding.
Proc. ACM Program. Lang. 4, OOPSLA, Article 233 (Nov. 2020), 27 pages. https://doi.org/10.1145/3428301

[62] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Representations From Tree-
Structured Long Short-Term Memory Networks. CoRR abs/1503.00075 (2015). arXiv:1503.00075 http://arxiv.org/abs/
1503.00075

[63] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2018.
Deep learning similarities from different representations of source code. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). IEEE, 542–553.

[64] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip Yu. 2019. Multi-modal attention
network learning for semantic source code retrieval. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 13–25.

[65] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. 2018. Improving automatic
source code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 397–407.

, Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1109/ACSOS-C51401.2020.00057
https://doi.org/10.1109/ICSE.2012.6227034
https://doi.org/10.1145/2950290.2950321
https://doi.org/10.1145/3428301
https://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075

28 Chen Zeng and Yue Yu, et al.

[66] Chaozheng Wang, Zhenhao Nong, Cuiyun Gao, Zongjie Li, Jichuan Zeng, Zhenchang Xing, and Yang Liu. 2022.
Enriching query semantics for code search with reinforcement learning. Neural Networks 145 (2022), 22–32.

[67] Shaowei Wang, David Lo, and Lingxiao Jiang. 2014. Active code search: incorporating user feedback to improve code
search relevance. In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering.
677–682.

[68] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 261–271.

[69] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for
Computational Linguistics, 8696–8708.

[70] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional Clone Detection by Exploiting
Lexical and Syntactical Information in Source Code.. In IJCAI. 3034–3040.

[71] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments
for code clone detection. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 87–98.

, Vol. 1, No. 1, Article . Publication date: May 2022.

	Abstract
	1 Introduction
	2 Motivating Example
	3 The Proposed Model
	3.1 An Overview
	3.2 Neural Code Representation
	3.3 Comment Description Representation
	3.4 Model Training

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Threats to Validity

	5 Related Work
	5.1 Code Search
	5.2 Code Representation

	6 Conclusion and Future Work
	Acknowledgments
	References

