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Code summaries, also called code comments, help developers comprehend programs and reduce their time to infer the program
functionalities during software maintenance. Recent efforts resort to deep learning techniques such as sequence-to-sequence models
for generating accurate code summaries, among which Transformer-based approaches have achieved promising performance. However,
effectively integrating the code structure information into the Transformer is under-explored in this task domain. In this paper, we
propose a novel approach named SG-Trans to incorporate code structural properties into Transformer. Specifically, we inject the local
symbolic information (e.g., code tokens and statements) and global syntactic structure (e.g., data flow graph) into the self-attention
module of Transformer as inductive bias. To further capture the hierarchical characteristics of code, the local information and global
structure are designed to distribute in the attention heads of lower layers and high layers of Transformer. Extensive evaluation shows
the superior performance of SG-Trans over the state-of-the-art approaches. Compared with the best-performing baseline, SG-Trans
still improves 1.8% and 2.9% in terms of BLEU-4 score, a metric widely used for measuring generation quality, respectively on two
benchmark datasets.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network relia-
bility.

Additional Key Words and Phrases: Code summary, Transformer, multi-head attention, code structure.
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1 INTRODUCTION

Program comprehension is crucial for developers during software development and maintenance, and developers’
cognitive efforts in comprehending programs can be significantly minimized by a text summary accompanying the
source code [19]. Source code summarization, also known as code comment generation, thus aims at automatically
generating a concise text description of the functionality of a program.
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1 public boolean IsPrime (int num1) {    
2 int i1 =2;
3 bool  flag1 = false; 
4 while( i2 < num2 ) {
5 if(num3%i3 == 0) {
6 flag2 = true;
7 break;}        
8 i5 = i4+1;
9 }
10 return flag3;
11 }

MethodDeclaration

boolean

IsPrime BlockParam

VarDec WhileStmt ReturnVarDec

int

Variable Declarator

num

Binary Expr:less BlockStmt

IfStmt ExpressionStmt

BlockstmtBinary Expr:equals

0

num i

Binary Expr:remainder

Primitive

Primitive

VarDecld

2

Integer

Integer

Name Name

num1

num2

num3

flag1 flag2 flag3

i1 i2 i3

i4i5

(a) An example of code snippet (c) The data flow graph (DFG)

(b) The abstract syntax tree (AST)

Fig. 1. An example of Java code snippet (a), with the corresponding AST (b) and DFG (c) illustrated. Entities in grey ellipse in (b)
mean unexpanded branches. The arrows in the DFG represent the relations of sending/receiving messages between the variables
(highlighted in grey in the code).

Existing leading approaches have demonstrated the benefits of integrating code structural properties such as Abstract
Syntax Trees (ASTs) [4, 19] into deep learning techniques for the task. An example of AST is shown in Figure 1 (b). The
modality of the code structure can be either sequences of tokens traversed from the syntactic structure of ASTs [4, 19]
or sequences of small statement trees split from large ASTs [38, 50]. The sequences are usually fed into a Recurrent
Neural Network (RNN)-based sequence-to-sequence network for generating a natural language summary [19, 27].
However, due to the deep nature of ASTs, the RNN-based models may fail to capture the long-range dependencies
between code tokens [1]. To mitigate this issue, some works represent the code structure as graphs and adopt Graph
Neural Networks (GNNs) for summary generation [13, 26]. Although these GNN-based approaches can capture the
long-range relations between code tokens, they are proven sensitive to local information and ineffective in capturing
the global structure [21]. Take the AST in Figure 1 (b) as an example, token nodes “int” and “num” (highlighted with
red boxes) are in the same statement but more than one hop exists between them.
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Recent study [1] shows that Transformer model [42], which can capture long-range dependencies with its self-
attention mechanism, outperforms other deep learning approaches for the task. However, how to effectively integrate
the code structure information into Transformer is still unexplored. One challenge is that since the position encoding
in Transformer already learns the dependency relations between code tokens, trivial integration of the structure
information may not bring an improvement for the task [1]. Besides, an issue of Transformer is that its attention is
purely data-driven [16]. Without the incorporation of explicit constraints, the multi-head attentions in Transformer
may suffer from attention collapse or attention redundancy, with different attention heads extracting similar attention
features, which hinders the model’s representation learning ability [5, 43].

To overcome the above challenges in this paper, we propose a novel model named SG-Trans, i.e., code Structure
Guided Transformer. SG-Trans exploits the code structural properties to introduce explicit constraints to the multi-
head self-attention module. Specifically, we extract the pairwise relations between code tokens based on the local
symbolic structure such as code tokens and statements, and the global syntactic structure, i.e., data flow graph (DFG),
then represent them as adjacent matrices before injecting into the multi-head attention mechanism as inductive bias.
Furthermore, following the principle of compositionality in language: the high-level semantics is the composition of
low-level terms [16, 41], we propose a hierarchical structure-variant attention approach to guide the attention heads
at the lower layers attending more to the local structure and those at the higher layers attending more to the global
structure. In this way, our model can take advantage of both local and global (long-range dependencies) information
of source code. Experiments on benchmark datasets demonstrate that SG-Trans can outperform the state-of-the-art
models by at least 1.8% and 2.9% in terms of BLEU-4 on two Java and Python benchmark datasets, respectively.

In summary, our work makes the following contributions:

• We are the first to explore the integration of both local and global code structural properties into Transformer
for source code summarization.

• A novel model is proposed to hierarchically incorporate both the local and global structure of code into the
multi-head attentions in Transformer as inductive bias.

• Extensive experiments show SG-Trans outperforms the state-of-the-art models.

Paper structure. Section 2 illustrates the background knowledge of the work. Section 3 presents our proposed
methodology for source code summarization. Section 4 introduces the experimental setup. Section 5 describes the
evaluation results, followed by the discussions in Section 6. Section 7 presents related studies. Finally, Section 8 concludes
the paper and outlines future research work.

2 BACKGROUND

In this section, we introduce the background knowledge of the proposed approach, including vanilla Transformer model
architecture and copy mechanism.

2.1 Vanilla Transformer

Transformer [42] is a kind of deep self-attention network which has demonstrated its powerful text representation
capability in many NLP applications, e.g., machine translation and dialogue generation [39, 51]. It removes the recurrent
and convolutional parts in conventional neural networks such as Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN), and is solely based on attention mechanism and multi-layer perceptron (MLP). Transformer
follows the sequence-to-sequence [9] architecture with stacked encoders and decoders, with the general architecture

3
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Multi-Head
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Output

Fig. 2. Architecture of vanilla transformer with 𝐿 layers in the encoder and decoder, respectively.

illustrated in Figure 2. Each encoder block and decoder block consist of multi-head self-attention sub-layer and feed
forward sub-layer. Residual connection [18] and layer normalization [6] are also employed between the sub-layers.
Since the two sub-layers play an essential role in Transformer, We introduce them in more details as following.

2.1.1 Multi-Head Self-Attention. Multi-head attention is the key component of Transformer. Given an input sequence
𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑖 , ..., 𝑥𝑛) where 𝑛 is the sequence length and each input token 𝑥𝑖 is represented by a 𝑑-dimension vector,
self-attention first calculates the Query vector, Key vector, and Value vector for each input token by multiplying the
input vector with three matrices𝑊 𝑞 ,𝑊 𝑘 ,𝑊 𝑣 . Then it calculates the attention weight of each token 𝑥𝑖 by scoring the
query vector 𝑞𝑖 against the key vector 𝐾 of the input sentence. The scoring process is conducted by the scaled dot
product, as shown in Equ. (3), where dimension 𝑑 on the denominator is used to scale the dot product. Softmax is then
used to normalize the attention score and outputs attention weight 𝛼𝑖 . Finally, the self-attention vector 𝑐𝑖 is computed
as a weighted sum of the input vectors.

𝑄 = 𝑋𝑊 𝑞, 𝐾 = 𝑋𝑊 𝑘 ,𝑉 = 𝑋𝑊 𝑣, (1)

𝛼𝑖 = softmax(𝑞𝑖𝐾
𝑇

√
𝑑

) (2)

𝑐𝑖 = 𝛼𝑖𝑉 , (3)

where 𝑐𝑖 and𝑞𝑖 are the 𝑖-th self-attention vector and query vector, respectively, and𝑊 𝑞 ,𝑊 𝑘 ,𝑊 𝑣 are trainable parameters.
The attention weight here can be viewed as a relation measurement between the output vector and input vector, and a
higher weight indicates that the output vector is more related to the corresponding input vector.

Instead of performing a single self-attention function, Transformer adopts multi-head self-attention (MHSA) which
perform the self-attention function with different parameters in parallel and ensembles the output of each head by

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Code Structure Guided Transformer for Source Code Summarization Woodstock ’18, June 03–05, 2018, Woodstock, NY

Copy distribution 𝑷𝒄𝒐𝒑𝒚

Vocabulary distribution 𝑷𝒗𝒐𝒄𝒂𝒃

.  .  .

Final distribution 𝑷

Linear

Softmax

𝑷𝒈𝒆𝒏

𝟏 − 𝑷𝒈𝒆𝒏 𝑷𝒈𝒆𝒏

Context 

Vector

Encoder Decoder

.  .  ..  .  .

𝑠𝑡

𝑤𝑡

𝒄𝒕

Fig. 3. Architecture of copy mechanism.

concatenating their output together. The MHSA allows the model to jointly attend to information from different
representation subspaces at different positions. Formally, the MHSA is computed as following:

𝑄𝑖 = 𝑋𝑊
𝑞

𝑖
, 𝐾𝑖 = 𝑋𝑊

𝑘
𝑖 ,𝑉𝑖 = 𝑋𝑊

𝑣
𝑖 , (4)

ℎ𝑒𝑎𝑑𝑖 = softmax(
𝑄𝑖𝐾

𝑇
𝑖√
𝑑

)𝑉𝑖 , (5)

𝑀𝐻𝑆𝐴(𝑋 ) = [ℎ𝑒𝑎𝑑𝑙1 ◦ ℎ𝑒𝑎𝑑
𝑙
2 ◦ · · ·ℎ𝑒𝑎𝑑

𝑙
𝑖 ◦ · · ·ℎ𝑒𝑎𝑑

𝑙
ℎ
]𝑊𝑂 , (6)

where ℎ denotes the number of attention heads at 𝑙-th each layer, the symbol ◦ indicates the concatenation of ℎ different
heads, and𝑊 𝑞

𝑖
,𝑊 𝑘

𝑖
,𝑊 𝑣

𝑖
and𝑊𝑂 are trainable parameters.

2.1.2 Feed Forward Network. Feed forward network is the only nonlinear part in Transformer. It consists of two linear
transformation layer and an ReLU activation function between the two linear layers.

𝐹𝐹𝑁 (𝑋 ) = 𝑅𝑒𝐿𝑈 (𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2, (7)

where𝑊1,𝑊2, 𝑏1, and 𝑏2 are trainable parameters which are shared on each position.

2.2 Copy Mechanism

Copy mechanism [14] has been widely equipped in text generation models for extracting words from the source
sequence into the target sequence during text generation. It has been demonstrated that copy mechanism can alleviate
the out-of-vocabulary issue in the code summarization task domain [1, 49]. In this work, we adopt pointer generator [37],
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a more popular form of copy mechanism, for the task. Figure 3 illustrates the architecture of the pointer generator
model. Specifically, given the input sequence 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛), decoder input𝑤𝑡 , decoder hidden state 𝑠𝑡 , and context
vector 𝑐𝑡 computed by attention mechanism in time step 𝑡 , pointer generator first calculates a constant 𝑃𝑔𝑒𝑛 which is
later used as a soft switch for determining whether to generate a token from the vocabulary or to copy a token from
the input sequence 𝑋 :

𝑃𝑔𝑒𝑛 = sigmoid(𝜔⊺𝑠 𝑠𝑡 + 𝜔
⊺
𝑤𝑤𝑡 + 𝜔⊺𝑐 𝑐𝑡 + 𝑏𝑔𝑒𝑛), (8)

𝑃𝑣𝑜𝑐𝑎𝑏 (𝑤𝑡 ) = softmax(𝑊𝑎𝑠𝑡 +𝑉𝑎𝑐𝑡 ) (9)

𝑃 (𝑤𝑡 ) = 𝑃𝑔𝑒𝑛𝑃𝑣𝑜𝑐𝑎𝑏 (𝑤𝑡 ) + (1 − 𝑃𝑔𝑒𝑛)𝑃𝑐𝑜𝑝𝑦 (𝑤𝑡 ), (10)

where vectors 𝜔𝑠 , 𝜔𝑤 , 𝜔𝑐 ,𝑊𝑎 , 𝑉𝑎 and scalar 𝑏𝑔𝑒𝑛 are learnable parameters. 𝑃 (𝑤𝑡 ) is the probability distribution over
the overall vocabulary. Copy distribution 𝑃𝑐𝑜𝑝𝑦 (𝑤𝑡 ) determines where to attend in time step 𝑡 , computed as:

𝑃𝑐𝑜𝑝𝑦 (𝑤𝑡 ) =
∑

𝑖:𝑥𝑖=𝑤
𝛼𝑡,𝑖 , (11)

where 𝛼𝑡 indicates the attention weights and 𝑖 : 𝑥𝑖 = 𝑤 indicates the indices of input words in the vocabulary.

3 PROPOSED APPROACH

In this section, we explicate the detailed architecture of SG-Trans. Let 𝐷 denotes a dataset containing a set of programs
𝐶 and targeted summaries 𝑍 , given a source code 𝑐 = (𝑥1, 𝑥2, ..., 𝑥𝑛) from 𝐶 , where 𝑛 denotes the code sequence length.
SG-Trans is designed to generate the summary consisting of a sequence of tokens 𝑧 = (𝑦1, 𝑦2, ..., 𝑦𝑚) by maximizing the
conditional likelihood: 𝑧 = argmax𝑧 𝑃 (𝑧 |𝑐) (𝑧 is the corresponding summary in 𝑍 ).

The framework of SG-Trans is mostly consistent with the vanilla Transformer, but consists of twomajor improvements,
namely structure-guided self-attention and hierarchical structure-variant attention. Figure 4 depicts the overall architecture.
SG-Trans first parses the input source code for capturing both local and global structure. The structure information is
then represented as adjacent matrices and incorporated into the self-attention mechanism as inductive biases (introduced
in Section 3.1). Following the principle of compositionality in language, different inductive biases are integrated into
the Transformer at difference levels in a hierarchical manner (introduced in Section 3.2).

3.1 Structure-Guided Self-Attention

In the standard multi-head self-attention model [42], every node in the adjacent layer is allowed to attend to all the input
nodes, as shown in Figure 4 (a). In this work, we propose to use the structural relations in source code for introducing
explicit constraints to the multi-head self-attention. In order to capture the hierarchical characteristic of source code,
we utilize three main types of structural relations between code tokens, including local structures: whether the two
split sub-tokens originally belong to the same 1) token or 2) statement, and global structure: whether there exists
a 3) data flow between two tokens. For each structure type, we design the corresponding head attention, named as
token-guided self-attention, statement-guided self-attention, and data flow-guided self-attention, respectively.

Token-guided self-attention. It is common for developers to name a variable with camel case or snake case, and
such tokens are generally split for alleviating the OOV (Out-Of-Vocabulary) issue in code summarization, e.g., the
method name “IsPrime” in the code example shown in Figure 1 (a) is split as a sequence of sub-tokens containing
“Is” and “Prime”. We regard the semantic relations between the sub-tokens are relatively stronger than the relations
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Fig. 4. Overall framework of the proposed SG-Trans. The “Structure-Guide Self-Attention” part illustrates different self-attention
mechanisms between adjacent layers.

between the other tokens. Therefore, the attention can be built upon the extracted token-level structure, i.e, whether two
sub-tokens are originally from the same source code token. We use an adjacent matrix T𝑛×𝑛 to model the relationship,
where 𝑡𝑖 𝑗 = 0 if the 𝑖-th and 𝑗-th elements are sub-tokens of the same token in the code; Otherwise, 𝑡𝑖 𝑗 = −∞. The
matrix is designed to restrict the message passing to only among the sub-tokens belonging to the same code token
in self-attention, as shown in Figure 4 (b). Given the input token representation X ∈ R𝑛×𝑑ℎ , where 𝑛 is the sequence
length, 𝑑 is the input dimension of each head, and ℎ is the number of attention heads. We assume the three matrices as
Q, K, and V for denoting the query, key, and value matrix, respectively. The token-guided single-head self-attention
ℎ𝑒𝑎𝑑𝑡 can be calculated as:

ℎ𝑒𝑎𝑑𝑡 = softmax
(
QK⊺
√
𝑑

+ T
)
V, (12)

where
√
𝑑 is a scaling factor to prevent the effect of large values.

Statement-guided self-attention. Tokens in the same statement tend to possess stronger semantic relations than
the tokens from different statements. For the code example given in Figure 1 (a), the token “flag” in the third statement is
more relevant to the tokens “bool” and “False” in the same statement than to the token “break” in the 7-th statement. So
we design another adjacent matrix S for representing the pairwise token relations regarding whether the two tokens are
from the same statement. In the matrix S, 𝑠𝑖 𝑗 = 0 if the 𝑖-th and 𝑗-th input tokens are in the same statement; Otherwise,
𝑠𝑖 𝑗 = −∞. The design is to restrict the head attention to only allow the message passing among the tokens from the
same statement, as illustrated in Figure 4 (c). The statement-guided single-head self-attention ℎ𝑒𝑎𝑑𝑠 is defined as below
similar to the token-guided head attention.
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Fig. 5. A diagram of hierarchical-variant attention. Different red boxes illustrate different scales.

ℎ𝑒𝑎𝑑𝑠 = softmax
(
QK⊺
√
𝑑

+ S
)
V. (13)

Data flow-guided self-attention. Prior studies have proven the effectiveness of utilizing the code structural
properties such as abstract syntax trees (ASTs) for code summarization. Since ASTs are deep in nature, we employ the
data flow graphs (DFGs), which are relatively neat and much shallower [15], for capturing the global structure feature.

DFGs, denoted as𝑉 = {𝑣1, 𝑣2, ...}, can model the data dependencies between variables in the code, including message
sending/receiving. Figure 1 (c) shows an example of the extracted data flow graph. Variables with same name (e.g.,
i2 and i5) are associated with different semantics in the DFG. Each variable is a node in the DFG and the direct edge
⟨𝑣𝑖 , 𝑣 𝑗 ⟩ from 𝑣𝑖 to 𝑣 𝑗 indicates the value of the 𝑗-th variable comes from the 𝑖-th variable. For the example in Figure 1,
the value i5 comes from the variable i4. Based on the DFGs, we build the adjacent matrix D, where 𝑑𝑖 𝑗 = 1 if there
exists a message passing from the 𝑗-th token to the 𝑖-th token; Otherwise, 𝑑𝑖 𝑗 = 0. Note that if two variables have a data
dependency, all the split sub-tokens of the two tokens are regarded as possessing the dependency relation. Figure 4 (d)
illustrates the data flow-guided single-head self-attention. Due to the sparseness of the matrix D and to highlight the
relations of data dependencies, we propose the data flow-guided self-attention ℎ𝑒𝑎𝑑𝑓 as below:

ℎ𝑒𝑎𝑑𝑓 = softmax
(
QK⊺ + 𝜇 ∗ QK⊺D

√
𝑑

)
V, (14)

where 𝜇 is the control factor for adjusting the integration degree of the data flow structure.

3.2 Hierarchical Structure-Variant Attention

Considering the principle of compositionality in logic semantics: the high-level semantics is the composition of low-level
terms [16, 41], we propose hierarchical structure-variant attention to make our model focus on local structure at the
lower layers and global structure at the higher layers. The diagram of the hierarchical structure-variant attention is
illustrated in Figure 5. Specifically, the token-guided head attention ℎ𝑒𝑎𝑑𝑡 and statement-guided head attention ℎ𝑒𝑎𝑑𝑠
are more distributed in the heads of lower layers; while the data flow-guided head attention ℎ𝑒𝑎𝑑𝑓 is more spread in
the heads of higher layers.

Let 𝐿 denote the number of layers in the proposed SG-Trans. ℎ indicates the number of heads in each layer and 𝑘 is a
hyper-parameter to control the distribution of four types of head attentions, including ℎ𝑒𝑎𝑑𝑡 , ℎ𝑒𝑎𝑑𝑠 , ℎ𝑒𝑎𝑑𝑓 , and ℎ𝑒𝑎𝑑𝑜 ,
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Table 1. Statistics of the benchmark datasets.

Java Python
Training Set 69,708 55,538
Validation Set 8,714 18,505
Test Set 8,714 18,502
Total 87,136 92,545

where ℎ𝑒𝑎𝑑𝑜 indicates the standard head attention without constraints. The distribution for each type of head attention
at the 𝑙-th layer is denoted as Ω𝑙 = [𝜔𝑙

𝑡 , 𝜔
𝑙
𝑠 , 𝜔

𝑙
𝑓
, 𝜔𝑙

𝑜 ], where 𝜔𝑙
𝑡 , 𝜔

𝑙
𝑠 , 𝜔𝑙

𝑓
, and 𝜔𝑙

𝑜 represent the numbers of ℎ𝑒𝑎𝑑𝑡 , ℎ𝑒𝑎𝑑𝑠 ,
ℎ𝑒𝑎𝑑𝑓 , and ℎ𝑒𝑎𝑑𝑜 , respectively at the 𝑙-th layer. We define the distribution as below:

𝜔𝑙
𝑡 = 𝜔

𝑙
𝑠 = ⌊ℎ ∗ 𝑘 − 𝑙

2 ∗ 𝑘 − 𝑙 ⌋, (15)

𝜔𝑙
𝑓
= ⌊ℎ ∗ 𝑙

2 ∗ 𝑘 − 𝑙 ⌋, (16)

𝜔𝑙
𝑜 = ℎ − (𝜔𝑙

𝑡 + 𝜔𝑙
𝑠 + 𝜔𝑙

𝑓
), (17)

where 𝑘 is a positive integer hyperparameter, and ⌊·⌋ denotes rounding the value down to the next lowest integer. The
design is to enable more heads attend to the global structure with the growth of 𝑙 , i.e., 𝜔𝑙

𝑓
will get larger at a higher

layer 𝑙 ; meanwhile few heads can catch the local structure, i.e., 𝜔𝑙
𝑡 and 𝜔

𝑙
𝑠 will become smaller. ℎ𝑒𝑎𝑑𝑜 is involved to

enable the model to be adapted to arbitrary numbers of layers and heads. Especially, with the increase of layer 𝑙 , 𝜔𝑙
𝑡 and

𝜔𝑙
𝑠 might drop to zero. In the case of 𝜔𝑙

𝑡 ≤ 0, no constraints will be introduced to the corresponding attention layer since
the standard self-attention already captures long-range dependency information, which fits our purpose of attending to
global structure at higher layers; Otherwise, the head attentions will follow the defined distribution Ω𝑙 .

The hierarchical structure-variant attention (HSVA) at the 𝑙-th layer is computed as:

HSVA𝑙 = [ℎ𝑒𝑎𝑑𝑙1 ◦ · · · ◦ ℎ𝑒𝑎𝑑
𝑙
ℎ
]W𝑂 , (18)

where ◦ denotes the concatenation of ℎ different heads, andW𝑂 ∈ R𝑑ℎ×𝑑ℎ is a parameter matrix.

3.3 Copy Attention

The OOV issue is important for effective code summarization [25]. We adopt the copy mechanism introduced in
Section 2.2 in SG-Trans to calculate whether to generate words from the vocabulary or to copy from the input source
code. Following [1], an additional attention layer is added to learn the copy distribution on top of the decoder stack [35].
The mechanism enables the proposed SG-Trans to copy low-frequency words, e.g., API names, from source code, thus
mitigating the OOV issue.

4 EXPERIEMENTAL SETUP

In this section, we introduce the evaluation datasets and metrics, comparison baselines, and parameter settings.

4.1 Benchmark Datasets

We conduct experiments on two benchmark datasets that respectively contain Java and Python source code following the
previous work [1, 49]. Specifically, the Java dataset publicly released by [19] comprises 87, 136 ⟨Java method, comment⟩
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pairs collected from 9, 714 GitHub repositories, and the Python dataset consists of 92, 545 functions and corresponding
documentation as originally collected by [8] and later processed by [45].

For the sake of fairness, we directly use the benchmarks open sourced by the previous state-of-the-art [1] with the
dataset split into training set, validation set and test set in a consistent proportion of 8 : 1 : 1 for the Java dataset and
6 : 2 : 2 for the Python dataset. The statistics are shown in Table 1. For the data flow extraction of the Java dataset, we
use the tool in [10] to generate augmented ASTs first and then extract DFGs from the ASTs. Regarding the Python
dataset, we follow the design in [3] and extract four kinds of edge (LastRead, LastWrite, LastLexicalUse, ComputeFrom)
from code.

4.2 Evaluation Metrics

To verify the efficacy of SG-Trans over the baselines, we use the most commonly-used automatic evaluation metrics,
BLEU-4 [36], METEOR [7] and ROUGE-L [28].

BLEU is a metric widely used in natural language processing and software engineering fields to evaluate generative
tasks (e.g., dialogue generation, code commit message generation, and pull request description generation) [24, 30, 34, 48].
BLEU uses 𝑛-gram for matching and calculates the ratio of 𝑁 groups of word similarity between generated comments
and reference comments. The score is computed as:

𝐵𝐿𝐸𝑈 − 𝑁 = 𝐵𝑃 × exp(
𝑁∑
𝑛=1

𝜏𝑛 log 𝑃𝑛), (19)

where 𝑃𝑛 is the ratio of the subsequences with length 𝑛 in the candidate that are also in the reference. 𝐵𝑃 is the brevity
penalty for short generated sequence and 𝜏𝑛 is the uniform weight 1/𝑁 . We use corpus-level BLEU-4, i.e., 𝑁 = 4, as
our evaluation metric since it is demonstrated to be more correlated with human judgements than other evaluation
metrics [29].

METEOR is a recall-oriented metric which measures how well our model captures content from the reference text
in our generated text. It evaluates generated text by aligning them to reference text and calculating sentence-level
similarity scores.

𝑀𝐸𝑇𝐸𝑂𝑅 = (1 − 𝛾 · frag𝛽 ) · 𝑃 · 𝑅
𝛼 · 𝑃 + (1 − 𝛼) · 𝑅 , (20)

where P and R are the unigram precision and recall, frag is the fragmentation fraction. 𝛼 , 𝛽 and 𝛾 are three penalty
parameters whose default values are 0.9, 3.0 and 0.5, respectively.

ROUGE-L is widely used in text summarization tasks in the natural language processing field to evaluate what
extent the reference text is recovered or captured by the generated text. ROUGE-L is based on the Longest Common
Subsequence (LCS) between two text and the F-measure is used as its value. Given a generated text 𝑋 and the reference
text 𝑌 whose lengths are𝑚 and 𝑛 respectively, ROUGE-L is computed as:

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆 (𝑋,𝑌 )

𝑛
, 𝑅𝑙𝑐𝑠 =

𝐿𝐶𝑆 (𝑋,𝑌 )
𝑚

, 𝐹𝑙𝑐𝑠 =
(1 + 𝛽2)𝑃𝑙𝑐𝑠𝑅𝑙𝑐𝑠
𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠

, (21)

where 𝛽 = 𝑃𝑙𝑐𝑠/𝑅𝑙𝑐𝑠 and 𝐹𝑙𝑐𝑠 is the computed ROUGE-L value.

4.3 Baselines

We compare SG-Trans with following baseline approaches.
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Table 2. Comparison results with baseline models. The bold figures indicate the best results. * denotes statistical significance in
comparison to the baseline models (i.e., two-sided 𝑡 -test with 𝑝-value< 0.01).

Approach Java Python
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

CODE-NN [22] 27.60 12.61 41.10 17.36 9.29 37.81
Tree2Seq [11] 37.88 22.55 51.50 20.07 8.96 35.64
RL+Hybrid2Seq [44] 38.22 22.75 51.91 19.28 9.75 39.34
DeepCom [19] 39.75 23.06 52.67 20.78 9.98 37.35
API+Code [20] 41.31 23.73 52.25 15.36 8.57 33.65
Dual Model [45] 42.39 25.77 53.61 21.80 11.14 39.45
NeuralCodeSum [1] 45.15 27.46 54.84 32.19 19.96 46.32
Vanilla Transformer [42] 44.20 26.83 53.45 31.34 18.92 44.39
SG-Trans 45.97* 27.88* 55.86* 33.11* 20.58* 47.07*

CODE-NN [22], as the first deep-learning-based work in code summarization, generates source code summaries
with an LSTM network. To utilize code structure information, Tree2seq [11] encodes source code with a tree-LSTM
architecture. RL+Hybrid2Seq [44] incorporates ASTs and code sequences into a deep reinforcement learning frame-
work, while DeepCom [19] encodes the node sequences traversed from ASTs to capture the structural information.
API+Code [20] involves API knowledge in the code summarization procedure.Dual model [45] adopts a dual learning
framework to exploit the duality of code summarization and code generation tasks. The most recent approach, denoted
as NeuralCodeSum [1], which integrates the vanilla Transformer [42] with relative position encoding (RPE) and
copy attention, shows the state-of-the-art performance on the benchmark datasets.

4.4 Parameter Settings

SG-Trans is composed of 8 layers and 8 heads in its Transformer architecture and the hidden size of the model is 512.
We use Adam optimizer with the initial learning rate set to 10−4, batch size set to 32, and dropout rate set to 0.2 during
the training. We train our model for at most 200 epochs and select the checkpoint with the best performance on the
validation set for further evaluation on the test set. To avoid over-fitting, we early stop the training if the performance
on the validations set does not increase for 20 epochs. For the control factors of heads distribution and data flow, we
set them to 1 and 5, respectively. We will discuss optimal parameters selection in Section 5.3. Our experiments are
conducted on a single Tesla P100 GPU for about 45 hours, and we train our model from scratch.

5 EXPERIMENTAL RESULTS

In this section, we elaborate on the comparison results with the baselines to evaluate SG-Trans’s capability in accurately
generating code summaries. Our experiments are aimed at answering the following research questions:

RQ1: What is the performance of SG-Trans in code summary generation?
RQ2: What is the impact of the involved code structural properties and design of hierarchical attention on the

model performance?
RQ3: How accurate is SG-Trans under different parameter settings?
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Table 3. Ablation study on different part of our model. The bold figures indicate the best results.

Approach Java Python
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

SG-Trans w/o token info. 44.91 27.39 54.72 32.28 19.87 45.98
SG-Trans w/o statement info. 44.52 27.06 54.16 32.32 19.72 45.77
SG-Trans w/o data flow info. 45.58 27.57 55.36 32.64 20.18 46.66
SG-Trans w/o hierarchical attention 45.59 27.79 55.50 32.97 20.44 46.82
SG-Trans w/o copy attention 45.12 27.41 54.89 31.92 19.35 45.21
SG-Trans 45.97 27.88 55.86 33.11 20.58 47.07

5.1 Answer to RQ1: Comparison with the Baselines

The experimental results on the benchmark datasets are shown in Table 2. For the vanilla Transformer and the
NeuralCodeSum [1], we reproduce their experiments under the same hyper-parameter settings as the Transformer in
SG-Trans to ensure fair comparison. Based on Table 2, we summarize the following findings:

Code structural properties are beneficial for source code summarization. Comparing Tree2Seq/DeepCom
with CODE-NN, we can find that the structure information brings a great improvement in the performance. For example,
both Tree2Seq and DeepCom increase the performance of CODE-NN by at least 37.2%, 78.8%, and 25.3% regarding the
three metrics on the Java dataset. Although no consistent improvement across all metrics is observed on the Python
dataset, Tree2Seq/DeepCom still shows an obvious increase on the BLEU-4 metric.

Transformer-based approaches perform better than RNN-based approaches. The two Transformer-based
approaches [1, 42] outperform all the other baselines, with NeuralCodeSum [1] giving better performance compared to
the Vanilla Transformer. The vanilla Transformer already achieves better performance than the top six RNN-based
approaches with various types of structural information incorporated, showing the efficacy of Transformer for the task.
On the Python dataset, NeuralCodeSum outperforms the best RNN-based baseline, Dual Model [45], by 47.7% and 79.2%
in terms of the BLEU-4 and METEOR metrics.

The proposed SG-Trans is effective in code summarization. Comparing SG-Trans with the vanilla Transformer
and NeuralCodeSum, SG-Transachieves the best results on both benchmark datasets, yet without introducing any extra
model parameters. Specifically, SG-Trans improves the best baseline by 1.8% and 2.9% in terms of BLEU-4 score on the
Java and Python dataset, respectively.

5.2 Answer to RQ2: Ablation Study

We further perform ablation studies to validate the impact of the involved code structural properties and the hierarchical
structure-variant attention approach, and show the results in the bottom half of Table 2.

Analysis of the involved code structure.We find that all the three structure types, including code token, statement
and data flow, contribute to the model performance improvement but with varied degrees. Specifically, local syntactic
structures play a more important role than the global data flow structure. For example, removing the statement
information leads to a significant performance drop at around 3.2% and 2.4% regarding the BLEU-4 score. This suggests
the importance of modeling the semantic relations among tokens of the same statement for code summarization. With
the data flow information eliminated, SG-Trans also suffers from a performance drop, which may indicate that the data
dependency relations are hard to be learnt by Transformer implicitly.
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Fig. 6. Influence of the hyper-parameters 𝜇 and 𝑘 on the model performance.

Table 4. Human evaluation results. * denotes statistical significance in comparison to Transformer or NeuralCodeSum in Human
Evaluation (i.e., two-sided 𝑡 -test with 𝑝-value< 0.01).

Dataset Metrics Vanilla Transformer NeuralCodeSum SG-Trans

Java Relevance 2.73 3.41 4.08*
Similarity 2.62 3.31 4.02*

Python Relevance 3.16 3.01 3.36*
Similarity 2.99 2.81 3.69*

Analysis of the hierarchical structure-variant attention mechanism. We replace the hierarchical structure-
variant attention with uniformly-distributed attention, i.e., Ω𝑙 = [𝜔𝑙

𝑡 , 𝜔
𝑙
𝑠 , 𝜔

𝑙
𝑓
, 𝜔𝑙

𝑜 ] = [2, 2, 2, 2], for the ablation analysis.
As can be found in Table 2, without the hierarchical structure design, the model’s performance decreases on all metrics
of both datasets. The results demonstrate the positive impact of the hierarchical structure-variant attention mechanism.

Analysis of the copy attention. As shown in Table 2, excluding the copy attention brings a significant drop to
SG-Trans’s performance, similar to the results in [1]. This may reflect that the copy attention is useful for alleviating
the OOV issue and facilitating better code summarization.

5.3 Answer to RQ3: Parameter Sensitivity Analysis

In this section we analyze the impact of two key hyper-parameters on the model performance, i.e., the control factor 𝜇
for adjusting the integration degree of the data flow structure and the parameter 𝑘 to control the head distribution.

The parameter 𝜇. Figure 6 (a) shows the performance variation with the changes of 𝜇 and other hyper-parameters
fixed. For the Java dataset, the model achieves the best scores when 𝜇 = 5. Lower or higher parameter values do not
provide better results. While for the Python dataset, the same trends appear to the BLEU-4 and ROUGE-L metrics where
the models present the highest scores when 𝜇 equals to 3 and 5, respectively. In this work, we set 𝜇 to 5 since the model
can produce relatively promising results on both datasets.

The parameter 𝑘 .We observe the performance changes when the control factor 𝑘 of the head distribution takes
values centered on layers of SG-Trans 𝐿. Figure 6 (b) illustrates the results. We can find that SG-Trans can well balance
the distribution of local and global structure-guided head attention when 𝑘 = 𝐿 or 𝑘 = 𝐿 + 1. As 𝑘 gets larger, SG-Trans
would be more biased by the local structure and tend to generate inaccurate code summary. In the work, we take 𝑘 = 𝐿.
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Code:

def is_printable(s):
for c in s:

if (c not in PRINTABLE_CHARACTERS):
return False

return True

Reference Summary: test if a string is printable .

Summary 1: return true if s consists of any duplicates in repr

Summary 2: true if s consists entirely of ascii characters

Summary 3: check if a string is printable . 

Summary 1 s Relevance

Summary 1 s Similarity

Summary 3 s Relevance

Summary 3 s Similarity

’

Very Dissatisfied Very Satisfied

1

1

2

2

3

3

4

4

5

5’

’ 1

1

2

2

3

3

4

4
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5’

.

.
.
.

.

.
.
.

.

.
.
.

Fig. 7. An example of questions in our questionnaire. Reference summary is the summary for the given code in the ground truth.
Summary 1, 2 and 3 correspond to the summary generated by vanilla Transformer, NeuralCodeSum, and SG-Trans, respectively. The
two-dot symbols indicate the simplified rating schemes for Summary 2.

5.4 Human Evaluation

In this section, we perform human evaluation to qualitatively evaluate the summaries generated by the two best-
performing baselines, i.e., vanilla Transformer and NeuralCodeSum, and SG-Trans. The human evaluation is conducted
through online questionnaire. In total, 14 participants including 11 postgraduate students, 2 undergraduate students,
and 1 senior researcher are invited for the questionnaire. All of the participants are not co-authors and major in
computer science, 12 (85.7%) of whom have programming experience in software development for at least two years.
Each participant is invited to read 50 functions and judge the quality the summaries generated by vanilla Transformer,
NeuralCodeSum, and SG-Trans. Each of them will be paid 10 USD upon completing the questionnaire.

5.4.1 Survey Design. We randomly selected 50 functions, with 25 in Java and 25 in Python, for evaluation. As shown
in Figure 7, in the questionnaire, each question comprises a code snippet, the corresponding reference summary and
summaries generated by the three models. The order of the summaries generated by the models is randomly swapped
for each question, so that the participants are not aware of which summary is generated by which model.

The quality of the provided summaries is evaluated from two aspects, including relevance and similarity, with the 1-5
Likert scale (5 for excellent, 4 for good, 3 for acceptable, 2 for marginal, and 1 for poor). We explained the meaning of
the two evaluation metrics at the beginning of the questionnaire: The metric “similarity” measures the degree of the
semantic similarity between the generated summary and the summary in ground truth, i.e., reference summary; And
the metric “relevance” estimates the extent of semantic relation between the generated summary and the given code
snippet. The volunteers are asked to complete the online questionnaires separately.

5.4.2 Results. We finally received 700 sets of scores totally and 14 sets of scores for each code-summary pair from
the human evaluation. On average, the participants spent 1.1 hours on completing the questionnaire, with the median
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Fig. 8. Agreement rate among the participants in the human evaluation. The vertical axis indicates the percentage of the survey
questions that are scored consistently from ≥ 6, ≥ 10 and ≥ 13 participants, respectively.

completion time of 0.77 hours. We first compute the agreement rate on the two aspects given by the participants,
depicted in Figure 8. As can be seen, 72% and 88% of the total code-summary pairs are rated consistently by at least
six annotators in terms of the “Relevance” and “Similarity” for the Java dataset, respectively. Also, 72% and 68% of
the total questions received more than six consistent annotations in terms of the respective metrics for the Python
dataset. Moreover, we can observe that around 20% of the questions were labeled with same scores from more than 13
participants regarding different aspects for the two programming languages, respectively. This demonstrates that the
participants achieved acceptable agreement on the quality of the generated summaries.

The overall evaluation results are illustrated in Table 4 and Figure 9. We can find that the summaries generated
by SG-Trans are more relevant to the given functions and exhibit the highest similarities to the summaries in the
ground truth for both programming languages. For Java dataset, NeuralCodeSum is very effective which significantly
outperforms the vanilla Transformer. However SG-Trans is more powerful, further boosting the performance by 19.6%
and 21.5% in terms of the relevance and similarity metrics, respectively. As can be observed from Figure 9 (a) and (b),
summaries generated by SG-Trans receive the most 5-star ratings and fewest 1/2-star ratings from the participants,
comparing with the summaries produced by NeuralCodeSum and vanilla Transformer, with respect to both metrics.
Specifically, regarding the relevance metric, 48.6% of the participants give 5-star ratings to the summaries generated by
SG-Trans, with only 11.4% for the vanilla Transformer approach and 13.7% for the NeuralCodeSum approach. The score
distributions indicate that the summaries generated by SG-Trans are more semantically relevant to the code snippets
and also more similar to the golden summaries.

For the Python dataset, as shown in Table 4, SG-Trans also achieves best performance, increasing the performance of
NeuralCodeSum by 11.6% and 31.3% with respect to the relevance and similarity metrics, respectively. According to
Figure 9 (c), the vanilla Transformer even receives more 4/5-star ratings than the NeuralCodeSum approach, which
implies that NeuralCodeSum may not well capture the functionality of the code snippets and thus produce less relevant
summaries. However, summaries generated by SG-Trans are scored with the most 4/5-star ratings among the three
approaches, which further demonstrating the effectiveness of SG-Trans in capturing the functionality of given code
snippets. In terms of the similarity metric, SG-Trans receives more than 60% 4/5-star ratings while Transformer and
NeuralCodeSum only obtains 37.4% and 48.6% 4/5-star ratings, respectively, indicating its superior performance in
producing practical code summaries.
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(b) Similarity metric for the Java dataset.
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(c) Relevance metric for the Python dataset.
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Fig. 9. Distribution of the received scores from the participants during human evaluation on the two datsets. The “Transformer” on
the horizontal axis denotes the “vanilla Transformer” approach.

6 DISCUSSION

In this section, we mainly discuss the advantage of the proposed SG-Trans, the impact of duplicate data in the benchmark
dataset on the model performance, and threats to validity.

6.1 Why does Our Model Work?

We further conduct a deep analysis on the advantages of the proposed SG-Trans in generating high-quality code sum-
maries. Through qualitative analysis, we have identified two advantages of SG-Trans that may explain its effectiveness
in the task.

Observation 1: SG-Trans can better capture the semantic relations among tokens. For the Example (1) shown
in Table 5, we can observe that SG-Trans produces the summaries most similar to the ground truth among all the
approaches, and the vanilla Transformer gives the worst result. We then visualize the heatmap of the self-attention
scores of the three types of heads in Figure 10 for further analysis. As can be seen in Figure 10 (a) and (b), SG-Trans can
focus on local relations among code tokens through its token-guided self-attention and statement-guided self-attention.
For example, SG-Trans can learn that the two tokens “is” and “File” possess a strong relation, according to Figure 10
(a). As depicted in Figure 10 (b), we can find that SG-Trans captures that the token “path” is strongly related to the
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Table 5. Examples illustrating summaries generated by different approaches given the code snippets.

Example (1) in Java:
public static boolean isFile(String path){

File f = new File(path);
return f.isFile();

}
Vanilla Transformer: checks if the given path is a file object , is a directory it can be read . no distinction is considered exceptions
NeuralCodeSum: checks if is file exist
SG-Trans: checks if the given path is a file
Ground truth: checks if the given path is a file

Example (2) in Python:
def print_bucket_acl_for_user(bucket_name, user_email):

storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
bucket.acl.reload()
roles = bucket.acl.user(user_email).get_roles()
print roles

Vanilla Transformer: removes a user from the access control list
NeuralCodeSum: prints out a user access control list
SG-Trans: prints out a buckets access control list for a user
Ground truth: prints out a buckets access control list for a given user

Example (3) in Python:
def token_urlsafe(nbytes=None):

tok = token_bytes(nbytes)
return base64.urlsafe_b64encode(tok).rstrip(‘=’).decode(‘ascii’)

Vanilla Transformer: generate a token
NeuralCodeSum: construct a random text string .
SG-Trans: return a random url-safe string .
Ground truth: return a random url-safe text string .
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(a) Token-guided head attention at layer-3 (b) Statement-guided head attention at layer-3 (c) Data flow-guided head attention at layer-6

Fig. 10. Heatmap visualization of self-attention scores of the three types of heads in the encoder for the first case in Table 5. The
rectangles with red edge, green edge, and blue edge indicates the tokens belonging to the same original token, the same statement, or
containing data flow relation, respectively.

corresponding statement, which may be the reason the token “path” appears in the summary. Figure 10 (c) shows
that the data flow-guided head attention focuses more on the global information, and can capture the strong relation
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Table 6. Duplicate data in the Java dataset.

Validation Set Test set
Total data 8,714 8,714
Duplicate data 2,028 (23.3%) 2,059 (23.7%)

Table 7. Comparison results on the de-duplicated Java dataset. Data listed within brackets are computed drop rates compared with
the results on original Java dataset.

Approach BLEU-4 ROUGE-L METEOR
NeuralCodeSum 29.37 (↓34.95%) 41.62 (↓24.11%) 19.98 (↓27.24%)
SG-Trans 30.46 (↓33.74%) 42.97 (↓23.10%) 20.82 (↓25.32%)

between the tokens “path” and “f ”. Based on the analysis of the example (1), we speculate that the model can well
capture the token relations locally and globally for code summary generation. The example (2) in Table 5 provides the
same hint for the advantage of SG-Trans. All the approaches successfully comprehend that the token “acl” indicates
“access control list”. However, the vanilla Transformer fails to capture the semantic relations between “print” and “acl”,
and NeuralCodeSum misunderstands the relations between “user” and “acl”. Instead, SG-Trans accurately predicates
both relations through the local self-attention and global self-attention.

Observation 2: Structural information-guided self-attention can facilitate the copy mechanism to copy
important tokens. For the example (3) in Table 5, SG-Trans copies the important token “urlsafe” from the given code
to the generated summary, while both vanilla Transformer and NeuralCodeSum ignore the token and output relatively
imprecise summaries. The reason that the important token is successfully copied by SG-Trans may be attributed to the
structural information-guided self-attention which helps focus on the source tokens more accurately.

6.2 Duplicate Data in the Java Dataset

During our experimentation, we find that there are duplicate data in the Java dataset, which may adversely affect the
model performance [2]. As shown in Table 6, there are 23.3% and 23.7% duplicate data in the validation set and the test
set, respectively. To evaluate the impact of the data duplication on the proposed model, we remove the duplicate data
cross the training, validation, and test sets. We choose the best baseline, NeuralCodeSum, for comparison. The results
after removing the duplication are shown in Table 7. As can be seen, both models present a dramatic decrease on the
de-duplicated dataset. However, the proposed SG-Trans still outperforms NeuralCodeSum with an improvement on the
BLEU-4, ROUGE-L and METEOR metrics, i.e., by 3.7%, 3.2% and 4.2%, respectively.

6.3 Threats to Validity

There are three main threats to the validity of our evaluation.

(1) The generalizability of our results. We use two public large datasets, which include 87,136 Java and 92,545 Python
code-summary pairs, following the prior research [1, 46, 49]. The limited programming language types may
influence the scalability of the proposed SG-Trans. In our future work, we will experiment with more large-scale
datasets with different programming language types.

(2) More code structure information may be considered. SG-Trans now only takes token-level and statement-level
syntactic structure and data flow structure into consideration. Other code structural properties such as AST
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and CFG, which may further boost the model performance, are currently not involved. In this paper, we only
consider the data flow information since it is demonstrated to be more effective than AST and CFG during code
representation learning in [15]. In future, we will explore the impact of involving more structural properties in
SG-Trans.

(3) Biases in human evaluation. We invite 14 participants to evaluate the quality of 50 randomly selected code-
summary pairs. The results of human annotations can be impacted by the participants’ programming experience
and their understanding of the evaluation metrics. To mitigate the bias of human evaluation, we ensure that each
code-summary pair was evaluated by all the 14 participants. The order of the summaries generated by different
approaches is also randomly disrupted across different code snippets in the questionnaire, in order to eliminate
the influence of participants’ prior knowledge on their rating.

7 RELATEDWORK

In this section, we elaborate on two threads of related work, including source code summarization and code representa-
tion learning.

7.1 Source Code Summarization

There have been extensive research in source code summarization, including template-based approaches [31, 32, 40],
information-retrieval-based approaches [17, 33, 47] and deep-learning-based-approaches. Among these categories,
deep-learning-based methods have achieved the greatest success and become the most popular in recent years, which
specifically formulate the code summarization task as a neural machine translation (NMT) problem and adopt state-of-
the-art NMT frameworks to improve the performance. For instance, [22] propose CODE-NN, a hierarchical Long Short
Term Memory (LSTM) network with attention to generate code summaries from code snippets. [45] and [49] further
take advantages of the retrieved information to enable more informed code summarization.

In order to achieve more accurate code modeling, later researchers then introduce more structural and syntactic
information to the deep learning models. [19] extract structural information from source code by traversing the ASTs
and processing the AST nodes into sequences that can be fed into the encoder. On the contrary, [38] adopt multi-way
Tree-LSTM to directly model the code structures. For more fine-grained intra-code relationship exploitation, many
works [13, 26] also incorporate code-related graphs and GNN to boost performance. With the rise of Transformer
in NMT task domain, [1] also utilize transformer for better mapping the source code to their corresponding natural
language summaries.

7.2 Code Representation Learning

Learning high-quality code representations is of vital importance for deep-learning-based code summarization. Apart
from the above practices for code summarization, there also exist other code representation learning methods that
lie in similar task domains such as source code classification, code clone detection, commit message generation, etc.
For example, the ASTNN model proposed by Zhang et al.[50] splits large ASTs into sequences of small statement
trees, which are further encoded into vectors as source code representations. Alon et al.[4] present CODE2SEQ that
also represents the code snippets by sampling certain paths from the ASTs. Recently, inspired by the successes of
pre-training methods in learning word representations, Feng et al.[12] and Guo et al.[15] also apply pre-trained models
on learning source code and achieve empirical improvements on a variety of tasks. To extend the code representations
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to characterize programs’ functionalities, Jain et al. [23] further enriches the pre-training tasks to learn task-agnostic
semantic code representations from textually divergent variants of source programs via contrastive learning.

Comparatively, our proposed model focuses more on optimizing the self-attention mechanism inside Transformer to
make it incorporate both local and global features, through which our approach can exploit more accurate source code
representations and enhance the code summarization.

8 CONCLUSION

In this paper, we present SG-Trans, a Transformer-based architecture with structure-guided self-attention and hierar-
chical structure-variant attention. SG-Trans can attain better modeling of the code structural information, including
local structure in token-level and statement-level, and global structure, i.e., data flow. The evaluation on two popular
benchmarks suggests that SG-Trans outperforms competitive baselines and achieves state-of-the-art performance on
code summarization. For future work, we plan to extend the use of our model to other task domains, and possibly build
up more accurate code representations for general usage.

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach for Source Code Summarization.

In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4998–5007.

[2] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2019, Athens, Greece, October 23-24,
2019, Hidehiko Masuhara and Tomas Petricek (Eds.). ACM, 143–153.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent Programs with Graphs. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences from Structured Representations of Code. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[5] Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Changwei Hu, Fei Tan, Ruiyi Zhang, Yifan Hu, and Changyou Chen. 2020. Repulsive Attention:
Rethinking Multi-head Attention as Bayesian Inference. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics,
236–255.

[6] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. CoRR abs/1607.06450 (2016). arXiv:1607.06450 http:
//arxiv.org/abs/1607.06450

[7] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In
Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization@ACL 2005, Ann Arbor,
Michigan, USA, June 29, 2005, Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare R. Voss (Eds.). Association for Computational Linguistics, 65–72.

[8] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of Python functions and documentation strings for automated code
documentation and code generation. arXiv preprint arXiv:1707.02275 (2017).

[9] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, Alessandro
Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1724–1734. https://doi.org/10.3115/v1/d14-1179

[10] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. 2019. Open Vocabulary Learning on Source Code with a Graph-Structured Cache. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1475–1485.

[11] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-Sequence Attentional Neural Machine Translation. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou.
2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November 2020, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for
Computational Linguistics, 1536–1547.

20

https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.3115/v1/d14-1179


1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Code Structure Guided Transformer for Source Code Summarization Woodstock ’18, June 03–05, 2018, Woodstock, NY

[13] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured Neural Summarization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[14] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics. https://doi.org/10.18653/v1/p16-1154

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. 2020. GraphCodeBERT: Pre-training Code
Representations with Data Flow. CoRR abs/2009.08366 (2020).

[16] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Xiangyang Xue, and Zheng Zhang. 2020. Multi-Scale Self-Attention for Text Classification. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 7847–7854.

[17] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program comprehension with source code summarization. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, Jeff Kramer, Judith
Bishop, Premkumar T. Devanbu, and Sebastián Uchitel (Eds.). ACM, 223–226.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEEComputer Society, 770–778. https://doi.org/10.1109/CVPR.2016.90

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th Conference on Program Comprehension,
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and Janet Siegmund (Eds.). ACM, 200–210.

[20] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing Source Code with Transferred API Knowledge. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org,
2269–2275.

[21] Chidubem Iddianozie and Gavin McArdle. 2020. Improved Graph Neural Networks for Spatial Networks Using Structure-Aware Sampling. ISPRS Int.
J. Geo Inf. 9, 11 (2020), 674.

[22] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing Source Code using a Neural Attention Model. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. The Association for Computer Linguistics.

[23] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez, and Ion Stoica. 2020. Contrastive Code Representation Learning. CoRR
abs/2007.04973 (2020).

[24] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generating commit messages from diffs using neural machine translation. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 135–146.

[25] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code != big vocabulary: open-vocabulary
models for source code. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel
and Doo-Hwan Bae (Eds.). ACM, 1073–1085.

[26] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved Code Summarization via a Graph Neural Network. In ICPC ’20:
28th International Conference on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020. ACM, 184–195.

[27] Yuding Liang and Kenny Qili Zhu. 2018. Automatic Generation of Text Descriptive Comments for Code Blocks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI
Press, 5229–5236.

[28] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out. Association for Computational
Linguistics, Barcelona, Spain, 74–81.

[29] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How NOT To Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, Jian Su, Xavier Carreras, and Kevin Duh
(Eds.). The Association for Computational Linguistics, 2122–2132.

[30] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Automatic Generation of Pull Request Descriptions. In 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 176–188.

[31] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Summarization of Context for Java Methods. IEEE Trans. Software Eng. 42, 2
(2016), 103–119.

[32] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013. Automatic generation of natural
language summaries for Java classes. In IEEE 21st International Conference on Program Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21 May,
2013. IEEE Computer Society, 23–32.

[33] Dana Movshovitz-Attias and William W. Cohen. 2013. Natural Language Models for Predicting Programming Comments. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 2: Short Papers. The Association
for Computer Linguistics, 35–40.

21

https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.1109/CVPR.2016.90


1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Woodstock ’18, June 03–05, 2018, Woodstock, NY Gao, et al.

[34] Lun Yiu Nie, Cuiyun Gao, Zhicong Zhong, Wai Lam, Yang Liu, and Zenglin Xu. 2020. Contextualized Code Representation Learning for Commit
Message Generation. CoRR abs/2007.06934 (2020).

[35] Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazutoshi Shinoda, Atsushi Otsuka, Hisako Asano, and Junji Tomita. 2019. Multi-style Generative
Reading Comprehension. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics,
2273–2284.

[36] Kishore Papineni, Salim Roukos, ToddWard, andWei-Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL, 311–318.

[37] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point: Summarization with Pointer-Generator Networks. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
Regina Barzilay and Min-Yen Kan (Eds.). Association for Computational Linguistics, 1073–1083.

[38] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto, and Tadayuki Matsumura. 2019. Automatic Source Code Summarization
with Extended Tree-LSTM. In International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019. IEEE, 1–8.

[39] Kai Song, KunWang, Heng Yu, Yue Zhang, Zhongqiang Huang, Weihua Luo, Xiangyu Duan, and Min Zhang. 2020. Alignment-Enhanced Transformer
for Constraining NMT with Pre-Specified Translations. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 8886–8893.

[40] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-Shanker. 2010. Towards automatically generating summary
comments for Java methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, September
20-24, 2010, Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43–52.

[41] Zoltán Gendler Szabó. 2020. Compositionality. In The Stanford Encyclopedia of Philosophy (fall 2020 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (Eds.). 5998–6008.

[43] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing Multi-Head Self-Attention: Specialized Heads Do the
Heavy Lifting, the Rest Can Be Pruned. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational
Linguistics, 5797–5808.

[44] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Improving automatic source code summarization via
deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM, 397–407.

[45] Bolin Wei. 2019. Retrieve and Refine: Exemplar-Based Neural Comment Generation. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 1250–1252.

[46] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual Task of Code Summarization. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 6559–6569. https:
//proceedings.neurips.cc/paper/2019/hash/e52ad5c9f751f599492b4f087ed7ecfc-Abstract.html

[47] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining existing source code for automatic comment generation. In 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, Yann-Gaël Guéhéneuc, Bram
Adams, and Alexander Serebrenik (Eds.). IEEE Computer Society, 380–389.

[48] Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and Satoshi Nakamura. 2018. Guiding Neural Machine Translation with Retrieved
Translation Pieces. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers). 1325–1335.

[49] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code summarization. In ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
1385–1397.

[50] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source code representation based on
abstract syntax tree. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 783–794.

[51] Xiangyu Zhao, Longbiao Wang, Ruifang He, Ting Yang, Jinxin Chang, and Ruifang Wang. 2020. Multiple Knowledge Syncretic Transformer for
Natural Dialogue Generation. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen (Eds.). ACM / IW3C2, 752–762.

22

https://proceedings.neurips.cc/paper/2019/hash/e52ad5c9f751f599492b4f087ed7ecfc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e52ad5c9f751f599492b4f087ed7ecfc-Abstract.html

	Abstract
	1 Introduction
	2 Background
	2.1 Vanilla Transformer
	2.2 Copy Mechanism

	3 Proposed Approach
	3.1 Structure-Guided Self-Attention
	3.2 Hierarchical Structure-Variant Attention
	3.3 Copy Attention

	4 Experiemental Setup
	4.1 Benchmark Datasets
	4.2 Evaluation Metrics
	4.3 Baselines
	4.4 Parameter Settings

	5 Experimental Results
	5.1 Answer to RQ1: Comparison with the Baselines
	5.2 Answer to RQ2: Ablation Study
	5.3 Answer to RQ3: Parameter Sensitivity Analysis
	5.4 Human Evaluation

	6 Discussion
	6.1 Why does Our Model Work?
	6.2 Duplicate Data in the Java Dataset
	6.3 Threats to Validity

	7 Related Work
	7.1 Source Code Summarization
	7.2 Code Representation Learning

	8 Conclusion
	References

