
1

Just-In-Time Defect Prediction on JavaScript Projects: A
Replication Study

CHAO NI, School of Software Technology, Zhejiang University, China
XIN XIA∗, Software Engineering Application Technology Lab, Huawei, China
DAVID LO, Singapore Management University, Singapore
XIAOHU YANG, Zhejiang University, China
AHMED E. HASSAN, Queen University, Canada

Change-level defect prediction is widely referred to as just-in-time (JIT) defect prediction since it identifies a
defect-inducing change at the check-in time, and researchers have proposed many approaches based on the
language-independent change-level features. These approaches can be divided into two types: supervised
approaches and unsupervised approaches, and their effectiveness has been verified on Java or C++ projects.
However, whether the language-independent change-level features can effectively identify the defects of
JavaScript projects is still unknown. Additionally, many researches have confirmed that supervised approaches
outperform unsupervised approaches on Java or C++ projects when considering inspection effort. However,
whether supervised JIT defect prediction approaches can still perform best on JavaScript projects is still
unknown. Lastly, prior proposed change-level features are programming language-independent, whether
programming language-specific change-level features can further improve the performance of JIT approaches
on identifying defect-prone changes is also unknown.

To address the aforementioned gap in knowledge, in this paper, we collect and label top-20 most starred
JavaScript projects on GitHub. JavaScript is an extremely popular and widely used programming language in
the industry. We propose five JavaScript-specific change-level features and conduct a large-scale empirical
study (i.e., involving a total of 176,902 changes) and find that 1) supervised JIT defect prediction approaches
(i.e., CBS+) still statistically significantly outperform unsupervised approaches on JavaScript projects when
considering inspection effort; 2) JavaScript-specific change-level features can further improve the performance
of approach built with language-independent features on identifying defect-prone changes; 3) the change-level
features in the dimension of size (i.e., LT), diffusion (i.e., NF), and JavaScript-specific (i.e., SO and TC) are
the most important features for indicating the defect-proneness of a change on JavaScript projects; and 4)
project-related features (i.e., Stars, Branches, Def Ratio, Changes, Files, Defective and Forks) have a high
association with the probability of a change to be a defect-prone one on JavaScript projects.

CCS Concepts: • Software and its engineering→ Software evolution; Maintaining software;

Additional Key Words and Phrases: Defect Prediction, Just-in-time Defect Prediction, Empirical Study,
JavaScript

∗This is the corresponding author

Authors’ addresses: Chao Ni, School of Software Technology, Zhejiang University, China, chaoni@zju.edu.cn; Xin Xia,
Software Engineering Application Technology Lab, Huawei, China, xin.xia@acm.org; David Lo, Singapore Management
University, Singapore, davidlo@smu.edu.sg; Xiaohu Yang, Zhejiang University, China, yangxh@zju.edu.cn; Ahmed E.
Hassan, Queen University, Canada, ahmed@cs.queensu.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1049-331X/2020/1-ART1 $15.00
https://doi.org/10.1145/3508479

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3508479

1:2 Chao Ni et al.

ACM Reference Format:
Chao Ni, Xin Xia, David Lo, Xiaohu Yang, and Ahmed E. Hassan. 2020. Just-In-Time Defect Prediction on
JavaScript Projects: A Replication Study. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2020),
37 pages. https://doi.org/10.1145/3508479

1 INTRODUCTION
Software defect prediction plays a crucial role in software engineering and attracts much attention
from researchers. Recently, researchers have proposed many defect prediction approaches, and their
effectivenesses have been confirmed on various projects [43, 44, 49, 53, 86]. However, the majority of
defect prediction approaches focus on identifying defect-prone entities at a coarse-grained level (i.e.,
class/file/module). Although these approaches can be used in some cases, their drawbacks hinder
their practical application, especially for the cases with limited resources. Therefore, researchers
proposed new defect prediction approaches which focus on identifying defect-prone entities at a
fine-grained level (i.e., change) [16, 26, 29, 30, 39, 89]. Change-level defect prediction has attracted
increasing interest in recent years, as it finely and timely helps developers to identify defect-prone
entities [18, 31, 42, 70, 84].

Change-level defect prediction is widely referred to as Just-in-Time (JIT) defect prediction since
it can identify a defect-inducing change at the check-in time. The defect-inducing changes are
the ones which introduce one or a few defects and make software invalid [72]. Compared with
coarse-grained level defect prediction, JIT defect prediction has the following advantages [34]:
(1) Predicting at a fine granularity: the identified defect-inducing changes are linked to certain
changes, and it hugely reduces the area of source code needed to be inspected. (2). Predicting for
a concrete developer: the identified defect-inducing changes are linked to certain changes, and
it quickly finds who made the modifications to that changes and then makes assignments for a
developer to fix the defect. (3). Predicting at the check-in time: the changes can be timely classified
as clean ones or defect-prone ones as soon as they are submitted to the code repository.
Due to the aforementioned benefits of JIT defect prediction, researchers have proposed many

approaches [16, 29, 30, 34, 39] based on language-independent change-level features proposed
by Kamei et al. [34], which can be classified into two groups: supervised JIT defect prediction
approaches and unsupervised JIT defect prediction approaches. The effectiveness of these JIT defect
prediction approaches has been verified on projects developed using Java or C++ programming
languages. In practice, different projects aiming at solving specific jobs are often developed using
various most suitable programming languages. JavaScript programming language is widely used
for both client-side and server-side applications and becomes an extremely popular programming
language according to Stack Overflow Developer Survey1. Therefore, software quality assurance
is an important issue for JavaScript projects since its popularity among other programming lan-
guages [19, 21, 22, 55, 67]. However, whether these change-level features can effectively identify the
defects of the projects developed using JavaScript programming language is unknown. Additionally,
researchers conducted empirical studies on the comparison between supervised and unsupervised
JIT defect prediction approaches [29, 30, 39, 89] and found that supervised approaches perform
best in a holistic view when considering effort-aware performance measures (i.e., considering
inspection effort) on Java or C++ projects. However, whether supervised JIT defect prediction
approaches can still perform best on JavaScript projects is also unknown. Furthermore, according
to previous work [12, 61, 64, 82], different programming languages can impact not only the coding
process but also the properties (e.g., source code size, the number of developers, and age/maturity)
of the resulting projects. However, previously proposed 14 change-level features are programming

1https://insights.stackoverflow.com/survey/2021

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3508479

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:3

language-independent. Thus, whether programming language-specific features have an impact on
identifying defect-prone changes is still unknown.

In view of the aforementioned interesting questions, in this paper, we collect top-20 most starred
projects developed using JavaScript and published on GitHub2, propose five JavaScript-specific
change-level features, and conduct a large-scale empirical study to answer the following research
questions:
RQ1: How well do recently proposed effort-aware JIT defect prediction approaches per-
form on JavaScript projects?

We make a deep comparison between supervised (i.e., EALR [34], OneWay[16], and CBS+[30])
and unsupervised (i.e., LT [89] and Churn [39]) effort-aware JIT defect prediction approaches on
JavaScript projects when considering inspection effort and find that CBS+ always performs best
among all supervised approaches. Additionally, when compared with unsupervised approaches,
the supervised approach CBS+ also significantly statistically performs best in most cases.
As for Java or C++ projects, CBS+ always performs best among all supervised approaches and

outperforms unsupervised JIT defect prediction approaches when considering inspection effort
according to the results in previous work [29, 30].
Furthermore, we propose five JavaScript-specific change-level features and conduct a further

study on the best performing supervised approach CBS+, and find that JavaScript-specific change-
level features can further improve the performance of CBS+ on identifying defect-prone changes.
Therefore, language-dependent change-level features have impacts on JIT defect prediction ap-
proaches.
RQ2:What are the important features for effort-aware JIT defect prediction on JavaScript
projects?
We further analyze the importance of each change-level feature on best supervised JIT defect

prediction approach CBS+ and figure out the most important features (i.e., “LT”, “NF”, “SO”, and
“TC”) for predicting defective changes in JavaScript projects. These features belong to the dimension
of “Size”, “Diffusion” and “JavaScript-specific”, which indicates the importance of the three types of
JIT features, especially “LT”, “NF”, “SO” and “TC”.

As for Java or C++ projects, “NF”, “FIX” and “AGE” which belong to the dimension of “Diffusion”,
“Purpose” and “History” respectively are the important features for predicting defect-prone changes
according to the results of preivous work [34].
Therefore, different types of change-level features have varying impacts on different projects

developed by different programming languages.
RQ3: Is there an association between project-related features and the probability of a
defect-prone change on JavaScript projects?
We lastly investigate the association between project-related features and the probability of a

defective change using mixed effect logistic regression and find that project-related features are
associated with the probability of a change to be defect-prone one in JavaScript projects. Especially,
the seven features (i.e., Stars, Branches, Def Ratio, Changes, Files, Defective and Forks) have the
largest and statistically significant association with the probability of a defect-prone change.

As for Java or C++ projects, project-related features (i.e., the number of changes, the number of
developers, the number of files, the number of downloads) also have a high association with the
quality of the projects according to the results in previous work [93, 94].
Therefore, project-related features do have an association with the probability of defect-prone

changes on different projects.
Article contributions:

2https://github.com/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Chao Ni et al.

(1) We collect and label the dataset of top-20 most popular (i.e., in terms of the number of stars)
JavaScript projects using MA-SZZ3 algorithm since there is no JavaScript dataset available
today. The dataset can be useful for future work and is publicly available on GitHub and
GitLab4.

(2) We conduct a case study on 20 JavaScript projects with 176,902 changes to investigate the
two aspects: 1) whether the programming-independent change-level features can effectively
identify defect-prone changes on JavaScript projects in the context of effort-aware scenario;
2) whether supervised JIT defect prediction approaches still have the advantages over unsu-
pervised approaches on JavaScript projects when considering inspection effort.

(3) We firstly propose five JavaScript-specific change-level features in this paper, and conduct a
further study to uncover that language-dependent features have impacts on JIT prediction
approach on identifying defect-prone changes.

(4) We study the importance of change-level features to effort-aware JIT defect prediction
approaches on JavaScript projects. Additionally, we investigate the association between
project-related features and the probability of a defect-prone change using a mixed effects
logistic regression.

Article Structure. Section 2 describes the experimental dataset and design, including the studied
projects, the studied change-level features, the selected defect prediction approaches, the evaluation
performance measures, the data pre-processing, and the statistical analysis. Section 3 analyzes the
experimental results. Section 4 compares the results obtained in this paper with results in previous
work. Section 5 presents the potential threats to validity in our empirical studies. Section 6 briefly
reviews the related work on JIT defect prediction. Section 7 concludes this paper and presents
future work.

2 EMPIRICAL STUDY SETUP
In this section, we introduce our empirical study settings. We firstly present the studied JavaScript
projects. We secondly introduce the change-level features we used in our research. Following
that, previously proposed approaches, the evaluation measures, data pre-processing and statistical
analysis are presented subsequently.

2.1 JavaScript Projects
Projects selection.We use JavaScript as the keyword to search repositories on All GitHub (i.e.,
729,631 repository results returned). Then, we filter these repositories by JavaScript language
(i.e., 409,432 repository results returned). Finally, we sort these queried projects by most stars in
descending order. To choose the most suitable projects, we set up the following inclusion criteria:
(1) the ratio that files ending with “.js” account for the whole files in a project is no less than
90%; (2) projects should not be one of these types: tutorials, algorithm implementations written in
JavaScript, the experience of a job interview and collections of useful code snippet since they are
not conceptually software project according to the definition 5. After filtering by these criteria, we
pick up the top-20 most starred popular projects on January 10, 2020, which means we cloned the
repositories of these selected projects on January 10, 2020, and the time period of all changes in
each selected project starts from the time it was created on GitHub and ends by January 10, 2020. A
summary of these projects can be seen in Table 1.

3https://github.com/danielcalencar/ma-szz
4https://github.com/jacknichao/JIT-on-JavaScript-projects.git or https://gitlab.com/shared-materials/JIT-on-JavaScript-
projects/
5https://en.wikipedia.org/wiki/Software_development

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/jacknichao/JIT-on-JavaScript-projects.git
https://gitlab.com/shared-materials/JIT-on-JavaScript-projects/
https://gitlab.com/shared-materials/JIT-on-JavaScript-projects/

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:5

In Table 1, the first column lists the name of selected JavaScript projects. The following two
columns correspond to the number of stars and the number of forks for each project. One star of a
project means there is one user on GitHub who is interested on the project. One fork operation
of a project means there exists one user on GitHub making a copy of such a project into his/her
software repository and may intend to make some contributions to this project in the future. Thus,
the more number of stars or forks a project has, the more popular such a project is. The “JS Ratio”
column indicates the ratio that files ending with “.js” account for the whole files in a project. The
next three columns show the number of branches, the number of changes and the number of
defective changes, respectively. Branches are effectively pointers to a snapshot of changes in a
project. A branch in a project means a part of the everyday development process or a dump of
function collection. Following that, the defective ratio in each project is listed in column “Def
Ratio”. In the next two columns, the number of files and lines of code (i.e., LOC) are presented in
sequence. After that, the number of contributors, the median number of code churn (i.e., LA+LD)
and the mean number of code churn are presented. For the last column, a short description of
each project is presented. In a whole view, these selected projects belong to different application
domains (e.g., library, compiler, client-side application, framework), vary in size (7,509∼396,587
LOC), vary in the number of contributors (191∼1,362), vary in the number of branches (3∼994),
vary in the number of files (79∼8,997), vary in the number of forks (1,460∼24,164), have different
popularity (26,946∼141,536) and cover a long period of time (1,226∼52,381 days). Therefore, these
selected projects are representative projects in all JavaScript projects.

Commit Analysis. We analyze all commits in our experimental projects on how many files a
commit may change. We list the results in Table 2. In Table 2, the columns represent the range of
numbers of files a commit changes, the rows represent the numbers and percentage of the commit
in each range (e.g., 0 Files, 1v10 Files). According to the results, we find that only 17% of all commits
do not modify any file (e.g., merge commit), while 83% of all commits modify at least one file. On
average, for our studied 20 JavaScript projects, a commit modifies 4.88 files.
Then, we conduct further analysis of the time interval between two adjacent commits. We

statistic all commits on studied JavaScript projects, and group time interval into days. We list the
results in Table 3.
According to the results shown in Table 3, we can find that the majority of the time interval

between two commits belongs to group 0v10 days. Then, we further analyze the commits in group
0v10 days and divide them into smaller groups (i.e., one day, one group). We illustrate the results
in the form of a histogram.

As shown in Fig. 1, we find that the majority of the time interval between two adjacent commits is
0 day (i.e., less than 24 hours), which means that many changes in a project are submitted instantly
to the corresponding GIT repository.
Therefore, just-in-time defect prediction approach is quite necessary to identify defect-prone

changes for JavaScript projects since the high frequency of commit submission and the relatively
small numbers of the modified file of a commit.

Data labelling. In practice, labeling historical change as defect-inducing or clean is very chal-
lenging as it requires a considerable amount of manual effort (e.g., manually analyzing thousands of
lines of code) and in-depth domain knowledge of the project (which is only feasible by contacting
the core developers of a project). Therefore, Sliwerski et al. [72] initially developed an approach
named SZZ to automatically identify defect-inducting change in each project repository.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6
C
hao

N
iet

al.
Table 1. Summary of the studied JavaScript projects.

Project # Stars # Fork JS Ratio # Branches # Changes # Defective Def Ratio # File # LOC #Contributors # Med_size # Mean_size Short Introduction
vue 141,536 20,388 97.7% 33 6,156 2,081 33.8% 432 168,808 391 19 289 A progressive, incrementally-

adoptable JavaScript framework for
building UI on the web

react 131,183 24,164 95.2% 28 14,080 3,694 26.2% 881 203,624 1,511 1 219 A declarative, efficient, and flexible
JavaScript library for building user in-
terfaces.

axios 60,819 4,919 91.7% 9 888 201 22.6% 79 7,509 191 1 107 Promise based HTTP client for the
browser and node.js

three.js 52,412 19,754 99.2% 4 28,196 6,447 22.9% 1,208 396,587 1,362 8 473 JavaScript 3D library.
jquery 51,761 18,224 93.5% 4 7,672 4,265 55.6% 178 88,971 347 9 226 jQuery JavaScript Library
webpack 49,422 6,221 99.3% 49 8,961 1,770 19.8% 3,399 78,840 611 2 50 A bundler for javascript and friends.

Packs many modules into a few bun-
dled assets.

material-ui 47,975 10,700 98.3% 4 10,800 2,231 20.7% 6,842 148,396 1,620 0 82 React components for faster and eas-
ier web development.

express 44,310 7,442 100.0% 10 5,824 920 15.8% 152 20,655 287 3 32 Fast, unopinionated, minimalist web
framework for node.

Chart.js 43,956 9,657 99.6% 3 2,775 661 23.8% 215 41,689 338 4 454 Simple HTML5 Charts using the
<canvas> tag

moment 41,481 6,231 99.8% 20 3,781 757 20.0% 583 182,540 588 5 310 Parse, validate, manipulate, and dis-
play dates in javascript.

meteor 41,121 5,034 98.0% 994 27,805 5,870 21.1% 1,193 272,424 501 7 80 A JavaScript App Platform
lodash 39,648 4,115 100.0% 6 8,314 1,280 15.4% 702 35,102 320 16 253 Amodern JavaScript utility library de-

livering modularity, performance &
extras.

yarn 36,047 2,199 98.7% 58 2,787 1,110 39.8% 554 57,350 527 5 55 Fast, reliable, and secure dependency
management.

babel 23,466 3,570 99.7% 16 12,519 3,284 26.2% 8,997 143,864 816 3 116 A compiler for writing next genera-
tion JavaScript.

parcel 32,055 1,460 96.9% 79 2,458 775 31.5% 743 27,073 216 14 78 Blazing fast, zero configuration web
application bundler

anime 31,418 2,323 100.0% 8 846 169 20.0% 19 11,130 35 17 136 JavaScript animation engine
serverless 30,440 3,368 97.2% 20 10,324 2,334 22.6% 357 63,327 700 1 122 Build web, mobile and IoT applica-

tions with serverless architectures us-
ing AWS Lambda, Azure Functions,
Google CloudFunctions & more!

Ghost 30,147 6,519 92.0% 9 9,800 2,467 25.2% 888 115,214 386 0 87 The most popular headless Node.js
CMS for professional publishing

hyper 30,067 2,462 99.9% 5 1,287 371 28.8% 100 148,974 237 2 386 A terminal built on web technologies
pdf.js 26,946 6,413 96.6% 3 11,629 2,331 20.0% 273 104,007 364 2 62 PDF Reader in JavaScript

A
CM

Trans.Softw
.Eng.M

ethodol.,Vol.1,N
o.1,A

rticle
1.Publication

date:January
2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:7

Table 2. Numbers of files modified by one commit.

0 Files 1v10 Files 11v20 Files 21v30 Files 31v40 Files 41v50 Files 51v Files
Commit 35,002 163,197 5,584 1,631 824 505 2,162

% Percentage 17% 83%

Fig. 1. Numbers of commit in different time intervals

The SZZ algorithm can be organized in two
subsequent phases: defect-fixing change identi-
fication phase and defect-inducing change iden-
tification phase.
Phase 1: Defect-fixing change identification. SZZ
firstly searches these changes which aim at fix-
ing previous defects by leveraging some spe-
cial characteristics. In particular, SZZ searches
some keywords (e.g., “bug”, “fix”, “wrong”, “er-
ror”, “fail”, “problem” and “patch”) in each
change message to mark whether a change is
a defect-fixing change or not.

Table 3. Days Interval Between Two Adjacent Commits

Days 0v10D 11v20D 21v30D 31v40D 41v50D 51v60D 61v70D 71v80D 81v90D 91v100D 101v200D
Commit 176,558 230 60 25 9 6 5 2 3 1 3

Phase 2: Defect-inducing change identification phase.
Firstly, for each candidate bug-fixing change,
SZZ uses git diff command to identify all changes that previously make modifications to the same
lines of code. These modified lines of code are identified as those that cause defects. Secondly,
SZZ uses the git blame command, a powerful tool which can show what revision and author last
modified each line of a file, to figure out the last changes which introduce those lines that finally
cause the defects in bug-fixing change. Finally, these changes are labeled as defect-introducing
changes, and the other changes are labeled as clean changes.

However, previous studies observed that the original SZZ might cause a large amount of noise,
which results in mislabeled changes [10, 36, 51]. In particular, the original SZZ [72] simply considers
all lines modified by bug-fixing changes as buggy lines. It uses the built-in annotate command in
version control systems to trace back through the change history.

To reduce the mislabeled changes, Kim et al. [36] proposed an improved SZZ variant built on top
of the original SZZ [72]. It discards all non-semantic lines (e.g., blank/comment lines) and those lines
involving format modifications (e.g., modifications to code indentation) [36]. This implementation
of the SZZ variant applies the annotation graph to trace the change history. Notice that annotation
graph is a powerful tool for tracing the evolution of lines of code along the code history as proposed
by Zimmermann et al [95]. For ease of presentation, we refer to SZZ variant proposed by Kim et al.
as Annotation Graph SZZ (a.k.a., AG-SZZ).
Subsequently, Da Costa et al. [10] proposed another improved SZZ variant which is built on

top of Kim et al.’s AG-SZZ. In this variant, it improves AG-SZZ by mainly focusing on how to
further mitigate the mislabeled noise caused by branch or merge operation on changes and property
modification on changes. Da Costa et al. referred to their SZZ variant as Meta-change Aware SZZ
(a.k.a., MA-SZZ). In this paper, as suggested by Fan et al.’s work [14], we use MA-SZZ to label the
changes of JavaScript projects.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Chao Ni et al.

To verify the effectiveness of MA-SZZ in our study, we perform a manual analysis of MA-SZZ in
labeling changes. Since the requirement of a large amount of manual effort and domain knowledge,
for each project, we randomly sample 100 changes from each project and keep the class distribution
the same as the original project. That is, we totally sample 2,000 changes. Then, the first two authors
are required to separately determine whether the sampled changes are labeled correctly or not.
Notice that, both authors have many years of programming experience in JavaScript. Finally, the
two authors compare their results to identify any disagreements on the labeled results. We find
that, on average, about 5.1% changes, the two authors have different decisions. It also means the
two authors share the same decision on about 94.9% of the 2,000 changes. For those changes with
decision conflict, the two authors further discuss whether the change contains defects or not.

Table 4. The MA-SZZ’s precision and recall on
sampled changes

Project Prec. Rec. Project Prec. Rec.
Chart.js 100% 92% meteor 95% 95%
Ghost 92% 100% moment 85% 100%
anime 95% 100% parcel 94% 100%
axios 91% 95% pdf.js 95% 100%
babel 96% 96% react 92% 96%
express 93% 93% serverless 96% 100%
hyper 89% 96% three.js 86% 100%
jquery 95% 100% vue 97% 97%
lodash 93% 93% webpack 90% 94%

material-ui 90% 95% yarn 95% 100%
Avg Prec. 93% Avg Rec. 97%

In Table 4, we show the precision and recall
of MA-SZZ on these sampled changes in each
project. According to the results shown in the ta-
ble, we notice that MA-SZZ achieves a precision
of 85%v100% and a recall of 92%v100% across the
top-20 JavaScript projects. Therefore, it averagely
achieves a precision of 93% and a recall of 97% on
the 2,000 sampled changes, and our manual anal-
ysis, to some extent, verifies the effectiveness of
MA-SZZ though it cannot achieve 100% precision
and 100% recall on labeling changes.

2.2 Change-level Features
In our study, we use the 14 change-level features
which were used by prior work [16, 29, 30, 34, 39,
89]. The change-level features can be classified into
five dimensions according to Kamei et al. [34]: diffusion, size, purpose, history, and experience.
Table 5 summarizes these change-level features including their short names, descriptions, and
grouping into several dimensions. To make our paper self-contained, we briefly introduce these
features below. A more detailed description can be found in Kamei et al.’s work [34].

The diffusion dimension includes NS, ND, NF, and Entropy, which characterize the distribution
of a change. Kamei et al. [34] stated that a highly distributed change is more likely to be a defect-
inducing change. The size dimension is composed of LA, LD, and LT which are used to characterize
the size of a change. It is believed that a larger change is expected to have a higher likelihood of
being a defect-inducing change [47, 71]. The purpose dimension has only one feature: FIX. There
is a belief [90] that a defect-fixing change is more likely to introduce a new defect. The history
dimension is composed of NDEV, AGE, and NUC. Previous studies found that a defect is more likely
to be introduced by a change if the touched files have been modified by more developers, by more
recent changes, or by more unique last changes [11, 20, 24, 40]. The experience dimension, including
EXP, REXP, and SEXP, characterizes a developer experience based on the number of changes made
by the developer in the past. There is a belief that a change made by a more experienced developer
is less likely to introduce defects [46].

Different programming languages have different characteristics. These aforementioned language-
independent change-level features are only verified on projects developed by Java or C++, both
of them are strongly typed programming languages. However, JavaScript is one of the most
popular weakly typed programming languages. Therefore, in addition to the 14 features from four
dimensions, we also propose five JavaScript-specific features (i.e., HtmlCss, Strict, BDom, SO and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:9

Table 5. Summary of change-level features

Dimension Feature Description

Diffusion

NS Number of subsystems touched by the current change
ND Number of directories touched by the current change
NF Number of files touched by the current change

Entropy Distribution across the touched files

Size

LA Lines of code added by the current change
LD Lines of code deleted by the current change
LT Lines of code in a file before the current change

Purpose FIX Whether or not the current change is a defect fix

Histroy

NDEV The number of developers that changed the files
AGE The average time interval (in days) between the last and the change over the files that

are touched
NUC The number of unique last changes to the files

Experience

EXP Developers experience, i.e. the number of changes
REXP Recent developer experience, i.e. the total experience of the developer in terms of changes,

weighted by their age
SEXP Developer experience on a subsystem, i.e. the number of changes the developer made in

the past to the subsystems
HtmlCss Sum of HTML and CSS operations included in the current change
Strict Switch between opening and closing “strict” mode by the current change

JavaScript-specific BDom Sum of BOM (Browser Object Model) and DOM (Document Object Model) operations
included in the current change

SO Number of special operator (i.e., !== or ===) in JavaScript programming language included
in the current change

TC Number of type check operations included in the current change

TC) and group them into the JavaScript-specific dimension. We introduce these features in detail as
follows.

HtmlCss. HtmlCss represents HTML and CSS. The front end of a web application consists of
three important parts: JavaScript, HTML, and CSS. Each of these parts has different functions [79].
That is, HTML defines the structure of web pages, JavaScript defines the behavior of web pages
and CSS defines the layout of web pages. A web application will be considered as a strong coupled
application if a JavaScript file frequently and directly contains a few scripts which interact with
HTML script or CSS script. Therefore, for coupled applications, changes to one part of the application
often inadvertently impact unrelated parts downstream [83], which will cause unexpected errors.
Although the three important parts naturally need to interact with each other, there are many
different state-of-the-art development approaches that can decouple them. We calculate the number
of times that HTML and CSS is defined in JavaScript files included in a change by identifying their
structure (e.g., <>, </> and selector {style_name : style_value, ...}), which indicates the frequency
of interaction between them.

Strict. Strict mode is a special execution setting in JavaScript programming language, which
indicates the codes must be executed under strict conditions. In such a mode, scripts will not be
allowed to execute if they try to use undeclared variables. We can add “use strict” to or remove “use
strict” from the head of a script or the inner of a function to turn on or turn off the strict mode. “use
strict” is not a simple statement, but a literal expression, which impacts both syntax and runtime
behavior 6. Switching the strict mode means an exactly same JavaScript script may have different
behavior and therefore cause syntax or runtime errors [56, 59]. We calculate the number of times
“use strict” is used by searching the modified context in JavaScript files in a change.

BDom. BDom is the abbreviation of BOM (Browser Object Model) and DOM (Document Object
Model). BOM enables JavaScript to interact with the browser, while DOM enables JavaScript to
access all the elements (e.g., <a>, <p>, <div> and so on) of a HTML document. BOM and DOM can
6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://www.w3schools.com/js/js_strict.asp

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Chao Ni et al.

help to adjust display environment, change browsing behavior, detect browser capability, determine
whether or not to use user agent, address compatibility issues, access HTML elements, and so on.
BOM contains a few attributes, including window, location, navigator, screen, and history, while
DOM contains one major attribute: document. Therefore, these keywords are good indicators for
the usage of BOM and DOM. We conjecture that JavaScript files directly interacting with BOM
and DOM without a high-quality third-party package (e.g., jQuery7) are more likely to introduce
defect-prone changes. Therefore, we sum up the number of times these keywords (i.e., window,
location, navigator, screen, history, and document) are used in JavaScript files in a change.

SO. SO is short for Special Operators, which represents expressions unique to JavaScript pro-
gramming language compared with strongly typed programming language (e.g., C++ and Java).
Although special operators (e.g., !==, === and void) provide more useful functionality, they may
also cause incorrect understanding. Take “LE!==RE” as an example, “!==” is a binary operation,
which means the left element (i.e., LE) and the right element (i.e., RE) are not absolutely equal. That
is, LE is not equal to RE in terms of variable data or variable type, or both of them. In our paper,
we consider the above-mentioned three operators since we think using these operators may lead
to logic errors in JavaScript scripts especially for those developers who also having experience in
other strongly typed programming language (e.g., C++ or Java). To calculate the value of “SO” in a
change, we search the number of times the three operators are used in the change.

TC. TC is short for Type Check. Different from Java or C++ programming language, JavaScript
is a weakly typed programming language. Improper usage of variable types will cause the program
to run abnormally and even produce unintended results. Prior work [60] stated that although the
rules for coercing types are well defined [13] in JavaScript programming language, even expert
JavaScript developers struggle to fully comprehend the behavior of some code corresponding to
type check. Therefore, incorrect type checking may results in defect-prone codes. There are three
categories of type for JavaScript: data type (i.e., string, number , boolean, and so on), object type
(i.e., Object, Date, and Array) and null object (e.g., null and undefined). Different types of variables
can only be checked correctly with different operations. For example, we use “typeof ” to check
data typed variables, while using “instanceof ” to check object typed variables. Therefore, we search
the number of two keywords (i.e., “typeof ” and “instanceof ”) to calculate the usage of type check
operation.

2.3 Selected Approaches
We choose five state-of-the-art effort-aware JIT defect prediction approaches and three classical
effort-unaware defect prediction approaches as our candidate approaches for different purposes in
our empirical study.

2.3.1 Effort-aware Approaches. Recently, many effort-aware JIT defect prediction approaches have
been proposed [16, 29, 30, 34, 39]. These approaches can be classified into two groups: supervised
approaches and unsupervised approaches. Supervised approaches are widely used previously and
are often expected to have a better performance since a lot of labeled data is used as training
data. However, a sufficient amount of labeled data for newly started projects can be hard to be
obtained. Thus, unsupervised approaches are gradually proposed and receive lots of attention
since these approaches are simple to implement and achieve comparable performance compared
with supervised approaches [89]. The comparison of the supervised approaches vs. unsupervised
approaches triggers heated discussions in the literature [16, 29, 30]. We totally consider five
approaches including three supervised approaches (i.e., EALR [34], OneWay [16], and CBS+ [30])
and two unsupervised approaches (i.e., LT [89] and Churn [39]) as our candidate approaches
7https://jquery.com/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:11

since their effectiveness on Java or C++ projects have been confirmed. We briefly introduce these
approaches to make our paper self-contained in the following paragraphs:
Supervised Approaches.
EALR. The first approach EALR, short for Effort-Aware Linear Regression, is proposed by Kamei
et al. [34]. They used a regression model to address effort-aware defect prediction issues, in which
LOCs (i.e., lines of code) are used as the proxy of code inspection effort. For training data, they
convert the defect label Y (x) into defect density Rd =

Y (x)
Effort(x) , where Y (x) is 1 if the change is

defect-inducing or 0 otherwise, Effort(x) indicates the amount of effort required by the change (i.e.,
the number of lines modified by a change). Then, EALR tries to learn the relationship between
change-level features and defect density Rd . For testing data, EALR predicts Rd of each change and
prioritizes the changes based on Rd in descending order.
OneWay. The second approach OneWay is proposed by Fu and Menzies [16]. OneWay, inspired by
a simple unsupervised approach proposed by Yang et al. [89], aims at using supervised training
data to remove all but one of the Yang et al. predictors and then applying this trained learner on the
testing data. OneWay has two benefits: one is that it can fully use the information of labeled data,
and another is that it can sharply decrease the number of unsupervised approaches. In particular,
for training data, OneWay builds simple unsupervised models for each change-level feature, and
evaluates those models in terms of a given evaluation measure. Then, the best-performing model
built on a specific feature f will be obtained. For testing data, OneWay builds an unsupervised
approach based on f and prioritizes changes based on 1/f in descending order.
CBS+. The third approach CBS+, an improved version of CBS (Classify Before Sorting), is proposed
by Huang et al. [30] and based on the observation that the relationship between the change
features and defect density may be non-linear. Besides, Koru et al. [37] found that smaller modules
are proportionally more defect-prone and should be inspected first. Thus, to fully leverage the
advantages of supervised approach and deeply benefiting from Koru et al.’s findings, CBS+ assumes
that among all changes classified to be defect-prone, small ones should be inspected first. In
particular, for training data, CBS+ builds a classifier with logistic regression on the pre-processed
training data (e.g., addressing imbalance, data normalization). For testing data, the same pre-
processing will be applied to testing data before predicting by the classifier. Then, these changes
will be classified as defect-prone or clean based on a specified threshold (e.g., 0.5). After that, the
changes classified as defect-prone are sorted ahead of changes classified as clean changes. Finally,
CBS+ separately sorts defect-prone change and clean changes in descending order of defect-density
of each change.
Unsupervised Approaches.
For JIT defect prediction, unsupervised approaches aim at figuring out a best change-level feature
for sorting on the target projects. Formally, for a best sorting feature F , an unsupervised approach
will sort the testing changes in descending order based on R(c) = 1/F (c), where c represents a
specific change, F (c) is the value of feature F , andR(c) is the risk value predicted by the unsupervised
approach which indicates the probability of a change to be a defect-prone one. This is mainly
due to a prior finding that indicates that smaller modules are proportionally more defect-prone
and should be inspected first [37, 75]. Until now, two unsupervised approaches LT proposed by
Yang [89] and Code Churn (referred as Churn for easy presentation) proposed by Liu et al. [39]
have been proposed.
LT. The fourth approach LT is proposed by Yang et al. [89]. They used feature LT representing lines
of code in a file before the current change as the best feature F to build an unsupervised approach
and its effectiveness in terms of Recall has been confirmed.
Churn. The fifth approach Churn is proposed by Liu et al. [39] subsequently. They used code

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Chao Ni et al.

churn representing the sum of LA and LD modified by the current change as the best feature F to
build an unsupervised approach and its effectiveness has also been confirmed.

2.3.2 Effort-unaware Approaches. Software defect prediction (e.g., file-level and change-level defect
prediction) has received much attention, and many approaches have been proposed based on a few
popular and effective classification models (e.g., logistic regression) [6, 29, 34, 52, 53, 77, 80, 86].
These approaches are used to evaluate the effectiveness of models without considering inspection
effort such as budget, time, importance, or human-resource.
In our study, we want to investigate whether the programming language-independent change-

level features can effectively identify the defects in JavaScript projects in the scenario of effort-
unaware setting. We totally consider three widely used classical classifiers (Logistic Regression,
Naive Bayes and Random Forest) [5, 6, 52, 53, 58, 80, 81, 86] since their effectiveness in identifying
defects in software projects without considering inspection effort. We briefly introduce these
classifiers as follows: Logistic Regression (LR) [9], a linear regression model, estimates the likelihood
of a classification with logistic function. For classification issues, LR chooses the class with the
highest likelihood. Naive Bayes (NB) [65] estimates a score for each class based on an application
of Bayes law. Random Forest (RF) [4] is composed of many random trees. Usually, each random
tree is a decision tree (e.g., C4.5).

2.4 Evaluation
In this section, we introduce our evaluation plan and performance measures that we will use.

2.4.1 Experiment Setting. To evaluate the performance of the studied approaches, following previ-
ous studies [29, 89], we consider a ten-fold time-aware validation setting which makes sure that
the changes used for testing are always submitted later than the changes used for training. In
particular, for a given project, all changes happened in this project will be sorted in ascending
order chronologically. Then, these changes will be divided into approximately 12 equal folds and
numbered as fold 0 to fold 11. That is, fold 0 contains the earliest submitted changes and the fold 11
contains the latest submitted changes. For each fold i (i ∈ [1, 10]), the training data includes all the
changes coming from fold 0 to fold i-1. We calculate ten performance measures for each method
on fold 1 to fold 10. Notice that, we don’t consider the changes in fold 0 and fold 11 since they
don’t satisfy the requirement of SZZ algorithm. The SZZ algorithm can only identify the change
which has parent change and its child changes have been marked as fixed changes. Therefore, we
remove the changes in fold 0 since they are the ancestor of subsequent changes, and we remove
the changes in fold 11 since they are the latest change and may not be correctly labeled.
On the whole, we adopt such a time-aware experimental setting for two reasons. First, during

the process of project development, the changes happened on projects are submitted to the project
version control system (e.g., git) in chronological order. Thus, these changes have a definitely
chronological relationship with each other. Second, for a given project, the amount of changes is
increasing gradually as time goes on, which is in line with objective facts. That is, we barely have
changes at the initial stage of a project. We, however, can obtain many changes after a few months
or years of development or maintenance.

2.4.2 Performance Measures. In this section, we introduce ten performance measures that can be
divided into two groups: effort-aware and effort-unaware.
Effort-aware Performance Measures.

This group considers code inspection effort and includes six performancemeasures: Popt , Precision@20%,
Recall@20%, F1-measure@20%, PCI@20% and IFA [29, 30]. Suppose we totally have a dataset with

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:13

M changes and N defective changes. After inspecting 20% of the total modified lines of code, sup-
pose we inspectedm changes and observed n defective changes. Then these evaluation measures
can be defined as follows:

Precision@20%: the proportion of inspected defective changes over all the inspected changes,
which is calculated as: n/m.

Recall@20%: the proportion of inspected defective changes over all the actual defective changes,
which is calculated as: n/N .

F1-measure@20%: a summary measure that considers both Precision@20% and Recall@20%,
which is calculated as 2×Precision@20%×Recall@20%

Precision@20%+Recall@20% .
PCI@20%: the proportion of the number of inspected changes over all changes, which is calculated

as:m/M .
Popt : it is based on the concept of the Alberg diagram [2] which shows the relationship between

the Recall obtained by a prediction model and the inspection cost (e.g., the total modified lines
of code of changes) for a specific prediction model. To compute such a measure, two additional
prediction models are required: the optimal model and the worst model. In the optimal model and
the worst model, changes are respectively sorted in decreasing and ascending order according to
their actual defect densities. A good prediction model is expected to outperform the random model
and approximate the optimal model. For a given prediction modelm, the Popt can be calculated as:
Popt (m) = 1− Area(optimal)−Area(m)

Area(optimal)−Area(worst) ,Area(M) represent the area under the curve corresponding
to the modelM [30, 89].
IFA: is the number of Initial False Alarms encountered before we find the first defective change,

which can be calculated by the number of inspected clean changes before finding the first defect-
prone change.
Effort-unaware Performance Measures.
This group hardly considers code inspection effort and includes four performance measures:

F1-measure [27, 74, 86], Recall, AUC [28, 52, 53, 66], and PFA [17, 45, 54, 80]. There are four possible
outcomes for a change in a testing data: a change can be classified as defective when it is truly
defective (true positive, TP); it can be classified as defective when it is actually non-defective (false
positive, FP); it can be classified as non-defective when it is actually defective (false negative, FN);
or it can be classified as non-defective and it is truly non-defective (true negative, TN). Therefore,
based on the four possible outcomes, Recall, PFA, and F1-measure can be defined as follows:

Recall:the proportion of defective instances that are correctly labeled: Recall = T P
T P+FN .

F1-measure : a summary measure that combines both precision and recall. It not only evaluates
the trade-off between precision (i.e., P = T P

T P+F P increase and recall (i.e., R = T P
T P+FN) reduction, but

also evaluates the opposite way: F1-measure= 2×P×R
P+R .

AUC: the area under the receiver operating characteristic (ROC) curve [23], which is a 2D
illustration of true positive rate on the y-axis versus false positive rate on the x-axis. ROC curve
is obtained by varying the classification threshold over all possible values, separating clean and
defect-prone predictions. A best performing predictor achieves an AUC value close to 1. The ROC
analysis is robust in case of imbalanced class distributions and asymmetric misclassification costs.
It also represents the probability that a method will rank a randomly chosen defective module
higher than a randomly chosen not defective one.

PFA: the probability of false alarm is defined as the ratio of false positives to all non-defective
instances: PF = F P

FP+T N :
Notice that, for Precision@20%, Recall@20%, F1-measure@20%, Popt , F1-measure, Recall and AUC,

the larger of these measures’ value, the better of corresponding approaches’ performance. The
improvement of the best approach A over the other approach B can be calculated as A−B

B × 100%.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Chao Ni et al.

For IFA, PCI@20%, and PFA, the smaller of these measures’ value, the better of corresponding
approaches’ performance. Thus, the improvement of the best approach A over the other approach
B can be calculated as A−B

A × 100%, which means the ratio of decrease.

2.5 Data Pre-processing
Prior work [76] highlighted the side-effect of correlated features on models’ performance. As
suggested by Harrel [63], we primarily filter correlated features and redundant features before
investigating the performance of models on JavaScript projects.

Filtering correlated features. For correlated features, we calculate the correlation between each
pair of features by Spearman rank test [91]. Then, we apply Hmisc, an R tool-kit8 for variable
clustering analysis, to cluster the correlated features. During the correlation analysis, we use 0.8 as
the threshold suggested by Li et al. [38]. In particular, if the correlation coefficient of two features
is larger than 0.8, the two features are known as collinearity features and one of them should be
removed. For all pairs of correlated features in a specific project, we first remove the feature, which
is highly correlated with many other features. Then, for other pairs of correlated features, we take
the advice suggested by Kamei et al. [33, 34] and Li et al. [38] and keep all the ones which have
the advantages for easy understanding. Thus, for the interpretation of the JIT defect prediction
approaches, when two features are correlated, we keep the one which is easier to understand and
remove the other one.

Filtering redundant features. After filtering correlated features, we further filter redundant fea-
tures. Redundant features represent a feature that can be predicted by the combination of other
features. We filter these redundant features since they not only have no contribution to JIT defect
prediction approach but also increase the training time for the approach building. We apply the
redun, a function implemented in rms R tool-kit9, to identify these redundant features.
Notice that for practical application, testing data is not available when building a prediction

model especially for time-aware JIT defect prediction setting. Thus, we only conduct pre-processing
operations on training data to filter correlated features and redundant features.

2.6 Statistical Analysis
To check statistical significance of the performance difference of two different methods in a ten-
fold time-aware validation setting, we run the Wilcoxon signed-rank test [85] with a Bonferroni
correction [1]. Wilcoxon signed-rank test is a non-parametric statistical hypothesis test on the
performancemeasures, while the Bonferroni correction is used to counteract the problem ofmultiple
comparisons. For all the statistical testing, the null hypotheses are that there is no difference between
two defect prediction approaches, and the significance level α is set to 0.05. If p-value is smaller
than 0.05, we reject the null hypotheses; otherwise, we accept the null hypotheses.

Additionally, we also use Cliff’s delta (δ) [8], which is a non-parametric effect size measure that
quantifies the amount of difference between the two approaches. The range of Cliff’s delta is [-1,1].
|δ | equals to 1 indicates the absence of overlap between two approaches. It means all data from one
group are higher than that from the other group, and vice versa. |δ | equals to zero means that the
two approaches are overlapping completely. We consider |δ | which are less than 0.147, between
0.147 and 0.33, between 0.33 and 0.474 and above 0.474 as “Negligible (N)”, “Small (S)”, “Medium
(M)”, “Large (L)” effect size, respectively following [8].

8https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf
9https://cran.r-project.org/web/packages/rms/rms.pdf

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:15

3 EMPIRICAL STUDY RESULTS
In this section, we present the results for the three research questions:

• RQ1: How well do recently proposed effort-aware JIT defect prediction approaches
perform on JavaScript projects?

• RQ2: What are the important features for effort-aware JIT defect prediction on
JavaScript projects?

• RQ3: Is there an association between project-related features and the probability of
a defect-prone change on JavaScript projects?

3.1 RQ1: How well do recently proposed effort-aware JIT defect prediction
approaches perform on JavaScript projects?

Motivation. In practice, we often have lots of work to do with limited resources such as time,
human-resource, or budget. Thus, effort-aware performance measures should be preferentially
taken into consideration. Many effort-aware JIT defect prediction approaches have been proposed,
which can be divided into two categories: supervised approaches (e.g., EALR [34], OneWay [16],
and CBS+ [30]) and unsupervised approaches (e.g., LT [89] and Churn [39]).
For supervised approaches, the comparison of the three approaches has been conducted on six

open-source projects, and the effectiveness of CBS+ has been confirmed [30]. However, whether
CBS+ can perform best on JavaScript projects is unknown. Additionally, two unsupervised ap-
proaches were proposed by Yang et al. [89] and Liu et al. [39], and their results stated that unsu-
pervised JIT defect prediction approaches can obtain comparable performance with supervised
approaches on six open-source projects. However, the comparison of the supervised vs. unsuper-
vised approaches on JavaScript projects is unknown.

Thus, we not only want to figure out the best supervised JIT defect prediction approach on
JavaScript projects, but also try to display how well supervised approaches perform when compared
with unsupervised approaches.

Moreover, the 14 change-level features proposed by Kamei et al. [34] are programming language-
independent features, which can help to build a JIT defect prediction model on identifying defect-
prone changes. However, whether programming language-dependent change-level features (e.g.,
JavaScript-specific change-level features) can further improve the performance on identifying
defect-prone changes is still unknown.

Method. To address the aforementioned issues, we investigate two specific sub-questions:
• Question 1: How well do recently proposed effort-aware JIT defect prediction approaches
perform on JavaScript projects using prior proposed 14 programming language-independent
change-level features?

• Question 2: Whether JavaScript-specific change-level features can improve the performance
of effort-aware JIT defect approach on identifying defect-prone changes?

In Question 1, first, we implement the five studied JIT defect prediction approaches introduced
previously: EALR [34], OneWay [16], CBS+ [30], LT [89] and Churn [39]. Second, we execute all
the five approaches on JavaScript projects considering six effort-aware performance measures after
two data pre-processing steps (i.e., filtering correlated features and filtering redundant features).
Notice that for the two unsupervised approaches, they do not need to build a prediction model
with the help of labeled changes on the training data, but directly predict whether a change is
defect-prone or not using one or a few change-level features on the testing data. More details about
LT and Churn can be found in Section 2.3. Therefore, for a fair comparison, we only execute two
unsupervised approaches on testing data. Third, we compare the performance of three supervised

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Chao Ni et al.

approaches and figure out the best one. Then, we make a comparison between the best performing
supervised approach and two unsupervised approaches.

Table 6. The average performance of the three newly proposed supervised effort-aware JIT defect prediction
approaches on JavaScript projects in terms of six studied performance measures. The best performing results
are highlighted in bold. ‘↓’ indicates ‘the smaller the better’; ‘↑’ indicates ‘the larger the better’.

Project F1-measure@20%↑ IFA↓ PCI@20%↓ Popt↑ Precision@20%↑ Recall@20%↑

CBS+ EALR OneWay CBS+ EALR OneWay CBS+ EALR OneWay CBS+ EALR OneWay CBS+ EALR OneWay CBS+ EALR OneWay
Chart.js 0.46 0.24 0.28 6.3 27.1 75.2 0.39 0.59 0.77 0.65 0.59 0.69 0.44 0.17 0.18 0.56 0.43 0.65
Ghost 0.60 0.37 0.31 3.8 32.9 12.9 0.22 0.23 0.24 0.67 0.65 0.51 0.65 0.45 0.35 0.57 0.35 0.30
anime 0.39 0.29 0.20 6.7 7 12 0.40 0.46 0.34 0.64 0.72 0.48 0.32 0.27 0.20 0.57 0.51 0.26
axios 0.48 0.13 0.32 2.6 8.5 13.8 0.41 0.31 0.74 0.68 0.44 0.74 0.47 0.09 0.24 0.63 0.21 0.67
babel 0.59 0.17 0.27 3.9 71.1 28.3 0.24 0.37 0.37 0.70 0.50 0.48 0.62 0.24 0.28 0.56 0.24 0.34
express 0.34 0.16 0.18 21 26.3 8.6 0.28 0.31 0.24 0.65 0.51 0.50 0.28 0.14 0.17 0.46 0.24 0.23
hyper 0.48 0.31 0.36 1.6 3.4 34 0.26 0.66 0.88 0.52 0.40 0.42 0.58 0.24 0.25 0.48 0.55 0.73
jquery 0.69 0.27 0.55 1.6 6 75.4 0.47 0.35 0.78 0.84 0.44 0.63 0.78 0.36 0.46 0.63 0.27 0.69
lodash 0.25 0.22 0.14 40 6.1 64 0.69 0.52 0.50 0.79 0.80 0.66 0.16 0.18 0.12 0.72 0.60 0.45

material-ui 0.49 0.28 0.21 6 5.4 7 0.18 0.50 0.43 0.52 0.64 0.50 0.59 0.32 0.19 0.45 0.53 0.34
meteor 0.39 0.14 0.19 25.7 51.2 13.1 0.40 0.42 0.27 0.69 0.58 0.53 0.31 0.12 0.20 0.58 0.25 0.24
moment 0.39 0.29 0.30 19.6 8.7 3.2 0.48 0.59 0.36 0.72 0.63 0.66 0.30 0.21 0.29 0.65 0.62 0.46
parcel 0.44 0.19 0.30 7.9 9.1 4.2 0.26 0.39 0.31 0.58 0.45 0.54 0.52 0.20 0.35 0.42 0.23 0.31
pdf.js 0.46 0.23 0.21 9.9 93.2 354.8 0.26 0.39 0.88 0.58 0.51 0.55 0.42 0.20 0.13 0.52 0.29 0.57
react 0.64 0.32 0.29 9.1 7.4 13.7 0.23 0.45 0.84 0.74 0.78 0.90 0.66 0.27 0.20 0.62 0.55 0.71

serverless 0.47 0.13 0.28 5.5 18.2 4.1 0.24 0.25 0.26 0.60 0.50 0.58 0.46 0.23 0.28 0.49 0.15 0.32
three.js 0.41 0.05 0.28 99.4 4.8 3.4 0.66 0.09 0.28 0.87 0.36 0.63 0.28 0.34 0.27 0.86 0.07 0.36
vue 0.57 0.49 0.44 9.1 3.1 63.7 0.65 0.70 0.80 0.91 0.84 0.87 0.45 0.37 0.31 0.82 0.78 0.79

webpack 0.39 0.11 0.23 11.6 82.7 1.9 0.27 0.45 0.21 0.56 0.47 0.51 0.34 0.13 0.25 0.47 0.21 0.26
yarn 0.54 0.14 0.39 5.1 16.7 1.2 0.28 0.25 0.32 0.58 0.45 0.58 0.70 0.31 0.48 0.46 0.13 0.35

Average 0.47 0.23 0.29 14.82 24.45 39.73 0.36 0.41 0.49 0.67 0.56 0.60 0.47 0.24 0.26 0.58 0.36 0.45
Improvement 108% 65% 39% 63% 12% 26% 19% 13% 93% 80% 60% 28%

p-value <0.001 <0.001 >0.05 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Cliff’s delta 0.73 0.64 0.03 0.06 0.14 0.16 0.33 0.25 0.61 0.58 0.50 0.34
Effect size L L N N N S S S L L L M

Winner CBS+ CBS+ CBS+ CBS+ CBS+ CBS+

Table 7. The average performance of the unsupervised approaches compared with CBS+ on JavaScript projects
in terms of six studied performance measures. The best performing results are highlighted in bold. ’↓’ indicates
’the smaller the better’; ’↑’ indicates ’the larger the better’.

Project
F1-measure@20%↑ IFA↓ PCI@20%↓ Popt↑ Precision@20%↑ Recall@20%↑

CBS+ Churn LT CBS+ Churn LT CBS+ Churn LT CBS+ Churn LT CBS+ Churn LT CBS+ Churn LT
Chart.js 0.46 0.36 0.21 6.3 82.2 59.7 0.39 0.95 0.56 0.65 0.81 0.62 0.44 0.23 0.15 0.56 0.86 0.44
Ghost 0.60 0.32 0.14 3.8 416.2 168.7 0.22 0.92 0.69 0.67 0.73 0.41 0.65 0.20 0.10 0.57 0.74 0.26
anime 0.39 0.28 0.07 6.7 24.5 19.9 0.40 0.84 0.36 0.64 0.73 0.25 0.32 0.18 0.10 0.57 0.72 0.08
axios 0.48 0.33 0.22 2.6 29.3 24.9 0.41 0.93 0.69 0.68 0.82 0.85 0.47 0.21 0.16 0.63 0.80 0.46
babel 0.59 0.35 0.12 3.9 283.3 67.7 0.24 0.94 0.52 0.70 0.81 0.56 0.62 0.23 0.09 0.56 0.82 0.18
express 0.34 0.19 0.15 21 171.1 95.5 0.28 0.86 0.58 0.65 0.75 0.60 0.28 0.12 0.10 0.46 0.62 0.33
hyper 0.48 0.41 0.21 1.6 42.8 37.5 0.26 0.93 0.64 0.52 0.65 0.47 0.58 0.28 0.16 0.48 0.84 0.40
jquery 0.69 0.68 0.16 1.6 72.9 67.7 0.47 0.92 0.28 0.84 0.87 0.42 0.78 0.55 0.22 0.63 0.89 0.14
lodash 0.25 0.24 0.07 40 109.7 81.7 0.69 0.94 0.20 0.79 0.90 0.28 0.16 0.14 0.06 0.72 0.90 0.09

material-ui 0.49 0.30 0.08 6 220.3 83.5 0.18 0.96 0.57 0.52 0.76 0.51 0.59 0.19 0.05 0.45 0.84 0.22
meteor 0.39 0.29 0.12 25.7 224 91.1 0.40 0.91 0.41 0.69 0.84 0.49 0.31 0.18 0.10 0.58 0.76 0.19
moment 0.39 0.30 0.19 19.6 104 17.2 0.48 0.95 0.54 0.72 0.84 0.72 0.30 0.19 0.16 0.65 0.86 0.42
parcel 0.44 0.32 0.14 7.9 44.7 36.4 0.26 0.84 0.40 0.58 0.52 0.48 0.52 0.23 0.13 0.42 0.59 0.18
pdf.js 0.46 0.24 0.11 9.9 313.1 171.3 0.26 0.92 0.62 0.58 0.66 0.52 0.42 0.15 0.07 0.52 0.66 0.22
react 0.64 0.39 0.18 9.1 617.8 117.3 0.23 0.97 0.72 0.74 0.97 0.62 0.66 0.26 0.13 0.62 0.96 0.38

serverless 0.47 0.27 0.14 5.5 254.7 107.7 0.24 0.90 0.62 0.60 0.72 0.58 0.46 0.19 0.11 0.49 0.66 0.23
three.js 0.41 0.34 0.22 99.4 165.5 29.5 0.66 0.97 0.51 0.87 0.91 0.75 0.28 0.21 0.16 0.86 0.93 0.38
vue 0.57 0.49 0.33 9.1 86.2 40.5 0.65 0.94 0.56 0.91 0.94 0.83 0.45 0.33 0.26 0.82 0.92 0.52

webpack 0.39 0.22 0.15 11.6 115.4 21.6 0.27 0.88 0.61 0.56 0.63 0.52 0.34 0.14 0.10 0.47 0.62 0.32
yarn 0.54 0.46 0.18 5.1 71.1 43.3 0.28 0.85 0.47 0.58 0.60 0.41 0.70 0.35 0.18 0.46 0.70 0.20

Average 0.47 0.34 0.16 14.82 172.44 69.14 0.36 0.92 0.53 0.67 0.77 0.54 0.47 0.23 0.13 0.58 0.78 0.28
Improvement 40% 198% 91% 79% 60% 31% 15% 42% 105% 262% 36% 179%

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Cliff’s delta 0.50 0.90 0.82 0.61 0.91 0.47 0.35 0.58 0.67 0.88 0.62 0.87
Effect size L L L L L M M L L L L L

Winner Supervised Supervised Supervised Unsupervised Supervised Unsupervised

In Question 2, we explore the performance difference between the effort-aware JIT defect
prediction approach using 14 original change-level features and the one using the combination of
14 original change-level features and five JavaScript-specific change-level features.
Results for Question 1:
Howwell do recently proposed effort-aware JIT defect prediction approaches performon

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:17

Fig. 2. Code_Churns distribution (after log transformation based on 2) of studied JavaScript projects.

JavaScript projects using prior proposed 14 programming language-independent change-
level features?

Table 6 presents the average performance of three supervised effort-aware JIT defect prediction
approaches in terms of six effort-aware performance measures. Table 7 shows the comparison
between the best performing supervised approach (i.e., CBS+) and the two unsupervised approaches
in terms of six effort-aware performance measures. The statistical results are shown in the bottom
few rows of each table, and the best approaches are listed in the last row.
By analyzing the comparison among supervised approaches, we obtain the following observa-

tions:
(1). CBS+ statistically significantly outperforms EALR and OneWay with a medium or large

effect size in terms of six effort-aware performance measures in most cases. In particular, CBS+
improves EALR and OneWay by 108% and 65% in terms of F1-measure@20%, by 39% and 63% in
terms of IFA, by 12% and 26% in terms of PCI@20%, by 19% and 13% in terms of Popt , by 93% and
80% in terms of Precision@20%, and by 60% and 28% in terms of Recall@20%, respectively.
(2). According to the average performance of CBS+, we find that CBS+ can help developers to

inspect only 36% of changes and identify about 58% of all defect-prone changes with 47% accuracy.
By analyzing the comparison between the best performing supervised approach and two unsu-

pervised approaches, we obtain the following observations:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Chao Ni et al.

(3). CBS+ statistically significantly outperforms Churn and LT with large effect size in most
cases. In particular, CBS+ improves Churn and LT by 40% and 198% in terms of F1-measure@20%,
by 91% and 79% in terms of IFA, by 60% and 31% in term of PCI@20%, by 105% and 262% in terms
of Precision@20%.

(4). In terms of Recall@20% and Popt , the unsupervised method Churn performs the best. However,
in terms of Recall@20%, Churn outperforms CBS+ at the cost of Precision@20%. Thus, when
considering F1-measure@20%, which is a harmonic mean of Recall@20% and Precision@20%, we
find that Churn has poor performance compared with CBS+. In terms of Popt , Churn outperforms
CBS+ with medium effect size.
(5). Churn obtains a high Recall@20% and Popt with the help of skewed distribution of change

sizes. In particular, we plot the distribution of each project by a violin plot as shown in Fig. 2
according to the code churn (i.e., LA+LD). Since each project has a wide range of code churn of
changes, we adopt a log transformation (base 2) to the values of code churn. In Fig. 2, we split the
changes into two groups and draw two types of violin plots: defect-prone violin and clean violin.
Additionally, we also draw a rug figure for each project in the x-axis, which presents the whole
distribution of changes in each project according to their code churns. According to Fig. 2, we find
that 1) the distribution of changes in each project is extremely skewed. Especially, the majority of
changes modifies less than 27 LOC. 2) the defect-prone changes modify more LOC than the clean
changes do. Thus, Churn achieves better performances in terms of Recall@20% and Popt since the
highly skewed distribution of change size.
(6). As a whole, when considering F1-measure@20%, IFA, PCI@20%, and Popt , the supervised

method CBS+ statistically significantly outperforms unsupervised methods: Churn and LT. We
exclude Recall@20% and Precision@20% since F1-measure@20% can holistically evaluate a model’s
performance.

Conclusion 1.1

Among the six effort-aware performancemeasures, the supervisedmethod CBS+ statistically
significantly performs the best among all supervised JIT defect prediction approaches.When
compared with two unsupervised approaches (i.e., Churn and LT), CBS+ also statistically
significantly performs the best in most cases. In terms of Recall@20% and Popt , Churn
performs better than CBS+ with the help of highly skewed distribution of dataset and at
the loss of precision. Therefore, the supervised method such as CBS+ should be the first
choice for JIT defect prediction when considering effort-aware performance measures for
JavaScript projects.

Results for Question 2:
Whether JavaScript-specific change-level features can improve the performance of effort-
aware JIT defect approach on identifying defect-prone changes?
Based on the results of Question 1, we find that supervised methods can achieve better perfor-

mance than unsupervised methods, and CBS+ performs best among all supervised ones. Besides,
according to the introduction of two unsupervised approaches (i.e., LT built only based on lt and
Churn built based on la and ld) in Section 2.3, the five JavaScript-specific change-level features
have no impact on the performance of two unsupervised approaches. Thus, in this question, we
conduct a further experiment on whether the best-performing supervised approach CBS+ can
achieve better performance when considering another five JavaScript-specific change-level features
than CBS+ only considers 14 language-independent change-level features.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:19

Table 8. The average performance comparison between CBS+ built on language-independent change-level
features and CBS+ built on the combination of language-independent features and JavaScript-specific features.
The best performing results are highlighted in bold. ‘↓’ indicates ‘the smaller the better’; ‘↑’ indicates ‘the
larger the better’.

Project
CBS+

F1-measure@20%↑ IFA↓ PCI@20%↓ Popt↑ Precision@20%↑ Recall@20%↑

JIT JIT+JS JIT JIT+JS JIT JIT+JS JIT JIT+JS JIT JIT+JS JIT JIT+JS
Chart.js 0.46 0.59 6.3 5.8 0.39 0.30 0.65 0.68 0.44 0.56 0.56 0.65
Ghost 0.60 0.65 3.8 2.0 0.22 0.25 0.67 0.72 0.65 0.66 0.57 0.65
anime 0.39 0.44 6.7 5.7 0.40 0.37 0.64 0.70 0.32 0.38 0.57 0.61
axios 0.48 0.59 2.6 1.5 0.41 0.41 0.68 0.81 0.47 0.52 0.63 0.76
babel 0.59 0.64 3.9 1.6 0.24 0.28 0.70 0.76 0.62 0.63 0.56 0.66
express 0.34 0.38 21 5.2 0.28 0.27 0.65 0.64 0.28 0.31 0.46 0.50
hyper 0.48 0.62 1.6 1.3 0.26 0.39 0.52 0.59 0.58 0.59 0.48 0.71
jquery 0.69 0.76 1.6 0.2 0.47 0.55 0.84 0.84 0.78 0.79 0.63 0.75
lodash 0.25 0.37 40 11.8 0.69 0.39 0.79 0.75 0.16 0.27 0.72 0.68
material 0.49 0.58 6 1.9 0.18 0.21 0.52 0.62 0.59 0.61 0.45 0.57
meteor 0.39 0.45 25.7 4.0 0.40 0.38 0.69 0.75 0.31 0.36 0.58 0.62
moment 0.39 0.50 19.6 3.6 0.48 0.41 0.72 0.78 0.30 0.41 0.65 0.73
parcel 0.44 0.47 7.9 3.3 0.26 0.25 0.58 0.62 0.52 0.57 0.42 0.44
pdf.js 0.46 0.50 9.9 4.6 0.26 0.25 0.58 0.60 0.42 0.46 0.52 0.55
react 0.64 0.74 9.1 2.7 0.23 0.27 0.74 0.84 0.66 0.72 0.62 0.78

serverless 0.47 0.52 5.5 2.4 0.24 0.29 0.60 0.67 0.46 0.48 0.49 0.57
three.js 0.41 0.54 99.4 5.0 0.66 0.37 0.87 0.82 0.28 0.43 0.86 0.74
vue 0.57 0.60 9.1 2.6 0.65 0.60 0.91 0.92 0.45 0.50 0.82 0.82

webpack 0.39 0.44 11.6 5.2 0.27 0.26 0.56 0.59 0.34 0.39 0.47 0.51
yarn 0.54 0.60 5.1 0.9 0.28 0.31 0.58 0.59 0.70 0.72 0.46 0.54

Average 0.47 0.55 14.82 3.6 0.36 0.34 0.67 0.71 0.47 0.52 0.58 0.64
Imporvment 16% 76% 6% 6% 11% 11%
p-value <0.001 <0.001 >0.05 <0.001 <0.001 <0.001

Cliff’s delta -0.29 0.42 -0.04 -0.16 -0.15 -0.26
Cliff’s size S M N S S S
Trend ↗ ↗ ↗ ↗ ↗ ↗

Table 8 presents the comparison results of CBS+ in such a setting that CBS+ is built with or
without JavaScript-specific change-level features. In particular, the column named “JIT” represents
CBS+ is built with 14 prior proposed language-independent change-level features, while the column
named “JIT+JS” represents CBS+ is built on the combination of 14 language-independent change-
level features and five JavaScript-specific change-level features. The statistical results are shown in
the bottom few rows of the table, and the changing trend of performance is illustrated in the last
row.

According to the comparison results, we find that CBS+, on average, can be further improved by
using JavaScript-specific features on all the six performance measures. In particular, CBS+(J IT+JS)
statistically significantly improves CBS+(J IT) by 16% in terms of F1-measure@20%, by 76% in terms
of IFA, by 6% in terms of Popt , by 11% in terms of Precision@20% and by 12% in terms of Recall@20%
. In terms of PCI@20%, CBS+(J IT+JS) improves CBS+(J IT) by 6% on average but with no statistical
significance.

Conclusion 1.2

JavaScript-specific change-level features can further improve the performance of JIT defect
prediction approach.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Chao Ni et al.

3.2 RQ2: What are the important features for effort-aware JIT defect prediction in
JavaScript projects?

Motivation. To predict whether or not a change is defect-prone one, Kamei et al. [34] consider 14
factors (i.e., change-level features) grouped into five dimensions derived from the source control
repository data of a project. In this paper, we also propose five JavaScript-specific change-level
features. These features, totally 19 features, describe a project from different perspectives, and
they play varying degrees of importance to such a project. Thus, previous studies [34, 35] have
realized the importance of features and want to understand the exact impact of various features.
For example, Kamei et al. analyzed the most important features to their approach (i.e., EALR).
Understanding the importance of features can help developers avoiding the pitfalls which are
strongly associated with the incidence of future defects. Thus, we want to investigate the most
important features on JavaScript projects.
According to the results of RQ1, we find that CBS+ performs best when compared with other

approaches. Thus, we investigate the impact on the performance of CBS+ to figure out the most
important features on JavaScript projects in the context of effort-aware settings.

Table 9. Ranks of the studied features in the JavaScript projects. These features are divided into a few groups
based on their level of ranks.

Projects Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Rank 11

vue NF SEXP EXP,LA SO,LD

LT,NDEV,FIX,
Entropy,NS,
AGE,NUC,

HtmlCss,BDom

TC Strict

react LT LA SEXP EXP LD Entropy,SO FIX,
AGE

HtmlCss,ND,
Strict,BDom TC

axios LT ND SO SEXP,Strict LA,EXP,TC
BDom,NDEV,
FIX,Entropy,
HtmlCss

three.js NF EXP SEXP LA TC NS,LD AGE,LT SO,FIX,
Strict

HtmlCss,
BDom

jquery NF,LT SEXP EXP TC,SO NDEV Strict HtmlCss,
LA LD FIX AGE,

BDom ND

webpack NF LA EXP,SO Strict,
SEXP

BDom,TC,FIX,
ND,LT,AGE

HtmlCss,
Entropy

material-ui LT SEXP ND EXP Entropy,SO FIX,LD BDom,TC Strict,
HtmlCss

express NF LA SEXP FIX TC AGE,ND,
EXP,SO

LD,HtmlCss,
Strict,BDom Entropy,LT

Chart.js LT ND SO,LA TC,EXP Strict,BDom
Entropy,FIX,
HtmlCss,
SEXP,AGE

moment NF EXP,
SEXP LA,SO

TC,BDom,
FIX,AGE,
LT,Strict,
HtmlCss

meteor NF LT NDEV ND SO,LA BDom,FIX,
NS Strict AGE,EXP,

HtmlCss LD TC,
SEXP

lodash TC EXP,
NF LT FIX BDom,Strict,

LA ND,AGE HtmlCss,
SO

yarn NF LT SEXP,EXP AGE LA SO,TC BDom LD,NS,Strict,
HtmlCss FIX

babel LT Entropy LA SO ND,NS FIX Strict,LD,
SEXP

TC,HtmlCss,
BDom

AGE,
EXP

parcel LT Entropy,
LA ND,NDEV NS,LD,SO EXP FIX,Strict BDom AGE,TC,

HtmlCss

anime SO NF NDEV,NUC FIX,EXP,
SEXP

Strict,BDom,
AGE,ND,

HtmlCss,LA

serverless LT SEXP EXP,LA ND Entropy,SO TC,FIX,
Strict

AGE,BDom,
HtmlCss

Ghost LT NS Entropy SO SEXP
EXP,BDom,
HtmlCss,TC,
Strict,FIX

LD

hyper LT LA SO

HtmlCss,TC,
Entropy,LD,
FIX,EXP,
BDom,ND,
AGE,Strict

pdf.js LT LA SO,Entropy,
BDom,EXP

TC,AGE,
Strict FIX,HtmlCss ND,SEXP

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:21

Method. Different projects are developed for different purposes, which indicates different features
may play various roles in each project. Thus, we analyze how change-level features affect the
performance of CBS+ after two data pre-processing: filtering correlated features and filtering
redundant features.
Identification. After filtering all correlated change-level features, we rebuild the best-performing
supervised JIT defect prediction approach CBS+ with the remaining features. As suggested by a pre-
vious study [15], we investigate feature importance by a 10 × 10-fold cross-validation experimental
setting. In a whole, two phases are involved for identifying the important features as follows:
Calculating importance scores. First, we use training data to build CBS+ in each fold. Then, we
calculate the generic feature importance score proposed by Tantithamthavorn et al. [62, 77] for
CBS+. The generic feature importance score can be calculated as the following two steps. 1). In the
testing data, for each feature, we randomly permutate the values of the feature. That is, all the value
of other features keep them as they are in the testing data except the value of one specific feature
which is permutated. 2). For each feature, we calculate the total performance difference between
the results obtained on the original testing data and the results obtained on the randomly permu-
tated testing data. The larger of the difference’ value, the higher of the corresponding feature’s
importance. Thus, we use the difference value as the proxy of features’ importance.
Calculating importance ranks. After we obtain the importance value of each feature, we further
calculate the importance ranks of each feature. We totally obtain 100 importance scores for each
feature (i.e., 10 × 10-fold cross-validation). Then, we apply Scott-Knott ESD (SK-ESD) test, an
enhanced variant of the Scott-Knott test [68], on the feature importance scores. Scott-Knott ESD
mitigates the skewness of input data and thus relaxes the assumption of normally distributed data
which is strictly required by the Scott-Knott . Additionally, Scott-Knott ESD considers the effect
size of the input data and merges any two statistically distinct groups with a negligible effect size
into one group.

Finally, we obtain the ranks of each change-level feature on each JavaScript project. Based on the
ranks of each feature, we can quickly figure out what are the important features for these projects.
Additionally, to easily obtain the statistical information, we sum up the number of JavaScript
projects where a feature is ranked as top-1 and one of the top-3 or top-5 important features.
Results. Table 9 shows the ranks of studied features in JavaScript projects. In Table 9, the first
column presents the name of each project. The following eleven columns, named as Rank 1 to Rank
11, list the features in each group according to the level of their importance to each project. For the
convenience of analysis, we sum up the number of each feature when they are ranked as the top-1,
top-3, or top-5 important feature as shown in Table 10.

From Table 10, when considering top-1 important features, we find that the features “LT” (which
is the most important feature in 11 projects), “NF” (which is the most important feature in 8 projects),
“SO” (which is the most important feature in 1 project) and “TC” (which is the most important
feature in 1 project) have more importance than other features in JavaScript projects. For example,
if a project contains many files (i.e., “NF”), the business logic of the project will be distributed in
different files, which will increase the difficulty for developers to understand and memorize the
code, thus affecting the quality of the software. At the same time, if a developer wants to modify a
large file (i.e., “LT”), it also affects the developer’s comprehension of the whole file since it already
contains many functionalities, which will induce unknown errors. For different programming
languages, developers need to deal with their special language features carefully. For example, some
special operators in JavaScript (i.e., “SO”) can simplify the business logic and reduce the workload
of development if they are used correctly. However, the incorrect use of these operators will lead to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Chao Ni et al.

unknown logic errors. In addition, for weakly typed programming languages (i.e., “TC”), developers
must carefully check the type of variables to make a complete and correct judgment.
When considering top-5 important features, we find that “LA”, “LT”, “EXP” and “SO” are the

top-3 important features and are important in 17, 17, 16 and 15 projects, respectively on JavaScript
projects. It is obvious that the quality of code written by experienced developers is higher than
that of beginners. In addition, the number of code lines will also affect the comprehension of a
developer. It is easier for developers to understand smaller code changes than to understand larger
ones.

As a whole, we find that for JavaScript projects, the features belonging to “Diffusion”, “Size” and
“JavaScript-specific” dimension are important to JIT defect prediction.

Conclusion 2

For JavaScript projects, “LT”, “NF”, “SO” and “TC” are the most important features for
JIT defect prediction, which indicates the importance of the three types of JIT features:
“Diffusion”, “Size” and “JavaScript-specific”. Additionally, “LT” ranks top-1 in the majority
of JavaScript projects, which demonstrates “LT” is the most important feature and should
be further considered in future studies.

Table 10. Number of studied JavaScript projects, in which a feature is ranked as a top-1, top-3, or top-5
important feature.

Dimension Features Top-1 Top-3 Top-5
Projects # Sum # Projects # Sum # Projects # Sum

Diffusion

NS 0

8

1

19

4

32
ND 0 4 10
NF 8 10 10

Entropy 0 4 8

Size
LA 0

11
11

25
17

38LD 0 0 4
LT 11 14 17

Purpose FIX 0 0 0 0 8 8

Histroy
NDEV 0

0
3

4
5

14AGE 0 0 7
NUC 0 1 2

Experience
EXP 0

0
9

18
16

29REXP 0 0 0
SEXP 0 9 13

JavaScript-specific

HtmlCss 0

2

0

9

5

46
Strict 0 0 8
BDom 0 1 8
SO 1 7 15
TC 1 1 10

3.3 RQ3: Is there an association between project-related features and the probability
of a defect-prone change in JavaScript projects?

Motivation.We have deeply investigated the relationship between the features and the probability
of a change to be defect-prone one. These features describe a project from different perspectives,
and they play varying degrees of importance to such a project. However, these features can only
characterize a project from an inner-side view of a project. That is, we previously analyze the
inner characteristics (i.e., 14 language-independent change-level features and 5 JavaScript-specific

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:23

change-level features) on the probability of a defect-prone change. Actually, there are some other
features that may have an impact on the probability of a defect-prone change, such as the number
of files, the number of contributors and the number of branches. These features can characterize a
project from an outer-side view of a project. Thus, in this RQ, we want to further investigate the
association between outer-side features and the probability of a defective change on JavaScript
projects.
Method. Project-related features.We want to investigate 11 project-related context features (as
shown in Table 1) which are widely adopted by previous studies [92, 94, 96]. These features are the
number of stars (Stars), the number of fork (Forks), the number of project branches (Branches),
the number of changes (Changes), the number of defect-prone change (Defective), the ratio of
defect-prone changes (Def Ratio), the number of files (Files), the total lines of code (LOC), the
median size of code churn (Med_size), the mean size of code churn (Mean_size) and the number
of contributors (Contributors), respectively. For all the project-related features, we discrete the
values into four groups based on the first, second, and third quartiles (i.e., least, less, more, most),
as suggested by prior work [33].

Table 11. Summary of the mixed effects model.

Type Variable Variance Estimate χ 2 Pr(> χ 2)
Random slope LT 0.30 - 9503.37 ***

Random effects

Stars 0.67 - 567.10 ***
Branches 0.54 - 207.23 ***
Def Ratio <0.01 - 158.20 ***
Changes 0.07 - 120.22 ***
Files <0.01 - 92.97 ***
Defective <0.01 - 20.13 ***
Forks 0.35 - 18.54 ***
Contributors 0.41 - 0.19 o
LOC <0.01 - <0.01 o
Mean_size 0.72 - <0.01 o
Med_size 0.71 - <0.01 o

Fixed effects

NF - 1.05 3675.22 ***
LA - 1.95 1840.95 ***
EXP - -0.20 947.31 ***
SEXP - 0.21 760.51 ***
SO - 0.16 329.37 ***
FIX - 0.24 239.84 ***
Strict - -0.34 213.49 ***
HtmlCss - -0.32 146.78 ***
Bdom - 0.08 28.32 ***
TC - -0.04 11.89 ***
AGE - <0.01 5.06 *

Statistical significance of χ 2;
Significance codes (p-value): *** < 0.001 < ** < 0.01 < * < 0.05 < o

Mixed effects model. To investigate the association between the project-related features and
the probability of a defect-prone change, as suggested by Hassan et al. [25], we adopt mixed effects
logistic regression [78], which has the ability to capture the variation of the interpretation of models
among different projects. The mixed effects logistic regression model is an instance of generalized
linear mixed models (i.e., GLMMs), which includes both fixed effects and random effects [41]. In
JIT defect prediction scenario, the fixed effects usually represent the explanatory features which
are used to explain the data at the change level (i.e., 19 change-level features), while the random
effects usually represent the project-related features which are used to describe the information of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Chao Ni et al.

a project with a holistic perspective (i.e., 11 statistical project-related features). Using explanatory
features and project-related features, a mixed effects model estimates the effects of the change-level
features on the probability of a change to be defect-prone one, while accounting for the different
project-related features.

Building a mixed effects model involves two phases: data pre-processing and model building.
Phase 1: Data pre-processing. Firstly, we combine all studied JavaScript projects into one dataset.
Then, we add project-related features into the combined dataset. That is, each instance in the
combined dataset contains two groups of information: change-level features and project-related
features. After that, we do an analysis on the correlation and redundancy of features since strongly
correlated and redundant features would have an serious impact on the interpretations of a mixed
effects model as stated in previous studies [25, 69]. We use the methods as introduced in Section 2.5,
and finally find six highly correlated change-level features (i.e., NS, Entropy, NDEV, NUC, LD, and
REXP) and find no redundant feature. Therefore, these features are removed for accurate analysis.
Phase 2: Mixed effects model building. Two types of mixed effect models, as suggested by previous
work [73], are widely used: random intercept models (i.e., RIM) and random slope and intercept
models (i.e., RSIM). The RIM possesses various intercepts for project-related features and fixes
slopes for explanatory features, while the RSIM possesses various intercepts for project-related
features and distinct slops for explanatory features. In our study, we prefer to RSIM since we assume
that change-level features from different projects have different relationships with the probability
of a defect-prone change.

In our RSIM, we treat project names as the random effect and LT as the random slope against the
project, respectively. Once adopting this setting, different projects obtain a various basic probability
of a defect-prone change, and meanwhile, LT obtains a various association with the probability
of a change to be a defect-prone one. We choose LT as the random slope since it is the most
important feature for JavaScript projects according to the results discussed in RQ2. The remaining
change-level features are treated as fixed effects. Finally, we use дlmer , a function in R tool-kit
lme410, to implement the mixed effects logistic regression model.
Results. The results of our mixed effects model are shown in Table 11. We firstly analyze the
goodness-of-fit of our mixed model. Then, we further respectively analyze the association between
project-related features or change-level features and the probability of a defect-prone change.

Goodness-of-Fit.We apply the widely used conditional coefficient of determination for generalized
logistic regression and mixed effects models (i.e., R2 or R2

GLMM) [32, 48] to evaluate how well our
mixed effects model fits the combined dataset. In particular, we use r .squaredGLMM , a function in
MuMIn 11 took-kit, to calculate coefficient and this function spits out two types of values: marginal
R2 values and conditional R2 values. In particular, the marginal R2 values are those associated
with the fixed effects, while the conditional ones are those of the fixed effects plus the random
effects. In our study, the former considers the change-level features, while the latter considers both
change-level features and project-related features.
According to the results reported by r .squaredGLMM function, we obtain the R2 of the full

mixed effect model to be 0.64, while the R2 of the model with just fixed effects to be 0.43. The results
mean the model with full mixed effects has the ability to explain the variability of the combined
dataset by 64%, and improves the model with just fixed effects by 49%.

Association between project-related features and the probability of a defect-prone change.
To evaluate the association between project-related features and the probability of a defect-prone
change, we adopt the χ 2 value of each project-related feature as suggested by Bolker et al. [3].

10https://cran.r-project.org/web/packages/lme4/lme4.pdf
11https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:25

Notice that the larger the value of a project-related feature’ χ 2, the stronger the association that
the feature with a defect-prone change.
Table 11 presents the summary of statistics for our mixed effects logistic regression model.

According to the results shown in Table 11, we find that seven project-related features (i.e., Stars,
Branches, Def Ratio, Changes, Files, Defective and Forks) have a significant association with the
probability of a change to be defect-prone one. Specifically, among all associated features, the top
three ones are the number of stars (Stars), the number of branches (Branches) and the ratio of
defect-prone changes (Def Ratio), which indicates that the more popular a project is, the more likely
it is to induce defects. For example, if a project attracts more attention from participants (such as
developers), it obtains more stars on the GitHub website. Then, more new functionality features will
be introduced in the next version. For implementing these features, the project manager seems to
create more branches of such a project. As the development process continues, more modifications
will occur in the project, and thus more change will be submitted into code repository for the
publication of a new version. With the birth of new functions in the project, it will obtain more
and more attention. This process continues to cycle and increase the complexity of this project.
Therefore, as time goes by, the probability of inducing defects will increase. As a whole, the
findings in this subsection indicate that a mixed effects model which takes project-related features
into consideration can provide a deeper understanding of the characteristics of defect-introducing
changes.
Association between change-level features and the probability of a defect-prone change.
As shown in Table 11, LT, NF and LA have the strongest association with the probability of a change
to be defect-prone one. Our finding indicates that the three change-level features (i.e., LT, NF, LA)
are highly associated with the probability of defect-prone changes, which is basically consistent
with the results observed in RQ2 (i.e., the importance of features to CBS+).

Conclusion 3

Project-related features are associated with the probability of a change to be a defect-prone
one in JavaScript projects. Specifically, the seven features (i.e., Stars, Branches, Def Ratio,
Changes, Files, Defective and Forks) have the largest and statistically significant association
with the probability of a defect-prone change for studied JavaScript projects.

4 DISCUSSION
4.1 JIT defect prediction in effort-unaware setting
We have verified the effectiveness of 14 prior proposed programming language-independent features
in identifying defect-prone changes in the effort-aware setting. However, whether these language-
independent features proposed bases on Java or C++ projects can still achieve good performance
in effort-unaware setting is unknown. Moreover, whether the five proposed JavaScript-specific
features can further improve the performance of defect prediction model built on 14 language-
independent features is still unknown. Thus, we want to investigate how these change-level features
(i.e., 14 programming language-independent features and five JavaScript-specific features) affect
the performance of effort-unaware JIT defect prediction approaches in the effort-unaware setting.
We evaluate three classical effort-unaware approaches (i.e., LR, NB, and RF) on the JavaScript
projects after two data pre-processing steps (i.e., filtering correlated features and filtering redundant
features), and analyze four effort-unaware performance measures of each approach. Then, we
compare the performance of these three approaches and figure out the best one. Lastly, we conduct

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Chao Ni et al.

Table 12. The average performance of three classical classifiers on JavaScript projects in terms of four
studied effort-unaware performance measures in the effort-unaware setting. The best performing results are
highlighted in bold. ‘↓’ indicates ‘the smaller the better’; ‘↑’ indicates ‘the larger the better’.

Project AUC↑ F1-measure↑ PFA↓ Recall↑
LR NB RF LR NB RF LR NB RF LR NB RF

Chart.js 0.61 0.62 0.69 0.38 0.38 0.52 0.06 0.08 0.06 0.28 0.31 0.44
Ghost 0.72 0.68 0.79 0.59 0.52 0.70 0.03 0.04 0.05 0.47 0.40 0.63
anime 0.52 0.56 0.59 0.09 0.24 0.27 0.06 0.11 0.02 0.09 0.23 0.20
axios 0.60 0.62 0.69 0.31 0.37 0.49 0.05 0.05 0.06 0.25 0.30 0.45
babel 0.62 0.54 0.74 0.37 0.16 0.62 0.04 0.02 0.07 0.28 0.09 0.54
express 0.55 0.62 0.57 0.18 0.35 0.24 0.02 0.08 0.03 0.12 0.33 0.17
hyper 0.58 0.60 0.65 0.33 0.32 0.44 0.06 0.05 0.06 0.23 0.24 0.35
jquery 0.70 0.68 0.77 0.70 0.57 0.80 0.24 0.07 0.25 0.65 0.43 0.78
lodash 0.50 0.51 0.53 0.01 0.23 0.11 0.00 0.67 0.03 0.00 0.68 0.09

material-ui 0.63 0.56 0.73 0.41 0.21 0.59 0.03 0.01 0.05 0.30 0.13 0.51
meteor 0.53 0.53 0.59 0.12 0.15 0.31 0.02 0.07 0.04 0.07 0.13 0.23
moment 0.54 0.55 0.63 0.16 0.22 0.39 0.04 0.12 0.04 0.11 0.22 0.30
parcel 0.58 0.57 0.62 0.26 0.25 0.35 0.01 0.07 0.02 0.16 0.22 0.25
pdf.js 0.62 0.71 0.69 0.37 0.52 0.51 0.05 0.16 0.04 0.28 0.58 0.41
react 0.67 0.73 0.79 0.49 0.53 0.70 0.05 0.23 0.06 0.39 0.69 0.65

serverless 0.64 0.67 0.65 0.42 0.49 0.44 0.03 0.08 0.04 0.31 0.43 0.34
three.js 0.51 0.55 0.59 0.06 0.18 0.32 0.01 0.08 0.03 0.03 0.19 0.22
vue 0.62 0.58 0.68 0.43 0.55 0.53 0.12 0.80 0.13 0.36 0.95 0.48

webpack 0.57 0.59 0.61 0.25 0.29 0.36 0.01 0.03 0.03 0.15 0.22 0.26
yarn 0.68 0.59 0.69 0.52 0.34 0.56 0.06 0.04 0.07 0.41 0.23 0.46

Average 0.60 0.60 0.66 0.32 0.34 0.46 0.05 0.14 0.06 0.25 0.35 0.39
Improvement 11% 10% 43% 34% 65% 15% 57% 11%

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.05
Cliff’s delta 0.38 0.35 0.34 0.32 0.32 0.18 0.34 0.12
Effect size M M M S S S M N
Winner RF RF RF RF

Table 13. The average performance comparison between RF built on language-independent change-level
features and RF built on the combination of language-independent features and JavaScript-specific features.
The best performing results are highlighted in bold. ‘↓’ indicates ‘the smaller the better’; ‘↑’ indicates ‘the
larger the better’.

Project AUC↑ F1-measure↑ PFA↓ Recall↑
JIT JIT+JS JIT JIT+JS JIT JIT+JS JIT JIT+JS

Chart.js 0.69 0.71 0.52 0.56 0.06 0.11 0.44 0.54
Ghost 0.79 0.85 0.70 0.76 0.05 0.12 0.63 0.82
anime 0.59 0.59 0.27 0.29 0.02 0.04 0.20 0.23
axios 0.69 0.70 0.49 0.51 0.06 0.11 0.45 0.51
babel 0.74 0.78 0.62 0.68 0.07 0.12 0.54 0.70
express 0.57 0.64 0.24 0.38 0.03 0.16 0.17 0.46
hyper 0.65 0.69 0.44 0.49 0.06 0.13 0.35 0.54
jquery 0.77 0.76 0.80 0.79 0.25 0.23 0.78 0.77
lodash 0.53 0.61 0.11 0.32 0.03 0.15 0.09 0.37
material 0.73 0.77 0.59 0.62 0.05 0.08 0.51 0.62
meteor 0.59 0.71 0.31 0.51 0.04 0.29 0.23 0.69
moment 0.63 0.69 0.39 0.49 0.04 0.14 0.30 0.52
parcel 0.62 0.63 0.35 0.39 0.02 0.05 0.25 0.30
pdf.js 0.69 0.79 0.51 0.60 0.04 0.17 0.41 0.72
react 0.79 0.85 0.70 0.72 0.06 0.11 0.65 0.81

serverless 0.65 0.78 0.44 0.63 0.04 0.17 0.34 0.73
three.js 0.59 0.73 0.32 0.57 0.03 0.22 0.22 0.68
vue 0.68 0.71 0.53 0.64 0.13 0.24 0.48 0.67

webpack 0.61 0.73 0.36 0.55 0.03 0.17 0.26 0.63
yarn 0.69 0.74 0.56 0.64 0.07 0.09 0.46 0.58

Average 0.66 0.72 0.46 0.56 0.06 0.14 0.39 0.59
Improvement 9% 21% 59% 53%

p-value <0.001 <0.001 <0.001 <0.001
Cliff’s delta 0.31 0.23 0.52 0.44
Effect size S S L M
Trend ↗ ↗ ↘ ↗

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:27

a further experiment on whether the five JavaScript-specific features can further improve the
performance of the best one.
Table 12 presents the average performance of three classical approaches in terms of four effort-
unaware performance measures on JavaScript projects. Table 13 presents the comparison results
of best performing effort-unaware (i.e., RF) in such a setting that RF is built with or without
JavaScript-specific change-level features. In particular, the column named “JIT” represents RF is
built with 14 prior proposed language-independent change-level features, while the column named
“JIT+JS” represents RF is built on the combination of 14 language-independent change-level features
and five JavaScript-specific change-level features. The bottom few rows of Table 12 and Table 13
show the statistical information. The best approaches are listed in the last row in Table 12, and the
changing trend of performance is illustrated in the last row in Table 13. From the results shown in
Table 12, we can achieve the following observations:

(1). Three classical effort-unaware approaches perform similarly on average, and RF statistically
significantly outperforms LR and NB with a medium or small effect size in most cases (except for
LR in terms of PFA and NB in terms of Recall).
(2). RF improves LR and NB by 11% and 10% in terms of AUC, by 43% and 34% in terms of

F1-measure, and by 57% and 11% in terms of Recall.
(3). In terms of PFA, LR performs best and improves NB and RF by 65% and 15% respectively.
From the results shown in Table 13, we find that RF, on average, can be further improved by using

JavaScript-specific features in terms of three effort-unaware performance measures. In particular,
RF(J IT+JS) statistically significantly improves RF(J IT) by 9% in terms of AUC, by 21% in terms of F1,
and by 53% in terms of Recall. However, RF(J IT+JS) performs worse in terms of PFA. In a whole view,
JavaScript-specific change-level features can further improve the performance of effort-unaware
defect prediction approach in the effort-unaware setting.

Among the four effort-unaware performance measures, three classical effort-unaware
classifiers perform similarly on average, and RF statistically significantly outperforms LR
and NB in most cases. Besides, JavaScipt-specific change-level features can further improve
the performance of effort-unaware defect prediction approach in the effort-unaware setting.

4.2 Results Comparison
Researchers have proposed many JIT defect prediction approaches based on the change-level
features and have conducted an empirical study on six projects [29, 30, 34, 39, 89] to investigate many
important aspects involving 1) the effectiveness comparison between supervised and unsupervised
JIT defect prediction approaches in the effort-aware setting, 2) the important change-level features
for indicating defect-prone changes, 3) the association between project-related features and the
project quality, and 4) the performance of classical classifiers in the effort-unaware JIT defect
prediction setting. For a better comparison between findings reported in this paper and findings
reported in previous work, we summarize the results from both this paper and previous work, and
discuss the similarities and differences in this section. The details are shown in Table 14.
In Table 14, we summarize our findings, which corresponds to the three research questions

introduced in Section 3. In the table, we list the results obtained in our empirical studies and
the results collected from previous work. Then, we briefly analyze the similarities or differences
between our conclusions and conclusions of previous work. According to the results shown in
Table 14, we can achieve the following conclusions based on the analysis of projects developed
using Java, C++, or JavaScript programming languages:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 Chao Ni et al.

(1). When considering inspection effort, supervised JIT defect prediction approaches can achieve
better performance than unsupervised approaches in a holistic view and CBS+ proposed by Huang
et al. [30] is the outstanding one among all supervised approaches.

(2). Programming language-specific change-level features can further improve the performance
of JIT defect prediction approach on identifying defect-prone changes compared with the approach
built with programming language-independent change-level features in both effort-aware and
effort-unaware setting.
(3). Different change-level features have varying impact on different projects developed by

different programming languages.
(4). Project-related features (i.e., the number of changes, the number of files) have a high associa-

tion with the quality of the project.
Based on these conclusions and the analysis in Section 3, we provide a few practical guidelines

for developers:

 Developers may not use programming-language special operators in practical development
if they do not fully understand their special meanings.

 Developers may strictly check the type of variable with the specific statements if they need
conditional judgment, especially for weakly typed programming language.

 Developers may concentrate related functions in the same file, which can reduce the number
of files in a project and reduce the complexity of the project.

 Developers may use CBS+ as a quality assurance assistant when project development has
limited resources (e.g., time, human-resource, or budget).

5 THREATS TO VALIDITY
Threats to internal validity mainly consist in the potential errors in the implementation of the
approaches when we re-implement the supervised and unsupervised approaches using Python
language. In particular, two unsupervised approaches (i.e., LT and Churn) are both implemented
by their authors using R language. Two supervised approaches (i.e., OneWay and CBS+) are
implemented by Java programming language. For EALR, the programming language used for
implementation is unknown. To minimize the internal threats, we not only implement these
approaches by pair programming but also make full use of third-party implementations such as the
scikit-learn [57]. For these studied approaches, although our code is written in Python language,
we have carefully read the published papers and strictly follow the description of these approaches.
Besides, it is very challenging to retrieve 100% truly clean data that contains no mislabeled changes.
In this paper, as suggested by Fan et al. [14], we use MA-SZZ algorithm with minor modification to
label our studied top-20 JavaScript projects and conduct all experimental studies on the labeled
dataset. From our manual analysis results on the sampled changes, we find that the effectiveness of
MA-SZZ is acceptable.
Threats to external validity mainly consist in the quality and generalizability of our datasets.

We use 20 JavaScript projects, which belong to different application domains, vary in change size,
number of contributors, and cover a long period of time. However, there are still many other projects
in other domains with a few stars on GitHub, which are not considered in our study. Besides, in
our experiment, all these projects are open source projects. Thus, it is still unknown whether our
conclusions are generalizable to commercial projects. In the future, we plan to reduce this threat by
considering more additional software projects, especially for commercial projects.

Threats to construct validity mainly consist in the suitability of our performance measures. We
consider six effort-aware performance measures (Precision@20%, Recall@20%, F1-measure@20%,
IFA, PCI@20% and Popt). We have carefully discussed the motivation for using these performance

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:29

Table 14. Summary and Comparison of Findings: Answers to RQ1, R2, and RQ3.

RQ1: The effectiveness comparison between supervised and unsupervised JIT defect
prediction approaches.
RQ1.1: Comparison among all supervised approaches.
Findings in this paper: Findings in previous work [29, 30]:

• CBS+ statistically significantly outperforms
EALR and OneWay with a medium or large
effect size in terms of six effort-aware perfor-
mance measures in most cases.

• CBS+ can find about 46% of all defective
changes and significantly outperforms EALR in
terms of Recall@20% with an average improve-
ment of 47%.

• CBS+ improves EALR and OneWay by 108%
and 65% in terms of F1-measure@20%, by 39%
and 63% in terms of IFA, by 12% and 26% in
terms of PCI@20%, by 19% and 13% in terms of
Popt , by 93% and 80% in terms of Precision@20%,
and by 60% and 28% in terms of Recall@20%,
respectively.

• CBS+ performs better than OneWay in terms
of Precision@20%, F1-measure@20%, and IFA
when inspecting 20% LOC.

• CBS+ is the best approach among all super-
vised JIT defect prediction approaches.

• CBS+ performs better than EALR and
OneWay in different experimental settings.

Similarity:
2� When considering inspection effort (i.e., 20% LOC), CBS+ always outperforms EALR and
OneWay in terms of many different effort-aware performance measures.
RQ1.1: Comparison between supervised and unsupervised approaches.
Findings in this paper: Findings in previous work:

• CBS+ significantly statistically outperforms
Churn and LT with large effect size in most
cases.

• Unsupervised JIT defect prediction ap-
proaches (i.e., LT [89] and Churn [39]) can
achieve comparable or better performance than
supervised approach (i.e., EALR) in terms of
ACC and Popt due to the skewed distribution of
change sizes.

• CBS+ improves Churn and LT by 40% and
198% in terms of F1-measure@20%, by 91% and
79% in terms of IFA, by 60% and 31% in term
of PCI@20%, by 105% and 262% in terms of
Precision@20%.

• CBS+ performs better than LT in terms of
Recall, Precision, F1-measure, IFA and PCI@20%.

• In terms of Recall@20% and Popt, the unsu-
pervised method Churn performs best.

• In a holistic view, considering F1-
measure@20%, IFA, PCI@20%, and Popt , the su-
pervised method CBS+ statistically significantly
outperforms unsupervised methods: Churn and
LT.
Similarities:
2� Supervised JIT defect prediction approach can outperform unsupervised approach in terms
of most effort-aware performance measures in most cases.
2� Unsupervised approach (i.e., Churn) obtains a high Recall@20% and Popt due to the skewed
distribution of change sizes.

(Continued)
ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 Chao Ni et al.

Table 14. Continued

RQ1.2: The impacts of programming language-specific change-level features on iden-
tifying defect-prone changes.
Findings in this paper: Findings in previous work:

• JavaScript-specific change-level features can
further improve the JIT defect prediction model
compared with the ones which is built on prior
language-independent change-level features.
Differences:
4 This paper proposes five JavaScript-specific change-level features and confirms their useful-
ness on identifying defect-prone changes.
RQ2: The important change-level features for indicating defect-prone changes.
Findings in this paper: Findings in previous work [34]:
• These features (i.e., “LT”, “NF”, “SO” and “TC”)
which belong to the dimension of “Diffusion”,
“Size” and “JavaScript-specific” are the most
important features for indicating defect-prone
changes, especially for “LT”.

• The features which belong to the dimension
of “Diffusion”, “Purpose” and “History” are the
important features for indicating defect-prone
changes, especially for “NF”, “FIX” and “AGE”.

Similarities:
2� These features in the dimension of “Diffusion” are important features for identifying defect-
prone changes in projects developed by Java, C++ or JavaScript projects, which shows the
importance of such features especially for “NF”.
Differences:
4 Different features have varying impacts on different projects developed by different program-
ming languages. For example, the features in the dimension of “Purpose” and “History” are
important to Java or C++ projects, while the features in the dimension of “Size” and “JavaScript-
specific” are important to JavaScript projects.
RQ3: The association between project-related features and the project quality.
Findings in this paper: Findings in previous work [93, 94]:
• Project-related features are associated with
the probability of a change to be a defect-
prone one in JavaScript projects. Specifically,
the seven features (i.e., Stars, Branches, Def Ra-
tio, Changes, Files, Defective and Forks) have
the largest and statistically significant associ-
ation with the probability of a defect-prone
change for studied JavaScript projects..

• Project-related features can affect the distri-
bution of software maintainability (i.e., NC (the
number of changes), ND (the number of down-
loads)) [94] and increase the predictive power of
defect prediction model (i.e., TLOC (total lines
of code), TNC (total number of commit), TND
(total number of developers), and TNF (total
number of files)) [93].

Similarities:
2� Project-related features (i.e., the number of changes, the number of files) have an association
with the quality of the projects.
Differences:
4 In addition to common project-related features, different projects have project-specific
features, which may have different effects on the quality of projects. For example, project-
specific features (i.e., the number of branches, the number of Stars) used in this paper affect
the probability of a defect-prone change, while project-specific features (i.e., the number of
downloads) used in previous work may affect the distribution of software maintainability.

(Continued)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:31

Table 14. Continued

Discussion: JIT defect prediction in effort-unaware setting.
Findings in this paper: Findings in previous work [34]:
• Random Forest statistically significantly out-
performs Logistic Regression and Naive Bayes,
and achieve a good performance of 0.66 in terms
of AUC, 0.46 in terms of F1-measure, and 0.39
in terms of Recall.

• EALR effectively identifies the defectprone
changes (i.e., 0.45 of F1-measure and 0.76 of
AUC).

• Random Forest built with both 14 change-level
features and five JavaScipt-specific features out-
performs the Random Forest built only with 14
change-level features (i.e., 0.56 of F1-measure
and 0.72 of AUC).
Similarities:
2� The change-level features can effectively identify defect-prone changes in Java projects, C++
projects or JavaScript projects in effort-unaware setting.
Differences:
4 JavaScript-specific features can further improve the performance of defect prediction ap-
proach compared with the ones built with programming language-independent change-level
features.

evaluation measures and cited prior studies to support our assumptions. Besides, the non-parametric
statistical hypothesis Wilcoxon signed-rank test and non-parametric effect size measure Cliff’s δ are
conducted to ensure the confidence of performance comparison among the approaches. Therefore,
this construct validity should be acceptable.

6 RELATEDWORK
The classical defect prediction approaches mainly focus on identifying defect-prone software
entities at a coarse-grained level (e.g., class/file/module) [7, 49, 52, 86] , which makes it hard to
apply them to practical usage since these approaches identify enormous scope in the source code
for finding defect-prone lines of code. Recently, fine-grained level (e.g., change) defect prediction
approaches have attracted extensive attention of researchers, which afterward widely referred to
as Just-in-time (JIT) defect prediction [16, 29, 30, 34, 89].
Mockus and Weiss [46] firstly predict the risk of a software change in an industrial project

using change-level measures (i.e., the number of touched subsystems, the number of modified files,
the number of added lines of code, and the number of modification requests). However, labeling
data is extremely time-consuming and human-resource-consuming, which hinders, to a certain
degree, the relevant research on JIT defect prediction. Subsequently, Sliwerski et al. [72] proposed
an approach named SZZ to identify defect-introducing changes automatically. They investigated
SZZ on two open-source projects and found that the changes that are committed on Friday had
a higher probability of being defect-inducing changes. Since then, many approaches have been
proposed to progress the research of JIT defect identification.

Many researches focus on supervised JIT defect identification approaches. Kim et al. [35] proposed
a model to classify whether a change is defect-prone or not using a few change features such
as file names, change meta-data, change log, source code and complexity metrics. Yin et al. [90]
investigated the relationship between defect-fixing changes and defect-introducing changes on
a few operating systems including Linux, OpenSolaris, FreeBSD, and a mature commercial OS.
Shihab et al. [70] conducted an industrial study for better understanding of defect-prone changes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 Chao Ni et al.

They developed a tool to help developers labeling a change as defect-prone or clean at check-in
time. Since the limitation of resource in practice, Kamei et al. [34] firstly proposed the effort-aware
approach named EALR and conducted a large-scale empirical study on both open source and
commercial projects. They used the number of modified lines as the proxy to measure the required
effort for inspecting a change. Yang et al. [87, 88] successively proposed two JIT identification
approaches. They preferred to using advanced and complexed techniques (i.e., ensemble learning
and deep learning) for JIT defect prediction. Nayrolles and Hamou-Lhadj [50] used code clone
detection technology to propose an approach named CLEVER to intercept defect-prone changes
on 12 Ubisoft projects. CLEVER contains two phases. In the first phase, CLEVER assesses the
likelihood of a change to be defect-prone one. In the latter phase, CLEVER adopts clone detection
to intercept the defect-prone changes identified in the previous phase. Huang et al. [29] proposed a
simple but improved supervised model named CBS based on the assumption that smaller modules
are proportionally more defect-prone and should be inspected first. CBS includes two phases:
building a classifier and sorting testing changes. Then, Huang et al. [30] further improved the
performance of CBS and called it as CBS+. Fu and Menzies [16] proposed a JIT defect prediction
named OneWay, which has two phases. In the former, OneWay selects best change-level feature by
using the information of labeled data. In the latter, OneWay uses the features to build a model to
identify defect-prone changes in testing data.
Apart from supervised JIT defect prediction approaches, some researchers also proposed un-

supervised approaches since its simplicity and comparable performance. Yang et al. [89] firstly
proposed a simple unsupervised approach named LT and conducted a large-scale comparison
between supervised approaches and unsupervised approaches on six widely used open-source
projects. Subsequently, Lit et al. [39] proposed another unsupervised approach, and their experi-
mental results indicated their approach performed better than all the prior supervised approach
and unsupervised approach LT.

7 CONCLUSION AND FUTUREWORK
In this paper, we first use MA-SZZ algorithm to label the 20 most popular JavaScript projects
on GitHub based on language-independent change-level features. To investigate whether the
change-level features can effectively identify defects in JavaScript projects, we conduct a case study
on 20 JavaScript projects with 176,902 changes. We make a comparison between supervised JIT
defect prediction approaches (i.e., CBS+, OneWay, EALR) and unsupervised JIT defect prediction
approaches (i.e., LT and Churn) when considering six effort-aware performance measures. We
find that in a holistic view, CBS+ statistically significantly performs better than other supervised
approaches and unsupervised approaches. Additionally, we propose five JavaScirpt-specific change-
level features and conduct a further experiment on whether the performance of the best supervised
approach CBS+ can be further improved when considering language-dependent change-level
features (i.e., HtmlCss, BDom, Strict, SO and TC). We find that JavaScipt-specific features further
improve CBS+’s ability on identifying defect-prone changes. Afterwards, we further investigate
which change-level features are the important ones to the best-performing approach CBS+. We
find that the features in the dimensions of “Size”, “Diffusion” and “JavaScript-specific” are the
most important ones. Especially, “LT” is the most important feature since it ranks as the top-1
most important feature in many projects. Following that, we deeply investigate the association
between project-related features and the probability of a change to be a defect-prone one. We find
that project-related features have an association with the probability of a defect-prone change on
JavaScript projects. Especially, the seven features (i.e., Stars, Branches, Def Ratio, Changes, Files,
Defective and Forks) have the largest and statistical significant association with the probability of a
defect-prone change on studied JavaScript projects. Lastly, we investigate the impact of change-level

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:33

features on classical defect prediction model in the setting of effort-unaware and make a comparison
between the results obtained in this paper with the results collected from previous work.
In future work, we will do more research to verify the conclusion of this paper, and promote

the use of JIT defect prediction in the JavaScript community (e.g., developing a plug-in in IDE).
Besides, we plan to collect projects developed by different programming languages and commercial
projects to verify the generality of JIT defect prediction approaches. Lastly, we plan to investigate
more programming-language-specific features to improve the performance of existing JIT defect
prediction approaches.

ACKNOWLEDGMENTS
This research/project is partially supported by the National Science Foundation of China (No.
U20A20173), Key Research and Development Program of Zhejiang Province (No.2021C01014), and
the National Research Foundation, Singapore under its Industry Alignment Fund – Pre-positioning
(IAF-PP) Funding Initiative. Any opinions, findings, and conclusions, or recommendations expressed
in this material are those of the author(s) and do not reflect the views of the National Research
Foundation, Singapore.

REFERENCES
[1] Hervé Abdi. 2007. Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of measurement and

statistics 3 (2007), 103–107.
[2] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. 2010. A systematic and comprehensive investigation of

methods to build and evaluate fault prediction models. Journal of Systems and Software 83, 1 (2010), 2–17.
[3] Benjamin M Bolker, Mollie E Brooks, Connie J Clark, Shane W Geange, John R Poulsen, M Henry H Stevens, and

Jada-Simone S White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in
ecology & evolution 24, 3 (2009), 127–135.

[4] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[5] Ana Erika Camargo Cruz and Koichiro Ochimizu. 2009. Towards logistic regression models for predicting fault-prone

code across software projects. In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, 460–463.

[6] Xiang Chen, Dun Zhang, Yingquan Zhao, Zhanqi Cui, and Chao Ni. 2019. Software defect number prediction:
Unsupervised vs supervised methods. Information and Software Technology 106 (2019), 161–181.

[7] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI: Multi-objective effort-aware just-in-time
software defect prediction. Information and Software Technology 93 (2018), 1–13.

[8] Norman Cliff. 2014. Ordinal methods for behavioral data analysis. Psychology Press.
[9] David R Cox. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B

(Methodological) (1958), 215–242.
[10] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho, and Ahmed E Hassan. 2016. A

framework for evaluating the results of the szz approach for identifying bug-introducing changes. IEEE Transactions
on Software Engineering 43, 7 (2016), 641–657.

[11] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive comparison of bug prediction approaches.
In Proceedings of Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE, 31–41.

[12] Daniel P Delorey, Charles D Knutson, and Scott Chun. 2007. Do programming languages affect productivity? a case
study using data from open source projects. In First International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). IEEE, 8–8.

[13] Final Draft ECMA. 2017. ECMAScript Language Specification. (2017).
[14] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E Hassan, and Shanping Li. 2019. The Impact of

Changes Mislabeled by SZZ on Just-in-Time Defect Prediction. IEEE Transactions on Software Engineering (2019).
[15] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E Hassan. 2018. Chaff from the wheat: characterizing and determining

valid bug reports. IEEE transactions on software engineering (2018).
[16] Wei Fu and Tim Menzies. 2017. Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 72–83.
[17] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it really necessary? Information and

Software Technology 76 (2016), 135–146.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 Chao Ni et al.

[18] Takafumi Fukushima, Yasutaka Kamei, ShaneMcIntosh, Kazuhiro Yamashita, and Naoyasu Ubayashi. 2014. An empirical
study of just-in-time defect prediction using cross-project models. In Proceedings of the 11th Working Conference on
Mining Software Repositories. ACM, 172–181.

[19] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantifying detectable bugs in JavaScript. In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 758–769.

[20] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000. Predicting fault incidence using software change
history. IEEE Transactions on software engineering 26, 7 (2000), 653–661.

[21] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád Beszédes, Rudolf Ferenc, and Ali Mesbah.
2019. BugsJS: a benchmark of JavaScript bugs. In 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). IEEE, 90–101.

[22] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. 2016. Discovering bug patterns in JavaScript. In Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering. 144–156.

[23] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology 143, 1 (1982), 29–36.

[24] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes. In Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer Society, 78–88.

[25] Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E Hassan. 2018. Studying the dialogue
between users and developers of free apps in the google play store. Empirical Software Engineering 23, 3 (2018),
1275–1312.

[26] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2012. Bug prediction based on fine-grained module histories. In
Proceedings of the 34th International Conference on Software Engineering. IEEE Press, 200–210.

[27] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. 2012. An investigation on the feasibility of cross-project
defect prediction. Automated Software Engineering 19, 2 (2012), 167–199.

[28] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. 2017. Global vs. local models for cross-project defect
prediction. Empirical Software Engineering 22, 4 (2017), 1866–1902.

[29] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
159–170.

[30] Qiao Huang, Xin Xia, and David Lo. 2018. Revisiting supervised and unsupervised models for effort-aware just-in-time
defect prediction. Empirical Software Engineering (2018), 1–40.

[31] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect prediction. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press, 279–289.

[32] Paul CD Johnson. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods in Ecology
and Evolution 5, 9 (2014), 944–946.

[33] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita, Naoyasu Ubayashi, and Ahmed E Hassan.
2016. Studying just-in-time defect prediction using cross-project models. Empirical Software Engineering 21, 5 (2016),
2072–2106.

[34] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi.
2013. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2013), 757–773.

[35] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying software changes: Clean or buggy? IEEE
Transactions on Software Engineering 34, 2 (2008), 181–196.

[36] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Automatic identification of bug-introducing
changes. In 21st IEEE/ACM International Conference on Automated Software Engineering (ASE’06). IEEE, 81–90.

[37] Gunes Koru, Hongfang Liu, Dongsong Zhang, and Khaled El Emam. 2010. Testing the theory of relative defect
proneness for closed-source software. Empirical Software Engineering 15, 6 (2010), 577–598.

[38] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E Hassan. 2017. Towards just-in-time suggestions for log changes.
Empirical Software Engineering 22, 4 (2017), 1831–1865.

[39] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017. Code churn: A neglected metric in
effort-aware just-in-time defect prediction. In Proceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE Press, 11–19.

[40] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken-ichi Matsumoto, and Masahide Nakamura. 2010. An
analysis of developer metrics for fault prediction. In Proceedings of the 6th International Conference on Predictive Models
in Software Engineering. ACM, 18.

[41] Charles E McCulloch and John M Neuhaus. 2005. Generalized linear mixed models. Encyclopedia of biostatistics 4
(2005).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:35

[42] Shane McIntosh and Yasutaka Kamei. 2018. Are fix-inducing changes a moving target?: a longitudinal case study
of just-in-time defect prediction. In Proceedings of the 40th International Conference on Software Engineering. 560.
https://doi.org/10.1145/3180155.3182514

[43] Tim Menzies, Andrew Butcher, Andrian Marcus, and David Zimmermann, Thomas a nd Cok. 2011. Local vs. global
models for effort estimation and defect prediction. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 343–351.

[44] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining static code attributes to learn defect predictors.
IEEE transactions on software engineering 1 (2007), 2–13.

[45] Tim Menzies, Burak Turhan, Ayse Bener, Gregory Gay, Bojan Cukic, and Yue Jiang. 2008. Implications of ceiling effects
in defect predictors. In Proceedings of the 4th international workshop on Predictor models in software engineering. 47–54.

[46] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes. Bell Labs Technical Journal 5, 2 (2000),
169–180.

[47] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn measures to predict system defect density.
In Proceedings of the 27th international conference on Software engineering. ACM, 284–292.

[48] Shinichi Nakagawa and Holger Schielzeth. 2013. A general and simple method for obtaining R2 from generalized
linear mixed-effects models. Methods in Ecology and Evolution 4, 2 (2013), 133–142.

[49] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning. In Software Engineering (ICSE), 2013
35th International Conference on. IEEE, 382–391.

[50] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: combining code metrics with clone detection
for just-in-time fault prevention and resolution in large industrial projects. In Proceedings of the 15th International
Conference on Mining Software Repositories. ACM, 153–164.

[51] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. 2018. The impact of refactoring changes on
the szz algorithm: An empirical study. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 380–390.

[52] Chao Ni, Xiang Chen, Fangfang Wu, Yuxiang Shen, and Qing Gu. 2019. An Empirical Study on Pareto based Multi-
objective Feature Selection for Software Defect Prediction. Journal of Systems and Software (2019), 215–238.

[53] Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, and Qi-Guo Huang. 2017. A Cluster Based Feature
Selection Method for Cross-Project Software Defect Prediction. Journal of Computer Science and Technology 32, 6
(2017), 1090–1107.

[54] Chao Ni, Xin Xia, David Lo, Xiang Chen, and Qing Gu. 2020. Revisiting supervised and unsupervised methods for
effort-aware cross-project defect prediction. IEEE Transactions on Software Engineering (2020).

[55] Frolin S Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2016. A study of causes and consequences of
client-side JavaScript bugs. IEEE Transactions on Software Engineering 43, 2 (2016), 128–144.

[56] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A complete formal semantics of JavaScript. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. 346–356.

[57] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[58] Fayola Peters, Tim Menzies, and Andrian Marcus. 2013. Better cross company defect prediction. In Proceedings of the
10th Working Conference on Mining Software Repositories. 409–418.

[59] Joe Gibbs Politz, Matthew J Carroll, Benjamin S Lerner, Justin Pombrio, and Shriram Krishnamurthi. 2012. A tested
semantics for getters, setters, and eval in JavaScript. In Proceedings of the 8th symposium on Dynamic languages. 1–16.

[60] Michael Pradel and Koushik Sen. 2015. The good, the bad, and the ugly: An empirical study of implicit type conversions
in JavaScript. In 29th European Conference on Object-Oriented Programming (ECOOP 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[61] Lutz Prechelt. 2000. An empirical comparison of seven programming languages. Computer 33, 10 (2000), 23–29.
[62] Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka Kamei, and Ahmed E Hassan. 2017. The impact of using regression

models to build defect classifiers. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE, 135–145.

[63] Sunil J Rao. 2003. Regression modeling strategies: with applications to linear models, logistic regression, and survival
analysis.

[64] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming
languages and code quality in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 155–165.

[65] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.
[66] Duksan Ryu, Okjoo Choi, and Jongmoon Baik. 2016. Value-cognitive boosting with a support vector machine for

cross-project defect prediction. Empirical Software Engineering 21, 1 (2016), 43–71.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3180155.3182514

1:36 Chao Ni et al.

[67] Amir Saboury, Pooya Musavi, Foutse Khomh, and Giulio Antoniol. 2017. An empirical study of code smells in javascript
projects. In 2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER). IEEE,
294–305.

[68] Andrew Jhon Scott and M Knott. 1974. A cluster analysis method for grouping means in the analysis of variance.
Biometrics (1974), 507–512.

[69] Martin Shepperd, David Bowes, and Tracy Hall. 2014. Researcher bias: The use of machine learning in software defect
prediction. IEEE Transactions on Software Engineering 40, 6 (2014), 603–616.

[70] Emad Shihab, Ahmed E Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An industrial study on the risk of software
changes. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
ACM, 62.

[71] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. 2010. Evaluating complexity, code churn, and
developer activity metrics as indicators of software vulnerabilities. IEEE transactions on software engineering 37, 6
(2010), 772–787.

[72] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do changes induce fixes?. In ACM sigsoft
software engineering notes, Vol. 30. ACM, 1–5.

[73] Tom AB Snijders. 2005. Fixed and random effects. Encyclopedia of statistics in behavioral science (2005).
[74] Jeffrey Stuckman, James Walden, and Riccardo Scandariato. 2017. The effect of dimensionality reduction on software

vulnerability prediction models. IEEE Transactions on Reliability 66, 1 (2017), 17–37.
[75] Mark D Syer, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan. 2014. Replicating and re-evaluating the

theory of relative defect-proneness. IEEE Transactions on Software Engineering 41, 2 (2014), 176–197.
[76] Chakkrit Tantithamthavorn and Ahmed E Hassan. 2018. An experience report on defect modelling in practice: Pitfalls

and challenges. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering in
Practice. ACM, 286–295.

[77] Chakkrit Tantithamthavorn, ShaneMcIntosh, Ahmed EHassan, and Kenichi Matsumoto. 2018. The impact of automated
parameter optimization on defect prediction models. IEEE Transactions on Software Engineering (2018).

[78] AB Tom, Tom AB Snijders Roel J Bosker, and Roel J Bosker. 1999. Multilevel analysis: an introduction to basic and
advanced multilevel modeling. Sage.

[79] Andrzej Tucholka and Prem Gurbani. 2010. A Highly Decoupled Front-End Framework for High Trafficked Web
Applications. In 2010 Fifth International Conference on Internet and Web Applications and Services. IEEE, 32–36.

[80] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. 2009. On the relative value of cross-company and
within-company data for defect prediction. Empirical Software Engineering 14, 5 (2009), 540–578.

[81] Burak Turhan, Ayse Tosun, and Ayse Bener. 2011. Empirical evaluation of mixed-project defect prediction models. In
Software Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO Conference on. IEEE, 396–403.

[82] Stefan Wagner and Emerson Murphy-Hill. 2019. Factors That Influence Productivity: A Checklist. In Rethinking
Productivity in Software Engineering. Springer, 69–84.

[83] PHILIP WALTON. 2013. Decoupling Your HTML, CSS, and JavaScript. (2013). https://philipwalton.com/articles/
decoupling-html-css-and-javascript

[84] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu Yang. 2018. Perceptions, Expectations,
and Challenges in Defect Prediction. IEEE Transactions on Software Engineering (2018).

[85] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics bulletin 1, 6 (1945), 80–83.
[86] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang. 2016. HYDRA: Massively Compositional

Model for Cross-Project Defect Prediction. IEEE Transactions on Software Engineering 42, 10 (2016), 977–998.
[87] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble learning approach for just-in-time

defect prediction. Information and Software Technology 87 (2017), 206–220.
[88] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learning for just-in-time defect prediction. In

2015 IEEE International Conference on Software Quality, Reliability and Security. IEEE, 17–26.
[89] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016.

Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised models. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
157–168.

[90] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairavasundaram. 2011. How do fixes
become bugs?. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 26–36.

[91] Jerrold H Zar. 2005. Spearman rank correlation. Encyclopedia of Biostatistics 7 (2005).
[92] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2014. Towards building a universal defect prediction

model. In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 182–191.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://philipwalton.com/articles/decoupling-html-css-and-javascript
https://philipwalton.com/articles/decoupling-html-css-and-javascript

Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study 1:37

[93] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2016. Towards building a universal defect prediction
model with rank transformed predictors. Empirical Software Engineering 21, 5 (2016), 2107–2145.

[94] Feng Zhang, Audris Mockus, Ying Zou, Foutse Khomh, and Ahmed E Hassan. 2013. How does context affect the
distribution of software maintainability metrics?. In 2013 IEEE International Conference on Software Maintenance. IEEE,
350–359.

[95] Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E James Whitehead Jr. 2006. Mining version archives for
co-changed lines. In Proceedings of the 2006 international workshop on Mining software repositories. 72–75.

[96] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan Murphy. 2009. Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 91–100.

Received XX 2020; revised ?? 2020; accepted ?? 2020

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Empirical Study Setup
	2.1 JavaScript Projects
	2.2 Change-level Features
	2.3 Selected Approaches
	2.4 Evaluation
	2.5 Data Pre-processing
	2.6 Statistical Analysis

	3 Empirical Study Results
	3.1 RQ1: How well do recently proposed effort-aware JIT defect prediction approaches perform on JavaScript projects?
	3.2 RQ2: What are the important features for effort-aware JIT defect prediction in JavaScript projects?
	3.3 RQ3: Is there an association between project-related features and the probability of a defect-prone change in JavaScript projects?

	4 Discussion
	4.1 JIT defect prediction in effort-unaware setting
	4.2 Results Comparison

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

