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Commit messages recorded in version control systems contain valuable information for software development,
maintenance, and comprehension. Unfortunately, developers often commit code with empty or poor quality
commit messages. To address this issue, several studies have proposed approaches to generate commit messages
from commit diffs. Recent studies make use of neural machine translation algorithms to try and translate
git diffs into commit messages and have achieved some promising results. However, these learning-based
methods tend to generate high-frequency words but ignore low-frequency ones. In addition, they suffer from
exposure bias issues, which leads to a gap between training phase and testing phase.

In this paper, we propose CoRec to address the above two limitations. Specifically, we first train a context-
aware encoder-decoder model which randomly selects the previous output of the decoder or the embedding
vector of a ground truth word as context to make the model gradually aware of previous alignment choices.
Given a diff for testing, the trained model is reused to retrieve the most similar diff from the training set.
Finally, we use the retrieval diff to guide the probability distribution for the final generated vocabulary. Our
method combines the advantages of both information retrieval and neural machine translation. We evaluate
CoRec on a dataset from Liu et al. and a large-scale dataset crawled from 10k popular Java repositories in
Github. Our experimental results show that CoRec significantly outperforms the state-of-the-art method
NNGen by 19% on average in terms of BLEU.

ACM Reference Format:
Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy. 2021. Context-Aware Retrieval-
based Deep Commit Message Generation. ACM Trans. Softw. Eng. Methodol. 1, 1 (May 2021), 29 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Version control systems (VCS) are widely used to manage changes between versions. When sub-
mitting a code change, developers can attach a commit messaдe to describe the change and/or
explain why the change was made [47][10]. VCS stores commit messages along with diffs which
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represent the differences between the current and previous version of the repository. Used well,
these commit messages can greatly reduce the time that software developers take to understand
high-level reasons behind code changes. In addition, commit messages can also provide infor-
mation to better understand the evolution of software, including issues, feature additions and
bug reports [28][10][14]. Consequently, high quality commit messages are essential for software
development, maintenances and comprehension.

However, developers often do not accurately describe the changes in the repository with natural
language. As the complexity of the code structure increases, writing high-quality commit messages
is time-consuming and difficult for developers, and they often neglect to even write commit
messages at all[15][44]. According to Dyer et al. [15], around 14% of the commit messages in more
than 23K open-source projects hosted in SourceForge were completely empty. Thus, it is necessary
and helpful to automatically generate commit messages for code changes.
Several approaches have been proposed to generate commit messages automatically. These

methods can be roughly divided into three categories (see Section 8 for more detail):
Rule-based: DeltaDoc [10] uses the template “do Y Instead of Z” to generate commit messages
based on the control flow of the program between code versions. ChangeScribe [36] and an approach
proposed by Shen et al. [55] summarize code changes such as method additions based on specific
pre-defined rules or templates. However, these approaches sometimes can not cover all the cases or
explain the reasons or purposes behind code changes.
Retrieval-based: Liu et al. [39] and Huang et al. [24] utilize Information Retrieval (IR) to reuse
the commit messages of similar code changes. Although Liu et al.’s method has achieved good
results in terms of effectiveness and efficiency, retrieval based approaches cannot output accurate
messages when there are no similar diffs in the corpus.
Learning-based: learning-based approaches have the ability to learn the semantic correspondence
between source code and commit message and have achieved promising results. They have become
a trend to solve the commit message generation problem. Jiang et al. [25], Loyola et al. [42] and
Liu et al. [37] adopt learning based techniques for the commit message generation task. Liu et
al. [37] made use of neural machine translation (NMT) model with the pointer-generator network
to translate diffs into commit messages.

Retrieval-based methods reuse the commit messages of similar diffs, while learning-based meth-
ods can capture the semantic connection between diff and commitmessage. Although learning-based
methods have achieved promising results, they prefer high-frequency words in the corpus and their
generated messages are relatively less readable [6]. If a ground-truth word is rare in the training
corpus, learning-based methods may generate a wrong result. Since retrieval-based methods take
advantage of tokens in similar commits, the commit message produced may contain low-frequency
words related to the given diff.

In learning-based methods, an additional problem exists, which we call exposure bias [52]. Most
NMT models are typically trained with teacher forcing [64], in which the model generates each
word conditioned on the ground truth words of the target sequence. Specifically, at training time
the ground truth word is passed as the next input to the decoder while at testing time the gold
target sequence is not available and hence the previous word predicted is fed as context. That is,
the NMT model is never trained to learn how to predict under the conditions it may meet at testing
and may not be robust for them.

In this paper, we present a novel approach named Context-Aware Retrieval-based Deep Commit
Message Generation (CoRec), addressing these two limitations (the low-frequency word problem
and exposure bias issue). In the training phase, we adapt a previously introduced decay sampling
mechanism [71][9] that randomly selects the previous output of decoder or the ground truth vector
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as context to make the model gradually aware of previous alignment choices. At the beginning
of the training phase, the model selects the embedding vectors of ground truth words as context
at a greater probability. As the model converges gradually, the previous outputs of the decoder,
which contain information of previous alignment choices, are more frequently chosen as context.
With this mechanism, CoRec can bridge the gap between training phase and testing phase. Given
a diff for testing, we reuse the trained model to represent the given diff as a semantic vector and
retrieve the most similar diff in the training set. While generating each word, CoRec decodes each
retrieval diff and uses the retrieval information to adjust the final probability distribution over all
the words in the target vocabulary. In this way, CoRec is able to incorporate the advantage of the
retrieval-based methods and thereby improve the quality of the final generated commit message.

Furthermore, we have collected and built a new dataset whose scale is 10 times larger than the pre-
vious benchmark dataset [25]. We conducted a user study and experiments on both our new dataset
and previous benchmark dataset. We use the state-of-the-art NNGen [39] and PtrGNCMsg [37] as
baselines. The results show that our CoRec approach can significantly outperform NNGen and
PtrGNCMsg by 19% and 64% on average, in terms of BLEU (an accuracy measure that is widely
used to evaluate machine translation systems).

The main contributions of our work include:
• We propose a novel commit message generation approach which is the first work that
combines the advantages of retrieval-based and learning-based methods for commit message
generation.
• The proposed approach is capable of mitigating exposure bias . We are also the first one to
address this problem in commit message generation.
• We provide a new, large-scale and cleaned benchmark dataset extracted from 10,000 Github
repositories and make it publicly available. As far as we know, it is the largest dataset for
end-to-end commit message generation.
• We carry out extensive experiments including a human evaluation, demonstrating that the
proposed approach outperforms the state-of-the-art.

The rest of this paper is organized as follows. Section 2 introduces some basics of commit message
and neural networks. Section 3 describes the details of proposed approach. Section 4 describes
data preprocessing and the experiments. Section 5 presents our human evaluation process and its
results. Section 6 shows the feedback from developers. Section 7 is the discussion about CoRec and
Section 8 reviews the related work. Finally, Section 9 concludes the paper.

2 BACKGROUND
2.1 Commit, diff, Commit Messages
Git [1] is one of the most widely used version control systems in the world. The commits in Jiang
et al.’s dataset [25] and our dataset are both extracted from Git repositories. Whenever developers
submit a new version, Git will create a commit to record this change and require the developers to
enter a textual message. A commit message is the summary entered by the developers to describe
this version change where the change here is represented by diff.

Diff characterizes the difference between two versions and can be generated using the git diff com-
mand in Git. Git offers four diff algorithms, namely, Myers, Minimal, Patience, and Histogram [49].
All previous studies on the commit message generation did not consider different diff algorithms,
and the default algorithm Myers is widely used. Therefore, the git diff algorithm we use in this work
is the default algorithm Myers. We will explore the impact of different diff algorithms on the quality
of commit message generation in the future. As shown in Figure 1, a commit mentioned in this work
refers to the pair of a code diff and its corresponding commit message. Given a commit, we refer
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/fml/client/net/minecraft/src/BaseMod.java

98 98 public abstract class BaseMod implements cpw.mods.fml.common.modloader.BaseModPr
99 99 {
100 100 protected Context mContext;
101 101

102 + @SideOnly(CLIENT) 
102             103 public void clientCustomPayload(NetClientHandler handler, Packet250CustomPayload packet ) 
103             104 {

Retrieval-based : fix unneeded SideOnly in QuadTree

NMT-based : fix up missing in server

Ground truth : Add missing SideOnly in BaseMod

Fig. 1. Example of commit message generation showing low-frequency word problem

/tools/install_fbthrift.sh

13 13 cd ../
14 14 git clone https://github.com/facebook/wangle.git
15 15 cd wangle/wangle
16 16 git checkout 86c4794422e473f3ed5b50035104e1bc04c9646d
17                - cmake . 

17 + cmake . - DBUILD_TESTS=OFF 
18               18 ctest
19               19 sudo make install

NMT-based : Fix fbthrift script

Ground truth : Turn off unit tests in fbthrift / wangle 

Fig. 2. Example of commit message generation showing exposure bias problem

to its original commit message as the reference message. The commit produced by retrieval-based
methods is called a retrieval commit.

2.2 Motivating Examples
In order to explain the motivation for our work, we present two examples corresponding to the
low-frequency word problem and exposure bias issue respectively.

Consider the code change in Figure 1. The commit message generated by a typical retrieval-based
method contains the low-frequency word "SideOnly" (which is an annotation used in the Java code).
The NMT-based method ignores this ground truth word but tends to generate high-frequency
words ("missing" and "in"). If we use retrieved similar commits to guide the learning-based commit
message generation, the generated sentences will better take into account both high-frequency and
low-frequency words.

As shown in Figure 2, at training time, even if the first word actually generated is "Fix", the model
still uses a ground truth word "Turn" as the context when predicting the second word. In this case,
the model is trained to predict "off" conditioned on the previous word "Turn". While at testing time,
given a similar diff, once the model predicts a wrong word "Fix", the wrong word has to be fed
as context because there is no guide from the gold target sequence. Hence the errors accumulate
among the sequence and cause the quality of generated sentence to decrease.
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2.3 Neural Machine Translation
In Neural Machine Translation, an encoder-decoder is a widely-used structure [57][12][66]. The
entire process can be simply described as: learning a model from the training data to find a target
sentence y∗ =

{
y∗1, · · · ,y

∗
|y∗ |

}
with the highest conditional probability according to the input source

sentence x =
{
x1, · · · , x |x |

}
. The encoder module of the model tries to encode the variable-length

input source sequence into a fixed-length hidden state vector. Then the hidden state vector is
decoded through the decoder module and finally generates the target sentence.
In early research, RNNs [12] were often used to constitute encoders and decoders due to their

recurrent structure. Although RNNs are capable of learning information from the last time step,
RNNs still suffer from long-term dependencies. As the length of sentence grows, information
further back will become unavailable. LSTM [21] that uses a memory cell to remember important
information was introduced to address this problem. The gating mechanism in the memory cell
enables LSTM to use less space to remember important information and forget information that is
unneeded. Sutskever et al. [57] proposed an encoder-decoder model where both the encoder and
decoder consist of multi-layered LSTM. A variant of LSTM, Gated Recurrent Units (GRU) [12] has
the advantage that it is computationally cheaper than LSTM.

An attention mechanism is proposed to solve the problem when input sentences are too long to
compress information into hidden states. The attention can make use of all the hidden states of the
encoder through an alignment function, not just the final hidden state. At each time step during
decoding, the model searches the alignment relationship to extract source information (called
source context vector). The source context vectors and the previous generated tokens are then
used for prediction of the target sequence. The alignment weights can be calculated in different
ways, e.g., dotprod or general (Luong et al. [43]) or Multi-Layer Perception (Bahdanau et al. [7]).
The attention mechanism allows modeling of dependencies without regard to their distance in
the input or output sequences. Attention mechanisms have become an integral part of compelling
sequence modeling and transduction models for various tasks [27][59].

3 OUR APPROACH
We propose a new approach, named CoRec, to translate git diffs that include both code changes
and non-code changes into commit messages. The overall framework is illustrated in Figure 3.
The details of its model training phase and online testing phase are described in Section 3.1 and
Section 3.2, respectively.

3.1 Context-Aware Encoder-Decoder Model Training
In the training phase, most NMT models use a ground truth sequence as input to the decoder. In the
testing phase the commit message is generated according to the previous words generated by the
models [71]. This gap between training and testing – called exposure bias [52] – means that the
model has never been trained on its own errors if the model predicts a previous word differently
from the ground truth.

To address this problem, we employ a decay sampling mechanism to randomly select the output
of decoder or the ground truth content vector during the training phase. In this way, the model is
trained to predict words with the previous alignment information which is contained in the output
of decoder. Our model is based on the attentional Encoder-Decoder model proposed by Bahdanau
et al. [7]. We also use attention to attend to the important parts of the git diff sequence during the
generation of commit messages. On this basis, we further apply the decay sampling mechanism
to the decoder part, which gives our model the ability to mitigate the exposure bias issue. The
structure of our deep learning architecture is shown as Figure 4.
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Fig. 3. The overall framework of our approach.

Assume the diff sequence and the ground truth commit message are x =
{
x1, · · · , x |x |

}
and

y =
{
y1, · · · ,y |y |

}
, referring to the diff and reference commit message in Figure 1.

Encoder. The input of Encoder is a variable length source sequence x =
{
x1, · · · , x |x |

}
, which is

the diff part in Figure 1 and Figure 2. First, there is an embedding layer used to represent each
word of input as a fixed-length vector. The Encoder takes one vector at a time until it reaches the
end of sequence. We use Bidirectional LSTM (Bi-LSTM) [53] to capture the information in front
and behind of the current position. At time step i, the hidden state of Bi-LSTM is computed as:

hi =
[−→
h i ;
←−
h i

]
(1)

−→
h i = LSTM(exi ,

−→
h i−1) (2)

←−
h i = LSTM(exi ,

←−
h i+1) (3)

where exi is the embedding vector of the word xi .
Attention. The attention is designed to selectively focus on parts of the source sentence during
translation. We use global attention proposed by Bahdanau et al. [7] in this model to extract
source context vector. The source context vector is computed over the sequence of hidden states
h1, · · · ,hj , · · · ,hn according to the formula below.

c j =

|x |∑
i=1

ai jhi (4)

where ai j is the attention weights of hidden statehi . The attention mechanismwill give more weight
to the hidden state vectors of important tokens. For example, the hidden state representations
of "@SideOnly(CLIENT)" in Figure 1 and "DBUILD_TESTS=OFF" in Figure 2. In this way, our
model can better find the changed parts of the diff and pay attention to the contents with similar
characteristics.

At the decoding time step j, the relevance between the i-th source word and the target word y∗j
is evaluated and normalized over the source sequence.

ai j =
exp(ri j )∑ |x |

i′=1 exp(ri′j )
(5)

ri j = v
T
a tanh(Wasj−1 +Uahi ) (6)
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tanh tanh tanh tanh tanh

softmax

./
Global attention

2 ×

<eos>

Output embedding

0) 0*

LSTM

(Ground truth commit message)

LSTM LSTM LSTM 2 ×

Decay Sampling

0+ 0,

softmax softmax softmax softmax

+ testing repo state

<eos>add test case

Fig. 4. The structure of Context-Aware Encoder-Decoder Model. "2×" refers to the number of encoder layers
and decoder layers.

where sj−1 is the previous hidden state of decoder,Wa andUa are the model parameters which will
be learned during training.
Context-Aware Decoder. During training, the Context-Aware decoder is to feed as context either
(i) the embedding vector of ground truth word with a probability of p or (ii) the previous output of
decoder with a probability 1 − p. At the beginning of training, as the model is not well trained, we
select the embedding vector of the ground truth word as context more often to make the model
converge quickly and avoid local optimum. When the training process comes to an end, the value
of p becomes very small in order to make the model fully exposed to the conditions that it may
confront in the testing phase. In this way the probability p of using the ground truth word vectors
as context needs to decrease as the training process progresses. Similar to [71][9], we apply a
mini-batch based schedule to decrease p as a function of the mini-batch index k . However, in our
approach, the input of the decay sampling mechanism is different from [71][9]. We use the output
of the decoder directly instead of using the generated words to embed again, thus reducing the
training time. Our mechanism is also able to adapt to datasets of different sizes for the reason that
the model needs more training steps to learn information in a larger dataset. Hence, the speed at
which the value of p decreases needs to be adjusted according to different datasets. The probability
p is computed as:

p =
µ

µ + exp( kB4µN )
(7)

where B is the batch size of training, N is the number of commit pairs in the training data; µ is
a hyper-parameter that controls the descent rate of p and the default value of 12 can cover the
training process very well. This setting makes our training process gradually change from fully
teacher forcing to a less guided scheme. In other words, the context-aware decoder first represents
the input (e.g. the ground truth messages in Figure 1 and 2) as an embedding vector with fixed
length. The decay sampling module decides whether to use the embedding vector or the previous
output of decoder as the commit message information.

Our context-Aware Decoder uses LSTM to unroll the commit message information. At time step
j, the hidden state of decoder is updated by:

sj = LSTM(eyj−1, sj−1) (8)
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9

5

7

6

vℎ# ℎ$ ℎ% ℎ& ℎ'
Fig. 5. Example of max pooling.

where eyj−1 is the output of the decay sampling mechanism. As shown in the Figure 4, once getting
the hidden state of decoder, the probability distribution Pj for predicting next word is computed as:

Pj = so f tmax(tj ) (9)

tj = д(eyj−1, c j , sj ) (10)
where g is a linear transformation to make each target word has one corresponding dimension.
The probability distribution Pj represents the probabilities that each word in the vocabulary is
generated as the next word.
The goal of the network is to maximize the probability of the ground truth sequence based on

maximum likelihood estimation (MLE) [5]. So the loss function below is minimized:

L(θ ) = −
N∑
n=1

|yn |∑
j=1

loдPnj
[
ynj

]
(11)

where θ is the trainable parameters of the model, N is the total size of training data, |yn | refers
to the length of the n-th ground truth commit message, j indicates the time step, Pnj

[
ynj

]
is the

probability of predicting ground truth word for the diff with the reference target word ynj .

3.2 Retrieval-based Commit Message Inference
After training our Context-Aware Encoder-Decoder Model, we use the Diff Retrieval module to
retrieve relevant commits from the training set given a diff from validation or test set. In order to
improve the performance for predicting low-frequency words, we incorporate in the knowledge
of similar commits from the training set to guide the commit message generation. Considering
the advantages of the neural network in capturing semantic information [46], CoRec reuses the
encoder part of the model trained using the procedure described in Section 3.1 to retrieve similar
commits.

Given a git diff, we first run forward the encoder for the trained model and get the hidden state
vectors of the last layer of the Bi-LSTM. Global max pooling [29] is then applied to compress the
hidden state vectors [h1, · · · ,hn] ∈ Rn×2k into vector v ∈ R1×2k where n is the length of git diff
and k is the hidden dimension size. Figure 5 shows an example of the max pooling operation on a
sequence of hidden state vectors.

The cosine similarity is calculated between the given git diff with each diff in the training set as
follows:

cosine(−→v test ,
−→v i ) =

−→v test ·
−→v i

∥
−→v test ∥∥

−→v i ∥
, i ∈ [1,N ] (12)

−→v =maxpoolinд(
[
hj

1, · · · ,hj
2k
]
), j ∈ [1,n] (13)
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Table 1. Keywords and patterns

keywords: changelog, gitignore, readme, release, version
ignore update [*]

modify dockerfile/makefile
update submodule(s)

“[]” means optional, “/” refers to “or”

where N is the number of commit pairs in the training data. The most similar diff is selected for
each given git diff according to similarity score. Due to the GPU memory limitation, it is impossible
to calculate the similarities at once if the dataset is too large. Hence, we shard the test dataset and
then search for the most similar diffs offline.

Our original intentionwas to use the retrieval diff to boost themodel’s performance for generating
commit messages. However, there are two problems: initially the retrieval diff may include noisy
information. Furthermore, the retrieval module may have negative effects if the similarity between
retrieval diff and test diff is low. The first problem can be solved if we generate commit messages
with the conditional probability of each word because the noisy words usually have low probability.
So we need to combine the conditional probability of test diff and retrieved diff to generate the final
commit message. To address the second problem, BLEU [51] is employed as the metric to measure
the similarity. BLEU score is a popular and automated metric for evaluating the quality of machine
translation. It can also be used to measure the similarity between two sentences [39]. When the
retrieval diff and the test diff are not similar at all, which means there is no diff similar to the test
diff in the training set, we should eliminate the effect of retrieval diff as much as possible.

As shown in Figure 3, given a test diff, CoRec first parallelly encodes the test diff and the retrieval
diff by the model trained using the procedure described in Section 3.1. The hidden states of the
last layer encoder are represented by Htest and Hr etr ieval respectively. At each time step j, the
context vector is calculated by Equation 4. Thus, the conditional probabilities for predicting the
next word is computed according to Equations 9 and 10, denoted by Ptest (yj |x) and Pr etr ieval (yj |x)
respectively. The final probability distribution is computed as follow:

Pf inal (yj |x) =Ptest (yj |x)+

λBLEU (xr etr ieval , xtest )Pr etr ieval (yj |x)
(14)

where λ is a hyper-parameter which is tuned based on a validation set.
Beam search algorithm [58] is also adopted in the testing phase to generate commit message with

higher quality. At each time step j , we keep top-k candidate sequences with the highest conditional
probability among all combinations where k is the beam size. Until a terminator is encountered or
the sentence reaches the maximum length, the top-1 sentence is output as the final target commit
message.

4 EVALUATION
We evaluate the performance of our CoRec approach on the dataset described in Section 4.1 and
the dataset from Liu et al. [39]. Our experiments aim to answer the following research questions:

RQ1: How does CoRec perform compared to other baselines?
RQ2: What impact does each of our main components have in our model?
RQ3: Can CoRec mitigate the low-frequency word problem?
RQ4: What is the effect of our model on exposure bias?
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4.1 Data Preparation
Jiang et al. [25] published a dataset for commit message generation. However, they only collected
top 1,000 Java projects from Github and their dataset represents only 1.75% out of 2 million commits
in GitHub [39]. In order to evaluate the performance of CoRec on a large-scale dataset, we collected
the top 10,000 repositories (ordered by the number of stars) which were created between January
2012 and December 2018 in Github. The commit messages and diffs are processed as follows.
CommitMessages. First, non-English commits are removed and the commitmessage is lowercased.
Commit messages are parsed with the NLTK Punkt sentence tokenizer [2]. The first sentences are
extracted from commit messages as the target because the first sentences are usually the summaries
of the entire commit message. Second, brackets are removed from the commit messages. Github
issue IDs and commit IDs are respectively replaced by "<issue_id>" and "<commit_id>" to ensure
semantic integrity. Third, merge and rollback commits are removed by checking whether the
commit messages begun with “merge” or “rollback”. We perform this step as the diffs of these
commits are often thousands of lines and not a suitable input for Neural Machine Translation.
Liu et al. [39] reported that 16% of Jiang et al.’s commits [25] are noisy commits. The results

from Liu et al. [39] showed that these noisy commits are easy to generate and will greatly improve
the evaluation metrics of generated commit messages. We also explored the effects of these noisy
data (see Section 7.1 for more details) and the results also show that the noise can improve the
performance of our approach. In order to ensure the quality of dataset, we used the keywords and
patterns (shown in Table 1) to filter out commit messages. They are extensions of those used in
Liu et al.’s study [39]. We needed to extend them as Liu et al.’s patterns cannot cover some noisy
commits in our dataset.
Existing commit messages have different writing styles and some of the messages are poorly

written. We want to learn to generate high quality commit messages. Thus, we apply the Verb-
Direct Object (V-DO) analysis to filter out a set of relatively good-quality commit messages. Jiang
et al. [26] showed that 47% of commit messages follow this pattern. The commits which do not
begin with a “dobj” dependency in the Stanford CoreNLP library [45] are removed. Please note that
the approaches from [25][39][37] also works on this type of commits.
Finally, we tokenize the extracted sentences with white spaces and punctuation. Extracted

sentences with length of no more than 30 are kept because most hand-written commit messages
are shorter than 30 tokens [25].
Diffs. We convert diffs into lowercase and delete the diff header by using regular expressions.
Commit IDs in diff are replaced by "<commit_id>" to ensure semantic integrity. Similar to Jiang et
al. [25], commits with a diff larger than 1MB are removed (about 24k commits in our preprocessing)
to ensure that the long commits such as merged and rollback are removed. Finally, diffs are tokenized
by white spaces and punctuation and we keep only commits with a diff length of no more than 100
tokens. This is because the lengths of source and target sequences in sequence-to-sequence models
are often set between 50 to 100 [7][25].
Duplicated commits are removed to make the training and testing sets disjoint. We collected

10,000 repositories in Github. We used keywords in combination with patterns to filter out as much
noise as possible. After preprocessing and filtering, about 63% of the commits were filtered out and
we finally get 107.4k quality commits while Jiang’s dataset has only 22.0k left after filtering with
our script. We randomly select 90% of these commits as the training set. There are 96,704, 5,372 and
5,372 commit pairs in the training set, validation set and test set respectively. To the best of our
knowledge, this is by far the largest dataset for end-to-end commit message generation. We refer
to this dataset as the top-10000 dataset in this paper.
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Liu et al. [39] created a benchmark dataset after deleting the noisy commits from Jiang et al.’s
dataset [25]. The dataset from Liu et al. contains a training set, validation set and test set, which
contains 22,112, 2,511 and 2,521 commit pairs respectively. We refer to this dataset as top-1000
dataset in this paper.

Our CoRec approach code used in our experiments and our new top-10000 dataset are available
at http://tiny.cc/o4j4oz.

4.2 Training Details
Our CoRec approach was developed using the OpenNMT-py [31]. While training the model, we set
the embedding size and the dimensions of hidden states in LSTM to be 512. The number of encoder
layer and decoder layer are both set to be 2. The training batch size is set to be 32 and dropout is
applied to avoid overfitting with dropout rate being 0.1. We use Adam [30] optimizer algorithm
with 0.001 initial learning rate; The maximum number of training step is set to be 100k and 400k
for top-1000 dataset and top-10000 dataset respectively. Correspondingly, the λ in Equation 14 is
set to be 0.8 and 0.5 based on the validation set. The maximum length and minimum length for
the target sentence are set to be 30 and 2 respectively. Beam size is set to be 5 by default and the
maximum length of input diff is set to be 100. We carry out all our experiments on a Ubuntu 16.04
server with one GeForce GTX 1080 GPU 8G memory, 12 cores 3.6GHz CPU and 64GB memory.

4.3 Evaluation Metrics
We evaluate the performance of the commit message generation task with respect to three widely-
used metrics: BLEU [51], METEOR [8] and ROUGE-L [35] . These metrics all measure the quality
of generated comments.

BLEU is widely used to assess the quality of machine translation systems [7][12][22][50]. It is
defined as the geometric mean of n-gram (for BLEU, n=1,2,3,4) matching precision scores multiplied
by a length brevity penalty factor (BP). For each pair (pred, re f ), the length brevity penalty factor
is introduced to prevent the precision bias brought by short generated sentences. The BLEU score
is computed as BLEU = BP ∗ exp(

∑N
n=1wnloдpn), and

BP =

{
1, i f lenpred > lenr ef

e1−lenr ef /lenpred , i f lenpred ≤ lenr ef

where lenpred are the lengths of the predicted sentences , lenr ef are the lengths of reference
sentences, N = 4 and the weight of each n-gramwn is set to 1

N .
METEOR combines unigram matching precision and recall scores using harmonic mean. ME-

TEOR further employs synonym matching and is calculated as:METEOR = 10PR(1−c)
R+9P , where P is

the unigram precision, R is the unigram recall and c is the Penalty factor for fragmentary matches
which is computed as: c = 0.5 ∗ ( |chunks |

|unigrams | )
3, where |chunks| is the number of matched chunk and

|unigrams| is the number of matched unigram.
ROUGE-L computes the length of the longest common subsequence between generated sentence

and reference sentence. It does not try to evaluate how fluent the summary is but focuses on the
recall scores. We compute these metrics using the scripts provided by Sharma et al. [54].

4.4 Baselines
Jiang et al. [25] and Liu et al. [39] use the git diff which contains both non-code and code
changes as input to generate commit messages. Existing commit message generation approaches
PtrGNCMsg [37], based on NMT, and NNGen [39], both report better performance than Jiang et
al. [25]. Hence we compare our model with the following two baseline systems:
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PtrGNCMsg: PtrGNCMsg is an approach based on an improved attentional ecoder-decoder model
with the pointer-generator network to translate code diffs into commit messages. By searching the
smallest identifier set with the highest probability, PtrGNCMsg enables the prediction of out-of-
vocabulary (OOV) words. In the field of commit message generation, PtrGNCMsg has proven to be
superior to approaches based on neural machine translation (NMT). In our experiment, we set the
max-cover-rate (a hyper-parameter in their approach) to be 0.9 according to their paper [37].
NNGen: NNGen is the state-of-the-art approach which uses the nearest neighbor algorithm to
retrieve the top-k commits from training set. The top-k commits are then compared to derive the
one as target commit message with the least distance by leveraging BLEU scores to identify the
nearest neighbor. On both the original data of Jiang et al. [25] and the data set with noisy commits
removed [39], NNGen has far surpassed NMT in both performance and speed.

4.5 Experimental Results

Table 2. Comparison results with baseline models on different datasets

Dataset Methods BLEU(%) p1(%) p2(%) p3(%) p4(%) METEOR(%) ROUGE-L(%)

top-1000
PtrGNCMsg 12.31 27.8 15.3 11.8 10.5 11.94 26.76

NNGen 16.41 27.6 16.8 13.4 11.7 14.04 28.60

CoReC 19.80 33.1 22.2 19.0 17.9 15.69 31.13

top-10000
PtrGNCMsg 24.67 42.3 27.6 24.4 23.5 18.64 37.24

NNGen 35.28 46.1 36.0 33.1 31.6 23.62 42.16

CoReC 41.26 55.1 44.9 44.3 45.4 26.87 47.20
pn (n = 1,2,3,4) refers to the modified n-gram precision.

4.5.1 RQ1: How does CoRec perform compared to other baselines? Table 2 presents the results of
different methods applied to the two datasets. We can see that retrieval-based method NNGen
outperforms the NMT-based method PtrGNCMsg on both top-1000 dataset and top-10000
dataset. The authors of PtrGNCMsg [37] conducted their experiments and demonstrated good
results on the dataset from Jiang et al. [25] without removing noisy messages. However, Liu et
al. [39] have reported that if we remove these noisy messages which have little information or
can be automatically produced by some rule-based tools, the performences of NMT will plummet.
Our experimental results confirm this result once again when these noisy messages are removed
from our datasets. Although PtrGNCMsg can deal with out-of-vocabulary (OOV) words, NNGen
still outperforms PtrGNCMsg by 33.3%, 17.6% and 6.9% on top-1000 dataset (43.0%, 26.7% and 13.2%
on top-10000 dataset) in terms of BLEU, METEOR and ROUGE-L respectively. This phenomenon
demonstrates the effectiveness of the retrieval-based method on commit message generation task.

Compared to the state-of-the-art method NNGen [39] on top-1000 dataset, the relative improve-
ments of CoRec are 20.7%, 11.8% and 8.8% w.r.t. BLEU, METEOR, and ROUGE-L, respectively. As for
the experiments based on top-10000 dataset, CoRec outperforms NNGen by 17.0%, 13.8% and 12.0%
in terms of BLEU, METEOR and ROUGE-L, respectively. On average, CoRec outperforms NNGen
by 19%, 13% and 10% in terms of BLEU, METEOR, and ROUGE-L respectively on the two datasets.

We can observe that our approach achieves the best performance for all evaluation met-
rics. One reason is that we retrieve themost similar commits as additional contexts to our attentional
encoder-decoder model. The retrieved commits bring additional information which helps to im-
prove performance. Also, from the table, we can find that the improvements of p3 and p4 (as shown
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in Table 2) are especially larger. This phenomenon means that CoRec significantly improves the
matching accuracy of the 3-grams and 4-grams between messages generated and gold references.
CoRec introduces a decay sampling mechanism, described in Section 3.1, to eliminate the exposure
bias between training phase and testing phase. Using this mechanism, the model is capable of
learning how to predict next word even if the previous prediction is wrong. Hence, the accumulation
of errors is reduced in the testing phase. Although we use the decay sampling mechanism in our
approach, which introduces some randomness, the large amount of training steps weakens the
influence from the randomness. We have run the model training process 5 times and the fluctuation
on evaluation metrics BLEU is ±0.2%. Therefore, we believe that the performance of our method is
relatively stable.

Furthermore, we find that all the methods perform better on top-10000 dataset. This shows
the advantages of having a larger-scale dataset. We have made our top-10000 dataset publicly
available. Future research on the commit messages generation task will benefit from using our
more comprehensive top-10000 dataset.

In summary, CoRec gets higher BLEU, METEOR and ROUGE-L scores than all the base-
lines on the two test datasets.

Table 3. Effectiveness of each modules in CoRec

Dataset Methods BLEU(%) p1(%) p2(%) p3(%) p4(%) METEOR(%) ROUGE-L(%)

top-1000

Retrieval 18.01 29.1 19.0 15.6 13.9 14.62 29.14

Basic model 18.01 29.2 18.9 16.1 15.1 14.15 28.50

CoRec−Retr ieval 19.08 33.8 22.9 20.2 19.9 14.87 29.75

CoRec−DecaySamplinд 19.23 29.9 19.5 16.4 15.0 15.19 30.22

CoReC 19.80 33.1 22.2 19.0 17.9 15.69 31.13

top-10000

Retrieval 36.24 46.1 36.2 33.6 32.3 24.11 42.84

Basic model 37.27 52.0 41.7 41.3 43.0 24.18 43.14

CoRec−Retr ieval 40.25 54.8 44.8 44.6 46.2 26.09 45.81

CoRec−DecaySamplinд 40.14 52.1 42.0 41.0 41.8 26.12 45.66

CoReC 41.26 55.1 44.9 44.3 45.4 26.87 47.20
pn (n = 1,2,3,4) refers to the modified n-gram precision.

4.5.2 RQ2: What impact does each of our main components have in our model? We analyze the
performance gain achieved due to various components of our approach by performing an ablation
study. Table 3 shows these results. We first do not use our context-aware retrieval-based model,
but only regard the output of the retrieval module (from Section 3.2) as the generated commits. We
refer to this reduced approach as Retrieval in Table 3. Then we use the attentional encoder-decoder
model with different modules we proposed to determine its effectiveness. In the table, the Basic
model is the original model without decay sampling mechanism or retrieval module, with other
settings the same as our CoRec method ; CoRec−Retr ieval is the second variant that does not include
the retrieval module from CoRec; the third variant CoRec−DecaySamplinд that does not include the
decay sampling mechanism from CoRec.
Table 3 shows that our retrieval module performance is better than NNGen on both

datasets (results in Table 2). The reason is that our model captures the sequential information
of diff and embeds the semantics into hidden state vectors. We can also see that CoRec−Retr ieval
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Table 4. Statistics results for word frequency on different datasets

Dataset Methods Word frequency
1 2 (2, 5] (5, 10] (10, 20] (20, 50] (50,∞)

top-1000
Basic model 295 127 226 264 312 400 353
CoRec 418 174 274 297 316 390 352
Increment 41.7% 37.0% 21.2% 12.5% 1.3% -2.5% -0.3%

top-10000
Basic model 670 233 411 399 502 716 1173
CoRec 800 269 453 425 530 730 1174
Increment 19.4% 15.5% 10.2% 6.5% 5.6% 2.0% 0.0%

Table 5. Performance on commits that contain low-frequency words

Datasets Methods BLEU(%) p1(%) p2(%) p3(%) p4(%) METEOR(%) ROUGE-L(%)
low-freq
-1000

Basic model 18.11 31.5 18.5 15.3 14.3 13.71 25.44
CoRec 20.98 37.0 23.2 19.6 18.5 16.55 27.92

low-freq
-10000

Basic model 33.22 51.5 41.7 41.6 43.1 25.65 40.04
CoRec 36.23 53.4 43.9 43.6 44.9 27.47 42.36

pn (n = 1,2,3,4) refers to the modified n-gram precision.

significantly improves Basic model, indicating the usefulness of our decay sampling mecha-
nism. Comparing CoRec−DecaySamplinд with Basic model on two datasets, CoRec−DecaySamplinд

outperforms Basic model. This is because we introduce retrieved commits to boost the neural
machine translation model. The results show that the retrieved information can indeed enhance
the performance of the neural model.
The performance of CoRec−Retr ieval and CoRec−DecaySamplinд are similar on the two datasets.

For top-1000 dataset, CoRec−Retr ieval performs better on 35.0% of test commits thanCoRec−DecaySamplinд

and 34.1% of the test commits CoRec−DecaySamplinд performs better. As for the test commits in
top-10000 dataset, CoRec−Retr ieval performs better on 29.6% of the data and CoRec−DecaySamplinд

performs better on 27.4% of the data. We extract these parts of commits from testing sets that
CoRec−DecaySamplinд and CoRec−Retr ieval perform differently, and extract the output of our re-
trieval module. We manually inspected the retrieval diffs and the generated commit messages. We
find that CoRec−DecaySamplinд performs better on the commits that have similar diff in the training
set and those where the low-frequency words appear more in the generated messages. The similar
commits in the training set can guide the generation of high-quality commit messages.

Finally, the performance of CoRec can still be further improved when combining both the
main modules. Although the n-grams scores of CoRec−Retr ieval and CoRec are close, CoRec
outperforms CoRec−Retr ieval in corpus level. The reason is that the lengths of commit messages
generated by CoRec are closer to the reference than messages generated by CoRec−Retr ieval . Thus,
the length brevity penalty factor will make the BLEU score of CoRec−Retr ieval lower. We use the
approach from Neubig et al. [48] to conduct significance tests between our approach and its variants
(with one major component turned off). The Wilcoxon signed-rank test [62] at a 95% significance
level showed the improvement of our approach over its variants are all statistically significant.
Comparing CoRec with CoRec−Retr ieval and CoRec−DecaySamplinд , the cliff’s deltas are 0.165 and
0.184 for top-1000 dataset, and the cliff’s deltas are 0.204 and 0.232 for top-10000 dataset, which are
non-negligible.
These experimental results verify the importance of each of the components in our proposed

composite CoRec method.
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4.5.3 RQ3: Can CoRec mitigate the low-frequency word problem? Section 1 describes how CoRec
uses retrieval information to address the problem of low-frequency words. We performed experi-
ments on the two datasets mentioned above to show that the commit messages generated by our
model contain more low-frequency words. We compare our method (CoRec) with the original
attention encoder-decoder model (Basic model mentioned in Section 4.5.2), and perform word
frequency statistical analysis on the generated messages. First, we collect all the words in generated
messages. In order to determine the probability of these words appearing in the entire corpus, we
take the number of times these words appear in the training set as their frequency. Since we are
focusing on low-frequency vocabulary, then we divide these frequencies into 7 groups, e.g., 1, 2,
(2, 5], (5, 10], (10, 20], (20, 50] and (50,∞). In order to better display the results, we also calculate
the relative percentage of CoRec vs. Basic model for each group, where Increment = CoRec/Basic
model - 1.
Table 4 shows the statistical results for word frequency. As can be seen from the table, CoRec

clearly increases the amount of low-frequency words, such as words with frequencies 1, 2
and (2, 5]. For example, for the words of frequency 1, CoRec is 41.7% and 19.4% higher than Basic
model on top-1000 dataset and top-10000 dataset respectively. Please note that we do not claim
that all the low-frequency words added are the correctly generated words. Another phenomenon
is that the relative percentage decreases gradually with increasing frequency. This indicates that
for high-frequency vocabulary, our retrieval module has little influence on them. CoRec can still
capture important information for generating high-frequency vocabulary.

To further checkwhether CoRec can generate low-frequencywords correctly for the test commits,
we counted the frequency of all words in two datasets and selected the commits that contain low-
frequency words (word frequency <= 5) from the testing sets. The new commit sets from top-1000
dataset and top-10000 dataset are referred as low-freq-1000 and low-freq-10000. Then we run CoRec
on the two testing sets and the results are shown in Table 5.

From the table, we can see that CoRec performs better than the Basic model on both low-freq-1000
and low-freq-10000. Compared to the Basic model on low-freq-1000, the relative improvements
of CoRec are 15.8%, 20.7% and 9.7% w.r.t. BLEU, METEOR and ROUGE-L, respectively. As for
the low-freq-10000, CoRec outperforms Basic model by 9.1%, 7.1% and 5.8% in terms of BLEU,
METEOR and ROUGE-L, respectively. For the reason that the test commits are only the commits
that contain low-frequency words, the results indicate that our approach has better ability to put
the low-frequency words on the correct commits.
In summary, these results show that our proposed CoRec can address the low-frequency

word problem while generating commit messages.

4.5.4 RQ4: What is the effect of our model on exposure bias? We introduce the context-aware
model to eliminate exposure bias between training phase and testing phase. We analyze whether
our trained models are fully exposed to the conditions encountered during testing and what is the
effect on exposure bias . Section 3.1 describes how at the beginning of training, as the model is not
well trained, the value of p is close to 1. As the model converges gradually, p gradually decreases
and finally tends to 0. Hence, in our experimental settings, the maximum number of training steps
is set to be 100k and 400k for top-1000 dataset and top-10000 dataset respectively. In this way, the
value of p in Equation 7 will gradually change from 1 to 0 in our training settings. The training
process changes from a fully guided scheme towards a less guided scheme.
In Table 3, our model CoRec outperforms the CoRec−DecaySamplinд on both datasets. The

n-grams scores of our approach have been improved by 10.7%, 12.1%, 15.8% and 19.3% in terms of p1,
p2, p3 and p4 for top-1000 dataset. The corresponding improvements on top-10000 dataset are 5.8%,
6.9%, 8.0% and 8.6% in terms of p1, p2, p3 and p4 respectively. As indicated by the improvements of
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Fig. 6. The performance of CoRec under different parameter settings.

p3 and p4, the decay sampling mechanism does reduce the probability of consecutive word errors in
the generated commit message by making model aware of the previous alignment choices. When
we compare CoRec−Retr ieval and Basic model in Table 3, a similar phenomenon also appears. It
indicates that there are more ground truth words in the commit messages generated by approaches
with decay sampling mechanism. However, compare CoRec with CoRec−Retr ieval , although the
retrieval module brings improvement on the overall performance, the difference of n-grams scores
is not obvious. We then count the words in generated messages which hit the ground truth words
from the references, which we refer to as η. For the top-1000 dataset, the values of η are 5,867 and
5,493 for CoRec and CoRec−DecaySamplinд respectively. For the top-10000 dataset, the values of η
are 19,781 and 18,062 for CoRec and CoRec−DecaySamplinд respectively. The improvements are
(5867/5493) − 1 = 6.8% and (19781/18062) − 1 = 9.5%. With the help of decay sampling mechanism,
our approach has a better ability to predict the correct words. Even if the previous generated word
is wrong, CoRec has been trained to predict in this situation. We can see that the models gain the
ability to resolve errors that occur during testing.

4.6 Parameter Sensitivity
In this section, we study the effect of parameters on our proposed approach. The parameters
involved include the embedding size and the dimensions of hidden states in LSTM k , the number
of encoder layer and decoder layer l , and the training batch size B. We run our experiments on
the top-1000 dataset and Figure 6 shows the results. We only report the BLEU, METEOR and
ROUGE-L scores in the figure. In Figure 6(a), the BLEU, METEOR and ROUGE-L scores increase
when the dimension size grows from 64 to 1024. However, when k grows from 512 to 1024, only a
slight performance gain is observed. Considering the time cost, we fix the embedding size and the
dimensions of hidden states as k = 512 in this work. Figure 6(b) shows that the BLEU, METEOR
and ROUGE-L scores stay stable when the number of encoder layer and decoder layer varies from
1 to 3, and these scores decrease when we continue to increase the number of layers. We set the
number of encoder layer and decoder layer l to 2. Figure 6(c) shows that when the training batch
size is set to 32, the BLEU, METEOR and ROUGE-L scores reach the best values. As we continue to
increase the training batch size, these scores gradually decrease. In this work, we fix the training
batch size as 32.

5 HUMAN EVALUATION
Evaluation metrics we used in the experiments above calculate the textual similarity between
reference and generated messages. However, since the generated message is not always perfect, we
need to conduct a human evaluation to further evaluate CoRec’s usefulness in practice. We invited

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: May 2021.



17

Table 6. Mean of Relevance, Usefulness and Content-Adequacy of different commit messages

Relevance Usefulness Content-Adequacy

Reference message 4.2167 3.9833 3.7500

PtrGNCMsg 2.9533*** 2.5633*** 2.4433***

NNGen 2.8167*** 2.4567*** 2.3600***

CoRec 3.4100 3.0967 2.9800
***p-value<0.001

Table 7. The Fleiss Kappa values for the user study

Relevance Usefulness Content-Adequacy

Reference message 48.33% 47.33% 41.33%

PtrGNCMsg 38.67% 46.67% 42.33%

NNGen 52.67% 64.67% 62.67%

CoRec 50.33% 49.67% 57.33%

Fig. 7. Box plots of the Relevance, Usefulness and Content-Adequacy of different approaches, e.g., (A)
Reference message, (B) PtrGNCMsg, (C) NNGen, (D) CoRec.

6 Ph.D. students who major in computer science to participate in our study. None are co-authors of
this paper and all have industrial experience in Java programming ranging from 2 to 5 years.
We randomly choose 100 commits from the testing sets (50 from top-1000 dataset and 50 from

top-10000 dataset) and their commit messages generated by PtrGNCMsg, NNGen and CoRec
respectively. In order to prevent participants from being impatient when scoring because the
questionnaire is too long, participants were divided into two groups, scoring the commits from top-
1000 dataset and top-10000 dataset respectively. Each commit group is evaluated by 3 participants.
In our study, we asked participants a number of questions; each question first presents the code
changes of one commit, i.e., its diff, its reference message, and messages produced by PtrGNCMsg,
NNGen and CoRec respectively. The participants were allowed to search for information they
needed on the Internet.
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Note that participants do not know which message is the reference message nor from which
method each generated message comes from. The examples in our questionnaire are shuffled.
Similar with Xu et al. [67], each participant was asked to score the four commit messages from
three aspects, i.e., relevance, usefulness and content-adequacy. Relevance refers to how relevant
the commit message is to the diff. Some commit messages (like "update xxx.java") contain little
information even though they correctly describe the code changes in some ways. These commit
messages are of little value for developers to understand the intention behind the code changes.
Usefulness refers to how useful the commit message is for understanding the diff. Content-adequacy
refers to how comprehensive the commit message is. The score ranges from 1 to 5. Score 1 means
"irrelevant/useless/incomplete" and 5 means "highly relevant/useful/comprehensive". In this way,
the ground truth and the automatically-generated messages from different approaches are evaluated
in isolation.

Table 6 shows the mean of relevance, usefulness and content-adequacy scores of the ground truth
and the generated messages from different approaches, and Figure 7 presents in box plots these
scores of each commit message. We can see that compared to the baselines, CoRec achieves
the best performance in all three aspects. The mean scores of reference commit messages
are 4.2167, 3.9833 and 3.7500 respectively. This indicates that the quality of some of developers’
commit messages need to be improved. Although NNGen can achieve better performance than
PtrGNCMsg in automatic evaluation metrics (Section 4.5.1), the scores of NNGen in the three
aspects are comparable to or even slightly lower than PtrGNCMsg. The reason is that some commit
messages produced by NNGen and the ground truthmay have somewordsmatched but the semantic
relevance is low. This condition reflects the shortcoming of the use of automatic evaluation metrics.
Combining the advantages of retrieval-based and learning-based methods for commit message
generation, our approach CoRec gets scores of 3.4100, 3.0967 and 2.9800 in terms of relevance,
usefulness and content-adequacy, which is the closest to the reference message.

We also conducted a Wilcoxon signed-rank test [62] with a Bonferroni correction [4] to evaluate
whether the differences between CoRec and the two baselines is statistically significant. The
improvements of our approach over both NNGen and PtrGNCMsg are statistically significant on all
three aspects at the confidence level of 99.9%. This indicates that CoRec statistically significantly
improves the quality of the generated messages. We further use the Fleiss Kappa [17] to measure
the agreement between participants. Table 7 shows the results. From the table, we can see that
the Fleiss Kappa value of PtrGNCMsg for relevance indicates a fair agreement. The Fleiss Kappa
values of NNGen for Usefulness and Content-Adequacy indicate substantial agreement. Most of
the results in table 7 indicate a moderate agreement between participants.

In summary, our human evaluation shows that CoRec outperforms the state-of-the-art approach.

6 DEVELOPER FEEDBACK
To gain insights into whether our approach can help developers write well-commented changes,
we used our approach to generate commit messages for a real-world scenario and then invited
developers to participate in our survey. We further updated all of the top 10,000 repositories which
we describe in Section 4.1 and collected all the commits submitted between December 20, 2019 and
September 8, 2020. These commits are preprocessed according to the steps in Section 4.1. In the end
we collected 2,656 commits from different open source repositories submitted by 1,154 developers.
We then sent our survey to these developers and asked for their comments and suggestions about
our approach. Each developer received an email including the list of commits submitted by the
developer and the corresponding commit messages generated by our approach. Our survey includes
the following questions: 1) Are you satisfied with the commit messages generated by our tool?
2) Do you think that our tool can help you write commit messages when you submit code? 3)
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Table 8. Some comments from respondents

Comments

I think your tool would be useful as a auto-fill suggestion commit message tool–similar to how
Gmail does it when composing Emails. I would like it to help aid me in writing meaningful
commit messages by suggesting me related words.

Yes. It’s better than my original messages.
I think the tool is more valuable when I reviewing commits.

I’m satisfied with the generated commit messages.
I’d need to see a wide range of changes and commit messages to say for certain.
You should integrate with popular git clients (Source Tree, GitExtensions, and so on) in my opinion.

I give it at least 7 of 10 :) Yes I think your tool can be definitely
be useful specially as the baseline for more human tweaking. Hopefully your work can become integrated
into ‘git commit‘ command someday.

Not bad. Automatic generation of commit messages might be useful for automatic cleanups
(e.g. linters and the like) other automatic program transformations or automatic suggestion of
patches and pull requests. It might also be useful in scenarios where commits are rewritten anyway
(e.g. rebasing or migration from one VCS to another). For example, if you were migrating from SVN to
Git, you could have a tool that recognizes missing or useless commit messages and suggests better ones.

I think I prefer my messages.
Commit messages, especially on pull requests, are communication from one person to another.
I wouldn’t expect an ML project to guess what I was going to say with any accuracy.
Commit messages are a) human-to-human communication and b) best used to explain why something has
changed rather than what. Neither of those things are at all amenable to machine learning.

I think they were just as good as the poor msgs I provided. I am not sure these were good samples to test against.
There were other changes that could have been used for additional details that were not included by
my human commit nor the machine generated commit.
Probably, at least for some projects. I am not sure this would be useful in a more structured development
environment primarily because many of these msgs are based on the ticket descriptions.

Could you please give us some suggestions or comments for this tool? The participants could
provide "yes" or "no" to the questions 1 and 2. The third question is a free-form textual question.
We received 94 replies and the response rate is 8.1%, which is similar to some previous studies in
software engineering [11, 60, 61]. Some representative comments are listed in Table 8.

In summary after analysing all of the responses received, we have the following findings:

• 68% of the respondents were satisfied with the commit messages generated by our tool for
their commits.
• 73% of the respondents agreed or strongly agreed that our tool is helpful for writing commit
messages. Even though some of the respondents were not very satisfied with our generated
results, they still thought our tool was helpful to some extent.

Several respondents think that the generated commit messages hit some keywords, but their
fluency and semantics were problematic. Many respondents also ask for a wide range of code
changes and commit messages to investigate the performance of our tool further. Generating more
fluent and natural commit message is also to be the direction of our future efforts. As mentioned in
comment 6, a small number of respondents think that commit messages should communicate the
intent of the change to the reader, while they do not think a tool can deduce the purpose in the
general case.
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Although some respondents indicated that the commit messages we generated were not as good
as their own, they still expressed their hope that we can integrate this tool into IDE (Integrated
Development Environment) or Git GUI client (like the comments 3 and 4 in Table 8). They think
if the tool can be used as a suggestion for developers to give a draft commit message they can
then modify or rewrite when they commit code changes, it will help people write better commit
messages. As mentioned in comment 5, some respondents also suggested that our tool might
be useful for automatic cleanups (e.g. linters), automatic program transformations or automatic
suggestion of patches and pull requests.

This survey illustrates the promising usability of our tool in real-world development
scenarios. 73% of the developers responded think that the automated commit message generation
tool is useful and expect to use it in their daily development. Their suggestions also give us a lot of
inspiration and direction for future work.

7 DISCUSSION
7.1 Influence of Data Filtering
In our data processing, there are mainly two kinds of filtering: (1) filter noisy commits (2) filter
out commit messages that do not follow V-DO pattern. In previous work from Liu et al. [39],
the experimental results indicated that Jiang et al.’s dataset [25] contains a lot of noisy commits.
For example, noisy commits like "bump version xxx" or "ignore update xxx" often contain little
information. These commits are of little value and the messages can be generated through rule-based
methods. During data processing (see Section 4.1), we extend the patterns form Liu et al. [39] to filter
out the noisy commits (shown in Table 1). The purpose of V-DO filtering is to get relatively high
quality commit messages. In this way, the quality of messages we collect and train our approach
with will be higher. Although previous works from Jiang et al. [25] and Liu et al. [39] have studied
the influence of these low quality commit messages, the effects their removal has on CoRec’s
performance are not clear. In this section, we study the influence of these filtering on CoRec.

We refer to the dataset from Jiang et al. [25] which contains noisy commits as the noisy-top-1000.
For the commits from top 10,000 repositories in Github, we do not remove the noisy data during
the preprocessing process to make it more realistic. The dataset is re-splitted and 90% of these data
are selected as the training set. We refer to this new dataset as noisy-top-10000. Since we do not
have the original commits of Jiang et al.’s dataset without V-DO filtering, we only use the commits
without V-DO filtering from our top 10,000 repositories as the dataset. Other processes are the
same as described in Section 4.1. We refer to this new dataset as no-vdo-top-10000. Then we retrain
our approach and run the testing phase on these new datasets.

The experimental results are presented in Table 9. Comparing the third and fifth rows in Table 9,
the result shows the influence of V-DO filtering on Corec for our top-10000 dataset. If we do not
apply the V-DO filtering on our top-10000 dataset, the performance of Corec will decrease by 28%,
26% and 21% in terms of BLEU, METEOR and ROUGE-L, respectively. In order to obtain a set of
commit messages that are in a similar format, we apply the V-DO pattern. However, the removed
commit messages that do not follow the V-DO also include some commits which are difficult for
our approach to handle with.
From the table we can see that if we do not remove the noisy data in the dataset provided by

Jiang et al. [25], the performance of Corec will increase by 108%, 73% and 34% in terms of BLEU,
METEOR and ROUGE-L, respectively. For our top-10000 dataset, the existence of noisy data in the
dataset will improve the performance of Corec by 56%, 58% and 43% in terms of BLEU, METEOR
and ROUGE-L, respectively. The same as what has been reported by Liu et al. [39], the performance
of Corec declines by a large amount when the noisy commits are removed. It seems that these
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Table 9. The influence of noisy data on CoRec.

Datasets BLEU(%) p1(%) p2(%) p3(%) p4(%) METEOR(%) ROUGE-L(%)

top-1000 19.80 33.1 22.2 19.0 17.9 15.69 31.13

noisy-top-1000 41.15 50.2 43.3 43.1 45.0 27.07 41.57

top-10000 41.26 55.1 44.9 44.3 45.4 26.87 47.20

noisy-top-10000 64.30 73.6 67.8 67.5 68.3 42.40 67.41

no-vdo-top-10000 29.58 46.8 35.3 34.1 34.4 19.90 37.24
pn (n = 1,2,3,4) refers to the modified n-gram precision.

Table 10. Some examples of automatically-generated messages

Diff Generated messages

Case 1

— / dev / null
+++ b / cname

+ selenide . org

\no newline at end of file

Reference: added cname file for selenide . org

PtrGNCMsg: create cname

NNGen: added cname file

CoRec: added cname file for handling selenide . org

Case 2

— a / build . gradle
+++ b / build . gradle
wrapper {
}
ext {
- dropwizard = ’ 1 . 0 . 0 ’
+ dropwizard = ’ 1 . 0 . 2 ’
guice = ’ 4 . 1 . 0 ’
}

Reference: update dropwizard to 1 . 0 . 2

PtrGNCMsg: update support library

NNGen: update dw to 0 . 9 . 1

CoRec: update dropwizard 1 . 0 . 2

Case 3

— a /binding/src/main/java/ch/cyberduck/binding/
application/nsdatepicker.java
+++ b /binding/src/main/java/ch/cyberduck/binding/
application/nsdatepicker.java
public abstract class nsdatepicker extends nscontrol {
}
public abstract nsdate datevalue ( ) ;
+
+ public abstract void setdatevalue ( nsdate value ) ;
}

Reference: add setter .

PtrGNCMsg: add setdatevalue setdatevalue nsdate
nsdate nsdate nsdate value ) . . .

NNGen: added abstracttrackprovider <issue_id>( )

CoRec: add setter .

Case 4

— a /LeonidasExamples/project.properties
+++ b /LeonidasExamples/project.properties
# Project target .
target = android - 17
- android.library.reference.1 = ../ParticleSystemView
+ android.library.reference.1 = ../LeonidasLib

Reference: changing name of the lib

PtrGNCMsg: fixed project . properties

NNGen: add ABS as dependency to library ( fix # 559 )

CoRec: added project . properties to the last project

noisy commits are easy for our approach to generate and it makes little sense to learn and generate
these kinds of commit messages through learning-based methods. To mitigate the influence of
these noisy data, we combine the keywords and patterns to filter out noisy commits which contain
little information. We clean up our top-10000 dataset carefully and keep our experimental results as
far away from the influence of noise as much as possible.
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Table 11. The performance of CoRec on dataset split by project.

Dataset Methods BLEU(%) p1(%) p2(%) p3(%) p4(%) METEOR(%) ROUGE-L(%)

top-10000-sbp
PtrGNCMsg 15.34 31.3 16.1 12.8 11.9 14.25 29.93

NNGen 29.42 35.8 28.3 27.4 27.1 19.26 34.86

CoReC 32.87 44.8 35.7 35.7 37.6 21.66 39.24
pn (n = 1,2,3,4) refers to the modified n-gram precision.

7.2 Inter Project Performance of CoRec
LeClair et al. [33] reported that the randomly split datasets will significantly improve the BLEU
scores in code summarization task. This is because the training set and test set are likely to have
some similar commits from the same projects. This can inflate the BLEU score and give a misleading
performance indication the algorithms. In this subsection, we discuss an investigation into inter
project performance of CoRec and its baselines.

Different from common general practices to date, we randomly divide the collected projects into
training/validation/test sets. 90% of our top-10000 projects are randomly selected as the training
projects. The commits extracted from i.e. training projects are placed into the training set. We infer
this new dataset as top-10000-sbp. The CoRec and the baseline approaches are retrained and tested
with the top-10000-sbp dataset. The results of each approach are presented in Table 11.

Compared with the results of top-10000 from Section 4.5.1, we can see that all the approaches
perform better on the top-10000 dataset. For the top-10000-sbp dataset, the BLEU scores drop 38%,
18% and 20% in terms of PtrGNCMsg, NNGen and CoRec respectively. Nevertheless, CoRec still
performs better than the baseline approaches for all of the evaluation metrics. Since our approach
makes use of the similar commits in the training set, the decline in performance is predictable. The
experimental results are similar to the findings from LeClair et al. [33] when the dataset is split by
project. If trained on intra-project, our approach performs well when generating commit messages
for the same project. But for inter project commit message generation it performs much less well.

7.3 Strengths and Limitations of CoReC
The previous methods for automatically generating commit message from git diff fall into three
main categories, e.g., rule based, retrieval based and deep learning based. Although the state-of-the-
art method NNGen [39] has achieved good results on Jiang’s dataset [25], it will perform poorly if
there is no similar commit in the dataset. In recent years, Neural Machine Translation (NMT) has
been more often used to accomplish this task. However this NMT-based method is more inclined
to generate high-frequency words and ignore low-frequency words. In addition, the discrepancy
between training and testing, which we named exposure bias , still exits in NMT-based methods.
These two critical issues provides us the motivation for further research.

We propose the CoRec (Context-Aware Retrieval-based Deep Commit Message Generation) to
address the aforementioned limitations. We manually examined some examples from generated
messages to explain the better performance of CoRec. We randomly choose some generated commit
messages and selected four representative examples to show in the qualitative results (see Table 10).

In case 1, the reference commit message is "added cname file for selenide . org", which contains
the low-frequency word "selenide". The NMT-based method PtrGNCMsg prefers to capture high-
frequency words, which generates "create cname", but ignore the low-frequency words. However,
with the guide of retrieval module, CoRec generates "added cname file for handling selenide .
org", which takes into account both low-frequency and high-frequency words. Case 2 also shows
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the benefit of the retrieval module in CoRec. Obviously, for messages containing low-frequency
words, CoRec can significantly improve its generation quality. The existence of a decay sampling
mechanism enables our model to have the ability to predict the gold word even if the previous
prediction is wrong. With the help of our retrieval module, CoRec can handle the commits with
similar diff in our training set well. In many cases, the commit messages generated by CoRec are
exactly the same as the reference. Thus CoRec significantly improves the quality of the generated
commit message compared to baselines. However, there are still some commits (like case 4) which
are difficult for CoRec to deal with. Our proposed approach has the potential to focus on the wrong
content in diffs and thus generates low-quality messages.

Our approach has limitations. A major one is that CoRec can not deal with long diffs well, which
is also a major limitation of other learning based methods. We will continue our research in the
future to overcome this difficulty.

CoRec needs to spend extra time to search for retrieval commits and this extra time will increase
as the data set grows. However, due to the fast computation of the cosine similarity, CoRec only
takes 10ms on average for retrieving a similar commit. The time consumption mainly lies in the
training process of our approach. It takes 13 hours and 5 minutes to train CoRec on the top-10000
dataset. For the top-1000 dataset, the training time of CoRec is 2 hours and 57 minutes. However,
we can train our model offline in advance, so the time consumption of testing is vital. In the testing
phase, the average time taken to generate a message for a new coming commit is 15ms, which is
very acceptable for practical usage.

In addition, retrieval commits will re-weight the probability distributions generated by our
approach and potentially lead to ungrammatical sentences. In order to investigate how often does
CoRec produce an ungrammatical message because of retrieval commits. We randomly sample
200 test commits (100 commits from top-1000 test set and 100 commits from top-10000 test set)
and use CoRec and CoRec−Retr ieval to generate commit messages. Then we extract the messages
from the samples that two approaches generate differently (17 from the top-1000 test dataset and
23 from the top-10000 test dataset) and ask three participants to judge whether the messages are
grammatically correct. Each of the participants passed CET6 (College English Test Band-6 [3]) and
got a score of more than 500 points. On average, there are only 3.0 commit messages for top-1000
dataset and 2.0 commit messages for top-10000 dataset that change from grammatically correct to
grammatically incorrect. Although there is influence from the retrieval commits, the frequency
that CoRec generates ungrammatical messages because of this re-weighting is very low.
Another limitation is that CoRec needs extra memory for retrieval information calculation at

testing time, which may cause excessive load on a GPU-based platform. To address this we suggest
reducing the mini-batch size appropriately in the testing phase. We still need to conduct further
user studies on the appropriateness of CoRec in industrial settings.

7.4 Threats to Validity
7.4.1 Internal Validity. Threats to internal validity are related to potential errors in the code
implementation and experimental settings. We directly used the public code of PtrGNCMsg [37],
and set max-cover-rate to 0.9 according to the paper. We first performed experiments on Jiang’s
dataset [25], and the results are consistent with those in their paper. However, we are not sure
whether this max-cover-rate is suitable for our experimental datasets.

7.4.2 External Validity. The main external validity threat relates to the quality and generalizability
of our dataset. The first key threat to validity is that the retrieval commits may not always have high
similarities. Although we take into account the similarity in Equation 14, when the dataset is small,
the impact of this factor will be amplified. Threats to external validity relate to the generalizability
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of our results. The dataset from Jiang et al. [25] only includes 1k java projects from Github. To
mitigate this threat, we have provided a large-scale dataset which is 10 times larger than Jiang’s
dataset. The way the dataset was constructed is also related to the threat. Previous work from
LeClair et al. [33] reports that the BLEU scores are much higher for randomly split datasets than
for datasets split by project. We investigate the influence in Section 7.2. Although the BLEU scores
have dropped, our approach still outperforms the baselines when the dataset is split by project.
Our dataset is constructed from Java repositories in Github. Java is a popular programming

language and is used in a large amount of projects. We believe that our results will generalize to
other programming languages but have not yet tested this. In the future, we plan to collect even
more commits from more repositories and to try to extend our approach to other programming
languages.

The second key threat to external validity is that we only use the first sentences in the commit
messages as the target, though this is the same as used in other approaches [25][39][37]. However,
many developers usually summarize the entire commit message in the first sentence. Similarly, Gu
et al. [20] use the first sentence of JavaDoc as the summary of the API comments.

The third key threat to external validity relates to the filtering of our dataset. When we construct
the dataset, our processing process is similar to that of previous works [25][39][37]; we all filter
out a large amount of commits to ensure the quality of the generated messages. Since the existing
messages have different writing styles and some of the messages are poorly written, we use the
V-DO pattern to obtain a set of relatively good-quality commit messages. We only filter according to
the quality of commit messages submitted by developers, and there is no restriction on the type of
code changes. The noisy commits are removed because they convey little valuable information and
are easy to generate. The influence of the filtering on our approach has been reported in Section 7.1.

7.4.3 Construct Validity. The construct validity concerns the relation between theory and observa-
tion. In this study, one threat to validity relates to our user study in Section 5. Although we have
minimized the number of commits each participant needs to evaluate to prevent participants from
impatiently scoring, we cannot guarantee that the scores of all participants were actually carefully
considered. In addition, each participant’s evaluation criteria is also a variable factor. Ideally we
need further evaluators and with greater experience in future studies.
Another threat relates to suitability of our evaluation metrics. To investigate the effectiveness

of our approach and baselines, we use BLEU, METEOR and ROUGE-L in our experiments. These
metrics are classical evaluation measures in Neural Machine Translation. Except for some previous
works in commit message generation [25, 37, 39, 68], some similar tasks in software engineering also
use these evaluation metrics to measure the performance, e.g. code summarization [22, 23, 32, 70]
and pull request generation [40].

8 RELATEDWORK
We describe key related work on commit message generation, neural machine translation, and
exposure bias.
Commit Message Generation. A number of techniques have been proposed for automatic
commit message generation. These can be divided into three categories:
Rule-based: DeltaDoc [10] and ChangeScribe [36][13] filled a pre-defined template to generate

the commit messages with extracted information. Shen et al. [55] extracted code changes based
on pre-defined types of changed methods and constrained the length of the generated message
by removing repeated information in the changes. However, these approaches can only deal with
pre-defined types of code changes. Limitations are that they can not cover some cases and explain
the reason or purpose behind code changes.
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Retrieval-based: The commit messages generated by retrieval-based methods [39][24] are rel-
atively more readable and sometimes contain low-frequency words like method names. Liu et
al. [39] and Huang et al. [24] utilized Information Retrieval (IR) to reuse the commit messages of
similar changes. Specifically, Huang et al. [24] used syntactic similarity and semantic similarity
between their changed code fragments to measure the similarity between two commits. Liu et
al. [39] generated concise commit messages using the nearest neighbor algorithm. Although Liu et
al.’s method has achieved very good results in terms of effectiveness and efficiency, retrieval based
approaches cannot output accurate messages when there are no similar diffs in the dataset. Thus
retrieval-based methods heavily rely on whether the dataset is broad enough.
Learning-based: In recent years, deep learning models have been used to translate the git diffs

into commit messages [42][25][41][37][38]. For example, Jiang et al. [25] and Loyola et al. [42][41]
used attentional encoder-decoder model to generate messages. Liu et al. [37] proposed a pointer-
generator network PtrGNCMsg to address out-of-vocabulary (OOV) issue. The above approaches
all directly use git diffs which include both code changes and non-code changes. Xu et al. [68]
proposed jointly modeling code structure and semantics for better performance. The proposed
approach CODISUM keeps only the source code in the diff files as input.
Although the results of these approaches are promising, they still suffer from two restrictions:

low-frequency vocabulary problem and exposure bias issue. Our method take advantages of both
retrieval-based methods and NMT-based methods to address the low-frequency vocabulary problem.
We further propose use of a decay samplingmechanism tomitigate exposure bias . These innovations
make our proposed method CoRec perform better than the state-of-the-art work.
Retrieval-guidedNeuralMachine Translation. In the Natural Language Processing (NLP) com-
munity, retrieval-guided neural machine translation have been proposed in [16][34][19][69][70].

Amin et al. [16] used retrieved pairs to fine-tune the model and introduced a dynamic method to
learn more efficiently from the retrieved set. Gu et al. [19] proposed search engine guided neural
machine translation (SEG-NMT). SEG-NMT needs additional encoders for the retrieved sentences
and will bring high overhead for calculating in the training phase. Different from their work, our
proposed approach does not need additional encoders but reuses the trained model to retrieve
similar diffs.

Zhang et al. [69] extracted translation pieces. These refer to n-grams occurring in the retrieved
target sentences that also match words that overlap between the input and retrieved source
sentences. However, their method is only suitable for datasets where the source sentence and target
sentence have the property of word alignment. In the commit message generation task, there are few
direct correspondences between the words of git diff and commit messages. Similar to our approach,
Zhang et al. [70] take advantages of both neural and retrieval-based techniques to automatically
perform source code summarization. However, their approach only trains a traditional attentional
encoder-decoder model without considering the gap (exposure bias) between training phase and
testing phase. We employ a decay sampling mechanism [71][9] when training the model to mitigate
this issue and the experimental results (as shown in Section 4.5.2) have shown its effectiveness.
Exposure Bias. Ranzato et al. [52] first pointed out the exposure bias problem i.e. that using
teacher forcing means the model has never been trained on its own errors. In order to address this
issue, Bengio et al. [9] proposed a scheduled sampling for sequence-to-sequence RNN models that
randomly pick the gold target or generated word as the input of decoder embedding at training.
Goyal et al. [18] proposed a novel approach based on scheduled sampling that uses a differentiable
approximation of previous predictions inside the training objective by incorporating a continuous
relaxation of argmax. Zhang et al. [71] selected oracle words from predicted words. This selected not
only with a word-by-word greedy search but also with a sentence-level search, and then sampled
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as context from the oracle words and ground truth words. By contrast, our approach focuses on
the previous alignment choices rather than the predicted words and our sampling mechanism can
adapt to different sizes of datasets.

Other studies have suggested that sentence-level metrics, e.g., BLEU, can bring some flexibility to
the generation [52][56][65]. Ranzato et al. [52] borrowed ideas from REINFORCE algorithm [63] and
scheduled sampling [9]. This approach avoids exposure bias by using model predictions at training
time and utilizes a sequence level loss to optimize results. Similarly, beam search optimization [65]
and Minimum Risk Training (MRT) [56] also directly optimize the evaluation metric.

9 CONCLUSION
Automatic commit message generation is helpful to aid developers in writing well-commented
changes. We proposed a novel approach CoRec (Context-Aware Retrieval-based Deep Commit
Message Generation). We build upon the machine translation model, and use the most similar
commit retrieved to enhance the performance of commit message generation. Furthermore, we
introduce a decay sampling mechanism to make the model fully exposed to the circumstance at
inference, which mitigates the exposure bias problem. The experimental results demonstrate that
CoRec significantly outperforms state-of-the-art approaches in commit message generation. To
the issue of no large-scale dataset for commit message generation analysis, we built a well-cleaned
dataset which includes commits extracted from 10,000 repositories in Github. We have made this
dataset publicly available for community research.

In the future, we plan to incorporate additional information like bug reports and code structure
analysis to further improve automated commit message generation.
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