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Software developers have heavily used online question and answer platforms to seek help to solve their
technical problems. However, a major problem with these technical Q&A sites is "answer hungriness" i.e.,
a large number of questions remain unanswered or unresolved, and users have to wait for a long time or
painstakingly go through the provided answers with various levels of quality. To alleviate this time-consuming
problem, we propose a novel DeepAns neural network-based approach to identify the most relevant answer
among a set of answer candidates. Our approach follows a three-stage process: question boosting, label
establishment, and answer recommendation. Given a post, we first generate a clarifying question as a way of
question boosting. We automatically establish the positive, neutral+, neutral− and negative training samples via
label establishment. When it comes to answer recommendation, we sort answer candidates by the matching
scores calculated by our neural network-based model. To evaluate the performance of our proposed model,
we conducted a large scale evaluation on four datasets, collected from the real world technical Q&A sites (i.e.,
Ask Ubuntu, Super User, Stack Overflow Python and Stack Overflow Java). Our experimental results show
that our approach significantly outperforms several state-of-the-art baselines in automatic evaluation. We also
conducted a user study with 50 solved/unanswered/unresolved questions. The user study results demonstrate
that our approach is effective in solving the answer hungry problem by recommending the most relevant
answers from historical archives.
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1 INTRODUCTION
The past decade has witnessed significant social and technical value of Question and Answer
(Q&A) platforms, such as Yahoo! Answers1, Quora2, and StackExchange3. These Q&A websites
have become one of the most important user-generated-content (UGC) portals. For example, on
the Stack Exchange forums, more than 17 million questions have been asked so far, and more than
11 million pages of these forums are visited daily by users. To keep up with the fast-paced software
development process, the technical Q&A platforms have been heavily used by software developers
as a popular way to seek information and support via the internet.

StackExchange is a network of online question and answer websites, where each website focuses
on a specific topic, such as academia, Ubuntu operating system, latex, etc. There are a lot of
technical Q&A sites which are heavily used by developers, such as Stack Overflow (with a focus on
programming-related questions), Ask Ubuntu (with a focus on Ubuntu operating system), Super
User (with a focus on computer software and hardware), and Server Fault (with a focus on servers
and networks). These Q&A websites allow users to post questions/answers and search for relevant
questions and answers. Moreover, if a post is not clear/informative, users routinely provide useful
comments to improve the post. Fig. 1 shows an example of an initial post and its associated question
comment in Ask Ubuntu Q&A site. By providing the question comment to the original post, it can
assist potential helpers to write high quality answers since the question is more informative.

In spite of their success and active user participation, the phenomenon of being "answer hungry"
is still one of the biggest issues within these Q&A platforms. This concept means that a very large
number of questions posted remain unanswered and/or unresolved. According to our empirical
study in different technical Q&A sites, Ask Ubuntu4 and Super User5, and Stack Overflow6. we
found that (1) developers often have to wait a long time, spanning from days to even many weeks,
before getting the first answer to their questions. Moreover, around 20% of the questions in Ask
Ubuntu and Super User do not receive any answer at all and leave the askers unsatisfied; and (2)
even with provided answers, about 44% questions in Ask Ubuntu and 39% questions in Super User
are still unresolved, i.e., the question asker does not mark any answer as the accepted solution
to their post. In such a case, information seekers have to painstakingly go through the provided
answers of various quality with no certainty that a valid answer has been provided.
In this work, we aim to address this answer hungry phenomenon by recommending the most

relevant answer or the best answer for an unanswered or unresolved question by searching from
historical QA pairs. We refer to this problem as relevant answer recommendation. We propose a
deep learning based approach we name DeepAns, which consists of three stages: question boosting,
label establishment and answer recommendation. Given a post, our first step is to generate useful
clarifying questions via a trained sequence-to-sequence model. The clarifying question is then
appended to the original post as a way of question boosting, which can help eliminate the isolation
between question and answers. Then, in the label establishment phase, for each enriched question,
we pair it with its corresponding answers and automatically label the QA pair as positive, neutral+,
neutral− and negative samples by leveraging four heuristic rules. In the answer recommendation
phase, given a question q and an answer candidate ai , our goal is calculating the matching degree of
the ⟨q, ai ⟩ pair. We formulate this problem as a four-category classification problem (i.e., a question
and answer pair can be positive, neutral+, neutral−, or negative related). We propose a weakly
1https://answers.yahoo.com/
2https://www.quora.com/
3https://stackexchange.com
4https://askubuntu.com/
5https://superuser.com/
6https://stackoverflow.com/
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Fig. 1. Example Post on Askubuntu

supervised neural network that can be trained with the aforementioned four kinds of training
samples.
The key usage scenarios of DeepAns are as follows: (1) for unresolved questions which do not

have an asker-accepted answer, developers can use DeepAns to recommend the best answers; and
(2) for unanswered questions, developers can use DeepAns to get the most relevant answers by
mining answers to other related questions.
To evaluate the performance of our proposed approach, we conducted comprehensive exper-

iments with four datasets, collected from the technical Q&A sites Ask Ubuntu, Super User and
Stack Overflow respectively. The large-scale automatic evaluation results suggest that our model
outperforms a collection of state-of-the-art baselines by a large margin. For human evaluation, we
asked 5 domain experts for their feedback on our generated clarifying questions and answers. Our
user study results further demonstrate the effectiveness and superiority of our approach in solving
unanswered/unresolved questions. In summary, this paper makes the following contributions:

• Previous studies neglect the value of interactions between the question asker and the potential
helper. We argue that a clarifying question between the question and answers is an important
aspect of judging the relevance and usefulness of the QA pair. Therefore, we train a sequence-
to-sequence model to generate useful clarifying questions for a given post, which can fill the
lexical gap between the questions and answers. To the best of our knowledge, this is the first
successful application of generating clarifying questions for technical Q&A sites.
• We present a novel method to constructing positive, neutral+, neutral−, negative training
samples via four heuristic rules, which can greatly save the time consuming and labor
intensive labeling process.
• We develop a weakly supervised neural network model for the answer recommendation
task. For any question answer pairs, we fit the QA pair into our model to calculate the
matching score between them; the higher matching score is estimated by our model, the
better chance the answer will be selected as the best answer. In particular, the Q&A sites can
employ our approach as a preliminary step towards marking the potential solution for the
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unanswered/unresolved question. This can avoid unnecessary time spent by developers to
browse questions without an accepted solution.
• Both our quantitative evaluation and user study show that DeepAns can help developers find
relevant tehnical question answers more accurately, compared with state-of-the-art baselines.
We have released the source code of DeepAns and the dataset7 of our study to help other
researchers replicate and extend our study.

The rest of the paper is organized as follows. Section 2 presents our empirical study of answer
hungry problem in technical Q&A sites. Section 3 presents the details of our approach to identifying
the most relevant answers. Section 4 presents the experimental set up and evaluation metrics.
Section 5 presents the results of our approach on automatic evaluation. Section 6 presents the
results of our approach on human evaluation. Section 7 discusses the strength of our approach and
the threats to validity in our study. Section 8 presents key related work and techniques of this work.
Section 9 concludes the paper with possible future work.

2 MOTIVATION
2.1 Answer Hungry Q&A Site Phenomenon
Despite of – or perhaps even because of – the success of technical Q&A sites, the answer hungry
problem still widely exists in these online forums. We wanted to find out the degree of the problem
for technical Q&A sites. To do this we quantitatively analyzed the prevalence of this answer hungry
issue in real world technical Q&A sites (i.e., Ask Ubuntu, Super User and Stack Overflow). Since it
is too expensive to run the empirical study on all the Stack Overflow dataset, we only focus on
Python and Java related programming language questions in Stack Overflow for our experiment,
which refer to SO (Python) and SO (Java) respectively in this study. The following two metrics are
used in our experiment: (1) the proportion of questions that remain unanswered and/or unresolved
within these technical Q&A sites, and (2) the time interval between the posting of one answer and
its corresponding question.
To investigate the proportion of the unanswered and unresolved questions, we first counted

the number of questions that have received at least one answer, and refer to these questions as
Answered Questions. Questions not receiving any answers are referred to as Unanswered Questions.
For those Answered Questions, we further divided them into two groups of Resolved Questions and
Unresolved Questions based on whether any answer within the question thread has been marked or
not as the accepted answer by the asker. Then, we empirically studied the average waiting time
measured from the time of question creation to answer posting. We also calculated the average
time interval for accepting an answer, which is the time difference between the time a question
is created and the time an answer post is accepted. Table 1 presents the statistical results of our
collected data8. From the table, we have the following observations:
(1) A large proportion of questions do not receive any answers in these technical Q&A sites.

Consider Ask Ubuntu and Super User as examples – around 22% questions in Ask Ubuntu
and 19% questions in Super User do not get any response since the time questions have been
created, leaving the askers unsatisfied.

(2) A large amount of questions are still unresolved. For instance, 31.3% questions in SO (Python)
and 35.4% questions in SO(Java) remain to be unresolved. This phenomenon is probably
caused by the following reasons: (a) no good answer was provided within the current question
thread, (b) even provided with good answers, it is common for the less experienced users to
forget marking a potential answer as a solution.

7https://github.com/beyondacm/DeepAns
8For duplicated questions, we only keep the master ones, and remove the others.
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Table 1. Answer Hungry Statistics

Ask Ubuntu

# Questions 315,924
# Unanswered Questions 69,528
# Resolved Questions 106,301
# Unresolved Questions 140,095
Avg Waiting Time 135.75 (days)
Avg Accepting Time 18.63 (days)

Super User

# Questions 380,940
# Unanswered Questions 73,584
# Resolved Questions 160,200
# Unresolved Questions 147,156
Avg Waiting Time 173.03 (days)
Avg Accepting Time 25.69 (days)

SO (Python)

# Questions 1,236,748
# Unanswered Questions 175,859
# Resolved Questions 674,360
# Unresolved Questions 386,529
Avg Waiting Time 103.97 (days)
Avg Accepting Time 7.78 (days)

SO (Java)

# Questions 1,581,814
# Unanswered Questions 213,963
# Resolved Questions 808,040
# Unresolved Questions 559,811
Avg Waiting Time 100.52 (days)
Avg Accepting Time 8.52 (days)

(3) Developers usually have to wait a long time before getting answers to their questions. It
takes on average more than 135 days and 173 days to receive an answer in Ask Ubuntu and
Super User sites respectively. The average time to accept an answer is much shorter, which
are 18 and 25 days respectively. This further justifies our assumption that users may often
forget to mark their accepted answers.

(4) The number of questions posted on Stack Overflow far outnumber the questions posted
on Ask Ubuntu and Super User. At the same time, the ratio of the resolved questions in
Stack Overflow are also higher than the other two technical Q&A sites. For instance, 54.5%
questions in SO (Python) were resolved while the same number in Ask Ubuntu was 33.6%.
This reflects that, compared with other technical Q&A sites, Stack Overflow is more popular
and more frequently used by the information seekers.

In summary, the answer hungry phenomenon widely exists and has been one of the biggest
challenges in technical Q&A forums.

2.2 ClarifyingQuestions in Technical Q&A Sites
Different from general Q&A sites, the comments within technical Q&A sites often include clarifying
questions. In technical Q&A sites, the experts often ask clarifying questions to comments of a
post so that they can understand the problem and help the one posting the question. We define
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a “clarifying question” as a question in comments of a post that inquires of missing information
for the given post. We wanted to empirically study the proportion and usefulness of clarifying
questions in technical Q&A sites.

To investigate the proportion of the clarifying questions, we counted the number of comments
on the questions as well as the number of comments containing clarifying questions. We extracted
the clarifying questions as follows: We first constructed a Question Comment Set by extracting
all the comments on the questions, removing the comments on the answers. Following that, for
each comment in the Question Comment Set, we adopted sentence tokenization method from the
NLTK toolkit [6] to break comment into multiple sentences. We then used the word tokenization
method to separate each sentence into a list of tokens and symbols. If the extracted tokens contain
the question mark token “?”, we truncated the sentence till its question mark “?” to retrieve the
question part of the comment as the clarifying question. If there are multiple clarification questions
within the same comment, we kept them as separate clarifying questions. After that, we removed
clarifying questions which are more than 20 words. The results are summarized in Table 2.
A clarifying question is useful if it helps in getting an answer to a specific question and/or

reducing the waiting time. Imagine a scenario that Bob is a software developer who is seeking
help in technical Q&A sites, he posts a question on these technical Q&A forums but the question
remains unanswered for sometime. Following this, a clarifying question gets asked on the post and
then Bob gets an answer. Such a user scenario can help to demonstrate the usefulness of clarifying
questions. We estimated the usefulness by calculating the probability of a post getting answered
with and without a clarifying question. The data were collected using the following steps:

(1) For a given question post, we removed it if the creator of the post responded to his or her
own questions. There are around 10% of the posts being answered by the original question
author in these CQA forums. For example, 39,811 and 48,503 questions were removed from
the Ask Ubuntu and Super User, while 110,767 and 154,065 questions were removed from the
SO (Python) and SO (Java) dataset respectively.

(2) Considering a question may not have enough time to receive answers if it is posted near the
creation date of the data dump, we also removed the unanswered post if it is close (within
7 days) to the release date of the data dump. Since the data dump we used was created on
September 5, 2019, we removed the unanswered questions posted after August 25, 2019. This
results in 521 and 982 unanswered questions were removed from Ask Ubuntu and Super User,
while 2,093 and 1,549 unanswered questions were removed from the SO (Python) and SO
(Java) dataset respectively.

(3) For a given clarifying question, we removed it from the candidate list if the clarifying question
is posted by the same user of the original question. For such a case, 8% of the clarifying
questions were deleted from Ask Ubuntu and Super User, and 12% of the clarifying questions
were deleted from SO (Python) and SO (Java) respectively.

(4) Considering a clarification question is helpful only if it was posted before the first answer
provided on the thread, we checked the creation date of the clarification question as well
as the first answer on the thread, and deleted all the clarification questions posted after the
first answers. For example, 12,451 and 18,430 clarification questions were deleted from Ask
Ubuntu and Super User, while 54,009 and 82,700 clarification questions were deleted from SO
(Python) and SO(Java) dataset respectively.

Finally, we calculated the probabilities of a question receiving answers with and without a clarifying
question. The probabilities are defined as follows:
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Table 2. ClarifyingQuestions Statistics

Ask Ubuntu

# Question Comments 188,920
# Clarifying Questions 72,359

Pr(A|CQ) 18.1%
Pr
(
A|CQ

)
14.8%

Super User

# Question Comments 237,668
# Clarifying Questions 96,296

Pr(A|CQ) 16.2%
Pr
(
A|CQ

)
12.3%

SO (Python)

# Questions Comments 766,490
# Clarifying Questions 329,768

Pr(A|CQ) 8.4%
Pr
(
A|CQ

)
7.8%

SO (Java)

# Questions Comments 1,032,176
# Clarifying Questions 467,772

Pr(A|CQ) 8.1%
Pr
(
A|CQ

)
7.7%

P (A|CQ) =
count (A|CQ)

count (A|CQ) + count
(
A|CQ

) (1)

P
(
A|CQ

)
=

count
(
A|CQ

)
count

(
A|CQ

)
+ count

(
A|CQ

) (2)

where (A|CQ) and
(
A|CQ

)
stands for answered posts with and without a clarifying question

respectively. Similarly,
(
A|CQ

)
and

(
A|CQ

)
stands for unanswered posts with and without a

clarifying question respectively. The results are summarized in Table 2. From the table we have the
following observations:
(1) In technical Q&A sites, a large number of comments on questions include clarifying questions.

Since our method to extract clarifying questions is rather intuitive, we further sampled 100
clarifying questions from our dataset to do a manual analysis. By manually checking these
clarifying questions, we found that 91% of the clarifying questions are positive clarifying
questions. The positive clarifying questions often ask more information about the original
post, such as “which version of ubuntu are you using?”, and/or provide potential solutions to
the original post, such as “do you use gnome or kde?”. Only 9% of the clarifying questions
are negative clarifying questions. The negative clarifying questions are often noisy and/or do
not appear to provide any useful information for the original post, such as “did you resolve
this?”. These results show that a large proportion of clarifying questions are meaningful and
informative.

(2) The likelihood of a post getting an answer with a clarifying question is higher than the
likelihood of a post getting an answer without a clarifying question. For example in Ask
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Ubuntu, without a clarifying question, the probability of a question post to receive answers
dropped from 18.1% to 14.8%. This further justifies our assumption that the clarifying questions
are helpful in improving the quality of the original post, hence increasing the chance of a
question post receiving answers. This is why we employ clarifying questions to boost the
original question post in our study.

In summary, clarifying questions appear frequently in technical Q&A sites and can help in improving
the original question post and increasing the likelihood of questions to receive answers.

In this paper, we aim to invent a new model to not only help developers identify the best answers
from a set of candidate answers when they perform QA search activities online, but also recommend
the most relevant answers (given to other questions) when they initially post a question online.
Mathematically, let q be the unanswered or unresolved question, let (a1,a2, ...,aN ) be a set of
answer candidates, our task is defined as finding the most relevant answer a∗i (i = 1, 2, 3, ...N ), such
that:

a∗ = arдmaxaiP(Accept|⟨q,ai ⟩) (3)
P(Accept|⟨q,ai ⟩) corresponds to the probability ai to be accepted given a QA pair ⟨q,ai ⟩.

3 OUR APPROACH
We present our approach named DeepAns, which ranks candidate answers from a relevant answer
pool and recommends the most relevant answer to developers. In general, our model follows a
three-stage process: Question Boosting, Label Establishment, and Answer Recommendation. Particu-
larly, in the question boosting phase, DeepAns uses an attentional sequence-to-sequence recurrent
neural network [46] to generate possible clarifying questions for a given post. These generated
questions are appended to the original post as a way of question boosting. Then DeepAns auto-
matically constructs positive, neutral+, neutral− and negative training samples for each question
and answer pair via four heuristic rules. In the answer recommendation phase, DeepAns trains
another convolutional neural network to calculate the matching score between a given question
and a candidate answer, the higher a similarity score is estimated, the more probable the answer
will be selected as the best answer.

The underlying principle of applying the recurrent networks for the question boosting task
is that compared with CNN neural networks, RNN architectures are dedicated sequence models,
and this family of architectures has gained tremendous popularity to prominent applications, e.g.,
machine translation [5, 46]. For the answer recommendation task, we select the convolutional
networks. Theoretically, we could also employ the recurrent networks for answer recommendation.
However, due to the fact that computing score for each answer in the answer candidate pool is
time-consuming, CNN architecture has better performance, lower perplexity, and more importantly,
it runs much faster [12, 32] than RNN architecture for text encoding tasks, i.e., we can process all
time steps in parallel via convolutional networks in both training and testing processes.

3.1 Question Boosting
The task of question boosting is to automatically generate clarifying questions from the title of
an initial post. This can be formulated as a sequence-to-sequence learning problem. Given Q is
a sequence of words within the question title of an initial post, our target is to generate a useful
clarifying question CQ, which is relevant, syntactically and semantically correct. To be more
specific, the goal is to train a model θ using ⟨q, cq⟩ pairs such that the probability Pθ (CQ|Q) is
maximized over the given training dataset. Mathematically, this query boosting task is defined as
finding y, such that:

y = arдmaxCQPθ (CQ|Q) (4)
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Fig. 2. Question boosting process

Pθ (CQ|Q) can be seen as the conditional log-likelihood of the clarification question CQ given the
input post Q. The encoder-decoder architecture has been used in addressing such a problem. We
demonstrate an example of the question boosting process in Fig 2. The original post title “error
loading update manager ?” is fed into the encoder, and the clarifying question “do you change
server location ?” is the decoder target output.

3.1.1 Encoder. The sequence of words within a post title is fed sequentially into the encoder, which
generates a sequence of hidden states. Our encoder is a two-layer bidirectional LSTM network,

−−→
fwt =

−−−−−→
LSTM2

(
xt ,
−−−→
ht−1

)
←−−
bwt =

←−−−−−
LSTM2

(
xt ,
←−−−
ht−1

)
where xt is the given input word token at time step t , and

−→
ht and

←−
ht are the hidden states at time

step t for the forward pass and backward pass respectively. The hidden states (from the forward and
backward pass) of the last layer of the encoder are concatenated to form a state s as s = [

−−→
fwt ;
←−−
bwt ].

3.1.2 Decoder. Decoder is singe layer LSTM network, initialized with the state s as s = [
−−→
fwt ;
←−−
bwt ].

Let qwordt be the target word at time stamp t of the clarifying question. During training, at each
time step t the decoder takes as input the embedding vector yt−1 of the previous word qwordt−1
and the previous state st−1, and concatenates them to produce the input of the LSTM network. The
output of the LSTM network is regarded as the decoder hidden state st , as follows:

st = LSTM1 (yt−1, st−1) (5)

The decoder produces one symbol at a time and stops when the END symbol is emitted. The only
change with the decoder at testing time is that it uses output from the previous word emitted by
the decoder in place ofwordt−1(since there is no access to a ground truth then).

3.1.3 Attention Mechanism. To effectively align the target words with the source words, we model
the attention [5] distribution over words in the target sequence. We calculate the attention (ati )
over the ith input token as :

eti = v
t tanh (Wehhi +Wshst + batt ) (6)
ati = softmax

(
eti
)

(7)
Herevt ,Wsh and batt are model parameters to be learned, and hi is the concatenation of forward

and backward hidden states of source-code encoder. We use this attention ati to generate the context
vector c∗t as the weighted sum of encoder hidden states :

c∗t =
∑

i=1, .., |x |

ati hi (8)
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Fig. 3. Label Establishing Process

We further use the c∗t vector to obtain a probability distribution over the words in the vocabulary
as follows,

P = softmax
(
Wv [st , c

∗
t ] + bv

)
(9)

whereWv andbv are model parameters. Thus during decoding, the probability of a word is P(qword).
During the training process for each word at each timestamp, the loss associated with the generated
question is :

Loss = −
1
T

T∑
t=0

loдP(qwordt ) (10)

Once the model is trained, we do inference using beam search [19] and append the generated
clarifying question to the original post title. The beam search is parameterized by the possible paths
number k . The inference process stops when the model generates the END token, which stands for
the end of the sentence.

3.2 Label Establishment
According to our empirical study results from Section 2, the answer hungry phenomenon widely
exists in technical Q&A forums, i.e. only a small proportion of questions have an “resolved” answer,
while many others remain unanswered and/or unresolved. Due to the reason of professionality of
technical questions, only the experts with specific knowledge are qualified to evaluate the matching
degree between a question and an answer. Therefore it is very hard to find such annotators and/or
the creation of training sets requires a substantial manual effort. To address such a problem, We
propose a novel scheme to automatically labeling each QA pair as positive, neutral+, neutral−, and
negative samples. Fig 3 shows an example of our labeling process. We propose four heuristic rules
to label the QA pairs:
• Positive samples: for a given question Qi , we pair it with its marked "best" answer (if it has
one) Ai1, and label this qa pair as Positive.
• Neutral+ samples: for a given questionQi , we pair it with its non-best answer (answers within
the same question thread, except the one marked as the best answer), and label this qa pair
as Neutral+.
• Neutral− samples: for a given question Qi , we randomly select one answer Aj from questions
similar to it, then label this question-answer pair as Neutral−.
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Fig. 4. Overall architecture of the answer recommendation model.

• Negative samples: for a given question Qi , we pair it with a randomly selected answer Ak
from non-similar questions and label this QA pair as Negative.

Since we are recommending answers from candidate answers of questions relevant to the query
question, if the retrieved questions are not relevant to the query question, it is unlikely we can
select the best answer from the answer candidates pool. We followed the question retrieval method
proposed by Xu et al. [50] to search for similar questions, which has been proven to be more
effective for this task of relevant question retrieval. We used the IDF-weighted word embedding to
calculate the similarity score between the query and the question title. Thereafter, a set of similar
questions can be identified by selecting the top-k ranked questions.
After this label establishing process, we can gather large amounts of labeled examples, which

greatly saves the time-consuming and labor-intensive labeling process.

3.3 Answer Recommendation
After collecting large amounts of labeled training data via label establishment, we are able to train
the deep learning model based on the four kinds of training samples.

We present a weakly supervised neural network architecture for ranking QA pairs. Fig. 4 demon-
strates the workflow of our proposed model. The main building blocks of our architecture are
two convolutional neural networks [29, 32]. These two underlying sub-models work in parallel,
mapping questions and answers to their distributional vectors respectively, which are then used to
calculate the final similarity score between them.

3.3.1 Sentence Matrix. The input to our model are ⟨q ⊕ cq,a⟩ pairs, where q and a stands for
the question and answer of a labelled QA pair, cq stands for the clarifying questions generated
by our question boosting model. The questions (including the original questions and clarifying
questions) and answers are parallel sentences, where each sentence is treated as a sequence of
words: (w1, ...,ws ), where each word is drawn from a vocabulary V. Words are represented by
distributional vectorsw ∈ R1×d via looking up in a pre-trained word embedding matrixW ∈ Rd×|V | .
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For each input ⟨q ⊕ cq,a⟩ pair, we build two sentences matrix Sq and Sa ∈ Rd×|s | for each
question and answer respectively, where the ith column represents the word embedding of wi at
corresponding position i in a sentence.

3.3.2 Convolutional feature maps. To learn to capture and compose features of individual words
in a given sentence from low-level word embeddings into higher level semantic concepts, we
apply two identical convolutional neural network blocks to the input sentence matrix Sq and Sa
respectively.

More formally, the convolution operation ∗ between an input sentence matrix Sq/a ∈ Rd×|s | and
a filter F ∈ Rd×m (called a filter of sizem) results in a vector c ∈ R |s |−m+1, where each component
is computed as follows:

ci = (S ∗ F)i =
∑
k , j

(
S[:,i−m+1:i] ⊗ F

)
k j (11)

In the above equation, ⊗ is the element-wise multiplication and S[:,i−m+1:i] is a matrix slice of size
m along the columns. Note that the convolution filter is of the same dimensionality d as the input
sentence matrix. As shown in Fig. 4, it slides along the column dimension of S producing a vector
c ∈ R |s |−m+1. Each component ci is the result of computing an element-wise product between a
column slice of S and the filter matrix F, which is then flattened and summed producing a single
value. By applying a set of filters (called a filter bank) F ∈ Rn×d×m to sequentially convolved with
the sentence matrix S will generate a convolutional feature map matrix C ∈ Rn×(|s |−m+1).

3.3.3 Pooling layer. Following that, we pass the output from the convolutional layer to the pooling
layer, whose goal is to aggregate the information and reduce the representation. We apply a
max pooling operation [11] over the convolutional feature map and take the maximum value
ĉ = max{ci} as the feature corresponding to a particular filter. The idea is to capture the most
important feature - one with the highest value - for each feature map.

3.3.4 Matching score layer. The output of the penultimate convolutional and pooling layers x is
passed to a series of fully connected layer followed by a softmax layer. It computes the probability
distribution over the four kinds of labels (positive, neutral+, neutral−, negative):

P (y = j |x) =
ex

T θ j∑K
k=1 e

xT θk
(12)

where θk is a weight vector of the k-th class. x can be thought of as a final abstract representation
of the input QA pair obtained by a series of transformations from the input layer through a series
of convolutional and pooling operations.
For the final matching score, we want this score to be high if the input qa pair is positive and

neutral+, and to be low if it is negative and neutral−. Therefore we define the calculation of the
similarity score as follows:

Score = ωpos × P (pos) + ωneu+ × P
(
neu+

)
− ωneu− × P (neu−) − ωneд × P (neg) (13)
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Algorithm 1: DeepAns Algorithm (Offline Training)
Input: Data dump of technical Q&A sites;
Output: 1.Question Boosting model; 2.Answer recommendation model;

1 Extract ⟨q, cq⟩ pairs from data dump;
2 Train ⟨q, cq⟩ pairs with attentional-based seq2seq model ;
3 Save the model as Question Boosting model ;
4 Extract ⟨q,a⟩ pairs from data dump;
5 for qi ,ai ∈ ⟨q,a⟩pairs do
6 if qi has accepted-answer then
7 if ai is accepted-answer then
8 Label ⟨qi ,ai ⟩ as Positive ;
9 end

10 else
11 Label ⟨qi ,ai ⟩ as Neutral+ ;
12 end
13 Select similar answer aj then Label ⟨qi ,aj ⟩ as Neutral− ;
14 Select random answer ak then Label ⟨qi ,ak ⟩ as Neдative ;
15 end
16 end
17 for qi ∈ labelled ⟨q,a⟩pairs do
18 Generate cqi for qi using Question Boosting model;
19 Append cqi to qi to make labelled ⟨qi ⊕ cqi ,ai ⟩ pair ;
20 end
21 Train labelled ⟨q ⊕ cq,a⟩ pairs with CNN-based classification model ;
22 Save the model as Answer Recommendation model

Algorithm 2: DeepAns Algorithm (Online Recommendation)
Input: User search query quser ;
Output: A set of candidate answers with a matching score for each answer ;

1 Generate cq for quser using Question Boosting model ;
2 Search top-k similar questions for the given query quser ;
3 Add top-k questions to similar question set SQ ;
4 for qi ∈ SQ do
5 for aj ∈ qi do
6 Add answer to candidate answers set CA ;
7 end
8 end
9 for ai ∈ CA do
10 Pair ai with expanded query to make a ⟨quser ⊕ cq,ai ⟩ pair ;
11 Fit ⟨quser ⊕ cq,ai ⟩ pair to Answer Recommendation model ;
12 Compute the final matching score si via Equation 13
13 end
14 Rerank answers in CA via matching scores
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There are four weights as shown in Equation 13. We initially set all the four weights to 1 at the
beginning. Then the optimal settings of these weights are carefully tuned on our validation set
(detailed in Section 5.3.1). We use the final matching score to measure the relevance between a
question and an answer.

3.4 DeepAns Algorithm
We divide our model into two components: offline training and online recommendation. The
detailed algorithms of DeepAns for offline training and online recommendation are presented in
Algorithm 1 and Algorithm 2 respectively. To be more specific, during the offline training, we use
the data from technical Q&A sites to train the question boosting model (lines 1-3) and answer
recommendation model (lines 4-20). When it comes to the online recommendation, for a given
user query, we first collect a pool of answer candidates via finding its similar questions (lines 1-8).
After that, we use the trained question boosting model to perform query expansion, then pair it
with each of the answer candidates and fit them into the trained answer recommendation model to
estimate their matching scores (lines 9-14).

4 AUTOMATIC EVALUATION EXPERIMENT SETUP
In this section, we first describe the data sets used throughout our experiments. We then discuss
the baselines we compare to our new DeepAns approach and our experimental settings. Lastly, we
explain the automatic evaluation process.

4.1 Data Preparation
We collected data from the official dump of StackExchange, a network of online question and
answer websites. The StackExchange data dump contains timestamped information about the posts,
comments as well as the revision history made to the post. Each post comprises a short question
title, a detailed question body, corresponding answers and multiple tags. For each post, users can
add clarifying questions to posts for further discussion. After receiving one or more answers, the
asker can select one answer that is most suitable for their question as the accepted/best answer. We
choose three different technical Q&A sites, i.e., Ask Ubuntu, Super User and Stack Overflow for our
experiment. These three technical Q&A sites are commonly used by software developers and each
one focuses on a specific area. For instance, Ask Ubuntu and Super User focus on Ubuntu system
questions and computer software/hardware questions respectively, and Stack Overflow is the most
popular programming related Q&A site which has been heavily used by software developers via
the internet. As with our previous empirical study, we only focus on the Python and Java related
questions in Stack Overflow for this study, referred to as SO (Python) and SO (Java) respectively in
this study.
The experimental dataset creation process is divided into three phases: extracting ⟨q, cq⟩ pairs,

constructing labelled ⟨q,a⟩ pairs, and constructing labelled ⟨q ⊕ cq,a⟩ pairs, where q stands for the
question, cq stands for the clarifying question, and a stands for the answer. Table 3 describes the
statistics of our collected datasets.

(1) Extract ⟨q, cq⟩ Pairs: For each post, we follow the methods described in Section 2.2 to
extract the clarifying questions. According to our manual analysis results, we summarize a
list of keywords associated with non-clarifying questions, such as “edit”, “related”, “vote”,
etc. We preprocess our dataset to remove all instances that involve such keywords. We also
summarize a list of key phrases associated with the clarifying questions, such as “do you”,
“have you”, “how”, “which”, etc. We retained the pairs that include the above key phrases.
After that, we pair the original post with its associated clarifying question as ⟨q, cq⟩ pairs.
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Table 3. Number of Training/Validation/Testing Samples

Ask Ubuntu
# ⟨q, cq⟩ pairs 68,216 # ⟨q,a⟩ pairs 289,062
# Positive pairs 79,726 # Neutral+ pairs 49,884
# Neutral− pairs 79,726 # Negative pairs 79,726

Super User
# ⟨q, cq⟩ pairs 87,081 # ⟨q,a⟩ pairs 447,221
# Positive pairs 119,305 # Neutral+ pairs 89,306
# Neutral− pairs 119,305 # Negative pairs 119,305

SO (Python)
# ⟨q, cq⟩ pairs 311,127 # ⟨q,a⟩ pairs 2,372,232
# Positive pairs 610,948 # Neutral+ pairs 539,388
# Neutral− pairs 610,948 # Negative pairs 610,948

SO (Java)
# ⟨q, cq⟩ pairs 456,077 # ⟨q,a⟩ pairs 3,013,859
# Positive pairs 734,977 # Neutral+ pairs 808,928
# Neutral− pairs 734,977 # Negative pairs 734,977

We extract a total of 68,216 pairs in Ask Ubuntu, and 87,081 pairs in Super User. The number
of ⟨q, cq⟩ pairs in Stack Overflow are much larger, we obtain a total of 311,127 pairs for SO
(Python) and 456,077 pairs for SO (Java). These collected ⟨q, cq⟩ pairs are used to train a
sequence-to-sequence model for question boosting.

(2) Construct labelled ⟨q,a⟩ Pairs: To make the ⟨q,a⟩ pairs, we first extract the questions that
having explicitly marked accepted answers. Then for each question, we pair it with the accept
answer to make the positive sample, with non-accepted answer to make the neutral+ sample,
with an answer to a similar question to make the neutral− sample, and with an answer to
a randomly selected question to make the negative sample. We have to clarify that some
questions do not have the non-accepted answers; this is the reason why the number of
neutral+ samples is smaller than the number of other samples, such as Ask Ubuntu, Super
User and SO (Python), while some other questions have more than one non-accepted answers,
which results in the number of neutral+ samples is bigger than those of the rest, such as
SO (Java). For the final dataset, we construct 289,062 and 447,221 ⟨q,a⟩ labelled pairs for
Ask Ubuntu and Super User, and 2,372,232 and 3,013,859 ⟨q,a⟩ labelled pairs for SO (Python)
and SO (Java) respectively. It is obvious that the number of qa pairs in Stack Overflow far
outnumber those of other technical Q&A sites. After the label establishment process, we
largely expand the labelled dataset for training. We randomly sample 5,000 questions for
validation and 5,000 questions for testing respectively, and kept the rest for training. It is
worth mentioning that we first used the validation set for model selection regarding the
accuracy of QA pairs classification results, which is a middle result of the answer selection
target. After that, we reused the validation set for tuning the four weights as shown in
Equation 13. The testing set was used only for testing the final solution to confirm the actual
predictive power of our model with optimal parameter settings.

(3) Construct labelled ⟨q ⊕ cq,a⟩ Pairs: For each labelled ⟨q,a⟩ pair, we feed the original
question to the trained question boosting model to generate a clarifying question. After that,
we append the clarifying question to the original question to construct the ⟨q ⊕ cq,a⟩ pairs.
The number of the ⟨q ⊕ cq,a⟩ pairs is identical with the number of ⟨q,a⟩ pairs.

4.2 Implementation Details
We implemented ourDeepAns system in Python using the PyTorch framework. The main parameters
of our deep learning model (tuned using the validation dataset) were as follows:
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• Question Boosting: We train an attentional sequence-to-sequence model for this subtask.
Previous studies have shown that the deep sequence-to-sequence model can achieve state-of-
the-art performance on different tasks [17, 24, 27, 44]. We also used the parameter settings
from [17] for training the ⟨q, cq⟩ pairs in this study. We use a two-layer bidirectional LSTM
for the encoder and a single-layer LSTM for the decoder. We set the number of LSTM hidden
states to be 256 in both encoder and decoder. Optimization is performed using stochastic
gradient descent (SGD) with a learning rate of 0.01. During decoding, we perform beam
search with a beam size of 10.
• Answer Recommendation: Kim et al. [32] have shown that convolutional neural networks
trained on top of pre-trained word vectors achieved promising performance for sentence-
level classification tasks. Hence in our work, we also followed the experiment settings of
their studies. We initialize the word embeddings from our unsupervised corpus and set the
dimension of word embedding d to 100. The widthm of the three convolution filters is set
to 3, 4, 5 and the number of convolution feature maps is set to 100. We use ReLu activation
function and a simple max-pooling function. The size of the hidden layer is equal to the
size of the join vector obtained after concatenating question and answer vectors from the
distributional models.

To train both networks, we used stochastic gradient descent with shuffled mini-batches. The
batch size is set to 64. Both network are trained for 50 epochs with early stopping, i.e., we stop the
training if no update to the best accuracy on the validation set has been made for the last 5 epochs.

4.3 Baselines
To demonstrate the effectiveness of our proposed DeepAns, we compared it with several comparable
systems. We briefly introduced these and how they are used for the task of predicting the best
answer among a set of answer candidates. DeepAns is built with the semantic features of words in
their dimensions, we used the average word vector of a sentence as features for training all of the
baseline models for a fairer comparison. For each baseline method, their parameters were carefully
tuned, and the parameters with the best performance were used to report the final comparison
results with our DeepAns approach on the same datasets:

• Learning to Rank The answer prediction problem of our task is similar to the traditional
ranking task [42] [2], where the given question and a set of answer candidates are analogous
to a query and a set of relevant entities. Hence our task is transformed to find an optimal
ranking order of these answer candidates according to their relevance to a given question.
We choose the AdaRank[51] and LambdaMART [7] as the baseline learning-to-rank methods
for our task. We used the positive, neutral+ as the target value to define the order of each
example. This is reasonable because the label establishment is part of our model, and the
heuristic rules for setting up the neutral− and negative samples are never used before.
• Traditional Classifiers Recently Calefato et al. [9] proposed to approach the best answer
prediction problem as a binary-classification task, and in their work they assessed 26 best-
answer prediction classifiers in Stack Overflow. We choose the two most effective traditional
classifiers from their experimental results, xgbTree and RandomForest, for use in our study.
As they were doing binary classification, to adapt to our training data, we kept our positive
samples as positive and consider neutral+ samples as negative. Thereafter, we utilize the
classification models to generate an answer ranking list by pairwise comparison between the
answer candidates.
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• AnswerBot Xu et al. [50] proposed a framework called AnswerBot to generate an answer
summary for a non-factoid technical question. Their user study showed a promising perfor-
mance for selecting salient answers by their method. We adapted their AnswerBot approach
for our task of recommending answers among a set of answer candidates. To be more specific,
for a given question, AnswerBot generates a ranked list of candidate answers according to
the ranking scores. This ranked list of answers is then used to calculate the precision of
answer selection results.

• IR-DeepAns To verify the effectiveness of using clarifying questions as a way of question
boosting, compared with our sequence to sequence model, we also considered a simple
IR-based approach using similar clarifying questions as a query expansion mechanism. For
a given question qi , we first identified the most similar question qj in ⟨q, cq⟩ dataset, and
then retrieved the clarifying question cqj associated with qj . We applied IDF-weighted word
embedding methods to calculate the similarity score between two questions. We feed the qi
and cqj into our model and name this baseline as IR-DeepAns. This model is close to ours.

4.4 Evaluation Methods
4.4.1 Experiment Setup. To thoroughly evaluate our model, we conducted a large-scale automatic
evaluation experiment. We used IDF-weighted word embedding (described in Section 3.2) to
calculate the similarity score between two question titles. For each testing qa pair ⟨qt ,at ⟩, we
then performed K-NN (K=5) to search for similar questions over the whole data set for the given
testing question qt . We then constructed an answer candidate pool by gathering the top-5 answers
associated with these selected questions. Since the top-similar question extracted by K-NN is always
the original post itself, we can ensure that the accepted answer at paired with the original post
qt is always in the answer candidate pool. In other words, the answer candidate pool for testing
question qt contains 5 answers, one of which is the accepted answer at . In summary, for the 5,000
testing questions of each platform, we constructed 5,000 × 5 QA pairs in total to serve as the
final evaluation sets. Following this, for each testing question qt , we first applied the pre-trained
question boosting model to generate a clarifying question cqt . We then paired the given question
with each answer in the candidate pool to construct the ⟨qt ⊕ cqt ,at ⟩ pairs. The ⟨qt ⊕ cqt ,at ⟩ pair
was fitted into our model to calculate a matching score, and we then generated a ranking order for
each group of candidate answers according to their matching scores to the given question.

4.4.2 Evaluation Metrics. Since the evaluation answer candidate pool includes the accepted answer,
one way to evaluate our approach is to look at how often the accepted answer is ranked higher up
among members of the answer candidate pool. Thus we adopted the widely-accepted metric, P@K
and DCG@K to measure the ranking performance of our model.
• P@K is the precision of the best answer in top-K candidate answers. Given a question, if
one of the top-k ranked answers is the best answer, we consider the recommendation to be
successful and set success(besti ∈ topK) to 1, otherwise, we consider the recommendation to
be unsuccessful and set success(besti ∈ topK) to 0. The P@K metric is defined as follows:

P@K =
1
N

N∑
i=1
[success(besti ∈ topK)] (14)

• DCG@K is another popular top-K accuracy metric that measures a recommender system
performance based on the graded relevance of the recommended items and their positions in
the candidate set. Different from P@K , the intuition of DCG@K is that highly-ranked items
are more important than low-ranked items. According to this metric, a recommender system
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gets a higher reward for ranking the correct answer at a higher position. The success(besti ∈
topK) is same with the previous definition, while the rankbesti is the ranking position of the
best answer i . The DCG@K is defined as follows:

DCG@K =
1
N

N∑
i=1

[success(besti ∈ topK)]

log2(1 + rankbesti )
(15)

5 AUTOMATIC EVALUATION RESULTS
To gain a deeper understanding of the performance of our approach, we conducted an analysis
on our large-scale automatic evaluation results. Specifically, we mainly focus on the following
research questions:
• RQ-1: How effective is our approach under automatic evaluation?
• RQ-2: How effective is our use of Question boosting and Label establishing methods?
• RQ-3: How effective is our approach under different parameter settings?

5.1 RQ-1: Automatic Evaluation Results Analysis
The automatic evaluation results of our proposed model and aforementioned baselines over different
technical Q&A sites are summarized in Table 4, Table 5, Table 6 and Table 7 respectively. We do
not report P@5 and DCG@1 in our tables, since DCG@1 is always equal to P@1 and P@5 will
always be equal to 1. The best performing system for each column is highlighted in boldface. As can
be seen, our model outperforms all the other methods by a large margin in terms of P@K
score and DCG@K score. From the table, we can observe the following points discussed below.
(1) Compared to traditional classifiers, such as xbgTree and RandomForest, one can clearly see

that our approach performs much better. For example, it improves over xgbTree on P@1 by
42% on Ask Ubuntu dataset, and 39% on Super User dataset.

(2) Compared with the method proposed by [9], which only has two kinds of labels (positive
and negative), our approach constructs four kinds of labeled data (positive, neutral+, neutral−,
negative) automatically via incorporating the label establishing process. By introducing the
neutral+ and neutral− training samples, our approach can learn how to separate the best
answer from the similar ones, which may explain the obvious advantage of our model in
P@1.

(3) Our approach also outperforms the AnswerBot by a large margin. We attribute this to the
following reasons. Firstly, by adding a clarifying question into our model, we can properly fuse
the information between the isolated question sentences and answers, which can reduce the
lexical gap between them and better pair the answer with associated questions. Secondly, we
use two parallel convolutional neural network block to learn optimal vector representation
of QA pairs that preserving important syntactic and semantic features. To compute the
matching score, we relate the rich representation features via a weakly supervised way from
the available training data.

Table 4. Automatic evaluation (Ask Ubuntu)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 26.6 ± 1.6% 49.2 ± 1.6% 70.8 ± 1.6% 87.1 ± 0.4% 40.9 ± 1.5% 51.7 ± 1.5% 58.8 ± 0.9% 63.7 ± 0.8%
XgbTree 28.8 ± 1.4% 53.6 ± 1.3% 73.0 ± 1.0% 87.9 ± 1.2% 44.5 ± 1.2% 54.2 ± 0.9% 60.7 ± 0.8% 65.3 ± 0.7%
LambdaMART 25.4 ± 1.1% 45.7 ± 1.0% 65.7 ± 1.2% 84.0 ± 1.0% 38.5 ± 1.0% 47.5 ± 1.1% 55.8 ± 0.9% 62.3 ± 0.6%
AdaRank 24.9 ± 1.1% 45.3 ± 1.1% 65.0 ± 1.0% 82.9 ± 0.8% 38.1 ± 1.2% 47.2 ± 1.1% 55.2 ± 1.0% 61.8 ± 0.7%
AnswerBot 27.7 ± 1.6% 52.1 ± 1.5% 73.5 ± 1.0% 89.2 ± 0.7% 43.1 ± 1.5% 53.8 ± 1.1% 60.5 ± 0.8% 64.7 ± 0.8%
DeepAns-IR 37.2 ± 2.0% 59.9 ± 2.1% 77.5 ± 1.7% 92.0 ± 1.0% 50.8 ± 1.5% 59.6 ± 1.3% 65.8 ± 1.1% 68.7 ± 0.8%
DeepAns 40.9 ± 1.5% 61.7 ± 1.9% 77.9 ± 0.9% 92.0 ± 0.9% 54.0 ± 1.7% 62.1 ± 1.1% 68.2 ± 1.1% 71.3 ± 0.9%
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Table 5. Automatic evaluation (Super-User)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 27.4 ± 1.6% 50.2 ± 1.7% 70.5 ± 1.4% 87.3 ± 0.9% 41.7 ± 1.6% 51.9 ± 1.4% 59.2 ± 1.2% 64.1 ± 0.9%
XgbTree 29.2 ± 1.6% 55.9 ± 1.3% 74.2 ± 0.9% 88.5 ± 0.7% 47.6 ± 1.2% 56.7 ± 1.1% 63.0 ± 0.9% 67.4 ± 0.8%
LambdaMART 25.9 ± 1.1% 47.1 ± 1.0% 66.1 ± 1.0% 84.5 ± 1.2% 39.8 ± 1.0% 48.8 ± 1.0% 56.4 ± 0.7% 62.9 ± 0.6%
AdaRank 25.1 ± 1.2% 46.2 ± 1.1% 65.7 ± 1.0% 84.1 ± 0.9% 38.4 ± 1.1% 47.6 ± 1.1% 55.7 ± 1.0% 62.2 ± 0.9%
AnswerBot 29.8 ± 1.4% 53.9 ± 1.2% 74.1 ± 1.3% 89.6 ± 0.8% 45.0 ± 1.2% 55.1 ± 0.9% 61.8 ± 0.7% 65.8 ± 0.6%
DeepAns-IR 38.8 ± 2.1% 63.4 ± 1.8% 80.7 ± 1.2% 92.5 ± 1.2% 54.3 ± 1.8% 63.0 ± 1.3% 68.1 ± 1.2% 70.9 ± 1.0%
DeepAns 40.7 ± 1.9% 65.8 ± 1.1% 82.2 ± 1.1% 93.9 ± 0.8% 56.5 ± 1.2% 64.7 ± 1.2% 69.8 ± 1.0% 72.1 ± 0.8%

Table 6. Automatic evaluation (SO-Python)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 34.0 ± 1.3% 57.2 ± 1.0% 74.8 ± 0.7% 89.7 ± 0.6% 48.6 ± 0.9% 57.4 ± 0.6% 63.9 ± 0.7% 67.8 ± 0.5%
XgbTree 35.4 ± 1.5% 58.4 ± 1.9% 74.2 ± 1.5% 88.7 ± 1.1% 49.9 ± 1.6% 57.8 ± 1.3% 64.1 ± 1.0% 68.4 ± 0.8%
LambdaMART 32.6 ± 1.7% 56.2 ± 2.2% 73.7 ± 1.7% 88.3 ± 0.8% 47.5 ± 1.9% 56.3 ± 1.7% 62.5 ± 1.2% 67.1 ± 1.0%
AdaRank 29.9 ± 1.3% 53.3 ± 1.1% 71.4 ± 0.9% 85.8 ± 0.8% 44.7 ± 1.1% 53.7 ± 0.8% 59.9 ± 0.8% 65.4 ± 0.6%
AnswerBot 31.8 ± 1.8% 52.8 ± 2.0% 71.6 ± 1.9% 88.7 ± 0.9% 44.5 ± 1.7% 54.3 ± 1.6% 62.6 ± 1.2% 68.1 ± 0.9%
DeepAns-IR 42.8 ± 1.3% 62.8 ± 1.9% 78.2 ± 2.0% 90.0 ± 0.9% 55.4 ± 1.6% 63.1 ± 1.6% 68.2 ± 1.0% 72.1 ± 0.8%
DeepAns 45.7 ± 1.6% 65.7 ± 1.6% 80.2 ± 1.9% 92.1 ± 1.2% 58.3 ± 1.4% 65.6 ± 1.3% 70.7 ± 1.1% 73.8 ± 0.8%

Table 7. Automatic evaluation (SO-Java)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 32.9 ± 1.0% 56.1 ± 1.1% 74.1 ± 1.1% 89.5 ± 0.7% 47.6 ± 0.9% 56.6 ± 0.8% 63.2 ± 0.6% 67.2 ± 0.5%
XgbTree 35.9 ± 1.3% 59.0 ± 1.2% 75.7 ± 0.9% 89.1 ± 1.0% 50.5 ± 1.0% 58.8 ± 0.7% 64.6 ± 0.7% 68.8 ± 0.5%
LambdaMART 31.5 ± 1.2% 54.4 ± 1.2% 72.3 ± 1.7% 87.6 ± 1.3% 46.0 ± 0.8% 54.9 ± 1.1% 61.5 ± 0.7% 66.3 ± 0.5%
AdaRank 29.2 ± 2.1% 52.1 ± 2.2% 69.9 ± 1.8% 86.2 ± 1.5% 43.6 ± 1.8% 52.5 ± 1.7% 59.6 ± 1.5% 64.9 ± 1.1%
AnswerBot 34.7 ± 1.5% 58.0 ± 2.1% 77.8 ± 1.9% 90.2 ± 1.5% 49.4 ± 1.6% 59.3 ± 1.5% 64.7 ± 1.1% 68.4 ± 0.8%
DeepAns-IR 42.3 ± 2.9% 63.7 ± 2.3% 78.3 ± 2.1% 91.8 ± 1.6% 55.7 ± 2.4% 63.1 ± 2.2% 68.9 ± 1.8% 72.1 ± 1.4%
DeepAns 45.5 ± 1.6% 65.9 ± 2.2% 79.9 ± 1.6% 92.0 ± 0.9% 58.4 ± 1.9% 65.4 ± 1.5% 70.6 ± 1.2% 73.7 ± 0.9%

(4) Compared to our model, the learning-to-rank based approach achieved the worst performance
regarding the P@K and DCG@K scores with different depths. The learning to rank approach
ignores the fact that ranking is a prediction task on a list of objects. Because they require a
large number of training instances with ranking labels, therefore if the ground truth ordering
of input candidates is lacking, they are unable to capture the relative preference between two
QA pairs. This may explain the reason why its performance is comparatively suboptimal.

(5) The DeepAns-IR approach has its advantage as compared to other baselines excluding our
proposed model. This is because DeepAns-IR employs the same data labeling strategy and
the model structure as ours. Moreover, it also incorporates the IR-based approach to expand
the query with clarifying questions. This verifies the effectiveness of our model for question
and answering tasks in technical Q&A sites. The only difference between DeepAns-IR and
our model is that our model generates clarifying questions via deep sequence to sequence
learning, while the DeepAns-IR retrieves the clarifying questions from the existing database
according to a similarity score, which relies heavily on whether similar questions can be
found and how similar the questions are. This results in our model’s superior performance as
compared to the DeepAns-IR approach.

(6) By comparing the evaluation results of the different technical Q&A sites, i.e., Ask Ubuntu,
Super User and Stack Overflow, we can see that our proposed model is stably and substantially
better than the other baselines. This suggests that our approach behaves consistently across
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Table 8. Ablation Evaluation (Ask Ubuntu)

Measure Drop CQ Drop Labeling DeepAns
P@1 34.2 ± 1.3% 31.3 ± 1.2% 40.9 ± 1.5%
P@2 58.9 ± 1.8% 50.5 ± 1.1% 61.7 ± 1.9%
P@3 77.3 ± 1.5% 68.9 ± 1.3% 77.9 ± 0.9%
P@4 91.4 ± 0.8% 86.0 ± 1.1% 92.0 ± 0.9%

DCG@2 49.8 ± 1.5% 43.4 ± 0.9% 54.0 ± 1.7%
DCG@3 59.5 ± 1.2% 51.7 ± 0.8% 62.1 ± 1.1%
DCG@4 65.8 ± 0.9% 59.1 ± 0.7% 68.2 ± 1.1%
DCG@5 68.5 ± 0.7% 64.5 ± 0.5% 71.3 ± 0.9%

Table 9. Ablation Evaluation (Super User)

Measure Drop CQ Drop Labeling DeepAns
P@1 35.8 ± 1.4% 29.7 ± 1.4% 40.7 ± 1.9%
P@2 60.2 ± 1.0% 53.9 ± 1.9% 65.8 ± 1.1%
P@3 79.6 ± 0.9% 72.5 ± 1.5% 82.2 ± 1.1%
P@4 92.1 ± 0.5% 89.5 ± 0.9% 93.9 ± 0.8%

DCG@2 51.2 ± 1.1% 45.0 ± 1.6% 56.5 ± 1.2%
DCG@3 60.9 ± 0.9% 54.0 ± 1.4% 64.7 ± 1.2%
DCG@4 66.3 ± 0.7% 61.4 ± 1.1% 69.8 ± 1.0%
DCG@5 69.3 ± 0.7% 65.6 ± 0.8% 72.1 ± 0.8%

different technical Q&A platforms, regardless of the different topic of the specific technical
forums. This supports the likely generalization and robustness of our approach.We also notice
that the advantage of our proposed model is much more obvious on SO (Python) and SO
(Java) as compared to Ask Ubuntu and Super User. The reason for this phenomenon is likely
the large number of training samples from Stack Overflow which benefits the classification
performance of our model.

In summary, our model substantially outperforms the baselines under automatic evaluation.

5.2 RQ-2: Ablation Analysis
Ablation analysis is used to verify the effectiveness of the DeepAns using Question boosting and
Label establishing methods. More specificly, we compare our approach with several of its incomplete
variants:

• Drop CQ: removes the clarifying question part generated by Question boosting model.
• Drop Labeling: removes the training samples generated by Label establishing model, to do
this, we keep the best QA pairs as positive samples, and make other answer pairs as negative
samples. Our model was trained as a binary classification model.

We performed the ablation analysis experiment on Ask Ubuntu and Super User respectively. The
ablation analysis results are presented in the Table 8 and Table 9. We can observe the following
points.

ACM Trans. Softw. Eng. Methodol., Vol. 9, No. 4, Article 39. Publication date: March 2019.



Technical Q&A Site Answer Recommendation viaQuestion Boosting 39:21
P
@
1

0.37

0.38

0.39

0.40

0.41

0.42

0
0.0

2
0.0

4
0.0

6
0.0

8 0.1 0.3 0.5 0.7 0.9 2 4 6 8

w_neg w_neu- w_neu+ w_pos

P
@
1

0.380

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420

0.425

0
0.0

2
0.0

4
0.0

6
0.0

8 0.1 0.3 0.5 0.7 0.9 2 4 6 8

w_neg w_neu- w_neu+ w_pos

Fig. 5. Sensitivity Analysis on Ask-ubuntu (left) and Super-user (right)

(1) By comparing the results of our approach with each of the variant model, we can see that no
matter which method we dropped, it does hurt the performance of our model. This verifies
the importance and effectiveness of these three mechanisms.

(2) By comparing the results of DeepAnswithDropCQ, it is clear that incorporating a clarifying
question improves the overall performance. When adding a clarifying question to our model,
the P@k score is improved by 19.5% and 13.9% on Ask Ubuntu and Super User dataset
respectively. We attribute this to that the useful clarifying question can reduce the lexical
gap between answer and questions, which can make the information properly fused between
them.

(3) By comparing the results of DeepAnswithDrop Labeling, we canmeasure the performance
improvements achieved due to the incorporation of “Label establishment” process. After
removing the training samples constructed by Label establishment, there is a significant drop
overall in every evaluation measure. This is because by employing our label establishing
process, the size of the training data is largely expanded, in the meanwhile, by introducing
neutral+ and neutral− samples, our model can learn to better distinguish best answer from
similar ones.

In summary, both the question boosting module and label establishing model are effective and helpful
to enhance the performance of our approach.

5.3 RQ-3: Parameters Tuning
In this section, we tune the key parameters of our model for sensitivity analysis and robustness
analysis.

5.3.1 Sensitivity Analysis. We have four key parameters (i.e., ωpos ,ωneu+,ωneu−,ωneд) in Equa-
tion 13. The optimal settings of these weights were carefully tuned on our dataset. We demonstrate
the weights tuning on Ask Ubuntu and Super User respectively. In particular, the validation set
was leveraged to validate our model and the grid search method was employed to select optimal
parameters between 0 and 10 with small but adaptive step sizes. The step sizes were 0.01, 0.1, and 1
for the range of [0, 0.1], [0.1, 1] and [1, 10], respectively. The parameters tuning process was varying
one weight while fixing the other three weights. For example, in order to tune the parameter ωneд ,
we fix the other three parameters and change ωneд from 0 to 10 with different step sizes. After that,
we fix ωneд to its optimal settings for tuning other parameters. Fig. 5 illustrates the performance of
our model with respect to different weights on Ask Ubuntu and Super User respectively. From the
figure, we have the following observations:
(1) Even though the four parameters vary in a relatively wide range, the performance of our

proposed model DeepAns changes within small ranges near the optimal settings. This
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Fig. 6. Robustness Analysis on Ask-ubuntu (left) and Super-user (right)

indicates that our model is non-sensitive to the parameters around their optimal settings,
which further supports the generalization ability of our approach.

(2) We notice that most parameters achieve their best performance in the range of [1, 3], we
thus recommend to initialize the weights in Equation 13 to be around the above range, which
is close to the optimal settings of our model.

5.3.2 Robustness Analysis. In real world Q&A sites, there is no guarantee to find the exactly
matched questions from the archive, expecially when k is small. Therefore we have to enlarge k to
improve the recall of the similar questions and hence the “matched answers”. However, a larger k
may introduce more noise into the answer candidate pool with more irrelevant answers. This can
then increase the difficulty of our answer recommendation task.

To verify the robustness of our proposed approach, we set different thresholds for the number of
returned questions by k-NN method. More specifically, we varied the number of returned similar
questions k from 6 to 10 and measured the performance of our approach, we then reported average
P@1-5 over each dataset under different parameter settings of k . The results of Ask Ubuntu and
Super User are shown in Fig. 6. We can make the following observations:
(1) The trend in overall performance of our model decrease as k increases, which supports our

concern that larger k settings introduce more noises and bring bigger challenges for our task.
By analyzing the performance of our approach with respect to different k , we notice that
our approach achieves good performance when k varies from 5 to 7, while still ensuring the
“matched answer” is highly-ranked. We thus recommend setting k within the above range for
real-world applications.

(2) The advantage of our proposed model is more obvious on P@1 compared with other
metrics(P@2 − 5). Even when we set k to 10, the performance of our model on P@1 is
still on a par with the best performance of other baselines, while k is set to 5 in these baselines
(See Table 4 and Table 5). This reveals that our model can perform well under a noisy context,
which shows the robustness of our model.

In summary, our model is non-sensitive and robust under different parameter settings.

6 USER STUDY SETUP AND RESULTS
Since automatic evaluation results do not always agree with the actual ranking preference of
real-world users, we also performed a small, qualitative user study to measure how humans actually
perceive the results produced by our approach. Specifically, we mainly focus on the following
research questions:
• RQ-4:How effective is the question boosting results of our approach under human evaluation?
• RQ-5: How effective is the question answering results of our approach under human evalua-
tion?
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Table 10. Human Evaluation of Question Boosting Results

Data Model Score(1)R Score(2)R Score(3)R AvgR Score(1)U Score(2)U Score(3)U AvgU

Ask Ubuntu IR-based 21.6% 43.2% 35.2% 2.14 28.8% 34.4% 36.8% 2.08
Ours 18.4% 32.8% 48.8% 2.30 22.4% 35.8% 42.4% 2.20

SO (Python) IR-based 19.2% 36.0% 44.8% 2.26 26.4% 32.0% 41.6% 2.15
Ours 17.6% 32.0% 50.4% 2.33 23.2% 29.6% 47.2% 2.24

For human evaluation, we used the Ask Ubuntu and Stack Overflow (Python) platforms to
perform our user study. We invited 5 evaluators to participate in our user study; all of these
participates have more than three years of studying/working experience in software development
process, have more than one year of experience using technical Q&A sites, and are familiar with
the Ubuntu system and Python programming languages. We did not limit the amount of time for
evaluators to complete the user study.

6.1 RQ4: Human Evaluation onQuestion Boosting Results
To gain a deeper understanding of how the clarifying questions impact the results in our study,
we conducted human evaluation studies to measure how humans perceive the question boosting
results. To do this, we consider two modalities in our user study: Relevance and Usefulness. Relevance
measures how relevant the clarifying question is to the original question title. Usefulness measures
how useful the clarifying question is for adding missing information for the original post. We
randomly sampled 25 ⟨q,a⟩ pairs from Ask Ubuntu and SO (Python) respectively. For each question,
we provided two clarifying questions. One was generated by our approach, the other was generated
by the IR-based approach, i.e., DeepAns-IR. We also provided the accepted answer to the question
as a reference. We asked the participants to manually rate the generated clarifying questions on a
scale between 1 and 3 (1 = worst, 3 = best) across the above modalities. The volunteers were blinded
as to which question title was generated by our approach.
Evaluation Results.We obtained 125 groups of scores from evaluators for Ask Ubuntu and SO
(Python) respectively. Each group contains two pairs of scores, which were rated for clarifying
questions produced by IR-based approach and ours. Each pair contains a score for the Relevance
modality and a score for Usefulness modality. The score distribution and average score of Relevance
and Usefulness across the two methods are presented in Table 10. From the table, we can observe
the following points:

(1) Our approach performs better than the IR-based approach on both modalities. We attribute
this to the following reason: the IR-based approach relies heavily on whether similar clarifying
questions can be retrieved from the existing ⟨q, cq⟩ dataset. Considering the complexity of
the questions in technical Q&A sites, there may exist only a few questions that are very
similar to the given one, hence it is difficult to retrieve relevant clarifying questions from the
training set.

(2) Both the IR-based approach and our approach can produce relevant and useful clarifying
questions for the given question. This further verifies the clarifying question is helpful in
adding missing information and reducing the gap between questions and answers. We also
notice that there are still quite a few questions that received low scores for Relevance and
Usefulness modalities. Even though the clarifying questions generated by our approach are
still not perfect, our study is the first step on this topic and we also release our data to inspire
follow-up work for utilizing the clarifying questions.
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Fig. 7. Evaluation Examples of Question Boosting.

Evaluation Examples. A major challenge for question answering tasks is the semantic gap
between the questions and answers. This is because the questions from technical Q&A sites are,
more often than not, very specific and complex, and oriented towards expert professional answers.
To fill the gap between question and answers, we employ a deep encoder-decoder model to generate
a clarifying question for a given post as a way of question boosting. Fig. 7 presents three examples of
human evaluation on question boosting results (the words that appear in both clarifying questions
and answers are highlighted). From these cases, we can see that:
(1) The clarifying questions produced by our approach as well as the IR-based approach generally

perform well across both modalities. It is clear that the clarifying question can reduce the
lexical gap between the answer and the questions, which can add missing information and
make the information better linked between question and answers. For example, in the
first and second case, our approach generates “xdg-open” and “sudo apt-get install” for the
clarifying questions which also appear in the answers. Thus, the added information can
eliminate and/or reduce the isolation between questions and answers. We attribute this to the
advantage of our model for learning common patterns automatically from the ⟨q, cq⟩ pairs.

(2) Not all the clarifying questions are appreciated by the evaluators; an example is shown in the
last row of Fig. 7. For such cases, even though the generated clarifying question is not optimal
to the participants, our approach still precisely replicates the salient tokens, i.e., “thunderbird”
from the question title, which also increases the likelihood of selecting the right answer from
answer candidates.

In summary, the clarifying questions generated by our approach are effective under human evalua-
tion results.

6.2 RQ5: Human Evaluation onQuestion Answering Results
Since the final goal of our study is recommending relevant answers to developers, we also performed
a human evaluation to measure the effectiveness of question answering results with respect to
human developers. To bemore specific, wemeasured how developers perceive the answers produced
by our approach to solved questions, unresolved questions and unanswered questions. For solved
questions, we compared our approach with the ground truth; for unresolved questions, we compared
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Table 11. Human Evaluation - Ask Ubuntu

Type Approach Score(1) Score(2) Score(3) Rankavд

Solved Ground Truth 7.2% 18.4% 74.4% 2.67
DeepAns 19.2% 32.8% 48.0% 2.29

Unresolved
xgbTree 15.2% 26.4% 58.4% 2.43

AnswerBot 12.8% 28.0% 59.2% 2.46
DeepAns 12.0% 23.2% 64.8% 2.53

Unanswered
SE Engine 51.2% 33.6% 15.2% 1.64
Google 25.6% 32.8% 41.6% 2.16
DeepAns 22.4% 30.4% 47.2% 2.25

Table 12. Human Evaluation - SO (Python)

Type Approach Score(1) Score(2) Score(3) Rankavд

Solved Ground Truth 5.6% 14.4% 80.0% 2.74
DeepAns 18.4% 31.2% 50.4% 2.32

Unresolved
xgbTree 12.0% 26.4% 61.6% 2.50

AnswerBot 9.6% 32.0% 58.4% 2.49
DeepAns 10.4% 21.6% 68.0% 2.58

Unanswered
SE Engine 54.4% 32.0% 13.6% 1.59
Google 30.4% 31.2% 38.4% 2.08
DeepAns 26.4% 28.0% 45.6% 2.19

our approach with xgbTree and Answerbot methods; and for unanswered questions, we compared
our approach with Stack Exchange search engine and Google search engine.

6.2.1 User Study on Solved Questions. In order to investigate the agreement of the developers
on solved questions, we randomly sampled 25 examples of solved questions from the testing set
of Ask Ubuntu and SO (Python) respectively. For each solved question, we provided two answer
candidates. One answer was the accepted answer – we refer to it as the ground truth in this study.
The other answer was produced by our approach. After that, each evaluator was asked to manually
rate on the two answer candidates from 1 to 3, according to the acceptance of the answer. Score 3
means that the evaluator strongly agrees with the acceptance of the answer, and score 0 means
that the evaluator strongly disagrees with the acceptance of the answer. It is worth emphasizing
that the answer selected by our approach may actually be the same with the ground truth answer,
and the participants were blinded as to which answer is the ground truth.
Evaluation Results. We collected 125 groups of scores from participants for Ask Ubuntu and SO
(Python) respectively. Each group contains two scores, which were rated for answers of the ground
truth and ours. We count the proportion of different scores and calculate the average score for each
method. The evaluation results for Ask Ubuntu and SO (Python) are presented in Table 11 and
Table 12 respectively. From the table, we can observe the following points:

(1) The evaluators are in agreement with acceptance of the ground truth answers for most cases.
For example, around 75% of the ground truth answers in Ask Ubuntu and 80% answers in SO
(Python) are appreciated by the volunteers.

(2) The ground truths are better than our approach. This is reasonable because the ground truth
answers are usually high-quality answers that have been accepted by the developers. Even
though our approach is not as good as the ground truth at the current stage, we observe
that a small number of answers produced by our approach are marked with score 1. This
indicates that the answers selected by our approach are meaningful and acceptable for the
majority of questions.
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Ex1. Solved Question (493367 - SO Python):  
Python: For each list element apply a function across the list ?

Ex2. Solved Question (742371 - SO Python) 
Why does Python skip elements when I modify a list 
while iterating over it?

Ex3. Solved Question (230712 - Ask Ubuntu):  
Can I download Ubuntu 12.04 on a notebook/laptop?

Answer(Ground Truth) :   
score_3(3) / score_2(2) / score_1(0) 
You can do this using list comprehensions and min() (Python 3.0 
code): 
>>> nums = [1,2,3,4,5] 
>>> [(x,y) for x in nums for y in nums] 
>>> min(_, key=lambda pair: pair[0]/pair[1])  
 
Note that to run this on Python 2.5 you'll need to either make one of 
the arguments a float, or do from __future__ import division so that 
1/5 correctly equals 0.2 instead of 0.

Answer(Ground Truth) :  
score_3(4) / score_2(1) / score_1(0)  
 
This is a well-documented behaviour in Python, that you 
aren't supposed to modify the list being iterated through. 
Try this instead: 
for i in x[:]: 
    x.remove(i) 
The [:] returns a "slice" of x, which happens to contain all 
its elements, and is thus effectively a copy of x.

Answer(Ground Truth) :  
score_3(5) / score_2(0) / score_1(0) 
 
Ubuntu-desktop runs on netbooks and laptops.  
If you are concerned about the performance of your 
laptop running the desktop version of Ubuntu you should 
try Lubuntu which is a lightweight distro based on 
Ubuntu but using the LXDE desktop environment. 
Lubuntu 12.10 is the latest version.

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0)  
Using list comprehension: 
>>> oldList = [1, 2, 3, 4]
>>> newList = [x for x in oldList for _ in range(2)]
>>> newList 
Above list comprehension is similar to following nested for loop. 
newList = []
for x in oldList:
    for _ in range(2):
        newList.append(x)

Answer(Ours) :  
score_3(3) / score_2(2) / score_1(0)  
 
You edit the list while loop over it. Since you only keep 
pointers for looping you remeber positions, but they 
change since elements vanish. Try remebering the 
elements you want to delete by something like:  
… 
Using List Comprehensions from the start leads to: 
dt_list = [3600, 2700, 1800, 900] 
dt_list = [x for x in dt_list if (3600/x).is_integer()]

Answer(Ours) :  
score_3(2) / score_2(2) / score_1(1) 
 
Yes, you can download the .deb file from 
packages.ubuntu.com and then open it like an archive 
(using file-roller). There are two more archives inside, 
you'll need to open "data.tar.gz".

�1

Fig. 8. Examples of SolvedQuestions

Evaluation Examples. Fig. 8 shows three examples of the user study on solved questions. It can
be seen that:

(1) In general, our approach can produce acceptable answers. Sometimes, the answers chosen by
our approach are actually more accepted by the volunteers than the ground truth answers.
For example, in the first sample, three evaluators gave a score of 3 to the ground truth answer,
while four evaluators gave a score of 3 to ours. However, our answer does not belong to
the current question thread and is selected from answer candidates of other questions (e.g.,
Python: duplicating each element in a list). This further justifies the feasibility of addressing
answer hungry problem by selecting answers from the historical QA dataset.

(2) Outputs from our model are not always “correct”. For example, in the last sample, the
information seeker asks a question of “Can I download Ubuntu 12.04 on a notebook/laptop?”,
while the answer provided by our approach is about how to download a file from the packages.
This example reveals that considering the complexity of the questions in technical Q&A sites,
the gap between the ground truth answers and ours is still large, and hence there is still a
large room for our question answering system to be further improved.

6.2.2 User Study on Unresolved Questions. To investigate how developers perceive our approach
to solve the unresolved questions, we sampled 25 unresolved questions for Ask Ubuntu and SO
(Python) respectively. Each question has multiple answer candidates that have not been selected as
Accept. By computing the matching score between question and each answer candidate, we can
identify a best answer via our approach, xgbTree and Answerbot respectively (note that different
approaches may choose the same answer as the best answer). Following that, we ask each evaluator
to rank three answer candidates produced by our approach, xgbTree and Answerbot from 1 to 3 (3
is the best) according to the acceptance of the answer. It is worth emphasizing that the answers
identified by our approach and others could be the same, and the order of the answers is randomly
decided.
Evaluation Results. The human evaluation results of unresolved questions for Ask Ubuntu and
SO (Python) are presented in Table 11 and Table 12 respectively. From the table, we can see that:

(1) Our model performs better than xgbTree and Answerbot baselines. This further indicates
that the answers selected by our approach are more appreciated by evaluators. The results
of human evaluation on unresolved questions are consistent with large-scale automatic
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Ex1. Unresolved Question (12109648 - SO Python):  
Python: how to adjust x axis in matplotlib ?

Ex2. Unresolved Question (12035394 - SO Python)  
Python - replace random items in column

Ex3. Solved Question (1169424 - Ask Ubuntu):  
How do I put two Ubuntu OSes on the same hard drive??

Answer(xgbTree) :   
score_3(3) / score_2(2) / score_1(0) 
 
Look at the docs : 
    xlocs, xlabs = plt.xticks() 
put in xlocs your range, and in xlabs what you want to display. then: 
    plt.xticks(xlocs, xlabs)

Answer(xgbTree  & Ours) :  
score_3(4) / score_2(1) / score_1(0)  
I would strongly suggest reading a python primer, the way 
your problem solved can be done in two steps  
1. read items from file - reference  
2. use math.random() to change random string- reference  
by know how to do these points you can easily achieve 
what you intend to do.

Answer(xgbTree) :  
score_3(3) / score_2(2) / score_1(0) 
You don't put two OS in the same partition. Each instance of Ubuntu 
or an Ubuntu family OS requires its own partition. You can run the 
installer for the second version you wish to install, and choose 
'Something Else' when you get to Installation Type, and let it share 
the same drive; just not the same partition. See this step-by-step 
workflow illustration for Ubuntu 18.04 LTS.

Answer(Answerbot) :   
score_3(3) / score_2(1) / score_1(1)  
The size of the plot can be changed by setting the dynamic rc 
settings of Matplotlib. These are stored in a dictionary named 
rcParams. The size of the plot figure is stored with the key 
figure.figsize.

Answer(Anwerbot) :  
score_3(3) / score_2(1) / score_1(1)  
 
Use this to generate a random string  
import os
random_string = os.urandom(string_length)  
 
To loop over a file line by line, do  
with open('file') as fd:
    for line in fd:
        # do stuff 
 
No need to close the file handle. use split to well, split on 
whitespace and place the result in an array (indexing 
starts at 0) Read more at docs.python.org.  
Please update your question with some code when you 
have gotten that far... Good luck

Answer(Ours & Answerbot) :  
score_3(3) / score_2(2) / score_1(0)  
Assuming there is nothing you want to preserve on your hard drive, 
you can do the following: 
1. When you install the first instance of Ubuntu, at some point during 
installation there will be a window called "Installation type". Choose 
"Something else". 
2. On the next window you can erase and create partitions. Make 
sure you create at least two partitions large enough for Ubuntu 
installations. 
3. Select the partition on which you want to install the first instance of 
Ubuntu and press Change. Select Ext4 under "Use as" and "/" under 
"Mount point". 
4. Go ahead, finish the installation. 
5. Boot from the installation USB again and repeat step 1. 
6. No need to repartition, as that was done in step 2. already. 
7. Select the second partition and repeat Step 3. for it. 
8. Go ahead, and finish the installation of the second instance. 
The next time you boot the computer Grub will allow you to boot to 
whichever instance you want.

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0)  
 
It sounds like you want to changes the limits of the plotting display - 
for that use xlim (and ylim for the other axis). To change the xticks 
themselves is provided in the answer by @fp. Show below is an 
example using without/with xlim: 
    import pylab as plt
    plt.subplot(2,1,1)
    plt.hist(X,bins=300)
    plt.subplot(2,1,2)
    plt.hist(X,bins=300)
    plt.xlim(0,100)
    plt.show()
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Fig. 9. Examples of UnresolvedQuestions

evaluation results, which reconfirms the effectiveness of our approach for identifying the
best answer in unresolved questions.

(2) Compared with the evaluation results of ground truth, the average scores between the
answers of unresolved questions and solved questions are close, which supports our previous
assumption that users forget to mark the accepted answer is not uncommon in technical
Q&A sites.

Evaluation Examples. Fig. 9 shows the examples of the user study on unresolved questions. It
can be seen that:
(1) The overall answer quality for the unresolved questions is good. This is because these answers

are directly related to the specific problems of the questions, which are more suitable to the
needs of information seekers.

(2) Even all the answer candidates of an unresolved question aim at solving the same problem.
As can be seen, some answers identified by our approach stand out from the rest and are
more appreciated by evaluators, such as samples 1-2. This further verifies the ability of our
approach to select the most relevant answer from a set of answer candidates.

6.2.3 User Study on UnansweredQuestions. Similar to unresolved questions, We also randomly
sampled 25 examples of unanswered questions for Ask Ubuntu and SO(Python) respectively. For
each unanswered question, considering that developers usually search for technical help using
Google search engine and/or the Q&A site search engine itself, we compare our approach against
two baselines built based on the above search engines respectively. We used the question title
of the post as the search query. For Google search engine, we add “site:stackoverflow.com” and
“site:askubuntu.com” to the end of the search query so that it searches only posts on Stack Overflow
and Ask Ubuntu respectively. We use the first ranked question returned by Google search engine as
the most relevant question, we extracted the accept answer or the answer with the highest vote if
there is no accepted answer of the relevant question. For technical Q&A site search engine, we refer
to the first ranked related question recommended by the technical Q&A site search engine as the
most relevant question, and extracted the associated accepted answer or the highest-vote answer.
After constructing the evaluation set for unanswered questions, for each unanswered question, we
asked the evaluators to rank on the 3 answer candidates from 1 to 3 (3 for the best answer), The
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Ex1. Unanswered Question (57147927 - SO Python):  
Python: How to import package correctly in python?

Ex2. Unresolved Question (57152181- SO Python)  
How to read a bit field integer in python?

Ex3. Solved Question (1179515 - Ask Ubuntu):  
Ubuntu 18.04 reboots randomly ?

Answer(Stack Overflow) :   
score_3(0) / score_2(2) / score_1(3) 
 
For dictionaries x and y, z becomes a shallowly merged dictionary 
with values from y replacing those from x. In Python 3.5 or greater:  
z = {**x, **y} … 
Resources on Dictionaries. 

Answer(Stack Overflow) :  
score_3(0) / score_2(1) / score_1(4)  
 
For dictionaries x and y, z becomes a shallowly merged 
dictionary with values from y replacing those from x. In 
Python 3.5 or greater:  
z = {**x, **y} … 
Resources on Dictionaries. 

Answer(Stack Overflow) :  
score_3(2) / score_2(2) / score_1(1) 
Your OEM system vendor Asus probably placed the 24GB SSD drive 
for caching purposes, e.g. Intel Smart Response. This could explain 
why you can't set it as a boot drive. I suffer from the same issue in my 
HP laptop with an mSATA SSD slot and HP's response to this is "this 
is intentional”. ……
One downside of this approach is that your system will fail to boot 
even if just one of the drives fails.

Answer(Google) :   
score_3(2) / score_2(2) / score_1(1)  
 
"I have a medium size Python application with modules files in 
various subdirectories.” Good. Make absolutely sure that each 
directory include a __init__.py file, so that it's a package. 
"I have created modules that append these subdirectories to 
sys.path” Bad. Use PYTHONPATH or install the whole structure Lib/
site-packages. Don't update sys.path dynamically. It's a bad thing. 
Hard to manage and maintain. 
Bad. Use PYTHONPATH or install the whole structure Lib/site-
packages. Don't update sys.path dynamically. It's a bad thing. Hard 
to manage and maintain. …… 
My current project has 100's of modules, a dozen or so packages. 
Each module imports just what it needs. No magic. 

Answer(Google) :  
score_3(1) / score_2(3) / score_1(1)  
 
The following code will load the requested portions of the 
binary number into the fields: 
class Register(object): 
    def __init__(self,x): 
        self.fieldwidths = [6,12,6,4,12,8,16] 
        …… 
Which will result in: 
BitField1 = 0b111011  
BitField2 = 0b111011101110  
…… 
The results may not be what you wanted because of the 
fact that the data you provided is not 64 bits but rather 128 
bits, which would mean that the 64 most significant bits of 
the input data will be ignored by the program.

Answer(Google) :  
score_3(3) / score_2(2) / score_1(0) 
 
This sounds like a combination of issues.

In the case of an individual system rebooting randomly I would want 
to replace the power supply in the chassis with one that provided 
more than adequate amperage for the connected components (as 
you want it to keep running during periods of peak power draw).

In the case where the entire rack reboot simultaneously I would look 
at an inadequate UPS as the root cause or possibly an overheat 
condition due to AC failure in the server location.

An intermittent short in the feed cord to the multi-tap could also result 
in the multiple reboot result that you describe.

Answer(Ours) :   
score_3(3) / score_2(2) / score_1(0)  
 
Since there are already many answers on SO for this*, I will focus 
on question (2). About what is a better code organization: 
… 
The (relative) import is done as follows, from inside module_2: 
    from ..pkg1 import module1 as m1  
Alternatively, you can use absolute imports, which refer to the top 
package name: 
    from top_pkg_name.pkg1 import module1 as m1  
In such an organization, when you want to run any module as a 
script, you have to use the -m flag: 
    python -m top_pkg_name.pkg1.module1

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0)  
 
 
In Python 3 you can use something like this: 
    int.from_bytes(byte_string, byteorder='little')

Answer(Ours) :   
score_3(3) / score_2(2) / score_1(0) 
 
I'm guessing hardware problems.

Your Lubuntu problem "Press S to skip mounting or Press M for 
Manual recovery." could have been from corrupted filesystems. And 
random reboots could be an indication of bad RAM too.

I had a laptop with bad RAM that would reboot just like that, after 
20-40 minutes, the RAM was physically dirty & I think even had 
corroded contacts, after a while it wouldn't work at all with that RAM
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Fig. 10. Examples of UnansweredQuestions

higher grade indicates that the answer is more suitable to the given question. Please note that the
participants do not know which answer is generated by which approach.
Evaluation Results. The expert evaluation results of unanswered questions for Ask Ubuntu and
SO (Python) are presented in Table 11 and Table 12. We can observe the following points:
(1) Compared with baselines, our model outperforms SE (Stack Exchange search engine) and

Google (Google search engine). This suggests that the answers produced by our approach
are considered to be more suitable to the given question by the evaluators. We attribute this
to the reason that Google search engine identifies the answer via searching from similar
questions, thus it is unable to judge the matching degree between the questions and answers.
In contrast, our approach estimates the matching score using the context information of the
qa pair, which fills the gap between questions and answers. The superior performance of
our approach in terms of average score further supports the effectiveness of our approach in
identifying the best answer.

(2) For the unanswered questions, a gap for the answer quality between unanswered questions
and solved/unresolved questions still exists. We also notice that our approach received
more low scores (score = 1) with unanswered questions as compared to solved/unresolved
questions. This is because in technical Q&A sites, some questions are rather complicated and
sophisticated and it is hard to find suitable question-specific answers for these questions.

Evaluation Examples. Fig. 10 shows three examples of the user study on unanswered questions.
we can observe the following points:

(1) The search engine of the technical Q&A site achieves worst performance. For example, in
sample 1 and sample 2, the SE search engine recommends the same answer to two different
questions. This is why the evaluators give comparatively low scores to the answers identified
by SE search engine.
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(2) Our approach has its advantage as compared to the Google search engine (e.g., sample 1-2).
This is because the Google search engine does not consider the contextual information
between the questions and answers, but instead only identifies the answers based solely by
searching for similar questions. By contrast, our approach takes the question as well as the
candidate answers and calculates the matching score between the question and the answers,
which results in its superior performance compared to the other baselines.

(3) In technical Q&A sites, some question titles are relatively abstract and uninformative. For
example, in sample 3, even the answer selected by our approach is relevant and meaningful,
we can not make sure if the answer solves the actual problem or not. For such cases, more
detailed information, such as the description in the question body, could be considered when
searching for appropriate answers.

In summary, ourmodel is comparatively effective under human evaluation for question answering
tasks in technical Q&A sites.

7 DISCUSSION
In this section, we first discuss the strength of our approach as well as the threats to validity of our
work, after that we analyze the outlier cases involving in our data creation process.

7.1 Strength of Our Approach
To address the answer hungry problem in technical Q&A sites, we propose a deep learning based
approach DeepAns to search relevant answers from historical QA pairs. We summarized the
strength of our approach as follows:

7.1.1 Neural Language Model for Question Boosting. One advantage of our approach is training an
attentional sequence-to-sequence model for generating clarifying questions as a way of question
boosting. Instead of searching similar clarifying questions, our approach builds a neural language
model for linking semantics of question and clarifying questions. The neural language model is able
to handle the uncertainty in the correspondence between the questions and clarifying questions.
Our approach automatically learns common patterns automatically from the ⟨q, cq⟩ pairs. The
encoder itself is a neural language model which is able to remember the likelihood of different
kinds of questions. Following that, the decoder learns the context of the questions fills the gap
between the questions and clarifying questions.

7.1.2 Label Establishment for Data Augmentation. Due to the reason of the professional questions
in technical Q&A sites, it is thus very hard, if not possible, to find experts and annotators for manual
labeling the QA pairs. In this paper, we present a novel labeling scheme to automatically construct
positive, neutral+, neutral−, and negative training samples. Guided by our four heuristic rules, this
label establishment process can collect large amounts of labeled QA pairs, which greatly saves the
time-consuming and labor-intensive labeling process.

7.1.3 Deep Neural Network for Answer Recommendation. We present a weakly supervised neural
network for the answer recommendation task in technical Q&A sites. Our model architecture is
able to incorporate the aforementioned four types of training samples for ranking QA pairs. Our
work first uses the deep neural network to solve the problem of best answer selection in technical
Q&A sites, which is able to alleviate the answer hungry phenomenon that widely exists in technical
Q&A forums.

7.2 Threats to Validity
We have identified the following threats to validity among our study:
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Internal Validity Threats to internal validity are concerned with potential errors in our code
implementation and study settings. For the automatic evaluation, in order to reduce errors, we
have double-checked and fully tested our source code. We have carefully tuned the parameters of
the baseline approaches and used them in their highest performing settings for comparison, but
there may still exist errors that we did not note. Considering such cases, we have published our
source code and dataset to facilitate other researchers to replicate and extend our work.
External Validity The external validity relates to the quality and generalizability of our dataset.
Our dataset is constructed from the official StackExchange data dump. We focus on three technical
Q&A sites, i.e., Ask Ubuntu, Super User and Stack Overflow for our experiment. These three
technical Q&A sites are commonly used by software developers and each one focuses on a specific
area. However, there are still many other technical Q&A sites in StackExchange which are not
considered in our study (e.g., Server Fault). We believe that our results will generalize to other
technical Q&A sites as well, due to the ability of our approach to identify the best answer from
a set of answer candidates. We will try to extend our approach to other technical Q&A sites to
benefit more users in future studies.
Construct Validity The construct validity concerns the relation between theory and observation.
In this study, such threats are mainly due to the suitability of our evaluation measures. For human
evaluation, the subjectiveness of the evaluators, the evaluators’ degree of carefulness, and the
human errors may affect the validity of judgements. We minimized such threats by choosing
experienced participants who have at least three years of studying/working experience in the
software development process, and are familiar with Ubuntu system and Python programming
languages. We also gave the participants enough time to complete the evaluation tasks.
Model Validity The model validity relates to model structure that could affect the learning perfor-
mance of our approach. In this study, for the answer recommendation task, we choose a CNN-based
model due to the optimum results achieved by [32]. Recent studies [33, 54] have shown that the
RNN-based model can also achieve promising performance on the text classification task, which is
similar to ours. For the question boosting task, we use the vanilla sequence-to-sequence model.
Recent research has proposed new models, such as the pointer-generator [43], transformer [48]
and bert [13]. However, our results do not shed light on the effectiveness of employing other deep
learning models with respect to different structures and new advanced features. We will try to use
other deep learning models for our tasks in future work and compare them to those we report in
this paper.

7.3 Outlier Cases Study
As detailed in Section 3.2, we build our training samples via four heuristic rules, we thus can not
ensure that there are no outlier cases distant from our heuristic rules. The outlier cases will produce
a series of wrong preference pairs and hinder the learning performance of our model. Fig. 11 shows
three outlier examples for label establishment. From the figure we can see that:
(1) From the first example, it can be seen that, the quality of its non-accept answer in terms of

informativeness and relevance are better than the accepted ones, not to mention that the link
provided within the Positive sample has been not available. This shows the outlier case that
the non-accept answers may be better than the accepted answers.

(2) From the second example, it can be seen that, for a given question, the answers from its
similar questions are more descriptive than its own. This shows the outlier cases that the
answers of other questions may be better than its own.

(3) From the last example, it can be seen that, the answers from its similar questions may provide
more information cues than its non-accept answers.
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Table 1

Outlier 
Examples

Q (Ask Ubuntu): How to install SiS 
671/771 Video Drivers in ubuntu?

A(Positive): This is an easy how-to: http://
sites.google.com/site/easylinuxtipsproject/sis

A(Neutral+): The display driver for sis would be already 
installed in Ubuntu. xserver-xorg-video-sis is the display 
driver for all Sis and XGI video driver. …

Q (SO Python): How can I create a 
regular expression in Python?

A(Positive): Try something like this:  
r’[a-zA-Z0-9]+_[^_]+_[a-zA-Z0-9]+\.[a-zA-Z0-9]+’.  

A(Neutral-): https://www.debuggex.com is also pretty 
good. It's an online Python (and a couple more 
languages) debugger, which has a pretty neat 
visualization of what does and what doesn't match. A 
pretty good resource if you need to draft a regexp 
quickly.

Q (Ask Ubuntu): How to share 
hotspot through SSH tunnel?

A(Neutral+): Oh, it works just as that. I didn't notice I 
have to check the rule specifying the table explicit: … 

A(Neutral-): … Here's two options that do work, though: 
1. use sshuttle …  2. set up OpenVPN on the remote 
system and your local system
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Fig. 11. Outlier Examples in Label Establishment

Detecting and removing these outlier cases before building the training samples will benefit the
learning performance of our proposed DeepAns model, we will focus on this research direction in
the future.

8 RELATEDWORK
In this section, we describe the related studies on best answer retrieval, query expansion in software
engineering, and deep learning in software engineering.

8.1 Best Answer Retrieval
Great effort has been dedicated to addressing the question answering tasks on Q&A sites [1, 8, 9, 28,
39, 41, 47, 53]. Conventional techniques for retrieving answers primarily focus on complementary
features of the Q&A sites. For example, Adamic et al. [1] reported the first study on best answer
prediction in Yahoo! Answers using user-related features. Following Adamic et al.’s study, Tian
et al. [47] trained a classifier on a dataset from Stack Overflow without relying on user-related
features. Recently, Calefato et al. [9] modelled the answer prediction task as a binary classification
problem, they assessed 26 best answer prediction model in Stack Overflow. Different from these
works, we present a novel weakly supervised neural network architecture for ranking answers for
a given question. To the best of our knowledge, our work is the first to apply deep neural network
to the specific problem of best answer selection in Q&A sites. Our approach can not only identify
best answers from a list of candidate answers, but also recommend the most relevant answers
for these unanswered posts. Besides, we also compare with Calefato et al.’s [9] approach, and the
experimental results have shown that the improvement is substantial.

8.2 Query Expansion in SE
Query expansion has long been investigated as a way to improve the results returned by a search
engine [4, 22, 23, 26, 35, 37, 38, 40, 50]. Some software engineering researchers have employed
query expansion to improve the performance of tasks such as code search, answer summary, and
similar question recommendation. For example, Haiduc et al. [22] proposed an approach that can
recommend a good query reformulation strategy by performing machine learning on a set of
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historical queries and relevant results. Hill et al. [23] proposed a query expansion tool named
Conquer, which introduces a novel natural language based approach to organize and present search
results and suggest alternative query words. More recently, Lu et at. [37] presented an approach to
expand the original query with synonyms from WordNet, which can help developers to quickly
reformulate a better query. Xu et al. [50] proposed a novel framework to reformulate the answer
in Stack Overflow to reduce the lexical gap between question and answer sentences. Inspired by
these studies we also leverage the idea of query expansion to recommend the relevant answers.
Our DeepAns tool generates useful clarifying questions as a way of query boosting, which can
substantially reduce the lexical gap between the question and answer sentences. In contrast, all of
the aforementioned studies ignore the interactions between the asker and the potential helper.

8.3 Deep Learning in SE
Recently, an interesting direction in software engineering is to use deep learning to solve many
diverse software engineering tasks [3, 10, 14–16, 18, 20, 21, 24, 25, 30, 31, 34, 36, 45, 49, 52]. For
example, White et al. [49] leverage an deep learning approach, DeepRepair, for automatic program
repairing. Gu et al. [20] propose a novel deep neural network named DeepCS for code search
tasks, where code snippets semantically related to a query can be effectively retrieved. Hu et
al. [24] a develop new sequence-to-sequence model named DeepCom to automatically generate
code comments for Java methods. Li et al. [34] present CClearner which is a deep-learning based
approach for clone detection.

Although the aforementioned studies have utilized deep learning techniques for different kinds
of software engineering tasks, to our best knowledge, no one has yet considered the relevant answer
recommendation task in technical Q&A sites. We proposed in this paper a novel neural network
architecture to address the answer hungry problems in technical Q&A forums.

9 SUMMARY
To alleviate the answer hungry problem in technical Q&A sites, we have presented a novel neural
network-based tool, DeepAns, to identify the most relevant answer among a set of answer can-
didates. Our model follows a three-stage process:question boosting, label establishing and answer
recommendation. Given a post, we first generate a clarifying question as a way of question boost-
ing, we then automatically generate positive, neutral+, neutral− and negative training samples via
label establishing. Finally based on the four kinds of training samples we generated, we trained
a weakly-supervised neural network to compute the matching score between the question and
candidate answers. Extensive experiments on the real-world technical Q&A sites have compara-
tively demonstrated the promising performance and the robustness of our approach in solving
unanswered/unresolved questions..
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