
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 1

How does Visualisation Help App Practitioners
Analyse Android Apps?

Lihong Tang, Tingmin Wu, Xiao Chen, Sheng Wen, Li Li, Xin Xia, Marthie Grobler, and Yang Xiang

Abstract—Behaviour analysis is essential for the security verification of suspicious Android applications, but analysts are usually faced
with a huge obstacle when conducting the app behaviour analysis. They are expected to have comprehensive knowledge of different IT
fields and a strong awareness of cyber threats. However, training a new security analyst typically requires a significant amount of time
and can be extremely costly. Although there are tools available to assist analysts in studying Android behaviour and security, the
completion of this task still heavily relies on the experience of the analysts. To address this problem, we recognise visualisation as a
promising method and conduct a series of controlled experiments to demonstrate its effectiveness in the context of Android app
behaviour and security analysis. We accordingly develop a visualisation tool based on apps’ call graphs (CG) (named VISUALDROID)
and conduct an experiment and a follow-up interview. Compared to existing solutions, the results suggest that the CG-based
visualisation solution (VISUALDROID) can lower the barriers to Android behaviour and security analysis. The user study reveals that
the platform includes CG-based visualisation components leads to a statistically significant improvement in Android behaviour analysis
and security awareness. More specifically, it improves APK ANALYZER, JD-GUI, JD-GUI+FLOWDROID by 71.4%, 35.7%, and 39.2%
in terms of the effectiveness of behaviour analysis. Participants who use VISUALDROID also show improvements in the aspect of
security awareness with an increase of 155% against APK ANALYZER, 96% against JD-GUI, and 59.3% JD-GUI+FLOWDROID.

Index Terms—Android, visualisation, application comprehension, human-computer interaction.

✦

1 INTRODUCTION

B EHAVIOUR analysis has long been an essential activity
in Android app security. In the endless war of cyber-

security, behaviour analysis helps defenders timely capture
malicious behaviours of attackers, which may cause vari-
ous security incidents such as the compromise of Android
devices. However, behaviour analysis has never been an
easy task for security analysts. They normally need to have
comprehensive knowledge of different areas in IT as well as
a strong skill set. For example, apart from Android program-
ming, an analyst is expected to have knowledge of computer
networks and systems, cryptography, etc. Analysts also need
to read source code smoothly and be sensitive to potential
security flaws. Almost all these capabilities can only be
developed based on the experience of long-standing IT
security analysis. Therefore, there exist massive barriers for
IT graduates to be capable of committing security analysis
on the behaviour of Android APKs.

Tools are deemed to be helpful in behaviour analysis.
So far, there are several tools available in the domain, such
as JD-CORE [1], APK ANALYZER [2], and FLOWDROID
[3]. However, the use of these tools still requires expertise
from experienced operators. This shortcoming considerably
shrinks the group of capable analysts who are benefited

• L. Tang, S. Wen, and Y. Xiang are with the Department of Computing
Technologies, Swinburne University of Technology, Australia, VIC, 3122.
E-mail: {lihongtang,swen,yxiang}@swin.edu.au.

• L. Tang, T. Wu and M. Grobler are with CSIRO’s Data61. Email:
{Lihong.Tang,Tina.Wu,Marthie.Grobler}@data61.csiro.au.

• X. Chen and L. Li are with the Faculty of Information Tech-
nology, Monash University, Clayton, VIC 3800, Australia. Email:
{Xiao.Chen,Li.Li}@monash.edu.

• X. Xia is with Software Engineering Application Technology Lab, Huawei.
Email: xin.xia@acm.org.
Corresponding Authors: S. Wen, X. Chen.

Manuscript received April 19, 2022; revised April 20, 2022.

from using the tools. Moreover, existing tools are usually
not compatible with each other. When it is necessary to
derive results from multiple tools, analysts may face diffi-
culties in identifying or correlating complex security issues.
Companies also claim that it is tough and costly to train
a sophisticated analyst for Android security. As suggested
by world-known cybersecurity companies [4], it usually
takes from one to five years to train a new security analyst
depending on the responsibility they have taken and their
previous experience.

Software visualisation is one of the promising techniques
that can help address the above problem. This technique
has been widely used in the areas of software maintenance,
reverse engineering, and re-engineering. In the market of
Android program analysis, we can find several visualisa-
tion tools available for use, for example, ANDROGUARD
[5]. The quality of these tools heavily relies on designers’
understanding of how visualisation can assist analysts. Un-
fortunately, according to our investigation, there is no prior
work that has explored the effectiveness of visualisation in
analysing behaviours of Android apps. In particular, we
can find some related works that focus on visualisation in
analysing PC programs [6], [7], [8]. However, because the
features of different platforms (e.g. PC, iOS, and Android)
and the focus of program analysis can significantly affect
what and how a program can be visualised, their experience
cannot be directly borrowed and used for the Android
platform.

Therefore, in this paper, we are motivated to conduct
a series of controlled experiments that empirically evaluate
the visualisation in Android app analysis based on the app’s
function call graph (CG).

To investigate the merits of graphical representations for
source code in assisting the junior IT people with APK



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 2

Fig. 1: A screenshot of VISUALDROID.

behaviour analysis, we develop a web-based tool named
VISUALDROID and make comparisons with existing tools
that employ different types of code representations (e.g. tree
structure). VISUALDROID integrates three main function-
alities: 1) visualisation for the CG of APKs, 2) interaction
between CG and source code, and 3) APK comparison view.
This tool provides an innovative visualisation solution for
manual analysis of Android APKs. As suggested by the
experiment results (cf. Section 4), users with an IT program-
ming background (but not specialists) can easily identify the
behaviours (see the example of behaviours in Table 6) of the
target APKs. Specifically, this tool shows improvements in
two different vectors: 1) the effectiveness of Android APK
behaviour analysis and 2) users’ security awareness. It im-
proves APK ANALYZER, JD-GUI, and JD-GUI+FlowDroid
by 71.4%, 35.7%, and 39.2% in terms of effectiveness, 155%,
96%, and 59.3% in terms of security awareness, respectively.
From the interviews with the participants, we also find
that our tool enhances the susceptibility of non-experts
to suspicious APK behaviours. We summarise the major
contributions as follows:

• We conduct a user study with 40 participants to eval-
uate the performance of our proposed visualisation
framework. The results show that our approach im-
proves the effectiveness and users’ security awareness
in Android APK behaviour analysis compared to exist-
ing types of visualisation.

• To facilitate the user study, we design and implement
a visualisation framework called VISUALDROID. It con-
tains the visualisation components (e.g. the graphical
visualisation of the function call graph (CG) of an app),
the interaction between CG and the source code, and
app comparison view based on visualised CG, VISUAL-
DROID is to be applied as a visualisation platform for
Android APK behaviour analysis.

The remainder of this paper is organised as follows. We
first present our preliminary study on existing app analysis

tools, which provide different types of code presentation
in Section 2. We also introduce our visualisation approach
(VISUALDROID) and research questions in this section. We
then present the detailed design of the user study in Section
3. In Section 4, we elaborate and analyse the results. In
Section 5, we discuss how visualisation components help
APK behaviour analysis, the implication of our study, and
threats to validity, followed by the related work in Section 6
and the conclusion in Section 7.

2 EXPERIMENTAL DESIGN

In this section, we first present the preliminary study and
introduce the existing analysis tools that use different types
of code representation. Based on the existing available tools,
we present our designed CG-based visualisation analysis
tool to facilitate our user study.

2.1 Preliminary Study
In industry, apart from the information obtained from the
automatic process, there are still many processes inevitably
handled by manual inspection. Considering the situation
that analysts can easily obtain results by running automatic
tools by taking training, the difficulty of analysing APK usu-
ally relies on how analysts perform manual analysis. This is
also why analysts with different professional backgrounds
can draw different conclusions.

We first conduct a preliminary study on existing APK
manual analysis tools. Most security companies have their
own inspection tools to perform APK analysis, but they are
usually not available to the public. Therefore, we search
exhaustively on Stack Overflow and Reddit for the most
common Android manual analysis tools. We select the tools
to analyse if they provide the functions of inspecting the
source code. Finally, we select APK ANALYZER, JD-GUI
and the combination of FLOWDROID and JD-GUI as rep-
resentatives from industry and academia. These three app



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 3

analysis tools provide different types of code representation,
e.g. tree structure, general source code, and linked function
call in text. Android Studio is a well-known tool to develop
android apps, and it also provides an extended function
for APK inspection called APK ANALYZER [2]. APK AN-
ALYZER provides immediate insight into the APK when the
Android project has already been built. It allows analysts
to import APK files directly. Analysts can then inspect the
classes.dex file and some other resources within the APK.
By clicking the classes.dex file, APK ANALYZER first lists
the package folders, after expanding the package folder,
it shows all the classes in the package and furthermore
lists all methods that the selected class contains. It displays
the APK source code information in a tree structure. JD-
GUI [1] is another common tool for analysts to conduct
APK inspection on APK source code. Unlike the APK
ANALYZER, the target APK needs to be decompiled and
converted to a .jar file to be imported into JD-GUI. The
Java source code that is zipped in the .jar file will show
in JD-GUI’s user interface. Analysts can then browse the
reconstructed source code with instant access to all methods
and fields. It is regarded as another code representation that
programmers are most family with, in which source code
is presented in a text manner within a GUI. The third tool
we selected is FLOWDROID. It is a popular tool in academia
when analysing APKs. It presents APK source code as data
flows in Android apps and Java programs. Function calls
are linked if they have a caller-callee relationship. This
visualises the app source code into a number of chains,
which is known as the data flow. Most researchers [9], [10],
[11] utilise the data flow generated from FLOWDROID and
the source code displayed in the JD-GUI to perform a further
in-depth analysis for APKs. The three tools provide different
code representations to assist analysts in analysing APK and
the functionalities of different tools can be found in Table 1.

TABLE 1: Functionalities provided in each platform

Functionalities CT1 CT2 CT3 TM

Fuzzy Search ✓ ✗ ✓ ✓

Graphic Visualisation ✗ ✗ ✗ ✓

Data Flow Presentation ✗ ✗ ✓ ✓

All Neighbouring Data Flow Presentation ✗ ✗ ✗ ✓

Subsection Analysis ✗ ✗ ✗ ✓

Source Code Inspection ✗ ✓ ✓ ✓

Redirect to Class/Method Declaration ✗ ✓ ✓ ✗

Sensitive API Highlight ✗ ✗ ✓ ✓

Connect Data Flow with Source Code ✗ ✗ ✗ ✓

CT1: APK ANALYZER, CT2: JD-GUI,
CT3: JD-GUI+FLOWDROID, TM : VisualDroid

2.2 VisualDroid
In this section, we introduce and justify the functionalities
designed to facilitate our user study.

2.2.1 Justification of VisualDroid’s functionalities
After we select the baselines for our study, we analyse the
functions provided by each tool and then design a graphical
representation to facilitate our user study. We have several
functionalities identified in the visualisation platform, in-
cluding CG-visual components, source code inspection, and
APK comparison.

Visual components: This research aims to show the
effectiveness and efficiency of graphical solutions based
on comparing existing tools that utilise different code pre-
sentations. Therefore, VISUALDROID integrates three sub-
visual components to facilitate the Android APK analysis in
our controlled experiment, including CG visualisation, sub-
graphs visualisation, and node highlighting. To discuss the
benefits gained from the visualisation, we decide to visualise
the CG as our main visualisation resource. Firstly, based on
the investigation of the code presentations provided by the
available tools, the naming scheme for the functions in the
CG is very similar to the scheme applied in other tools. In
this way, we can control the information presented to our
participants in different groups has the same types of data
information. Besides, analysts who understand source code
can easily read from CG. Considering not many participants
are able to read from other types of source code information
(e.g. smali code), CG is the best visualisation resource under
our experiment settings. Apart from the visualisation of the
CG, we also implement subgraph visualisation. The original
CG of an APK contains up to thousands of nodes and edges,
making it difficult to perform APK behaviour analysis.
Subgraph analysis can help improve the efficiency of APK
behaviour analysis. Additionally, to emphasise the security
aspect, we use the highlight effect for sensitive API nodes.
The highlight has been proved that it can effectively attract
users’ attention in previous studies [12], [13]. It can also help
users quickly distinguish the highlight objects from other
objects. Therefore, it is an effective solution to deliver visual
information of the sensitive APIs in our design.

Interaction between CG and source code: While CG
can effectively provide the relationship of the function calls
in a single view, analysts can not entirely rely on the CG.
Source code can offer some other detailed information, such
as program statements and parameters. Program statements
and parameters can be leveraged to commit malicious be-
haviours. Therefore, it is also important to have a further
look at the source code when analysing the CG. To avoid
inconveniences, we add the interaction between the CG and
the source code to make it more user friendly. In this way,
analysts can quickly locate the relevant source code while
performing CG analysis.

APK comparison view: A study shows that 80% mal-
ware samples are built via repackaging other apps [14], for
example, by simply unpacking a benign app and injecting
malicious code before repackaging it. Therefore, the capa-
bility of comparing two similar apps is important to a static
analysis tool. Existing tools used for manual analysis rarely
provide a comparison function. Users usually need to open
multiple windows or tabs to perform comparative analysis.
Because we aim to discuss the effectiveness and efficiency
of the visual solution, we integrate the comparative view of
two APKs’ CG with the comparison algorithm running at
the back-end.

2.2.2 VisualDroid Design

We design and implement VISUALDROID, a visual solution
for Android APK analysis to facilitate our user study. VISU-
ALDROID is an online platform developed under the React



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 4

Fig. 2: The overall architecture of VISUALDROID.

framework1.
Fig. 1 demonstrates an example user interface (UI) of

VISUALDROID. The UI contains a visualisation panel (on the
left of Fig. 1) and an information panel (on the right of Fig.
1). The visualisation panel displays the CG of the analysed
APK. A CG illustrates the relationships between the caller
and the callee of a function call with a directed graph.
We highlight the sensitive APIs in red. The information
panel provides the general information of the APK (e.g. the
number of nodes and edges in the CG, a list of sensitive
APIs, etc.) and the information of the selected subgraph.
VISUALDROID supports a broad range of facilities to interact
with, such as 1) CG visualisation, 2) source code inspection,
and 3) APK comparison. In the following subsections, we
introduce the workflow and the core functionalities of VI-
SUALDROID in detail.

Visual components: CG is a directed graph that presents
the function flow in the APK. VISUALDROID incorporates
FLOWDROID [3] to decompile the APK first and generates its
CG for the visualisation purpose at the first stage. Analysts
can further choose to partition the CG by using a supported
community algorithm (e.g. Infomap [15]). Then they can
inspect the visualised subgraphs with the relevant informa-
tion (e.g. sensitive APIs, packages, source code, etc.) to assist
the APK analysis, as shown in Fig. 2. In VISUALDROID, after
the test APK is decompiled into CG, it is visualised as a few
2-dimensional graphs. Each node denotes a function call,
and each edge declares a caller-callee relationship between
two connected function calls. The node at the arrowhead
represents the function caller, and the node at the tail is
the callee. To ease the APK inspection, VISUALDROID also
provides subgraph analysis, in which the original CG is
partitioned into several subgraphs by utilising a community
detection algorithm. After the community detection, each
generated subgraph has fewer edges and nodes. Users can
then focus on the subgraph they are particularly interested
in. The community network refers to the structure that
nodes in the network can be categorised into different sets,
and nodes in each set are densely connected internally.
Previous studies [16], [17], [18] have demonstrated CG is the
network that has the community features. Because Java is a
significant object-oriented language, methods are grouped

1. https://reactjs.org

together in the same class or package to perform highly
relevant operations among objects [19].

To facilitate the security analysis, we integrate the sen-
sitive API list provided by FLOWDROID [3]. Users can find
the sensitive APIs in the collapsible panel on the right side
(see Fig. 1) or hover over the highlighted function node
in the CG. Sensitive APIs (e.g. requestLocationUpdates())
are typically protected through different Permissions in
Android APKs [20]. If the user grants the permissions, the
APK can utilise the sensitive APIs particular managed by
those permissions. This security mechanism provided by
the Android platform is to mitigate the threats caused by
the misuse of sensitive APIs. The sensitive APIs can be
utilised by malware writers to steal users’ information, and
the inappropriate use of sensitive APIs will also expose
vulnerability to attackers. Because utilising sensitive APIs
is one of the critical features of malicious apps, the function
calls that are regarded as sensitive APIs are highlighted in
red in the CG, and non-sensitive function calls are displayed
in grey. Analysts can also hover over the node to view more
detailed information, such as the package, the class name,
the function name, and the type(s) of parameters it has.

The examples of subgraphs with highlighted function
nodes show in Fig. 3. The subgraph in Fig. 3(a) shows the
behaviour of creating an alarm, obtaining the current time,
and then setting the alarm as a pending event. In Fig. 3(b),
the app creates a web view to display the HTML content.
The behaviour in Fig. 3(c) is to send a text message to a
specific number without giving any notice to the users. An-
alysts can hover over different nodes and edges to inspect
the app behaviours from the graphic view.

Interaction between CG and source code: VISUAL-
DROID also supports source code inspection of the nodes
in the CG, providing additional information besides the
function call flow. When a node is selected, its source
code will be displayed in the source code collapse panel.
VISUALDROID utilises JD-CORE [1] to convert .dex byte-
code into readable .java source code (see the details in
Fig. 2), and then extracts the relevant code segments from
the source code directory. As the name of function call
specifies the package and the class it belongs to (e.g.
com.software.application.Actor:write()), we can quickly lo-
cate the desired .java file. After the target .java file is found,
our tool will search for the function that has the same name



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 5

(a) Set an alarm (b) Create a web view content (c) Obtain SmsManager with a
subscription ID

Fig. 3: Subgraphs with highlighted function nodes

inside the target .java file. Because Java has the polymor-
phism features, there might be several functions from the
same .java file having the same function name but different
parameters. If there are results returned, VISUALDROID will
further check the number, sequence, and parameter types
of the method. Once the method is found, our tool will
highlight the function in the source code, so that the analysts
can quickly locate the relevant code segment and analyse the
source code in the context.

Fig. 4: VISUALDROID comparison flow graph.

APK comparison view: VISUALDROID provides two
comparison strategies, namely code comparison, and struc-
tural comparison, to tackle different needs. The workflow
is shown in Fig. 4. VISUALDROID integrates SimiDroid [21]
for code comparison, which converts the APK’s bytecode
into an intermediate representation (i.e., Jimple [22]), and
identifies the identical or similar methods in two APKs.
However, due to the intrinsic limitation of static code analy-
sis tools, the code comparison strategy is vulnerable to code
obfuscation. Therefore, we also implement the structural
comparison strategy, which can effectively tackle the code
obfuscation problem. The structural comparison strategy
takes the subgraphs from two APKs as input and then
compares the sensitive APIs and the structure of the input
graphs. We employ the graph similarity algorithm proposed
in [18]. We first calculate the shortest path distance between
the sensitive API nodes in the same subgraph. Then, we
measure the similarity of the same sensitive API nodes in
both subgraphs through a standard cosine metric. If two
graphs have the same sensitive API(s) and a similar graph
structure, they are most likely to perform the same be-
haviour. VISUALDROID displays similar subgraphs in pairs

for further analysis.

2.3 Research Questions
This user study is designed to answer the following ques-
tions:

• RQ1: How effective is VISUALDROID compared to ex-
isting tools with other code representations in analysing
Android APK behaviour, regardless of the Android
APK complexity?
Motivation: VISUALDROID enhances the behaviour
analysis by providing CG visualisation and searching
based on CG. We would like to investigate if VISUAL-
DROID can assist in better behaviour understanding of
the APK.

• RQ2: How efficient is VISUALDROID compared to exist-
ing tools with other code representations in analysing
Android APK behaviour, regardless of the Android
APK complexity?
Motivation: VISUALDROID elaborates visual compo-
nent, querying and source code inspection to facilitate
the APK behaviour analysis. We would like to investi-
gate if VISUALDROID can help analysts understand the
APK behaviours faster.

• RQ3: Does the use of VISUALDROID increase the se-
curity awareness of users when performing APK be-
haviour analysis?
Motivation: VISUALDROID provides security informa-
tion (e.g. the usage of sensitive APIs) and highlights
the relevant sensitive nodes in the CG. We would like
to investigate if analysts will have increased security
awareness when the security information is provided
in a particular visualisation context.

3 USER STUDY SETUP

In this section, we present the details of the participant
recruitment, the design and data collection of our user study,
and the procedures conducted during the experiment. This
will enable a better evaluation of the user study design and
results, and allow for repeatability of the experiment as is,
or reuse the experimental design for a variance experiment.
Before we conducted the experiment, we obtained the ethics
approval2 from the CSIRO Social and Interdisciplinary Hu-
man Research Ethics Committee.

2. Ethics Clearance 192/19



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 6

TABLE 2: Experimental groups.

Tool Description
VISUALDROID
(TM )

The source code of the APKs is presented
in a directed graph view.

APK ANALYZER
(CT1)

The source code of the APKs is converted
into tree management view with pack-
ages, classes and method information.

JD-GUI
(CT2)

The source code of the APKs is recon-
structed into a readable version and user
can access to methods and fields.

FLOWDROID
+JD-GUI
(CT3)

CG is generated by FLOWDROID in a text
manner. The source code of the APKs is
reconstructed into a readable version and
user can access to methods and fields.

3.1 Recruitment
Our study is mainly designed for junior analysts who have
basic IT backgrounds. To investigate how visualisation can
help junior IT people perform APK behaviour analysis. We
recruit 40 university students with a software engineering
major and who have experience with Java programming.
All the participants are required to be over 18 years old, and
they do not receive any IT security training or an IT security
degree before the experiment. We advertise the project and
distribute an informational handout at the participating
universities. Potential participants contact us via email after
checking the requirements for participation specified on the
handout. Participants who provided written consent were
given an information sheet that specifies the tasks in the
user study. It is voluntary to participate in this experiment,
and participants’ consent is implied by signing the consent
form. A gift card valued at 40 dollars is presented to each
participant after successfully completing the entire user
study.

3.2 Experiment Design
In this subsection, we detail the design of the experiment,
including the APK behaviour analysis tests involved in the
experiment, how we select the test APKs, and the APK
behaviours listed in the answer sheet.

3.2.1 Test Single and Comparison

We regard the behaviour of an APK as the way the APK
works or functions. In the APK behaviour analysis tests,
there are two different tests, a single APK analysis test (re-
ferred to as Test Single) and a comparison test (referred to as
Test Comparison). The Test Single is to simulate a general APK
behaviour analysis in real-life practice, and Test Comparison
is mainly designed for the analysts if they focus more on
evolution and piggyback perspectives.

An answer sheet is prepared, consisting of a table for
each test. Examples of the tables in Test Single are shown
in Table 3 and Table 4 respectively. Table 6 shows a list of
APK behaviours that is provided for both Test Single and Test
Comparison. Participants are required to identify if the given
behaviours exist in the test APKs, and mark the suspicious
behaviour based on their instinct. After completing the
first table, participants are required to complete the second
table (cf. Table 4) and provide evidence if they reckon the

TABLE 3: Test Single Table 1 example.

Id APK Behaviours E S
1 Set the colour of the text in an alertbox ✓

2 Listen to a location change ✗

3 check network status and then send text
message

✓ ✓

... ... ... ...

E: ✓if this behaviour exists, otherwise ✗.
S: ✓if the existing behaviour is suspicious, otherwise ✗.

TABLE 4: Test Single Table 2 example.

Id APK Behaviours E R
1 Set the colour of the text in an alertbox e1
2 Listen to a location change
3 check network status and then send text

message
e2,
e3

r

... ... ... ...

E: if this behaviour exists, please list all the relevant evidence.
R: why do you think this existing behaviour is suspicious?

behaviours exist. The answer sheet for Test Comparison has
similar tables to Test Single, but participants need to clearly
specify which APK has the behaviour(s) and indicate in
which APK the existing behaviour is suspicious. We further
explain the experiments’ focus on each test as follows:

Test Single: In Test Single, participants are asked to
analyse a malicious APK on its own, and gain insights from
the following APK analysis tasks:

• Identify APK behaviours and provide evidence.
• Identify if the behaviours are suspicious.
We will examine the data from the following aspects:

• Observe the time used in completing the first table (i.e.,
Table 3).

• Count how many behaviours are correctly identified by
participants with adequate evidence.

• Count how many behaviours are identified as suspi-
cious behaviours.

Test Comparison: In Test Comparison, two APKs are
provided, with one being an evolved malicious version of
the other. Participants are supposed to gain insights from
the following APK analysis tasks:

• Identify APK behaviours from both APKs and provide
adequate evidence of these behaviours.

• Describe the unique behaviours of each APK and the
common behaviours.

• Identify the malicious APK.
• Infer which APK is the later version with evidence.
We will examine the data from the following aspects:

• Observe the time spent in completing the first table.
• For each APK, count how many behaviours are cor-

rectly identified with sufficient evidence by partici-
pants.

• Observe whether participants can infer the correct evo-
lutionary relationship with proper explanations.

• Observe whether participants can correctly describe
how the later malicious APK evolved in terms of the
security aspect.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 7

TABLE 5: Selected test APKs.

Complex
Level

APK ID No.
Class

No.
Method

Obfuscation

BSingle 59 291
1 ACmp1 39 168 NO

ACmp2 37 142
ASingle 148 843

2 BCmp1 130 657 YES
BCmp2 157 744 .

3.2.2 Test APK Selection
We select our candidate APKs from the AndroZoo dataset
[23], which collects APKs from various sources, including
official Google Play and alternative app markets. Candidate
APKs for Test Single are selected from the AndroZoo dataset.
Candidate APK pairs used in Test Comparison are randomly
chosen from a list of piggybacked APK pairs as suggested
in [24]. We obtain the MD5 hashes of the APK pairs and
retrieve the APK files from the AndroZoo dataset. Selected
APKs are decompiled and carefully inspected before analy-
sis to ensure no program exceptions due to decompilation
failure. We also excluded APKs with a large size (i.e., LOC
> 50k) to limit the time required for our user study. More
importantly, to discuss the impact caused by the complexity
of the test APKs, we examine the candidate APKs in terms
of the number of classes and methods and obfuscation
technology they have.

In the end, we select six APKs and cluster them into
two sets according to their levels of complexity, as shown
in Table 5. Set 1 has less complicated APKs with 45 (Max:
59, Min: 37) classes and 200 (Max: 291, Min: 142) methods
on average. APKs in Set 2 are more complicated with
more classes, methods, and obfuscated code. They have 145
classes (Max: 157, Min: 130) and 748 methods (Max: 843,
Min: 744) on average. Furthermore, APKs in Set 2 have a
large portion of code obfuscated with identifier renaming.
All test APKs used in our experiment are under licensed use
and are not executed during the experiment due to ethical
conditions.

3.2.3 Behaviour Selection
During the experiments, participants need to identify if
the behaviours listed in the answer sheet exist in the test
APKs. To mitigate the bias and ensure that the behaviours
listed on the answer sheet can be gathered by leveraging
all the comparing tools (i.e., APK ANALYZER, JD-GUI,
FLOWDROID, and VISUALDROID), we analyse the APKs
with all the tools mentioned above and select the behaviours
that can be identified by all of them.

To prepare the behaviour list in Test Single, 18 candidate
behaviours are selected and only half of them exist in
the given APK. All of the behaviours contain at least one
sensitive API to examine participants’ security awareness.
In Test Comparison, we have 20 candidate behaviours. Five
behaviours belong to both test APKs, two groups of five
behaviours belong to each test APK only, and the other five
behaviours do not exist. Three authors of this paper whose
speciality lies in Android malware analysis are asked to vote
and form the final behaviour list.

For both Test Single and Test Comparison, we obtain a list
of six behaviours at the end. To ensure participants can gain
a better understanding of the test APKs, we further check
if the number of candidate behaviours that exist is equal or
more than three in each test APK, otherwise, we replaced
the behaviours that did not exist. The final behaviours we
selected are shown in Table 6, we divide them into three
categories and also explained the rationals.

3.3 Experimental Group

We identify dependent and independent variables in our
user study to evaluate if VISUALDROID is a better solution
than other visual tools in assisting analysts to comprehend
Android APK behaviours (including security issues). The
independent variables identified are 1) the tools that are
utilised in Android APK behaviour analysis and 2) the
complexity of the APKs. The dependent variables in our
user study setting are 1) the grades achieved in the APK
behaviour analysis tests, 2) the time spent on APK be-
haviour analysis when the participants use different tools
and analyse APKs with different complexity, and 3) the
index indicating their security awareness when performing
APK behaviour analysis.

As shown in Table 2, we obtain four large groups based
on the tool they used for the experiments. In our exper-
iments, participants are randomly divided into these four
groups, with 10 participants in each group. Control group
1 (CT1) utilise APK ANALYZER as the analysis platform.
Control group 2 (CT2) is provided with pre-decompiled
APK .jar files and utilised JD-GUI. Control group 3 (CT3)
is required to elaborate the results from both JD-GUI and
FLOWDROID. The treatment group (TM ) employ VISUAL-
DROID to perform APK analysis. Participants are unaware
of which tool was developed by us.

Each large group is further divided into two subgroups
with five participants each to participate in either session A
or B. To ensure that every subgroup spends time approxi-
mately evenly in the experiments, we mix APKs with differ-
ent complexity levels for two tests (i.e., Test Single and Test
Comparison) in the experiments (cf. Section 3.2.1). As shown
in Table 2, participants who take part in experiment session
A received the test APK (ASingle) with level 2 complexity in
Test Single, and two APKs (ACmp1

and ACmp2
) with level 1

complexity in Test Comparison. Vise versa, participants who
take part in experiment session B were assigned to analyse
BSingle (complexity = 1) in Test Single, and two APKs BCmp1

and BCmp2
with level 2 complexity in Test Comparison.

3.4 Experiment Data Collection

Here, we explain how we collect data during the experi-
ment.

3.4.1 Answer Sheet Data
We design a scheme to convert the collected answers into
quantitative information. There are three types of quantita-
tive information collected in our experiment.

The first one is the grades achieved from the APK
behaviour identification by each participant. For example,
in Test Single, if the participants correctly identify whether a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 8

TABLE 6: Selected behaviours.

Category Behaviours Rationales

User Interface
Related

Set up a web view to display the HTML content This behaviour involves some sensitive APIs related
to the built-in web view. Some APKs utilise this to dis-
play advertisement aggressively or to cover malicious
trace at the background

Create a dialog box with "Yes" and "Cancel" buttons, when any
button is clicked by the user, the predefined UI will always be
displayed.

If a button is wired with a listener, it trigger the code
written inside the onClick() after the user presses the
button. It can be possibly utilised by malware.

Set up a listener to a "Yes" button, and then set the visibility of
text views
Create a button and set a listener to the button, and change the
span style of the text view
Monitor if user has pressed the keyboard This behaviour can give the information if the key

down event is occured, it can be possibly utilised by
malware.

Integrate a calendar for user to check the date Information obtained from the calendar can be possi-
bly utilised by malware.

Data Sources
and Sinks

Request the features of the app window This behaviour is to ask the system to include or
exclude some of windows UI features (e.g. toolbar,
actionbar).

Obtain device location based on a set of criteria To provide a better service, some APKs need the
location information, but it is considered as
dangerous to share location to untrusted APKs.

Obtain user device’s location and also request the location
update
Register the device on a remote server, or obtain the information
from SharedPreferences and then unregister the device from the
remote server

Store or obtain information in the device database or
sharedPreference. Malicious APKs can utilise these to
store and obtain sensitive information.

Create database and record the status of interface
Check country code and operator code, and then send text
message

This will result in sending message automatically. Mal-
ware can send premium text message or possibly leak
personal information through text.

Utilise Dex class loader to load a user defined class from external
library

It enables APK developers to load external libraries
and invoke methods directly from external. Malware
can utilise DexClassLoader to cover its malicious in-
tent inside the external library.

Download APKs from the given links An APK downloads other APKs from a list of links.
Malware can download unwanted APKs secretly with-
out user’s permission.

Condition
control

Check if the airplane mode is on When APK detects that user is back on service, APK
can then perform some tasks, which typically require
the internet. Malware sometimes need to check this
condition before they perform some malicious be-
haviour related to internet.

Create an alarm, get the current time, and set the alarm as a
pending event

APK can trigger some events at a specific time. Mal-
ware can therefore set predefined task at specific time
to evade the dynamic detection.

certain behaviour exists in Table 3 and provide adequate ev-
idence in Table 4, they will be awarded one score. Moreover,
participants need to carefully identify all the sub-behaviours
involved in every behaviour listed in the table and provide
relevant evidence. For example, in Table 3, the third row
includes two sub-behaviours: 1) check network status, and
then 2) send text message. If the participants think this be-
haviour exists, they need to provide evidence for both sub-
behaviours. Any incomplete or incorrect evidence results in
losing a score. Besides, participants are required to provide
the suggestion for each behaviour. They need to tick the
behaviour if it exists and cross out the behaviour if it does
not exist. If no suggestion is provided, it also will result in
losing a score. In both Test Single and Test Comparison, there
are six behaviours listed for participants to judge if they
exist. Only one APK is provided in Test Single. Therefore,
the total score for Test Single is six. In Test Comparison,
participants need to analyse two test APKs, and judge if
the listed six behaviours exist in both APKs. Therefore, the

total score for Test Comparison is twelve.
Apart from the grades obtained from behaviour analysis,

Test Comparison has additional two open questions. We want
to further investigate the APK evolution or repackage anal-
ysis based on the visualisation solution. In the first question,
if the correct evolutionary sequence is identified with correct
reasons, one score will be rewarded. In the second question,
if malicious changes are correctly identified, then they can
have one score. The total grade for the open questions is
two.

The third type of quantitative information is the number
(NSB) of behaviours that are regarded as suspicious. All the
listed behaviours contain at least one sensitive API, which
might lead to a security compromise. Our participants are
supposed to link sensitive APIs with potential security
issues. It is subjective that the user might judge differently
by their intuition when they perform the APK behaviour
analysis, and a larger number can reflect that the participant
has a higher security awareness.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 9

The participants in different groups need to provide the
evidence based on the tools to complete the second table in
the experiment (i.e., Table 4). Control group 1 (CT1) needs
to specify the supporting functions including the entire
package path, the class it belongs to, and the parameters
it holds. Valid evidence for CT1 shows in Example 3.4.1.

EXAMPLE 3.4.1: CT1 VALID EVIDENCE

Package.Subpackage...Class: void function(param,...)

For control group 2 (CT2), participants need to provide
the relevant code segment where the core function is called.
Participants are also required to highlight the core function
related to the existing behaviour. An example of valid evi-
dence is shown in Listing 1.
23 private void a(){
24 Uri localUri = Uri.fromFile(new File(this.b));
25 Intent localIntent = new Intent("android.intent.

action.VIEW");
26 localIntent.setFlags(268435456);
27 localIntent.setDataAndType(localUri,
28 "application/vnd.android.package-archive");
29 startActivity(localIntent);
30 finish();
31 }
32
33 public void onCancel(DialogInterface

paramDialogInterface){
34 paramDialogInterface.dismiss();
35 a();
36 }
37
38 public void onClick(DialogInterface paramDialogInterface

, int paramInt){
39 paramDialogInterface.dismiss();
40 a();
41 }

Listing 1: An Example of Valid Evidence for Control Group
2 (CT2).

For control group 3 (CT3), since participants are required
to elaborate the result obtained from FLOWDROID and JD-
GUI, they can either provide the relevant code segment as
shown in Listing 1, or the screenshot specifies the relevant
caller-callee relationship as shown in Example 3.4.2.

EXAMPLE 3.4.2: CT3 VALID EVIDENCE

com.geinimi.ads: boolean b() -> java.util.Date: void ()

Participants who belong to the treatment group (TM )
are required to take a screenshot of the subgraph as evi-
dence. The screenshot must show the ID of the subgraph,
and the name of the core function that is highly related to
the behaviour. An example of valid evidence for TM shows
in Fig. 5.

3.4.2 Completion Time
During the experiments, we only record the time that partic-
ipants spend on completing the first table, as the time spent
on the second table may vary, and recording of this may in-
troduce bias. For example, some participants may prefer to
complete the evidence as sentences and tend to write more
detailed answers, whilst others may prefer listed points to
summarise their answers. Therefore, instead of timing the
whole test, we stop the timer when the participants finish
the first table. Participants are not allowed to fill out the
second table until the first table is completed. We set the

Fig. 5: An Example of the Valid Evidence for the Treatment
Group (TM ).

maximum time to complete the first table at 20 minutes in
Test Single and 30 minutes in Test Comparison. Once the time
limit is reached, participants have to proceed to complete
the second table.

3.5 Procedure
The user study includes an experiment and a follow-up
interview. The experiment and the interview are conducted
consecutively with only one participant at a time. Both are
conducted in person.

Before commencing the experiment of the user study,
we introduce the project to the participants and provide
an information sheet with details about the study. After
participants read the information sheet and confirmed that
there is no confusion, we provide them with a consent
form. The experiment starts after the participants agree to
participate and signed the consent form.

At the start of the experiment, we hand out the ex-
periment instruction sheet and provided a quick tutorial.
We explain the technical terms in the document. During
the tutorial, we first show the participant how to utilise
the analysis tool to perform the app behaviour analysis.
Then participants are required to follow the experiment
instructions and analyse the sample APK by the given tool.
The sample answer sheet in the tutorial is pre-filled with
correct answers for reference. Participants are welcome to
ask any questions during the tutorial. After the experiment
starts, participants are required to utilise the given tool to
analyse the test APKs and complete the answer sheet. To
mitigate the bias, participants can only utilise the resource
we provide them during the experiment, In such a case, we
can validate the benefits from visualisation without errors
caused by unexpected operations of participants, which we
might not be aware of during the empirical studies. Every
participant is assigned a random ID. All the data produced
by the participant are logged under that ID. During the ex-
periment, participants are free to ask clarification questions,
not related to the answers.

After the participants successfully complete Test Single
and Test Comparison in the experiment, we invite them to the
follow-up interview. The purpose of the interview is to un-
derstand the results we gather from the experiment and im-
prove the current version of VISUALDROID. The interview
consists of two parts. In the first part, the researchers ask the
participants if they have ticked or crossed the behaviours
they intended to. Then researchers validate each answer



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 10

(evidence and reason) they provide in the second table (cf.
Table 4) to mitigate the bias caused by the misunderstanding
of the answers. In the second part, participants are required
to leave feedback, including sharing their user experience
and what they have learned during the experiment. We ask
the participants to share the obstacles that they encounter
during the experiment. Participants from the VISUALDROID
group are asked to rank the functionalities according to how
helpful they were in APK behaviour analysis. Participants
are also required to give advice on the functionalities, such
as how they can be improved. We then ask the participants
what interesting insights they have gained about Android
app security from our experiment.

4 RESULTS

We have two independent variables (i.e., the tool used in
the experiment and the complexity of the test APKs) and
two dependent variables (i.e., grades and the completion
time). In this section, we present the results of these two
independent variables.

Fig. 6: The distribution of the grades achieved by using
APK ANALYZER, JD-GUI, JD-GUI+FLOWDROID, and

VISUALDROID in (A) Test Single and (B) Test Comparison.

4.1 RQ1: Effectiveness of VisualDroid

In RQ1, we present the grades obtained under different
experiment settings and analyse the results to reveal the
insights regarding the effectiveness of VISUALDROID.

4.1.1 The effect of tool and APK complexity on grade
Fig. 6 shows the distribution of the grades by using different
tools in Test Single and Test Comparison. Each test has two
groups that use APKs with either level 1 complexity or level
2 complexity (illustrated in grey and white, respectively).
The mean value of each group is marked with a circle filled
with the corresponding colour.

In all four different experimental groups, the mean
grades (GS1

and GC1
) of the tests that provide less com-

plicated APKs always score higher than the tests that pro-
vide complicated APKs (GS2

and GS2
). The VISUALDROID

group obtains the highest grades in both Test Single and
Test Comparison, regardless of the complexity levels of the
test APKs in the behaviour analysis. Specifically, in Test
Single, the average grade of GS1

is 5.8 out of 6, while the
average grade of GS2

is 4.8 out of 6. In Test Comparison,

VISUALDROID scores 11.6 (GC1
) and 9 (GC2

) out of 12 in
test APKs with level 1 and 2 complexity, respectively. In Test
Single, APK ANALYZER and JD-GUI+FLOWDROID score
the second highest (i.e., GS1

= 4, GS2
= 2.8) with a slight

advantage over JD-GUI (GS1
= 3.6, GS2

= 2.2). However, in
Test Comparison, JD-GUI outperforms APK ANALYZER and
JD-GUI+FLOWDROID, and obtains mean scores of 9.8 (GC1

)
and 7.2 (GC2

) in test APKs that have the complexity level 1
and 2, respectively. Overall, there is an increase of 35.7% in
the grade achieved by VISUALDROID over JD-GUI, 39.2%
in the grade over JD-GUI+FLOWDROID, and 71.4% in the
grade over APK ANALYZER. Participants who use VISUAL-
DROID outperform other participants in both Test Single and
Test Comparison. While VISUALDROID group achieves best
grades in both tests, a distinct advantage over other tools is
observed in Test Single than in Test Comparison. We further
apply the Wilcoxon rank-sum test [25] to measure whether
the difference between the grade achieved by the four tools
is significant. The result suggests that the group using VI-
SUALDROID achieves significantly better grades compared
to APK ANALYZER (p < 0.001), JD-GUI (p = 0.016)
and JD-GUI+FLOWDROID (p = 0.015). Meanwhile, APK
ANALYZER, JD-GUI and JD-GUI+FLOWDROID perform
similarly in assisting users with app behaviour analysis
(p > 0.13 for each of the three pairs). Additionally, we com-
pare the grades of test APKs with different complexity. We
find participants analyse APKs of complexity level 1 more
accurately than those with complexity level 2 (p = 0.013).

4.1.2 The effect of tool on APK evolution analysis
We calculate the scores of the open questions in Test Com-
parison. We find that participants using APK ANALYZER
are less likely to infer the correct evolution direction and
identify the updates regarding malicious intent. They obtain
0.8 on average when less complicated APKs are provided
and scored 0 on average when more complicated APKs are
used in the test. Participants using JD-GUI achieve 1 out of
2 when less complicated APKs are provided and 0.4 out of 2
when complicated APKs are provided in Test Comparison.
In JD-GUI+FLOWDROID, participants obtain 1.2 and 0.8
respectively in the test that provides less complicated APKs,
and the test that provides more complicated APKs. VISU-
ALDROID participants show the best result in identifying
the evolution direction and malicious updates, they obtain
a score of 1.4 out of 2 when less complicated test APKs are
used in the test. The mean grade reaches 1 when increasing
the complexity of test APKs.

VISUALDROID subgraph visualisation analysis has
an advantage over other forms of visualisation of
effectively presenting the caller-callee relationship
among functions. It improves APK ANALYZER, JD-
GUI, and JD-GUI+FLOWDROID by 71.4%, 35.7%,
and 39.2% in terms of the effectiveness of behaviour
analysis.

4.1.3 Reflection on the grades
We further investigate the reasons why different tools result
in different grade distributions in APK behaviour analysis,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 11

TABLE 7: Reasons of why the score is deducted.

Category Description
Not Found Participant does not correctly identify an ex-

isting behaviour
False Label Participant wrongly identifies a behaviour

that does not exist
Incorrect Participants tick an existing behaviour, but

they do not provide the correct evidence
Incomplete Participants tick an existing behaviour, but

the evidence is not fully provided
No Label The behaviour is not labelled as Exist or Does

not exist, because the participant exceeds the
time limitation in the experiments

as well as the rationale for the complexity of the test APKs
having less impact on the grade obtained by VISUALDROID
compared with the other two tools. We extract the incorrect
answers from the collected answer sheets and categorise
these into five groups based on the reasons why the grade
is negatively affected (i.e. points are deducted from the
overall grade). We conclude five categories: 1) Not Found,
2) False Label, 3) Incorrect, 4) Incomplete, and 5) No Label,
as shown in Table 7. In the end, we collect 89, 65, 68 and 24
answer samples in the groups of APK ANALYZER, JD-GUI,
JD-GUI+FLOWDROID, and VISUALDROID respectively. The
categorisation result is shown in Fig. 7. The pie chart (A)
illustrates the proportion of the reasons categorised based
on the tools used by participants. The bar chart (B) shows
the distribution of the deducted scores categorised by five
different reasons.

As seen from the pie chart in Fig. 7 (A), APK AN-
ALYZER and JD-GUI have a similar distribution of rea-
sons in the deducted score, participants from both groups
struggle most with providing correct answers, accounting
for 38.0% and 33.8%, respectively. 31.5% of the deducted
scores from the APK ANALYZER group (CT1) are attributed
to the behaviour not being found, and 21.3% is because
participants identify non-existing behaviours. The second
common mistake for participants using JD-GUI (CT2) is
identifying behaviours that do not exist (29.0%), followed
by the "Not Found" category (26.2%). The "Incomplete"
category shows a relatively low percentage in both groups,
and the "No label" category only features in JD-GUI. In JD-
GUI+FLOWDROID group, except the "No Label" category,
the other four categories account for approximately a quar-
ter each. Most answers are categorised as "Incorrect"(33.8%).
Compared to other groups, most issues within the VISU-
ALDROID group are caused by wrongly identified non-
existing behaviours, followed by the "Not Found" (37.5%)
and "Incorrect" category (20.8%).

The bar chart in Fig. 7 (B) emphasises the comparison
of each reason’s distribution among the four tools used
in the experiments. It suggests that the group using APK
ANALYSER experiences a larger deduction in overall grade
as a result of "Incorrect", "Incomplete", "False Label", and
"Not Found" answers. Participants from the JD-GUI and
JD-GUI+FLOWDROID groups achieve a slightly better per-
formance, with fewer incorrect, incomplete answers and
more existing behaviours found by the participants. VISU-
ALDROID participants made the smallest number of mis-

takes which only included three cases: 1) behaviour is pro-
vided with incorrect evidence, 2) a non-existing behaviour
is marked as "Exist", and 3) existing behaviour is not found.

We further reference the participants’ feedback from the
three control groups (CT1, CT2, CT3) to explain the reasons
why different groups have different types of wrong cases
in the behaviour analysis, and why VISUALDROID assists
better in APK evolution analysis. JD-GUI provides direct
access to the entire source of the Java files, which requires
participants to have a strong ability to read the source code
and understand the logic flow. Even though JD-GUI pro-
vides the links between functions and classes, participants
need to click the function name or the class name to inspect
the connections between a caller and a callee. They have to
go back and forth to sort out the relationship among the
function calls. After several re-directions from one method
to another, participants usually lose track of the logic flow
and miss the relevant information. Because JD-GUI does
not visualise the relationship. The grade decreases the most
compared to the other tools when the source code is obfus-
cated, and most of the methods do not have a reasonable
name (e.g. a.a.c()). The above reasons mainly contribute to
the cases of "Incorrect" and "Incomplete", and JD-GUI is the
only group that has "No Label" cases.

In the APK Analyzer group, the source code file
(class.dex) is presented in a tree structure. Classes are
grouped under the corresponding package folders, with all
the functions called inside the class listed with their names
only. Therefore, this tree-based code presentation is difficult
for participants from the APK ANALYZER group to obtain
the connections among methods. Since insufficient context
is provided in APK ANALYSER, participants are more likely
to consider an incorrect method as the evidence of specific
behaviour, because the method might have a confusing
name that is similar to the target behaviour’ description.
Participants might mistakenly think one behaviour exists
or think one method is the correct evidence of certain
behaviour. This is the reason why there is a large number of
wrong cases in the "Incorrect" and "False Label" categories
in APK ANALYSER.

Fig. 7: Distribution of the reasons why the grade is
deducted.

Similar to the JD-GUI+FlowDroid group, a large num-
ber of "Incorrect" and "False Label" cases occur when par-
ticipants highly rely on the data flow of APK behaviour



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 12

analysis. Providing only one caller and callee information
at a time makes it difficult to judge if relevant behaviour
is found. As for the participants elaborating the results
from both JD-GUI and FLOWDROID in control group 3,
they suggest the importance to have interaction between
JD-GUI and FLOWDROID, so they could be directed to the
relevant source code when a certain function is clicked from
FLOWDROID.

VisualDroid has ten cases of "False Label", constituting
41.7% of its total cases. We carefully examine the answer
sheet and find that four participants think the Calendar
object in Android only refers to the digital Calendar we
interact with. However, in the test APK, this Calendar
object is to obtain the time rather than create a digital
calendar. Another example is that two participants think the
function getLastKnownLocation() in Android refers to a
location update request. Thus, the lack of knowledge of the
Android platform code caused the deduction of ten scores.
However, VISUALDROID provides a visualisation solution
where participants can interact with the subgraph. Callers
and callees are connected with arrows, and participants
can inspect a sequence of sub-behaviours the connections
between the nodes all at once without going back and forth
between different .java files. The visualisation leads to the
fewest cases of "Incomplete".

The category of "Not Found" constitutes a relatively large
portion of all four groups. It is mainly because of insufficient
search functions in all four different tools. JD-GUI does
not support fuzzy search. Therefore, participants need to
switch between uppercase and lowercase. Sometimes, the
participants also need to try to match the exact string that
exists in the source code. APK ANALYZER and VISUAL-
DROID support fuzzy search, and relevant content will be
highlighted when participants try to search the function
by keywords, but APK ANALYZER, JD-GUI+FLOWDROID
and VISUALDROID do not rule out the irrelevant content.
Participants can easily miss the key content if the test
APK contains a lot of information. However, as we can
see in the bar chart, VISUALDROID introduce the lowest
cases in the "Not Found" category compared to other tools.
Even though VISUALDROID can not rule out the irrelevant
content, participants can choose to analyse the subgraphs
that contain sensitive API(s) only, in this case, it will reduce
the large number of subgraphs to be analysed. Therefore,
instead of searching the relevant information in the entire
APK, VISUALDROID can remove less sensitive subgraphs
for the analyst and then reduce the cases of "Not Found".

In the comparison analysis test, participants from three
control groups (CT1, CT2, and CT3) mention that they have
to constantly switch between tabs or windows to compare
the APKs because the three tools do not support separate
views for different APKs. To ease the comparison analysis
between APKs, VISUALDROID separates the visualisation
panel into two columns, where each column demonstrates
a list of subgraphs for one APK. Additionally, because a
similar pair of subgraphs are organised in the same row,
participants can further analyse the differences by compar-
ing the pairs of subgraphs instead of browsing the entire
APK source code information.

4.2 RQ2: Efficiency of VisualDroid

In RQ2, we reveal how the selection of the tool and the
complexity of the test APKs affect the completion time, and
then we reflect on the results that we obtained.

Fig. 8: The distribution of completion time in using APK
ANALYZER, JD-GUI, JD-GUI+FLOWDROID, and

VISUALDROID in (A) Test Single and (B) Test Comparison.

4.2.1 The effect of tool and test APKs on completion time

Fig. 8 shows the distribution of the completion time in
terms of tools used and the complexity of test APKs. The
grey areas denote the completion time distribution when
less complicated APKs are provided, and the white areas
indicate the distribution when more complex APKs are
provided. The mean value of each group is marked in a
circle filled with a corresponding colour.

Overall, the participants spend more time on the tests
that provides more complex test APKs in all four experi-
mental groups. The VISUALDROID group (TM ) does not
show an advantage over other groups in terms of the time
spent on Test Single and Test Comparison. We notice that
APK ANALYZER participants spend relatively less time (TS1

= 13.6 minutes, TS2 = 15.6 minutes) on Test Single, com-
pared to other tools, regardless the complexity of the test
APKs. However, in Test Comparison, the mean completion
time shows no advantage over others (TC1 = 23.8 minutes,
TC2 = 25 minutes). Participants from JD-GUI (TS1 = 17.8
minutes, TS2 = 18.6 minutes, TC1 = 21 minutes, TC2 = 25.6
minutes), JD-GUI+FLOWDROID (TS1 = 17.8 minutes, TS2

= 19 minutes, TC1 = 19.8 minutes, TC2 = 25.2 minutes).
Compared with JD-GUI+FLOWDROID, VISUALDROID (TS1

= 19 minutes, TS2 = 20.4 minutes, TC1 = 19.25 minutes,
TC2 = 25.2 minutes) spend similar amount of time. We
further use the Wilcoxon rank-sum test [25] to compare the
completion time spent by the three tools. The result indicates
there is no significant difference between APK ANALYZER,
JD-GUI, JD-GUI+FLOWDROID and VISUALDROID in time
spent (p > 0.29 for any pair). Besides, analysing APKs
with higher complexity level cost more time for completion
(p = 0.036).

VISUALDROID participants who only employ the vi-
sual component achieve higher grades in less time
compared to other participants from the other visual
groups.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 13

4.2.2 Reflection on completion time
Different from the other tools used in our control groups
(CT1, CT2, CT3), VISUALDROID provides various function-
alities regarding to the app behaviour analysis, (e.g. sub-
graph analysis, source code inspection). To further investi-
gate what functionality helps save time spent on app analy-
sis, we asked our participants to share the time allocation for
each functionality. The results suggest that all participants
rely on the functionalities of the subgraph analysis and
source code inspection, but their focus is different. Three
participants from user study session A and one participant
from session B rely more on the source code inspection than
the subgraph analysis. The completion time distribution of
VISUALDROID is shown in Fig. 8. We notice they all have
two projecting portions at the head and the tail of the
violin plot. Only one small projecting area is observed in
the middle of the violin plot from Test Comparison (APK
complexity = 2). The projecting area at the head denotes
the completion time of the participants who rely mainly
on the source code inspection, while the projecting area at
the tail represents the completion time of the participants
who rely more on the subgraph analysis. We further extract
their grades accordingly and find that participants who
employ source code inspection increased their grades by
7.45% overall.

Since VISUALDROID and JD-GUI both provide direct
access to the source code for participants to inspect the
methods and fields, we further compare the time spent
on the tests that utilise JD-GUI and VISUALDROID. Par-
ticipants from the VISUALDROID group who rely more on
source code inspection spent more time (2.5%) compared
to the participants from JD-GUI. Because they mentioned
they check the information from both resources (source
code and the CG), less completion time is observed for
participants who focus more on subgraph analysis and
rarely rely on source code with a decrease of 12.6% overall
compared with the JD-GUI group. Moreover, participants
from VISUALDROID, regardless of the functionalities they
focus on, achieve higher overall grades compared to par-
ticipants using the traditional tool JD-GUI. Therefore, the
visualisation component of VISUALDROID can help increase
the effectiveness and efficiency of APK behaviour analysis.

4.3 RQ3: Security Awareness Enhancement by Using
VisualDroid

VISUALDROID is designed to provide security-related in-
formation as guidance to a security analyst, to increase the
security awareness of the analyst. To address this question,
we specifically target individuals who do not receive any
formal security training or hold an IT security degree to
participate in our study. In our study, we record the number
of behaviours (NSB) that are labelled as suspicious in the
Table 3. We look into the numbers of selected suspicious
behaviours in different experiment sessions to compare
participants’ security awareness among the four groups.
The result shows that high security awareness is observed
in the VISUALDROID group in both experiment session
A and B, whilst participants from the APK ANALYZER
and JD-GUI groups do not show deep concern of the
behaviours that contain sensitive APIs. A slight increase

in security awareness is noticed in JD-GUI+FLOWDROID.
The numbers of labelled suspicious behaviours in the VI-
SUALDROID group in both session A (NSB = 30) and B
(NSB = 21) are higher than any number obtained from
the APK ANALYZER, JD-GUI, and JD-GUI+FLOWDROID
group. In experiment session A, the number of selected
suspicious behaviours collected from APK ANALYZER and
JD-GUI is the same (NSB = 13). More behaviours are
labelled as suspicious in JD-GUI+FLOWDROID group (NSB

= 17). In experiment session B, participants have labelled
13 and 15 suspicious behaviours using JD-GUI and JD-
GUI+FLOWDROID, respectively. In comparison, only seven
behaviours are marked as suspicious when leveraging APK
ANALYZER. The result indicates that listing the sensitive
APIs’ information and highlighting the sensitive API nodes
might increase the security awareness of the analyst.

We also receive feedback from the VISUALDROID par-
ticipants who share what they have learned during the
experiments in terms of the security aspect. We list selected
feedback below.

• "I got some ideas about what suspicious behaviours
are."

• "I have learned what kind of functions can be sensitive,
while sensitive functions can be suspicious but it does
not necessarily mean it is malicious.“

• "Some existing functions provided by Android plat-
form might be leveraged for implementing malicious
behaviours."

• "Android programmers are easy to code for the purpose
of hacking. Users should be careful about the access of
android apps to protect their privacy."

• "Sensitive APIs are not necessarily malicious; it de-
pends on when/where/how they are invoked."

• "Only knowing whether an API exists cannot determine
whether the app is malicious; it also relies on the call
sequence."

As we can see from the number of suspicious behaviour
labelled by participants and the feedback obtained from the
VISUALDROID group, our participants have show increased
security awareness.

Participants who use VISUALDROID show improve-
ments in the aspect of security awareness with an in-
crease of 155% against APK ANALYZER, 96% against
JD-GUI, and 59.3% against JD-GUI+FLOWDROID.

5 DISCUSSION

In this section, we present how our visualisation solution
VISUALDROID helps analysts perform the analysis of APK
behaviours. We then propose some future directions and
discuss the threats to validity.

5.1 How visualisation helps analyse APK behaviours

In this section, we present how participants in our treatment
group think of the functionalities provided by VISUAL-
DROID. We also conclude the lessons learned, and further
make several recommendations for improving the visuali-
sation of the APK analysis.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 14

TABLE 8: Functionality ranking.

Functionality Rank
Search keyword to highlight the related nodes 1
Subgraph presentation 2
Sensitive API highlight 2
Source code inspection 3
Highlight node by clicking the sensitive API info 4
Highlight node by clicking the package info 5

5.1.1 Functionality ranking in VisualDroid

We discuss how visualisation helps APK behaviour analysis
by investigating the functionalities preferred by users for
the APK visualisation platform. We review the feedback
provided by the participants who used VISUALDROID at
the end of our user study.

We prepare a list of VISUALDROID functionalities for
participants. Then, our participants are required to rank the
functionalities based on which assist them most in analysing
APK behaviours. Table 8 presents the overall ranking we
gathered from our participants from the VISUALDROID
group. The keyword search function is considered as the
most useful assistant for behaviour analysis, followed by
the subgraph presentation (directed call graphs) and the
highlighted nodes of sensitive API in the graph (to em-
phasise security-related information). The source code in-
spection ranks third, followed by clicking the sensitive API
information to highlight the node and clicking the package
information to highlight the node.

To ensure the time spent on the experiments is under
control and make the result quantifiable, we provide a list
of behaviours for participants to identify if they exist in the
test APKs. This design encourages participants to search the
keywords from the given behaviours to judge whether this
behaviour exists. Therefore, the search function becomes a
critical functionality in our experiments. However, in real-
world practice, when performing the app behaviour anal-
ysis manually, security analysts usually need to start from
scratch. Therefore, a more straightforward presentation and
useful security information might weigh higher than the
search functionality in real-world practice.

5.1.2 Recommendations for visualisation based tool

We ask our participants from four different groups (CT1,
CT2, CT3, and TM ) to provide their advice on used tools,
and then share their desired functionalities for APK be-
haviour analysis. We discover four categories of feedback
as follows.

Data flow visualisation and interaction with source
code: The control group 3 (CT3) provides data flow infor-
mation of the test APKs and shows improvements in both
grade and time spent on APK behaviour analysis to other
control groups. Even though the links between function calls
are also provided in JD-GUI and JD-GUI+FLOWDROID,
the presentations of the code in both tools do not maximise
the benefits it can bring to the app analysis. Compared to
JD-GUI, which allows users to inspect the relationships
by clicking the name of the classes and functions, JD-
GUI+FLOWDROID reveals the relationship between every
two function calls. Even though the path of the entire data

flow can be further generated, participants are still not able
to view all the connected function calls in a single view
due to the limitation of text-based information. Instead,
VISUALDROID visualises the data flow and shows multiple
pairs of the caller-callee relationship in a single view all
at once. It also provides a subgraph view to mitigate the
problem of analysing a complex network.

Another fact we observe from the control group 3 (CT3)
is that participants need to elaborate on the results from
both FLOWDROID and JD-GUI. Because the data flow and
the source code can both provide important information
to assist APK behaviour analysis. However, it is difficult
for participants to form a solid connection between the
data flow and source code when there is no interaction
provided between FLOWDROID and JD-GUI. However,
VISUALDROID allows participants to click on the function
node to further inspect the relevant code segment, which
realises the interaction between the data flow visualisation
and source code inspection.

Comparative view: In some cases, we need to compare
similar APKs as we show in subsection 2.2.2. However, most
of the APK analysis tools do not support APK comparison.
Six participants from our control groups mentioned they
found it challenging to perform APK comparison analysis.
They needed to open two tabs or windows and constantly
switch between them, which made the analysis process in-
convenient and distracting. VISUALDROID provides a com-
parative view, automatically presents the most similar pairs
of subgraphs to the least similar pairs between two APKs,
and highlights the same nodes in each pair of subgraphs to
help the similarity analysis.

Additional Information about sensitive APIs: From our
security awareness result, participants from VISUALDROID
group have security awareness increased, which can help
them judge the potential malicious behaviours of an APK.
Therefore, compared to text-based security information, the
visualisation tools for security analysis can highlight sus-
picious behaviours so that analysts can perform further
analysis of suspicious behaviour. Additionally, more details
about why the highlighted function is a sensitive API can be
provided, otherwise, developers might feel confused when
commonly used APIs are referred to as security problems.
Indeed, we can find many APIs that are too common to
get developers aware of the potential security risks. Two
potential solutions are 1) to have a toolbox to explain why
this API can be sensitive (suspicious), and 2) to categorise
the sensitive APIs into several groups based on how danger-
ous they can be. For example, some APIs related to location
information might be labelled as relatively dangerous APIs.

Java function documentation: Apart from the confusion
raised from sensitive APIs, we also find participants make
mistakes because they do not know what exactly a specific
API does. It happens when it comes to junior IT people,
and it is also a challenge for experienced developers to
remember the full documentation of the exhaustive Java
APIs. Therefore, it will be helpful if the tool can provide
explanations for the API when users hover on an API node,
and a link for users to read more details in Android Java
documentation.

Smart Search: In real-world practice, users will not
heavily rely on the search functionality as our participants



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 15

in the experiments, but they still need to search and find
relevant content in some cases. It is important to enhance
the efficiency of app behaviour analysis by showing relevant
results only through fuzzy search.

5.2 Implications
Based on our user study, we proved the effectiveness and
efficiency of VISUALDROID on Android app analysis and
the raise of security awareness compared with other visual
solutions (e.g. APK ANALYZER, JD-GUI). We put forward
several directions that we can explore further.

5.2.1 Android APK behaviour pattern and security analysis
VISUALDROID converts source code to the directed CG,
which assists analysts in understanding an app’s be-
haviours. Because it demonstrates the context in the graph,
analysts can directly view the call sequence of the func-
tion nodes. They can also learn the behaviour patterns
through the graph, where some functions always ap-
pear together in a fixed sequence. For example, if an
APK requires installing an external application program-
matically, it usually has two behaviour patterns that de-
pend on whether the installation permission is granted
(android.permission.INSTALL_PACKAGES). First, if
the permission is granted, APK will create a new Intent,
then invoke the function called setDataAndType(), and
finally start a new activity (startActivity(intent)). Second,
if the permission is not granted, APK needs to request root
permission, and then execute the command line from the
inside of the APK to install external APKs. VISUALDROID
highlights sensitive APIs in the subgraph. This function
helps analysts consider how the sensitive API collaborates
with other non-sensitive functions. It also helps analysts
investigate if malicious behaviour exists based on the con-
text, particularly when sensitive APIs are not necessary
indicators of security compromise. For example, an APK
requests to read text messages but does not expose the
information to third parties. Also, a navigation app requests
the location update constantly to provide their service.
From our results, participants from VISUALDROID group
have increased security awareness, which is very important
in security analysis. Only if they are aware of the risks
of behaviour, they will further check if this behaviour is
malicious. Thus, VISUALDROID can serve as a support tool
for Android behaviour identification and security analysis.

5.2.2 Repackaging and evolution analysis
The evolution of malware has introduced new challenges for
malware detection. New features are emerging along with
the malware evolution. Therefore, a detection model that
is trained on an older dataset often becomes obsolete and
makes poor decisions with new datasets. The F1-Score for
machine learning-based malware classifier can drop down
to 0.3 in the worst case [26]. Moreover, adversarial attackers
can exploit the evolutionary features of malware [27]. They
develop an automatic tool to generate stealthier malware
samples that can successfully bypass malware detection
within a short period. However, it often requires a man-
ual inspection to understand the ever-evolving malicious
behaviours. Manual inspection can be either complicated or

redundant when confronted with a continuously growing
stream of incoming malware samples.

VISUALDROID also supports comparison analysis of An-
droid apps. It lists the most similar subgraphs in two An-
droid apps with identical nodes that have been highlighted.
Therefore, analysts can locate the changes on the subgraph
and further inspect the differences easily. For example, in
Fig. 9, subgraph C1_10 and C2_10 use the same sensitive
APIs (red nodes). The two subgraphs have a similar struc-
ture, while C2_10 has a more complex structure than C2_10.
The green nodes represent the identical function nodes
suggested by SimiDroid, and the major difference can be
observed between area 1 in C1_10 and area 2 in C2_10.
Analysts can get the differences by comparing the red
square areas, and then commit the repackage and evolution
analysis.

Fig. 9: Two similar subgraphs from different APKs.

5.2.3 Android APK analysis tutorial tool
Without delivering any tutorials on Android app analysis
and security analysis, the group that adoptsVISUALDROID
shows the best accuracy in behaviour identification and
increased security awareness. In our interview session, we
also asked our participants if they had obtained any new
knowledge in terms of security. Our participants show
an improvement in their comprehension of the APK be-
haviours as well as security awareness. Therefore, VISU-
ALDROID can also be integrated into the training session
as a tutorial tool for new security analysts. New security
analysts can employ both the CG and the source code
to comprehend the APK behaviours. Since VISUALDROID
highlights sensitive APIs, analysts can reason the suspicious
behaviours and learn more about the behaviour patterns
related to security.

5.3 Threat to Validity

In this subsection, we will discuss the factors that could have
influenced our experiment results.

Participant Selection: The participants of this study are
required to have basic knowledge and experience of Java
programming, but they neither receive any formal security
training nor hold an IT security degree. We demonstrate that
even without security training, our tool can help junior IT
people raise awareness of security and identify Android app
behaviour more accurately. However, the Java skill level of
each participant is different, and it may affect the time spent
on completing the tests in the experiments, especially for
participants from the JD-GUI group (CT2), which highly
relies on source code understanding. A few participants



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 16

from the JD-GUI group spent much less time on the test
than others, as we have discussed in Section 4. Though the
bias is inevitable due to the diverse levels of Java skill, we
mitigate this bias by selecting participants from universities
who have similar degrees. This is to make sure they have a
similar background in Java programming skill. The partici-
pants are then randomly separated into three control groups
and one treatment group.

Baseline selection: We selected two tools for Android
app inspection from industry and academia, respectively,
namely JD-GUI and APK ANALYZER. JD-GUI is one of
the widely adopted tools for Android/Java code analysis in
academia. APK ANALYZER is an inbuilt module in Android
Studio, the de facto IDE for Android app development. It
supports APK code inspection and a side-by-side compari-
son of two APKs. There are also some other tools as far as
we know. However, most of these tools used in the industry
are for internal use only, and we do not have access to them.
To the best of our knowledge, APK ANALYZER is one of the
tools widely used in the industry and most recommended
in the technical forums.

Number of participants: This study aims to demonstrate
the capability of VISUALDROID in assisting Android app
behaviour analysis. VISUALDROID can also increase the se-
curity awareness of people with a non-security background.
We invited 40 participants, and each of them spent around
two and a half hours in the user study and the interview.
It is challenging to recruit a large number of participants
who satisfy all of our requirements. The study with 40
participants may not sufficiently reflect the exact situation
in real practice. Therefore, it may face the threat of the repre-
sentatives of the subjects. Many previous studies in software
engineering also invite 30 or even fewer participants to join
their user study (c.f., [28], [29], [30], [31]). Our study aligns
well with these previous studies. However, for each partici-
pant we selected, we have carefully checked if he/she meets
our requirements and discussed any unexpected results that
occurred during the experiments. In the future, we plan to
invite more people to participate in our user study.

Task oriented design: The experiments in our user study
are designed in a task-oriented manner. The participants are
given a list of candidate behaviours and are asked to iden-
tify if the listed behaviours exist in a given Android app.
However, in real practice, the analysts are not provided with
a list of possible behaviours of an app. Instead, depending
on the analysts’ strategy, they may either start the analysis
from the entry point of the app (i.e. the Main Activity)
or generate a behaviour list of interest before the analy-
sis. While VISUALDROID supports both analysis strategies,
the analysis from the entry point is time-consuming and
difficult to be evaluated. Asking participants to generate a
behaviour list of interest heavily relies on the participants’
prior knowledge of security, and will affect the evaluation
results. Therefore, we provide a list of candidate behaviours
to eliminate the bias caused by the differences in partici-
pants’ prior knowledge.

6 RELATED WORK

In the past decade, software visualisation has been widely
studied and used to assist system and software compre-

hension. According to our literature review, their focuses
heavily vary from each other. Therefore, it is difficult to
categorise them in the dimension of software visualisation.
Because many research works in this area involve user stud-
ies to optimise the use of the software visualisation tools,
we accordingly organise two paragraphs in the following,
to present the related works that concern user studies and
those which do not.

6.1 Visualisation analysis based on the user study
We first discuss the related works that involve user studies
to demonstrate the effectiveness of the proposed tool. Cor-
nelissen et al. [7] conducted a quantitative evaluation on EX-
TRAVIS, which is a tool that offers interactive visualisation
views of large execution traces. In their controlled exper-
iment, they defined eight typical comprehension tasks for
participants. They measured the performance of the partici-
pants in terms of time cost and the correctness of completing
the tasks. In [32], researchers presented an evaluation of
four representative software visualisation (SoftVis) tools in
the context of corrective maintenance. They invited four
independent groups of professional software developers to
participate in the evaluation. Each group used a different
tool to solve the same task on a real-world code base
under typical industry conditions. Fittkau et al. introduced
hierarchical and multi-layer visualisation of large software
landscapes with ExplorViz [8]. They set up a controlled
experiment to compare ExplorViz with the Extravis trace
visualisation approach by inviting participants to complete
the predefined tasks. In [33], researchers conducted a user
study to assess the city metaphor in software visualisation in
terms of users’ feelings, emotions, and thinking. Langelier et
al. [34] presented a visualisation framework to perform the
quality analysis and help understand large-scale software
systems. They evaluated their framework by inviting 15
subjects to complete 20 tasks in their user study. Wettle
et al. [6] presented a controlled experiment of CodeCity,
which is a 3D software visualisation approach developed
based on a city metaphor. They invited 41 participants from
both academia and industry to validate the effectiveness and
efficiency of the visualisation approach they proposed.

6.2 Visualisation analysis based on the proposed tool
There are also many works about software visualisation that
were not evaluated and discussed based on user studies.
For example, Somarriba et al. [35] monitored Android apps’
suspicious behaviours at the run time and visualised the
invoked malicious functions in a dendrogram, which allows
analysts to inspect the malicious functions visually. In an-
other example, Kobayashi et al. [36] proposed SArF Map,
which used a city metaphor to visualise software architec-
ture. They evaluated the performance of the SArF Map and
the effectiveness of uncovering architectural knowledge by
using open-source industrial software in their case studies.
In [37], Caserta et al. presented real visualisation examples
of their 3D-HEB technique on a software city metaphor
in their evaluation. Their work facilitated the assessment
of the tool effectiveness in displaying large-scale software
systems. Lanza and Ducasse designed an approach (called
ClassBlueprint) for facilitating app comprehension [38], in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 17

which they provided a novel categorisation and visualisa-
tion of classes. They also proposed a lightweight software
visualisation technique called polymetric view [39], which
was evaluated on several large industrial apps. In [40], re-
searchers designed specific tasks that were used to evaluate
a particular part of their proposed software visualisation
model. Panas et al. [41] proposed a visualisation based on
Vizz3D. In their work, they also outlined several scenarios
to emphasise the ways, by which their approach could
facilitate collaboration and discussion among stakeholders.
Griswold et al. [42] implemented Aspect-Browser to demon-
strate the map metaphor applicability of indicating software
evolution. They also carried out a case study in their eval-
uation to determine how the map metaphor assisted un-
derstanding of the software evolution. Balzer and Deussen
[43] visualised the relations within hierarchical software
structures by enhancing graphs with trees. Fittkau et al. [44]
presented ExplorV iz as a live visualisation approach to
monitor traces for large software. Storey et al. [45] developed
SHriMP , which provides a nested graph view to present
information. Hahn et al. [46] presented a novel visualisation
technique for the interactive exploration of multi-threaded
software systems, and they evaluated the performance by
comparing their results with existing visualisation tech-
niques. Wettel et al. implemented CodeCity [47], which has
a set of visualisation techniques to support tasks related
to program comprehension, design quality assessment, and
evolution analysis.

In this paper, we investigated the visualisation solution
(CG-based) in assisting in understanding the app behaviour
on the Android platform, which was not discussed in previ-
ous studies. We also proved CG-based visualisation solution
is effective in assisting the understanding of app behaviours
on the Android platform.

7 CONCLUSION

In this paper, we present a controlled experiment aimed
at evaluating the effectiveness and efficiency of a visuali-
sation solution for Android behaviour analysis. We design
VISUALDROID, a CG-based analysis tool that utilises several
visualisation components. In our control experiment, we
conduct a user study to evaluate the effectiveness and
efficiency of VISUALDROID. 40 participants are recruited for
our user study. The result of the experiment shows that the
visualisation solution leads to a significant improvement
in the effectiveness of APK behaviour analysis compared
to APK ANALYZER, JD-GUI, and JD-GUI+FLOWDROID,
with the increases of 71.4%, 35.7%, and 39.2% respectively.
Besides, the highlight of the sensitive APIs in the graph also
enhances participants’ security awareness. In the future, we
need to invite more participants, not only graduates but
also experienced security analysts. We also need to observe
their performance in our projects and further validate the
effectiveness of our approach.

REFERENCES

[1] Java decompiler. [Online]. Available: https://java-
decompiler.github.io/

[2] Analyze your build with apk analyzer. [Online]. Available:
https://developer.android.com/studio/build/apk-analyzer

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM SIGPLAN Notices, vol. 49, 06 2014.

[4] It security training. [Online]. Available:
http://nsclab.org/syssec/resources/Security_Training_In_Industry.pdf

[5] Welcome to androguard’s documentation! [Online]. Available:
https://androguard.readthedocs.io/en/latest/

[6] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
a controlled experiment,” in 2011 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 551–560.

[7] B. Cornelissen, A. Zaidman, and A. Deursen, “A controlled exper-
iment for program comprehension through trace visualization,”
Software Engineering, IEEE Transactions on, vol. 37, pp. 341 – 355, 07
2011.

[8] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape
and application visualization for system comprehension with ex-
plorviz,” in Information and Software Technology, 2016.

[9] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta:
Detecting inter-component privacy leaks in android apps,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1, 2015, pp. 280–291.

[10] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-
aware android malware classification using weighted contextual
api dependency graphs,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 1105–1116. [Online]. Available:
https://doi.org/10.1145/2660267.2660359

[11] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise
and general inter-component data flow analysis framework
for security vetting of android apps,” ACM Trans. Priv.
Secur., vol. 21, no. 3, Apr. 2018. [Online]. Available:
https://doi.org/10.1145/3183575

[12] G. Carenini, C. Conati, E. Hoque, B. Steichen, D. Toker, and
J. Enns, “Highlighting interventions and user differences: Inform-
ing adaptive information visualization support,” Conference on
Human Factors in Computing Systems - Proceedings, 04 2014.

[13] B. Alper, T. Hollerer, J. Kuchera-Morin, and A. Forbes, “Stereo-
scopic highlighting: 2d graph visualization on stereo displays,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2325–2333, 2011.

[14] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cav-
allaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[15] M. Rosvall, D. Axelsson, and C. Bergstrom, “The map equation,”
in The European Physical Journal Special Topics, 2009, pp. 13–23.

[16] G. Concas, C. Monni, M. Orrù, and R. Tonelli, “A study of the
community structure of a complex software network,” in 2013
4th International Workshop on Emerging Trends in Software Metrics
(WETSoM), 2013, pp. 14–20.

[17] Y. Qu, X. Guan, Q. Zheng, T. Liu, L. Wang, Y. Hou, and Z. Yang,
“Exploring community structure of software call graph and its
applications in class cohesion measurement,” Journal of Systems
and Software, vol. 108, pp. 193–210, 06 2015.

[18] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu,
“Android malware familial classification and representative sam-
ple selection via frequent subgraph analysis,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 8, pp. 1890–1905,
2018.

[19] Lesson: Object-oriented program-
ming concepts. [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/concepts/index.html

[20] Application security. [Online]. Available:
https://source.android.com/security/overview/app-security

[21] L. Li, T. Bissyandé, and J. Klein, “Simidroid: Identifying and
explaining similarities in android apps,” 08 2017, pp. 136–143.

[22] R. Vallee-rai and L. Hendren, “Jimple: Simplifying java bytecode
for analyses and transformations,” 01 2004.

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Androzoo: Collecting millions of android apps for the
research community,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: ACM, 2016, pp. 468–471. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2903508



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2022 18

[24] L. Li, T. F. Bissyandé, and J. Klein, “Rebooting research on detect-
ing repackaged android apps: Literature review and benchmark,”
IEEE Transactions on Software Engineering (TSE), 2019.

[25] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and
probability levels for the wilcoxon rank sum test and the wilcoxon
signed rank test,” Selected tables in mathematical statistics, vol. 1, pp.
171–259, 1970.

[26] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” CoRR, vol. abs/1807.07838, 2018.

[27] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware
detection in adversarial settings: Exploiting feature evolutions
and confusions in android apps,” in Proceedings of the 33rd Annual
Computer Security Applications Conference, ser. ACSAC 2017. New
York, NY, USA: ACM, 2017, pp. 288–302. [Online]. Available:
http://doi.acm.org/10.1145/3134600.3134642

[28] R. Latorre, “Effects of developer experience on learning and apply-
ing unit test-driven development,” IEEE Transactions on Software
Engineering, vol. 40, no. 4, pp. 381–395, 2014.

[29] G. L. Scoccia, I. Malavolta, M. Autili, A. Di Salle, and P. Inverardi,
“Enhancing trustability of android applications via user-centric
flexible permissions,” IEEE Transactions on Software Engineering,
pp. 1–1, 2019.

[30] E. M. Redmiles, A. R. Malone, and M. L. Mazurek, “I think they’re
trying to tell me something: Advice sources and selection for
digital security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 272–288.

[31] K. Krombholz, W. Mayer, M. Schmiedecker, and
E. Weippl, “"i have no idea what i’m doing" - on the
usability of deploying HTTPS,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 1339–1356. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/krombholz

[32] M. Sensalire, P. Ogao, and A. Telea, “Model-based analysis of
adoption factors for software visualization tools in corrective
maintenance,” 05 2020.

[33] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “The
city metaphor in software visualization: Feelings, emotions, and
thinking,” Multimedia Tools and Applications, 05 2019.

[34] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based
analysis of quality for large-scale software systems. ase ’05,” 01
2005, pp. 214–223.

[35] O. Somarriba, U. Zurutuza, R. Uribeetxeberria, L. Delosières,
and S. Nadjm-Tehrani, “Detection and visualization of android
malware behavior,” Journal of Electrical and Computer Engineering,
vol. 2016, pp. 1–17, 03 2016.

[36] K. Kobayashi, M. Kamimura, K. Yano, K. Kato, and A. Matsuo,
“Sarf map: Visualizing software architecture from feature and
layer viewpoints,” 05 2013.

[37] P. Caserta, O. Zendra, and D. Bodénès, “3d hierarchical edge
bundles to visualize relations in a software city metaphor,” in 2011
6th International Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT), 2011, pp. 1–8.

[38] M. Lanza and S. Ducasse, “A categorization of classes based on
the visualization of their internal structure: The class blueprint.”
vol. 36, 11 2001, pp. 300–311.

[39] M. Lanza and S. Ducasse, “Polymetric views - a lightweight visual
approach to reverse engineering,” IEEE Transactions on Software
Engineering, vol. 29, no. 9, pp. 782–795, 2003.

[40] M. J. Pacione, M. Roper, and M. Wood, “A novel software visuali-
sation model to support software comprehension,” in 11th Working
Conference on Reverse Engineering, 2004, pp. 70–79.

[41] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-
view visualization,” in 12th IEEE International Conference on En-
gineering Complex Computer Systems (ICECCS 2007), 2007, pp. 217–
228.

[42] W. G. Griswold, J. J. Yuan, and Y. Kato, “Exploiting the map
metaphor in a tool for software evolution,” in Proceedings of the
23rd International Conference on Software Engineering. ICSE 2001,
2001, pp. 265–274.

[43] M. Balzer and O. Deussen, “Exploring relations within software
systems using treemap enhanced hierarchical graphs,” in 3rd IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2005, pp. 1–6.

[44] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace
visualization for comprehending large software landscapes: The
explorviz approach,” in 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1–4.

[45] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, and
M. Musen, “Shrimp views: an interactive environment for infor-
mation visualization and navigation.” 01 2002, pp. 520–521.

[46] S. Hahn, M. Trapp, N. Wuttke, and J. Döllner, “Thread city: Com-
bined visualization of structure and activity for the exploration
of multi-threaded software systems,” in 2015 19th International
Conference on Information Visualisation, 2015, pp. 101–106.

[47] R. Wettel, “Visual exploration of large-scale evolving software,” in
2009 31st International Conference on Software Engineering - Compan-
ion Volume, 2009, pp. 391–394.

Lihong Tang is currently a Ph.D student at Department of Computer
Science and Software Engineering, Swinburne University of Technology.
She received her Bachelor degree with Honours from Deakin University,
Australia. She is working on Android malware detection and evolution
analysis, and her research interests are android malware analysis,
adversarial attacks under the Android context, and human-centric re-
search.

Tingmin Wu (Tina) is a research scientist at CSIRO’s Data61. Prior
to that, she was a research fellow at Monash University jointly with
CSIRO’s Data61. Her research focuses on human centric cyber security,
currently with a specific focus on phishing. Her research is to study how
humans interact with security tools and apply AI to optimise security to
reduce the involvement of security experts.

Xiao Chen is a research fellow with the Department of Software Sys-
tems and Cybersecurity, Faculty of IT, Monash University. He received
Ph.D degree from Swinburne University of Technology, Australia. His
research interests include mobile software analysis, mobile security and
adversarial machine learning.

Sheng Wen received the Ph.D degree in Computer Science from the
School of Information Technology, Deakin University, Australia, in 2015.
He is currently a Senior Lecturer at Swinburne University of Technology.
His focus is on modeling of virus spread, information dissemination, and
defense strategies for the Internet threats. He is also interested in the
techniques of identifying information sources in networks.

Li Li is an ARC DECRA Fellow and Senior Lecturer at Monash Uni-
versity. He joined Monash University as a Lecturer on February 2018.
Prior to that, he was a research associate in Software Engineering at the
University of Luxembourg (UL) where he also obtained his Phd degree
in November 2016. His research interests mainly lie in the field of Mobile
Software Engineering (i.e., Mobile Security and quality assurance) and
Intelligent Software Engineering (SE4AI, AI4SE).

Xin Xia is the director of the software engineering application technology
lab, Huawei, China. Prior to joining Huawei, he was an ARC DECRA
Fellow and a lecturer at Monash University, Australia. Xin received his
Ph.D in computer science from Zhejiang University in 2014. To help
developers and testers improve their productivity, his current research
focuses on mining and analyzing rich data in software repositories to
uncover interesting and actionable information. More information at:
https://xinxia.github.io/.

Marthie Grobler received her Ph.D degree in Computer Science from
University of Johannesburg. She currently holds a position as Principal
Research Scientist at CSIRO, Data61 in Melbourne, Australia where
she drives the research group’s work on cybersecurity governance,
policies and awareness. Her research interest includes human centric
cybersecurity, HCI, online risk resilience, and cyber governance.

Yang Xiang received his Ph.D degree in Computer Science from Deakin
University, Australia. He is currently a full professor and the Dean of
Digital Research, Swinburne University of Technology, Australia. His
research interests include Cybersecurity, which covers network and
system security, data analytics, distributed systems, and networking. He
is also leading the Blockchain initiative at Swinburne.


