
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

Software quality assessment model: a systematic
mapping study

Meng YAN1, Xin XIA2*, Xiaohong ZHANG3, Ling XU3, Dan YANG3 & Shanping LI1

1College of Computer Science and Technology, Zhejiang University, China;
2Faculty of Information Technology, Monash University, Melbourne, Australia;

3School of Software Engineering, Chongqing University, Chongqing, China

Abstract Quality model is regarded as a well-accepted approach for assessing, managing and improving
software product quality. There are three categories of quality models for software products, i.e., definition
model, assessment model, and prediction model. Quality assessment model (QAM) is a metric-based ap-
proach to assess the software quality. It is typically regarded as of high importance for its clear method on
how to assess a system. However, the current state-of-the-art in QAM research is under limited investigation.
To address this gap, the paper provides an organized and synthesized summary of the current QAMs. In
detail, we conduct a systematic mapping study (SMS) for structuring the relevant articles. We obtain a total
of 716 papers from the five databases, and 31 papers are selected as relevant studies at last. In summary, our
work focuses on QAMs from the following aspects: software metrics, quality factors, aggregation methods,
evaluation methods and tool support. According to the analysis results, our work discovers five needs that
researchers in this area should continue to address: (1) new method and criteria to tailor a quality framework
(i.e., structure of software metrics and quality factors) according to different specifics, (2) systematic inves-
tigations on the effectiveness, strength and weakness of different aggregation methods to guide the method
selection in different context, (3) more investigations on evaluating QAMs in the context of industrial cases,
(4) further investigations or real-world case studies on the QAMs related tools and (5) building a public and
diverse software benchmark which can be adopted in different application context.

Keywords Software Quality, Systematic Mapping Study, Quality Assessment Model, Aggregation Method

Citation Yan M, Xia X, Zhang X H, et al. Software quality assessment model: a systematic mapping study.
Sci China Inf Sci, 2018.
. Sci China Inf Sci, for review

1 Introduction

Quality model is a well-accepted mean to describe and control the software quality. According to ISO/IEC
14598-1 [27], a quality model is a set of characteristics and the relationships between them which provide
the basis for specifying requirements and evaluating quality. It has become a significant way for providing
adequate confidence information that software products conform to requirements. The information is
mainly used for quality assurance, decision making, costs estimating and risk evaluation in software
development and maintenance [3].

Along with the quality model provided by Boehm et al. [7], a multitude of diverse models for software
products were proposed. Among them, several models have been developed or standardized, e.g., ISO
9126 [28] and ISO 25010 [30]. Some of them have been adopted or developed to evaluate the quality

*Corresponding author (email: xin.xia@monash.edu)



Yan M, et al. Sci China Inf Sci 2

of industrial software projects and to predict project defects [9, 54]. Based on their different purposes,
Deissenboeck et al. classified these quality models into three categories, i.e., definition model, assessment
model, and prediction model [15]. A definition model is mainly used to define or describe quality [17,28].
A general shortcoming in most definition models is that the given definitions are mostly too abstract to
perform constructive quality assurance. Many of them are often unclear as to how practitioners conduct
the model operations [15]. An assessment model contains quality criteria with clear methods to assess
each quality criterion. The assessment method is often a mathematical model which aggregates product
metrics (identical with measures in this work) to quality factors. Under this way, an assessment model
determines the value of quality factors. It is noted that a quality factor is a management-oriented attribute
of software that contributes to its quality. It has many synonyms in this line of research, such as quality
characteristic, quality aspect, quality attributes and qualities [29, 67]. Moreover, the requirements used
in assessment models hold in prediction models as well. Additionally, a prediction model can support
predictions to aid further activities, such as defect prediction.

Among the three kinds of quality models, software assessment models are typically regarded as of
high importance for their clear guidance on how to assess a system [15]. A software product quality
assessment model (QAM) helps bridge the gap between software metrics and software product quality
factors. The common features of QAMs are listed below: First, a QAM contains a set of factors and
metrics according its purpose and usage. The factors in many of the QAMs are often derived from
the same international standard, such as ISO 9126 or ISO 25010 [30]. Since different QAMs possess
different purposes and context, the metrics adopted in the different QAMs vary. Second, a QAM is a
hierarchical model. This describes a decomposition of the general product quality into sub-qualities to
make them easier to be understood and controlled [67]. They usually depend on an aggregation method
to aggregate software metrics to quality factors [13] as Figure 1 shows. Third, a QAM is an automatic
or semi-automatic process. A tool which implements the QAM can assist users to adopt and popularize
the model. However, many of the QAMs have not been implemented into a tool. In addition, among
the existing tools, some of which still stayed in an academic usage and did not meet the expectations of
practitioners.

There are several studies that review software quality models, factors or tools. For example, Klas et
al. [35] presented a comprehensive criteria to classify quality models which is named as CQML. Montagud
et al. [49] analyzed existing quality factors and attributes for software product lines (SPL) in a systematic
review. Riaz et al. [59] analyzed the maintainability models in their systematic review. Febrero et al. [18]
studied software reliability models in their mapping study. Barbara Kitchenham [34] focused on the
software metrics and aimed at identifying the trends in commonly used metrics (e.g. OO metrics and web-
metrics). Tomas et al. [66] presented a review study that focused on open source tools to automatically
collect software metrics in Java. However, most of the above-mentioned studies focused on general quality
model, the current state-of-the-art in QAM research is under limited investigation. To address this gap,
our work aims at providing an organized and synthesized summary of the published QAMs.

The goal of this work is to concentrate on QAMs with particular respect to provide an organized and
synthesized summary. To accomplish this goal, we performed a systematic mapping study (SMS). A SMS
is a methodology to systematically analyze a research topic in order to provide an overview of a research
area through classification and counting contributions in relation to the classified categories [18, 56]. In
detail, the specific goals of this paper are as follows:

• To identify the categories of software metrics and quality factors used in QAMs. Software
metrics and quality factors constitute the framework of a QAM. The framework describes the model
objective and the input elements. We identify the categories of the software metrics and quality factors
to provide an overview.

• To summarize the aggregation methods used in QAMs. The aggregation method is the most
important difference between an assessment model and a definition model. We summarize the aggregation
methods to provide an overview for the aggregation step in QAMs. In particular, we summarize their
ideas, advantages, disadvantages, and open issues of the aggregation methods.

• To summarize the evaluation methods used for validating QAMs. Model evaluation is



Yan M, et al. Sci China Inf Sci 3

Figure 1 The general concept of a QAM. A QAM depends on an aggregation step to aggregate metrics to quality factors.
Similar to ISO 9126, the factors may be decomposed into sub-factors. In addition, there may be several number of middle
layers between metrics and quality factors to make the model more comprehensive, such as the practice layer and criteria
layer in Squale model [51].

an important aspect for indicating the effectiveness of QAM. We summarize the evaluation methods to
provide an overview and analysis for the validation step in QAMs.

• To identify the current tools that implement QAMs. Tool implementation can help users
for using and popularizing a QAM. We identify the current tools that implement the QAMs to provide
an overview and their usage (i.e., industrial or academic).

• To identify the research challenges for further improvement of QAMs. The goal of this
mapping study is to identify further needs that researchers in this area should continue to address.
Therefore, we identify the most challenging aspects for further improvement of QAMs.

This paper extends our preliminary study [72] published in a conference. In summary, the main
extensions are as follows:

• We add the summarization of the aggregation methods used in QAMs (see Section 3.2). In detail, we
identify seven aggregation methods in selected studies. For each aggregation method, we identify which
studies use this method and summarize the basic idea, advantages and disadvantages of this method. At
last, we summarize two open issues in terms of aggregation method.

• We add the identification of the current challenges for further improvement of QAMs (see Section
3.5). In detail, we identify two challenges for the improvement, i.e., enhancing model diversity and
building software benchmark.

• We restructure the research questions for more comprehensive. For example, we merge the software
metrics and factors (i.e., RQ1 and RQ2 in our conference paper respectively) into one research question
(RQ1 in this paper). In terms of the extended analysis, we insert the summarization of aggregation
methods as the second research question in this paper (RQ2) and insert the research challenges as the
fifth research question. Additionally, we add more details of the selected studies, i.e., the publication
venues.

The following parts of this paper are structured as follows: we provide our research questions, mapping
study process and an overview of selected studies in Section 2. We report the answers for each research
question in Section 3. We report the threats to validity in Section 4. We describe the related works of
reviewing software quality models in Section 5. We draw the conclusions and provide our future plans in
Section 6.



Yan M, et al. Sci China Inf Sci 4

Table 1 Research questions and motivations

Research question Motivation

RQ1. What metrics and factors are commonly
used by QAMs?

Identify the categories and trends of metrics
and quality factors used in QAMs

RQ2. What are the current aggregation
methods used by QAMs?

Summarize current aggregation methods in
QAMs

RQ3. What are the current validation methods
used for evaluating QAMs

Summarize the current validation methods in
QAMs

RQ4. What are the current usage of the QAMs
based tools?

Identify the current usage of the related tools

RQ5. What are the challenges for the
improvement of QAMs?

Identify the challenges for the further
improvement

Table 2 Selected databases

Database Location

ISI web of knowledge isiknowledge.com

Scopus www.scopus.com

IEEE Xplore www.ieeexplore.ieee.org

ACM digital library www.portal.acm.org

Springer link.springer.com

2 Systematic Mapping Process

Our systematic mapping study aims to identify, structure, and classify software quality assessment models
according to five research questions. This section reports the research questions and details of the steps
that we perform in this systematic mapping study according to the guidelines provided by [56].

2.1 Research Questions

Raising appropriate research questions is considered as of high importance for a systematic survey. It
helps to provide structured and insightful findings in a specific field [33]. Table 1 presents the five research
questions and related motivations in our study. First, RQ1 is raised to identify the adopted metrics and
factors. Second, we analyze the aggregation methods for QAMs to answer RQ2. Third, RQ3 is raised
to answer what kinds of validation methods are currently used for evaluating QAMs. Fourth, based on
the studied QAMs, several tools have been proposed. RQ4 identifies the current state of these tools.
The objective of the question is to describe the usage states of current tools based on these QAMs. The
final research question (RQ5) addresses the current challenges for further improvement directions and
opportunities.

2.2 Search Strategy

The searching step is directly conducted through searching on the publication databases online by using
a set of tailored strings. The databases utilized in this work are chosen using the following criteria:
(1) the database contains publications that are relevant to the software quality model area; (2) the
database is adopted or suggested in previous software engineering related reviews. Five of the largest and
most complete scientific databases are selected as the search databases (see Table 2). IEEE Xplore, ACM
Digital Library and Springer are widely recognized as being an efficient means to perform reviews [8]. The
ISI Web of Knowledge is suggested by Chernyi [11] and Scopus is suggested by Barbara Kitchenham [34]
in conducting review.

The search strings we used in this work are created by using the following steps under the guideline [56]:



Yan M, et al. Sci China Inf Sci 5

Table 3 Search strings in different databases

Database Search string and settings

ISI web of
knowledge

TS=((("software quality model*") OR ("software quality" AND "quality model*"))
AND (metric* OR measure*))

Scopus TITLE-ABS(("software quality model*") OR ("software quality" AND "quality
model*") AND (metric* OR measure*))

IEEE Xplore (((("Document Title":"software quality model*" OR ("software quality" AND
"quality model*")) OR (Abstract:"software quality model*" OR ("software quality"
AND "quality model*"))))) AND (("Document Title":"metric*" OR "measure*") OR
("Abstract":"metric*" OR "measure*"))

ACM digital
library

(((Title: "software quality model*") OR ((Title: "software quality") and (Title:
"quality model*"))) OR ((Abstract: "software quality model*") OR ((Abstract:
"software quality") and (Abstract: "quality model*")))) AND ((Title: "metric*") OR
(Title: "measure*") OR (Abstract: "metric*") OR (Abstract: "measure*"))

Springer ’"software quality model" or ("software quality" and "quality model") and
("measure*" or "metric*")’

1. Identify main search words from the research questions

2. Identify the keywords in relevant papers

3. Refine the keywords by identifying alternative synonyms for the search words in a thesaurus

4. Construct search strings by concatenating semantically similar words with Boolean OR

5. Construct search strings by concatenating the restricted words with Boolean AND

6. Generate advanced search strings for the different databases

At last, the resulting search strings in different databases are shown in Table 3.

2.3 Study Selection

The selection of studies in this review is divided into three stages. In the first stage, the initial selection
of studies is based on the search strings. As a result, there are 716 papers in our first stage as shown in
Table 5.

In the second stage, we focused on the study inclusion and exclusion criteria. Regarding our research
questions, the inclusion and exclusion criteria are shown in Table 4. There are two aspects to guide this
criteria. First, there are many works contain the keyword “software quality”, such as software product
quality, software process quality and software defect prediction. In our work, we focus on software product
quality which is a counterpart to process quality. Second, as stated in the introduction, we focus on the
software quality assessment model, which includes software metrics, factors and aggregation methods.
Those studies which only define a quality model or focus on software defect prediction are out of the
scope of this paper. In this stage, we closely examined the title and abstract of each paper according
to the inclusion and exclusion criteria. As a result, there are 128 papers which have the relevant titles
and abstracts. These papers denote that they may be useful for the motivation of this review through
the titles and abstracts. However, more verification efforts are required to examine them by reading the
contents.

In the third stage, it is necessary to examine the contents of the selected papers from the second stage
which have relevant titles or abstracts. According to the inclusion and exclusion criteria, 28 papers are
selected in this stage. Finally, an additional search process is necessary to enhance the completeness of
the selected studies. As a result, we considered two clues when conducting the additional search: (1)
examining satisfied (i.e., satisfy the inclusion criteria) papers in the stage 3 by reviewing the references



Yan M, et al. Sci China Inf Sci 6

Table 4 Inclusion criteria (IC) and exclusion criteria (EC)

IC Description

1 The paper proposes a software quality assessment model.

2 The paper is based on software product metrics.

3 The paper focuses on software product quality rather than process quality.

4 The paper presents a hierarchical mapping model which aggregates metrics to factors.

EC Description

1 The paper focuses on software process quality.

2 The paper focuses on a prediction model without an assessment model.

3 The paper only provides a definition quality model without an assessment method.

4 The paper is not accessible.

5 The document is not a paper, such as a conference cover, poster, etc.

6 The paper is not written in English.

Table 5 Overview of search result

Stage Papers Added papers Total papers

Stage 1: by search strings 716 0 716

Stage 2: by title and abstract 128 0 128

Stage 3: by content 28 3 31

in the selected studies. (2) examining satisfied papers by reviewing citations in the selected studies [70].
Under this way, three more studies [37, 52, 63] which satisfy our inclusion criteria were selected in the
additional search. Specially, if the paper does not present the whole description of the QAM, we obtain
the detail information from other related sources, such as the technical reports and the model’s homepage.
The summary of all the selected studies is shown in Table 6 in chronological order.

Additionally, we identify the publication venues of selected studies as shown in Table 7. Since quality
model is a research topic which multiple areas, including software quality, software evolution, software
testing and machine learning, the publication venues for the selected papers are diverse. The most
frequent venues are Software Quality Journal (SQJ), International Conference on Software Engineering
(ICSE), IEEE International Conference on Software Maintenance and Evolution (ICSME, also konwn as
ICSM before 2014), IEEE Transactions on Software Engineering (TSE) and Euromicro Conference on
Software Engineering and Advanced Applications (SEAA).

3 Results

3.1 RQ1: What metrics and factors are commonly used by QAMs?

This section provides the details of the metrics and factors currently used in the selected studies.

3.1.1 What kinds of metrics are commonly used by QAMs?

This section provides the details of the metrics currently used in the selected studies. We generalized
the software metrics used in QAMs into categories based on the literatures [22,66], and we also extended
them based on the extra categories found in the selected studies. These 11 categories are listed as follows:

Complexity metrics. They are derived from McCabe complexity [48] and Halstead complexity [24].

Design metrics. This category captures the design related metrics, such as OO metric [12], modulariza-
tion, design pattern, and dependencies metric [44].



Yan M, et al. Sci China Inf Sci 7

Table 6 Detailed information of selected studies

Study
ID

Title Year

S1 [68] Operationalised product quality models and assessment: The Quamoco approach 2015

S2 [71] CLOUDQUAL: A Quality Model for Cloud Services 2014

S3 [63] Efficiency Measurement of Java Android Code 2014

S4 [47] Objective safety compliance checks for source code 2014

S5 [23] SCQAM: A Scalable Structured Code Quality Assessment Method for Industrial Software 2014

S6 [1] Test code quality and its relation to issue handling performance 2014

S7 [65] Indirect Method to Measure Software Quality using CK-OO suite 2013

S8 [61] MIDAS: A Design Quality Assessment Method for Industrial Software 2013

S9 [46] Objective Measurement of Safety in the Context of IEC 61508-3 2013

S10 [45] A Comprehensive Code-based Quality Model for Embedded Systems 2012

S11 [2] Standardized code quality benchmarking for improving software maintainability 2012

S12 [69] The Quamoco Product Quality Modelling and Assessment Approach 2012

S13 [3] A probabilistic software quality model 2011

S14 [10] Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach 2011

S15 [38] Evaluate the Quality of Foundational Software Platform by Bayesian Network 2010

S16 [21] Quality models for Free/Libre Open Source Software - towards the “Silver Bullet”? 2010

S17 [64] The Consortium for IT Software Quality 2010

S18 [40] The SQALE Analysis Model: An analysis model compliant with the representation condition
for assessing the Quality of Software Source Code

2010

S19 [43] OQMw: An OO Quality Model for Web Applications 2009

S20 [51] The Squale Model - A Practice-Based Industrial Quality Model 2009

S21 [32] DEQUALITE: building design-based software quality models 2008

S22 [41] 2-D Software Quality Model and Case Study in Software Flexibility Research 2008

S23 [58] The EMISQ method and its tool support-expert-based evaluation of internal software quality 2008

S24 [62] The SQO-OSS quality model: Measurement based open source software evaluation 2008

S25 [37] Legacy System Exorcism by Pareto’s Principle 2005

S26 [53] Construction of a Systemic Quality Model for Evaluating a Software Product 2003

S27 [52] software product and process assessment through profile-based evaluation 2003

S28 [20] Using quality models in software package selection 2003

S29 [4] A hierarchical model for object-oriented design quality assessment 2002

S30 [6] Multi-Criteria Methodology Contribution to the Software Quality Evaluation 2001

S31 [55] Software quality measurement: Concepts and fuzzy neural relational model 1998



Yan M, et al. Sci China Inf Sci 8

Table 7 Publication venues of selected studies

Publication Venue Type # of papers

ACM SIGPLAN conference on Object-oriented Programming, Systems,
Languages, and Applications

Conference 1

International Conference on Computational Intelligence for Modelling Control
& Automation

Conference 1

IEEE International Conference on Fuzzy Systems at the IEEE World Congress
on Computational Intelligence

Conference 1

IEEE International Conference on Software Maintenance and Evolution
(ICSME)

Conference 2

International Conference on Data and Software Engineering (ICODSE) Conference 1

International Conference on Intelligent Systems and Signal Processing (ISSP) Conference 1

International Conference on Software Engineering (ICSE) Conference 3

International Conference on Program Comprehension (ICPC) Conference 1

International Symposium on Software Reliability Engineering (ISSRE) Conference 1

International Conference on Advances in System Testing and Validation
Lifecycle

Conference 1

Euromicro Conference on Software Engineering and Advanced Applications
(SEAA)

Conference 2

Innovations in Systems and Software Engineering Journal 1

International Journal of Software Engineering and Knowledge Engineering Journal 1

Information and Software Technology (IST) Journal 1

IEEE Transactions on Software Engineering (TSE) Journal 2

IEEE Transactions on Industrial Informatics Journal 1

IEEE Software Journal 1

Journal of Information Processing Systems Journal 1

Lecture Notes in Computer Science Journal 1

Open Source Development, Communities and Quality Journal 1

Pattern Languages of Programs Journal 1

Software Quality Journal (SQJ) Journal 3

Tamkang Journal of Science and Engineering Journal 1

Software Engineering Approaches for Offshore and Outsourced Development Book 1



Yan M, et al. Sci China Inf Sci 9

Code entity size metrics. Code entity size metrics are often used in a normalized way combined with
other metrics, such as lines of code, number of classes, lines per method and Non-comment lines of code.

Comment size metrics. They are often measured in order to quantify documentation and understand-
ability, such as density of comment lines and ratio of comment lines to code.

Coding conventions violations. The number of coding conventions violations is usually used as a quality
determinant for readability and maintainability. For Java projects, the Sun Code Conventions are the
most well-known coding conventions.

Code smells. They are derived from the literature [19] and often used to define the possible refactoring
because of the potential bugs.

Duplicated code. A measure of the size of duplicated code, such as duplicated lines, duplicated blocks or
duplicated tokens. It is often used as an indicator of maintainability and readability.

Testing metrics. To measure what percentage of code has been tested by a test suite, such as function
coverage and statement coverage.

Change metrics. To measure what degree of change has been made in a revision, such as function change
and mean change size.

Web metrics. To measure the particular properties of web applications, such as navigation paths length
and page click-stream distances [43].

Others. Several of the selected QAMs contain both product metrics and non-product metrics. Others
represent the metrics which are out of the design and product scope, such as defect metrics in issue
tracking systems, requirement documentation and project community.

Figure 2(a) provides a graphic representation of the metric category proportion distribution, the size of
each bar represents the proportion of the selected studies which adopted the metric category. For all the
QAMs, since the decomposition principles used for factors usually dependent on the manual experience
and application specifics as Deissenboeck et al. [16] stated, the adopted metrics are various according to
the model objective and context. In summary, the most popular metrics used in QAMs are complexity
(52%, used by S4, S5, S6, S11, S13, S14, S17, S18, S19, S20, S21, S22, S24, S25, S27 and S29), design
(68%, used by S1, S4, S6, S7, S8, S9, S11, S12, S13, S14, S17, S18, S19, S20, S21, S22, S24, S25, S26, S29
and S31) and code entity size (58%, used by S1, S4, S6, S11, S12, S13, S14, S16, S17, S18, S19, S20, S21,
S22, S24, S25, S27 and S29 ) metrics. Additionally, the code entity size metrics are traditional metrics
which are often used in combination with other metrics [42]. Many studies also include the size metrics
while using complexity and design metrics (S4, S6, S11, S13, S14, S17, S18, S19, S20, S21, S22, S24, S25,
and S29). This evidence indicates that the three basic software metric categories are frequently used as
quality determinants. The use of metrics like coding conventions violations, code smells and web metrics
varies in different model contexts. For example, coding conventions violations and code smells vary in
different program languages; web metrics are only suitable for web applications.

3.1.2 What factors are commonly used by QAMs?

Quality factor is a management-oriented attribute of software that contributes to its quality. It has many
synonyms in this line of research, such as quality characteristic, quality aspect, quality attributes and
qualities (e.g., maintainability, reliability) [29, 67]. We synthesize all the factors used in the selected
studies. Most of the studied QAMs assess the software quality through multiple factors. Although we
combine the synonyms, (e.g. functionality and functional, usability and utilization) there are still 42
factors occurred in all the selected studies. However, most of them only happened in a few studies, such
as compatibility in S1 and S12. To identify the commonly used factors, Figure 2(b) provides the graphic
representation of the top ten factors which are mostly happened in the selected studies,the value of each
bar represents the proportion of the selected studies which adopted the factor. It is seen that the most
commonly focused factors are maintainability (58%, used by S1, S5, S6, S7, S10, S11, S12, S13, S14, S16,



Yan M, et al. Sci China Inf Sci 10

(a) Distribution of papers by metric category (b) Distribution of papers by factors

(c) Distribution of papers by aggregation methods (d) Distribution of papers by evaluation methods

Figure 2 Distribution of papers by different features

S17, S18, S20, S23, S24, S26, S28, S31), reliability (55%, used by S1, S2, S7, S12,S14, S15, S16, S17, S18,
S19, S20, S23, S24, S26, S27, S28, S31) and efficiency (55%, used by S1, S3, S5, S6, S7, S8, S12, S14, S15,
S16, S17, S18, S23, S26, S28, S29, S30) which are also stressed by the ISO 25010 and CISQ [57,64]. This
evidence indicates that maintainability, reliability and efficiency factors are frequently used as quality
factors for assessment.

3.2 RQ2: What are the current aggregation methods used by QAMs?

Aggregation method in a QAM is used to aggregate software metrics into high-level factors. It is an
important part of any assessment model and a reoccurring task. The choice of the appropriate aggregation
method has a strong influence on the results. However, the choices of the aggregation methods are rarely
justified in this line of research [67]. For example, only weighted linear equations are mentioned for
aggregation in the IEEE standard 1061 [26]. This section identifies the current aggregation methods in
the selected studies and analyzes the strength and weakness of each kind of method. Figure 2(c) listed
the current aggregation methods distribution. One study may adopt two or more method categories. For
example, S6 used both geometric mean and weighted linear equations. On the other hand, S14 used a
fuzzy weighted average approach which contained two categories in Figure 2(c), namely weighted linear
equations and fuzzy logic.

In the following sections, we will report each aggregation method listed in Figure 2(c). For each
aggregation method, two aspects are considered in our discussion, i.e., motivations and difficulties. We
try to address the following two questions: why the aggregation methods are proposed, and what the
difficulties in the method operationalizing.

At the final subsection, we will discuss two typical open issues correlated to the aggregation method.
These issues do not have a uniform standard for various models. (1) Normalization. Since the value
ranges of metrics are different, normalization is a common way to calibrate the metric values before
the aggregation step. This aspect reports what normalization methods are adopted in the studies. (2)



Yan M, et al. Sci China Inf Sci 11

Quality index categorization. This aspect reports what kinds of the quality index outputs in the
studies (e.g., star index or numeric index in a certain range).

Weighted linear equations. This method aggregates metrics towards the factors by adopting a
weighted linear combination. Weighted linear equations are the most commonly used aggregation method
(58%, used by S1, S2, S3, S4, S6, S7, S9, S10, S11, S12, S14, S16, S17, S18, S19, S20, S25 and S29).
The reason behind this phenomenon is that this method is simple to calculate and easy to interpret
by practitioners. There are two issues in this aggregation method. First, the weighted linear equation
method requires the metric values have interval scales. In real cases, many metrics are in an ordinal scales
or judgments on ordinal scales (e.g., poor, average and excellent) [52]. If this method has to handle one
or more ordinal scales, it should transform other scales into ordinal scales as well. This brings arbitrary
information which may lead to a unfair assessment [52]. Second, how to decide the correct weights is a
difficult task. A usually way is to adopt expert opinions. For example, S1 and S12 form the relevant
rankings based on expert opinions and then calculate the weights from the relevant rankings by using the
Rank-Order Centroid method [5]. However, introducing the expert opinions may make the aggregation
subjective [52]. A survey conducted among IT professionals has concluded that using subjective weights
does not improve the model due to the lack of consensus among developers [14].

Probabilistic. Bakota et al. [3] proposed a probabilistic aggregation method for calculating the fac-
tors. It aggregated metrics into factors relying on a probabilistic ąřgoodnessąś function. The motivation
is that this method has addressed two questions. First, most of the previous researches used simple
weighting or linear combination to aggregate, while this method defines a probabilistic model in the
aggregation. Second, the value or the category of the quality factor is represented by one number or a
category, while this method uses a probabilistic distribution which integrates the ambiguity coming from
the lack of consensus.

On the other hand, there are also two difficulties in applying this method. First, the method depends
on a benchmark which was used to produce the probabilistic goodness function. In our selected studies,
six studies (S1, S4, S6, S11, S12 and S13) used a benchmark in quality modeling process. There are
two typical benchmarks. Namely, S6 and S11 used the same benchmark provided by SIG and S13
used the benchmark provided by University of Szeged. One difficulty that prevents the method from
popularization is that these benchmarks are not publicly accessible. Second, this method is not simple
enough for developers. Wagner et al. [68] have stated that practitioners have difficulties in interpreting
such probabilistic distributions in their experience.

Fuzzy logic. S14 and S31 adopted the fuzzy logic based approach in the aggregation step. This
method adopts triangular fuzzy sets to denote the quality ratings and weights. The ratings and weights
are represented as a fuzzy membership function. It indicates the degree of the specific inputs to describe
the node [10]. In the aggregation, fuzzy operations [60] are employed to conduct the multiplication and
addition operations. This method was proposed to address the fuzziness or uncertainty in estimating
the parameters in quality modeling. For example, simple linear combination methods are not completely
reliable because of the numeric weighting values assigned to different characteristics are changeable and
inconsistent [10]. While in this method, fuzzy logic enables one to infer definite insights from highly
imprecise, vague and ambiguous data. However, there are also several difficulties in this method. First,
it is difficult to decide the triangular fuzzy sets and fuzzify the different metrics. There can be different
criteria to fuzzify various metrics. This relies on the experiences of different experts using this method.
Second, there is an assumption to perform this method. Namely, the factors and sub-factors have been
prioritized appropriately. However, there is not a well-accepted criteria to perform this task in various
environments.

Machine learning. S15, S21 and S22 provided a machine learning aggregation method which created
construction of rules to calculate quality factors. A common feature of this method is that it needs to
learn the patterns between the metrics and factors from prior data. In detail, S15 and S22 proposed an
assessment model by using Bayesian networks to learn and evaluate a given system by using Bayesian



Yan M, et al. Sci China Inf Sci 12

network probabilistic to reason. S21 adopted the JRip and J48 methods to learn rule sets which can
create the construction between design patterns and quality factors. This method is suitable for mining
the hidden patterns and uncertain knowledge from prior data. However, the difficulties are also obvious.
It needs to introduce domain knowledge and predefine some prior cause-effect relationships in the learning
step through questionnaires or other kinds of surveys. For example, the learning data of S15 were collected
by questionnaires form 50 domain experts. And the learning criteria of S22 was collected by questionnaires
from 20 developers. This may suffer from the bias from the knowledge of the participants and bring the
difficulty in the work reoccurring.

Expert based. S5, S8, S23, S26 and S28 provided an expert based assessing approach. A common
feature of this method is that the assessment process is usually performed by combining the code analyzers
and expert review. Usually, the aggregation step of the method is a semi-automatic process, since it
substantially relied on the experts and the knowledge base such as pre-defined guidelines, checklists
and templates [23]. Despite the insightful results in automatic assessment models, there are still some
unsolved problems. This method is proposed to address the false positive problems in the automatic
assessment models. For example, some metrics or rules which are detected by an automatic tool may be
false positive. The falsely detected metrics or rules may limit the performance of automatic assessment
approaches [25, 58]. On the other hand, an obvious weakness is that it is expensive to conduct an
assessment. Additionally, similar to the difficulties in the machine learning method, the experience and
background of the experts play a significant role in the assessment. This may introduce the bias which
comes from the knowledge and experience of participants.

Outrank relation. S24 and S27 proposed the outrank relation based approach to build the quality
assessment model. Outrank relation is often used to aid decision making in voting and social choice
theory [36, 39]. In the operation, the basic thinking of this method is: accomplish a choice or a ranking
task on a set of alternatives and each alternative is compared to all other alternatives in turn. The
difference between this method and the weighted linear equations method is that this method can handle
metric values with an ordinal scale (e.g., pool, fair, excellent). Since the aggregation operator plays a
significant role in guaranteeing a correct result, it is necessary to consider the semantics of each operator,
the correlated metrics and factors [52]. This method is proposed to address the semantic uncertainty in
the aggregation. However, similar to the manual review step in expert based method, the difficult part
in this method is that evaluators are necessary to establish the comparison. Besides, if there is a strong
incomparability between the alternatives and the profiles, further discussion with the decision makers is
demanded.

Geometric mean. S6 and S30 adopted the geometric mean method in the aggregation step. Com-
pared to the arithmetic mean method, geometric mean is proposed to handle some specific conditions,
such as the aggregation from length, height and depth to the volume of an object [52]. One suitable
scene of using this method is that it requires all the son nodes have a high score since the global score
deteriorates exponentially with respect to the importance of the son nodes. For example, S6 proposed a
test code quality model. The global quality of the test code requires all three factors (completeness, effec-
tiveness, maintainability) are of high quality. In addition, the three factors are not prior with each other.
Therefore, they adopted the geometric mean method and the three factors are of the same importance.
However, the geometric mean method is not suitable for all the conditions. The choice of the arithmetic
mean and the geometric mean depends on the semantics between the son node and the parent node.

In addition, there are two open issues in aggregation methods.
(1) Normalization. In terms of the metric calibration, there is a difficulty in the aggregation. The

ranges of the metrics are various. For example, SLOC and DIT take their values in different intervals.
In this case, the aggregation has to consider not to dilute the results of one metric into the other [50].
In order to compose these metrics in a uniform interval, normalization is a common solution in the
selected studies. There are several typical categories of the normalization methods in the selected studies.
The first category is normalization based on size metrics. For example, S3, S17 and S25 adopted this



Yan M, et al. Sci China Inf Sci 13

normalization method. A general way is to divide the metric values or the quality scores by software size
metrics, such as total lines of code, total number of classes and total number of packages. The second
category is normalization based on comparing the values to the benchmark base. For example, S1, S4
and S10 adopted this method. Usually, the benchmarking base contains a large number of systems.
Then, the normalization is conducted by comparing the metric values of the product under assessing to
those values in the benchmarking base. The advantage is that this enables us to explore if the product
is better or worse than other products. The third category is normalization based on a pre-defined
threshold function for each metric. The function can be linear or non-linear according to the semantics
of the metric. For example, the Squale model proposed in S20 adopted this method. Among the three
categories of normalization method, the first category is the simplest one, since it does not require prior
knowledge. The second and the third method requires prior knowledge or experience, such as benchmark
and thresholds, which may prevent the model from generalization.

(2) Quality index categorization. This aspect reports what kinds of the quality index outputs in the
studies. There are two typical kinds of the quality index outputs. The first kind is a numeric index in
a range. For example, S1, S2, S3, S4, S5, S12 and 13 output a numeric quality index. Another kind
is the categorical quality index (e.g., a star index or school grades). For example, S6, S7, S10 and S11
output a categorical quality index. Comparing to the categorical quality index, the advantage of the
numeric quality index is that there is no loss of information [3]. Comparing to the numeric quality index,
the advantage of the categorical quality index output is that it is more comprehensive for the project
managers at the first sight. We suggest that if the model is proposed for serious academic usage, a
numeric output quality index is better. For example, the probabilistic quality model of S13 requires the
numeric output to build a more precise benchmark. While if the model is proposed to be implemented
as a product for various stakeholders, the categorical quality index is a better choice. For example, the
SQALE [40] plugin for SonarQube adopts various color to represent the quality index of various code
entities (green is fine and red is poor). Such that the mangers, testers and developers can locate the
high-risk files or packages quickly.

3.3 RQ3: What are the current validation methods used for evaluating QAMs?

Model validation is significant because of its practical application. It is used to evaluate whether the
QAMs provide valid and insightful assessment results. The difficulty lies in evaluating the performance
on the same environment. In our selected studies, there are three categories of the validation methods:
expert opinion, issue handling indicators and industry validation. Among the three methods, expert
opinion is the most frequently used evaluation method (39%, used by S1, S6, S9, S10, S12, S13, S17,
S21, S23, S24, S26 and S29) as Figure 2(d) shows. It is an empirical method which is often used in this
line of research, especially in problems which lack a public labeled dataset. The common features of the
expert opinion evaluation method are listed below. First, developers which are regarded as participants
or experts possess certain experience in the area. Second, a guide or checklist is often needed for the
evaluation process. The weakness of this method lies in the bias coming from the diverse expertise of the
participant’s background.

The quality of software correlates with the performance in handling issues, such as fixing bugs and
introducing features [1]. S2 and S11 evaluated the soundness of their models through issue handling
metrics. It revealed that their quality model possessed a significant positive relation with issue handling
performance. Another evaluation method is industry feedback which is adopted in S4, S5, S8, S16 and
S20. For example, the quality assessment model Squale [51] in S20 was designed by Air France-KLM and
Qualixo Company at first and its evaluation relied on the practical feedback from PSA Peugeot-Citroen
and Air France-KLM. They stated that the model was well accepted by managers and developers. The
similarity between the method and expert opinion lies in that both of them need participants. The
difference is that the industry feedback method based on a larger and more diverse set of industrial
projects and developers.



Yan M, et al. Sci China Inf Sci 14

Table 8 Overview of the eight tools

Tool Related study Current usage Publish year Open source

SIG quality model S6,S11 Industrial 2007 No

Quamoco S1,S12 Industrial 2008 Yes

FSQQT S14 Academic 2011 No

SQALE S18 Industrial 2010 No

Squale S20 Industrial 2008 Yes

SPQR S23 Academic 2008 No

Alitheia S24 Academic 2008 Yes

Xradar S25 Academic 2004 Yes

3.4 RQ4: What are the current usage of tools based on QAMs?

A tool which is implemented based on the QAMs plays a significant role in popularizing a model. It is used
to facilitate automatic quality evaluation. However, the results show that most of the selected studies did
not provide a tool to support the automatic assessment. In total, only eight selected studies provide a tool
to assist their evaluation as Table 8 shows. We classify the usage of the tools into two categories: Industrial
usage and Academic usage. If the tool was proposed or currently used in an industrial environment, we
classify it as Industrial usage. If the tool was proposed in an academic institution and there is no further
clue which indicating the usage in industrial environment, we classify it as Academic usage.

Table 8 lists the overview of the eight tools. The results show that half of the tools are used in an
industrial environment and half of the tools stay in academic usage. This may imply that these tools
which stay in academic usage because they do not well satisfy industrial environment requirements. Why
are these tools not widely used in the industrial environment? We suggest that further investigations or
real-world case studies should be performed to address this question. With regard to the industrial usage
tools, there are two open source tools, namely Squale provided in study S20 and Quamoco provided in
study S1 and S12. The other two tools require purchase.

3.5 RQ5: what are the challenges for the improvement of QAMs?

We note two challenges for the improvement of QAMs:
Model diversity. This refers to that the QAM takes into account diverse application context. However,

in the selected studies, 84% of them only consider particular model applicable context. There are three
model context categories, namely program language type, code file type and application type. First, since
several software metrics (e.g., coding conventions violations) depend on the languages, many studies are
restricted to particular program languages. For example, the QAM proposed in S3 is only able to be
adopted in Java and the model proposed in S10 is only able to be adopted in projects which are written in
C/C++. Second, the metrics for different code file types (e.g. test code, function code, etc.) are different.
For example, the Assertions-McCabe ratio metric proposed in S6 is only applicable for test code. Thus,
the QAM proposed in S6 is only able to assess the test code quality. Third, different applications possess
different features. For example, the QAM proposed in S10 is restricted to embedded software and the
QAM proposed in S19 is restricted to web applications. Besides, some of the selected studies (S14, S22,
S26, S27 and S31) did not mention the model context. Fortunately, several QAMs have begun to support
diverse application context. For example, the Quamoco model proposed in S1 and the SQALE model
proposed in S18 had been adopted to support diverse languages, such as C/C++, C#, Java, embedded
Ada and COBOL. This aspect is the challenge and opportunity for the improvement of QAMs. In the
future, more work is needed to enhance the diversity of QAMs.

Software benchmarks. Although many of the QAMs are derived from an international standard (e.g.,
ISO 9126 and ISO 25010), there is not a standard in calculating quality indices from source code metrics.
A main challenge is that there is not a comparison with other systems [2]. A software benchmark is a



Yan M, et al. Sci China Inf Sci 15

repository to provide such information. It stores the results from a lot of standard software evaluations
and it is usually used for learning thresholds or normalization. When each evaluation is performed,
the benchmark will be updated. In the selected studies, several studies (S1, S4, S6, S11, S12 and
S13) used a benchmark. S6 and S11 used the benchmark proposed by SIG. It holds evaluation results
for around 200 systems including open source and industrial projects. The probabilistic model in S13
proposed a benchmark which consists of 100 systems written in Java, including both open source and
industrial projects. However, most of the QAMs do not adopt a software benchmark. Although there are
several existing benchmarks, they are not publicly accessible and only include particular kind of projects.
Building a public benchmark which consists of more and diverse systems is a significant requirement for
the future.

4 Threats to Validity

Despite the fact that our work is performed by following the systematic mapping guide line, there may
be several threats to the validity.

Lack of universal taxonomy. Obviously, software quality is a topic that is relevant to many software
engineering fields, including software defect prediction, software requirement and process quality, software
product quality, etc. All these relevant studies may be termed as “software quality”. There is not an
appropriate and widely used taxonomy for the QAM. For example, they may not mention the “product”
and “assessment” in the titles and abstracts. Thus, in order to include the correct studies as completely
as possible, we use “software quality” in the search string to mitigate this problem. The primary search
results may include the studies in all the above fields. Then, we make a manual selection by reading the
titles and abstracts (reading contents if needed) according to the inclusion and exclusion criteria.

Study selection bias. We are not aware of biases we may have had for selecting studies in a survey [31].
Improperly selected search terms and inclusion/exclusion criteria may lead to attrition bias. Some relevant
papers may not been found in the databases under our search and selection criteria. However, the search
step relied on both criteria: the databases and the quality of the studies. The used databases cover
the software engineering research well and we manually read the titles and abstracts (reading contents if
needed) of each alternative to decide the selection. Therefore, we are reasonably confident that we are
unlikely to have missed many significant relevant studies.

Study completeness. According to our inclusion and exclusion criteria, 31 papers are selected as relevant
studies at last. We identified these 31 papers following the scientific guideline for performing systematic
mapping study in software engineering [56]. Thus, we believe that the threat to find other relevant papers
is limited.

Finding repeatability. The goal of this paper is to provide an organized and synthesized summary of
software quality assessment models. Although we identified 5 research directions, we did not claim these
directions are better than others. A different scholar may identify other research directions with the same
set of papers. To mitigate this issue, we provided the detailed steps of conducting this survey to ensure
the repeatability of the data collection and statistics, and two authors worked independently to identify
the research directions. The 5 research directions are based on the discussions of the two authors.

5 Related Work

There are several studies related to reviewing software quality models which support the establishment
of this work. Deissenboeck et al. [15] classified existing quality models into definition models, assessment
models and prediction models. According to this classification, they described the purpose and the
scenario for the usage of each category. Similar to their work, Klas et al. [35] presented a comprehensive
criteria for classifying quality models which is named as CQML. The classification scheme helps to obtain
the summary and the relationship of existing quality models. It is organized by the following dimensions:
object, purpose, quality focus and resource. The difference between the above-mentioned two works and



Yan M, et al. Sci China Inf Sci 16

our work lies in two aspects. First, they aim to provide a classification scheme rather than a reviewing
study, while in our work, we try to review the existing papers on one category (i.e., assessment models)
according to Deissenboeck’s definition by a mapping study. Second, they provide the guide of how to
classify a quality model, we aim to provide a systematical state-of-the-art in QAM research by focusing
on QAM specific aspects, such as metrics, factors, evaluation methods.

Montagud et al. [49] focused on reviewing the existing quality measures and attributes for software
product lines (SPL) in a systematic review. They found 165 measures and 91 different quality attributes.
The similarity with our work is that both of us focus on the product quality. The difference is that they
aimed to classify general measures and attributes, while this work focuses on the assessment models.

In addition, there exist similar related systematic reviews which focus on a particular factor of software
quality. For example, Riaz et al. [59] focused on the maintainability predicting methods and metrics in
their systematic review. They selected 15 relevant studies to synthesize the forecasting methods, metrics
and factors, validation methods in maintainability forecasting. The similarity with this work is that both
of us focus on the methods, metrics and factors. Febrero et al. [18] presents a mapping study to analyze
and structure the literature on software reliability modeling. They investigated the overview of relevant
literature, research topics and adopted models. Different from the above two reviews; our work aims to
review the integrated quality model rather than a particular quality factor.

There are several related systematic reviews or mapping studies which focus on metrics and tools
in software quality modeling. Barbara Kitchenham [34] focused on the software metrics and aimed at
identifying the trends in commonly used metrics (e.g. OO metrics and web-metrics). A preliminary
mapping study was presented in Kitchenham’s work which tried to synthesize the relevant published
papers. Tomas et al. [66] presents a review study of the currently used open source software tools that
automate the collection of software metrics in Java. Many of the tools in their work implemented a
software quality model, such as Squale [51] and SQALE [40] which are also reviewed in this work.

6 Conclusion and Future Work

The main contribution of this work is to provide a systematic mapping study of quality assessment
models for software products. Five databases are searched and a total of 716 studies are obtained.
Finally, according to our inclusion and exclusion criteria, 31 studies are selected as relevant studies which
are taken into consideration for addressing our five research questions. These studies are organized
according to their publication attributes and our research questions. The synthesized data extracted
from them allow us to observe the development of QAMs from the following aspects: software metrics,
quality factors, aggregation methods, evaluation methods, tool support, model context and benchmark.

In summary, the conclusions are drawn as follows: (1) QAMs are dependent on the application context,
the structure of quality factors and metrics adopted in different QAMs are various in different model
context. One problem is that few studies propose a guideline in how to construct the quality framework
from metrics to factors in different application context. Researchers in this area should continue to
investigate the guideline and criteria to tailor a quality framework (i.e., structure of quality metrics and
factors) according to different specifics. (2) There are seven aggregation methods in the selected studies.
Each method has its advantages and difficulties. One issue remains unanswered is that how to select
the appropriate aggregation method in different context. Few studies have been proposed to conclude
the effectiveness, strength and weakness of different aggregation methods to guide the method selection
in different context. Further investigations are required to explore which aggregation method is the
appropriate choice in different environments. (3) We observe that model evaluation is a difficult task
due to the lack of standard data. It needs to be noted that only a few systematic industrial case studies
have been published to evaluate the quality assessment model. Therefore, more research is required to
investigate the benefits and problems of applying QAMs in the context of industrial cases. (4) Only
a small portion of the selected studies provide a tool to implement the automatic assessment. Among
these tools, many of them are not widely used in the industrial environment. This may imply that these



Yan M, et al. Sci China Inf Sci 17

tools do not well satisfy industrial environment requirement. Further investigations or real-world case
studies should be performed to address this question. (5) In terms of the future challenges and needs, we
suggest to improve the model diversity and build a public and diverse software benchmark which consists
of different kinds of both open source and industrial projects.

In the future, we plan to enhance the existing QAMs by addressing the current challenge and needs.
For example, we plan to organize a public and diverse benchmark for model construction and evaluation.
It will be beneficial to enhance the diversity of QAMs in different application context. In an addition,
we plan to perform case studies on diverse categories of real-word industrial systems to track the benefits
and problems of the existing QAMs.

Acknowledgements This research was supported by NSFC Program (No. 61602403 and 61572426) and China
Postdoctoral Science Foundation (No. 2017M621931).

References
1 Athanasiou D, Nugroho A, Visser J, et al. Test code quality and its relation to issue handling performance. IEEE T

SOFTWARE ENG, 2014, 40(11):1100–1125
2 Baggen R, Correia J P, Schill K, et al. Standardized code quality benchmarking for improving software maintainability.

SOFTWARE QUAL J, 2012, 20(2):287–307
3 Bakota T, Hegedus P, Kortvelyesi P, et al. A probabilistic software quality model. In: Proceedings of the 27th IEEE

International Conference on Software Maintenance, Piscataway: IEEE Press, 2011, 243–252
4 Bansiya J, Davis C G. A hierarchical model for object-oriented design quality assessment. IEEE T SOFTWARE

ENG, 2002, 28(1):4–17
5 Barron F H, Barrett B E. Decision quality using ranked attribute weights. MANAGE SCI, 1996, 42(11):1515–1523
6 Blin M J, Tsoukias A. Multi-criteria methodology contribution to the software quality evaluation. SOFTWARE QUAL

J, 2001, 9(2):113–132
7 Boehm B W, Brown J R, Kaspar H. Characteristics of software quality. North-Holland 1978
8 Brereton P, Kitchenham B A, Budgen D, et al. Lessons from applying the systematic literature review process within

the software engineering domain. J SYST SOFTWARE, 2007, 80(4):571–583
9 Catal C, Diri B. A systematic review of software fault prediction studies. EXPERT SYST APPL, 2009, 36(4):7346–

7354
10 Challa J S, Paul A, Dada Y, et al. Integrated software quality evaluation: A fuzzy multi-criteria approach. Journal

of Information Processing Systems, 2011, 7(3):473–518
11 Chernyi A I. The isi web of knowledge, a modern system for the information support of scientific research: a review.

Scientific and Technical Information Processing, 2009, 36(6):351–358
12 Chidamber S R, Kemerer C F. A metrics suite for object oriented design. IEEE T SOFTWARE ENG, 1994,

20(6):476–493
13 Chotjaratwanich U, Arpnikanondt C. A visualization technique for metrics-based hierarchical quality models. In:

Proceedings of the 19th Asia-Pacific Software Engineering Conference (APSEC), Piscataway: IEEE Press 2012, 733–
736

14 Correia J P, Kanellopoulos Y, Visser J. A survey-based study of the mapping of system properties to iso/iec 9126
maintainability characteristics. In: Proceedings of the IEEE International Conference on Software Maintenance,
Piscataway: IEEE Press, 2009, 61–70

15 Deissenboeck F, Juergens E, Lochmann K, et al. Software quality models: Purposes, usage scenarios and requirements.
In: Proceedings of the ICSE Workshop on Software Quality, Piscataway: IEEE Press, 2009, 9–14

16 Deissenboeck F, Wagner S, Pizka M, et al. An activity-based quality model for maintainability. In: Proceedings of
the IEEE International Conference on Software Maintenance, Piscataway: IEEE Press, 2007, 184–193

17 Dromey R G. A model for software product quality. IEEE T SOFTWARE ENG, 1995, 21(2):146–162
18 Febrero F, Calero C, Moraga M A. A systematic mapping study of software reliability modeling. INFORM SOFT-

WARE TECH, 2014, 56(8):839–849
19 Fowler M. Refactoring: improving the design of existing code. Pearson Education India, 1999
20 Franch X, Carvallo J P. Using quality models in software package selection. IEEE SOFTWARE, 2003, 20(1):34–41
21 Glott R, Groven A K, Haaland K, et al. Quality models for free/libre open source software towards the "silver bullet"?

In: Proceedings of the 36th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
Piscataway: IEEE Press, 2010, 439–446

22 Gomez O, Oktaba H, Piattini M, et al. A Systematic Review Measurement in Software Engineering: State-of-the-Art
in Measures, volume 10 of Communications in Computer and Information Science, book section 14. Springer Berlin
Heidelberg, 2008, 165–176

23 Gupta S, Singh H K, Venkatasubramanyam R D, et al. Scqam: a scalable structured code quality assessment method
for industrial software. In: Proceedings of the 22nd International Conference on Program Comprehension, New York:
ACM, 2014, 244–252



Yan M, et al. Sci China Inf Sci 18

24 Halstead M H. Elements of Software Science. Elsevier Science Inc., 1977
25 Heckman S, Williams L. A systematic literature review of actionable alert identification techniques for automated

static code analysis. INFORM SOFTWARE TECH, 2011, 53(4):363–387
26 IEEE I. Ieee recommended practice for software requirements specifications. In Institute of Electrical and Electronics

Engineers. Institute of Electrical and Electronics Engineers, 1998
27 ISO I. Iso/iec 14598-1. Information Technology, Software Product Evaluation, 1999
28 ISO I. Iec 9126-software engineering-product quality. International Organization for Standardization, 2001
29 ISO I. Ieee, systems and software engineering–vocabulary. Report, ISO/IEC/IEEE 24765: 2010 (E)) Piscataway, NJ:

IEEE computer society, 2010
30 ISO I. Iec 25010. Systems and Software Engineering-Systems and Software Quality Requirements and Evaluation

(SQuaRE)-System and Software Quality Models, 2011
31 Jorgensen M, Shepperd M. A systematic review of software development cost estimation studies. IEEE T SOFTWARE

ENG, 2007, 33(1):33–53
32 Khomh F, Gueheneuc Y G. Dequalite: building design-based software quality models. In: Proceedings of the 15th

Conference on Pattern Languages of Programs, New York: ACM 1–7. 2008
33 Kitchenham B. Guidelines for performing systematic literature reviews in software engineering. Keele University, 2007
34 Kitchenham B. What’s up with software metrics? - a preliminary mapping study. J SYST SOFTWARE, 2010,

83(1):37–51
35 Klas M, Heidrich J, Munch J, et al. Cqml scheme: A classification scheme for comprehensive quality model landscapes.

In: Proceedings of the EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), Pis-
cataway: IEEE Press, 2009, 243–250

36 Koksalan M, Ulu C. An interactive approach for placing alternatives in preference classes. EUR J OPER RES, 2003,
144(2):429–439

37 Kvam K, Lie R, Bakkelund D. Legacy system exorcism by pareto’s principle. In: Proceedings of the Companion to
the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
New York: ACM, 2005, 250–256

38 Lan Y, Liu Y, Kuang M. Evaluate the Quality of Foundational Software Platform by Bayesian Network, volume 6320
of Lecture Notes in Computer Science, book section 43 Springer Berlin Heidelberg, 2010, 342–349

39 Larichev O I, Moshkovich H M. An approach to ordinal classification problems. International Transactions in
Operational Research, 1994, 1(3):375–385

40 Letouzey J L, Coq T. The sqale analysis model: An analysis model compliant with the representation condition for
assessing the quality of software source code. In: Proceedings of the International Conference on Advances in System
Testing and Validation Lifecycle, Piscataway: IEEE Press, 2010, 43–48

41 Li Z, Lin L, Hui G. 2-d software quality model and case study in software flexibility research. In: Proceedings of
the International Conference on Intelligence for Modelling Control & Automation, Piscataway: IEEE Press, 2008,
1147–1152

42 Malhotra R. A systematic review of machine learning techniques for software fault prediction. APPL SOFT COMPUT,
2015, 27:504–518

43 Marchetto A. Oqmw: An oo quality model for web applications. Tamkang Journal of Science and Engineering, 2009,
12(4):459–470

44 Martin R C. Agile software development: principles, patterns, and practices. Prentice Hall PTR, 2003
45 Mayr A, Plosch R, Klas M, et al. A comprehensive code-based quality model for embedded systems: Systematic

development and validation by industrial projects. In: Proceedings of the IEEE 23rd International Symposium on
Software Reliability Engineering (ISSRE), Piscataway: IEEE Press, 2012, 281–290

46 Mayr A, Plosch R, Saft M. Objective measurement of safety in the context of iec 61508-3. In: Proceedings of the
EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), Piscataway: IEEE Press,
2013, 45–52

47 Mayr A, Plosch R, Saft M. Objective safety compliance checks for source code. In: Proceedings of the Companion
Proceedings of the 36th International Conference on Software Engineering, New York: ACM, 2014, 115–124

48 McCabe T J. A complexity measure. IEEE T SOFTWARE ENG, 1976, 2(4):308–320
49 Montagud S, Abrahao S, Insfran E. A systematic review of quality attributes and measures for software product lines.

SOFTWARE QUAL J, 2012, 20(3-4):425–486
50 Mordal K, Anquetil N, Laval J. Software quality metrics aggregation in industry. Journal of Software: Evolution and

Process, 2013, 25(10):1117–1135
51 Mordal-Manet K, Balmas F, Denier S, et al. The squale model-a practice-based industrial quality model. In:

Proceedings of the IEEE International Conference on Software Maintenance, Piscataway: IEEE Press, 2009, 531–534
52 Morisio M, Stamelos I, Tsoukias A. Software product and process assessment through profile-based evaluation. INT

J SOFTW ENG KNOW, 2003, 13(05):495–512
53 Ortega M, Perez M, Rojas T. Construction of a systemic quality model for evaluating a software product. SOFTWARE

QUAL J, 2003, 11(3):219–242
54 Ozturk M M, Cavusoglu U, Zengin A. A novel defect prediction method for web pages using k-means++. EXPERT

SYST APPL, 2015, 42(19):6496–6506
55 Pedrycz W, Peters J F, Ramanna S. Software quality measurement: concepts and fuzzy neural relational model.

In: Proceedings of the IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on



Yan M, et al. Sci China Inf Sci 19

Computational Intelligence, Piscataway: IEEE Press, 1998, 1026–1031
56 Petersen K, Feldt R, Mujtaba S Systematic mapping studies in software engineering. In: Proceedings of the Interna-

tional Conference on Evaluation & Assessment in Software Engineering (EASE), New York: ACM, 2008, 68-77
57 Ploesch R, Schuerz S, Koerner C. On the validity of the it-cisq quality model for automatic measurement of main-

tainability. In: Proceedings of the IEEE 39th Annual Computer Software and Applications Conference (COMPSAC),
Piscataway: IEEE Press, 2015, 326–334

58 Plosch R, Gruber H, Hentschel A, et al. The emisq method and its tool support-expert-based evaluation of internal
software quality. Innovations in Systems and Software Engineering, 2008, 4(1):3–15

59 Riaz M, Mendes E, Tempero E. A systematic review of software maintainability prediction and metrics. In: Proceedings
of the 3rd International Symposium on Empirical Software Engineering and Measurement, Piscataway: IEEE Computer
Society, 2009, 367–377

60 Ross T J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009
61 Samarthyam G, Suryanarayana G, Sharma T. Midas: a design quality assessment method for industrial software. In:

Proceedings of the International Conference on Software Engineering, Piscataway: IEEE Press, 2013, 911–920
62 Samoladas I, Gousios G, Spinellis D. The SQO-OSS Quality Model: Measurement Based Open Source Software

Evaluation, volume 275 of IFIP ĺC The International Federation for Information Processing, book section 19, Springer
US, 2008, 237–248

63 Satrijandi N, Widyani Y. Efficiency measurement of java android code. In: Proceedings of the International Conference
on Data and Software Engineering, Piscataway: IEEE Press, 2014, 1–6

64 Soley R, Curtis B. The Consortium for IT Software Quality, volume 54 of Lecture Notes in Business Information
Processing, book section 2, Springer Berlin Heidelberg, 2010, 2–5

65 Srivastava S, Kumar R. Indirect method to measure software quality using ck-oo suite. In: Proceedings of the
International Conference on Intelligent Systems and Signal Processing, Piscataway: IEEE Press, 2013, 47–51

66 Tomas P, Escalona M J, Mejias M. Open source tools for measuring the internal quality of java software products. a
survey. COMPUT STAND INTER, 2013, 36(1):244–255

67 Wagner S. Software product quality control. Springer, 2013
68 Wagner S, Goeb A, Heinemann L, et al. Operationalised product quality models and assessment: The quamoco

approach. INFORM SOFTWARE TECH, 2015, 62:101–123
69 Wagner S, Lochmann K, Heinemann L, et al. The quamoco product quality modelling and assessment approach. In:

Proceedings of the International Conference on Software Engineering, Piscataway: IEEE Press, 2012, 1133–1142
70 Webster J, Watson R T. Analyzing the past to prepare for the future: Writing a literature review. Management

Information Systems Quarterly, 2002, 26(2):3
71 Zheng X, Martin P, Brohman K, et al. Cloudqual: A quality model for cloud services. IEEE T IND INFORM, 2014,

10(2):1527–1536
72 Yan M, Xia X, Zhang X H, et al. A Systematic Mapping Study of Quality Assessment Models for Software Products.

In: Proceedings of the International Conference on Software Analysis, Testing and Evolution (SATE), Piscataway:
IEEE Press, 2017, 63–71


	Introduction
	Systematic Mapping Process
	Research Questions
	Search Strategy
	Study Selection

	Results
	RQ1: What metrics and factors are commonly used by QAMs?
	What kinds of metrics are commonly used by QAMs?
	What factors are commonly used by QAMs?

	RQ2: What are the current aggregation methods used by QAMs?
	RQ3: What are the current validation methods used for evaluating QAMs?
	RQ4: What are the current usage of tools based on QAMs?
	RQ5: what are the challenges for the improvement of QAMs?

	Threats to Validity
	Related Work
	Conclusion and Future Work

