
A Systematic Mapping Study of Quality
Assessment Models for Software Products

Meng Yan∗‡, Xin Xia†X, Xiaohong Zhang‡X, Ling Xu‡, and Dan Yang‡
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China

†Department of Computer Science, University of British Columbia, Canada
‡School of Software Engineering, Chongqing University, Chongqing, China

Email: mengy@zju.edu.cn, xxia02@cs.ubc.ca, {xhongz, xuling, dyang}@cqu.edu.cn

Abstract—Quality model is regarded as a well-accepted ap-
proach for assessing, managing and improving software product
quality. There are three categories of quality models for software
products, i.e., definition model, assessment model, and prediction
model. Quality assessment model (QAM) is a metric-based
approach to assess the software quality. It is typically regarded as
of high importance for its clear method on how to assess a system.
However, the current state-of-the-art in QAM research is under
limited investigation. To address this gap, the paper provides
an organized and synthesized summary of the current QAMs.
In detail, we conduct a systematic mapping study (SMS) for
structuring the relevant articles. We obtain a total of 716 papers
from the five databases, and 31 papers are selected as relevant
studies at last. In summary, our work focuses on QAMs from
the following aspects: software metrics, quality factors, evaluation
methods and tool support.

Index Terms—Software quality, Quality assessment model,
Systematic mapping study

I. INTRODUCTION

Quality model is a well-accepted mean to describe and con-
trol the software quality. According to ISO/IEC 14598-1 [1],
a quality model is a set of characteristics and the relationships
between them which provide the basis for specifying require-
ments and evaluating quality. It has become a significant way
for providing adequate confidence information that software
products conform to requirements. The information is mainly
used for quality assurance, decision making, costs estimating
and risk evaluation in software development and maintenance
[2]–[5].

Along with the quality model provided by Boehm et al.
[6], a multitude of diverse models for software products were
proposed. Among them, several models have been developed
or standardized, e.g., ISO 9126 [7] and ISO 25010 [8]. Some
of them have been adopted or developed to evaluate the quality
of industrial software projects and to predict project defects
[9], [10]. Based on their different purposes, Deissenboeck et al.
classified these quality models into three categories, i.e., defi-
nition model, assessment model, and prediction model [11]. A
definition model is mainly used to define or describe quality
[7], [12]. A general shortcoming in most definition models is
that the given definitions are mostly too abstract to perform
constructive quality assurance. Many of them are often unclear
as to how practitioners conduct the model operations [11]. An

XCorresponding authors.

assessment model contains quality criteria with clear methods
to assess each quality criterion. The assessment method is
often a mathematical model which aggregates product metrics
(identical with measures in this work) to quality factors. Under
this way, an assessment model determines the value of quality
factors. It is noted that a quality factor is a management-
oriented attribute of software that contributes to its quality.
It has many synonyms in this line of research, such as quality
characteristic, quality aspect, quality attributes and qualities
[13]. Moreover, the requirements used in assessment models
hold in prediction models as well. Additionally, a prediction
model can support predictions to aid further activities, such as
defect prediction. Among the three kinds of quality models,
software assessment models are typically regarded as of high
importance for their clear guidance on how to assess a system
[11]. However, the current state-of-the-art in QAM research
is under limited investigation. To address this gap, our work
aims at providing an organized and synthesized summary of
the published QAMs.

A software product quality assessment model (QAM) helps
bridge the gap between software metrics and software product
quality factors. The common features of QAMs are listed
below: First, a QAM contains a set of factors and metrics
according its purpose and usage. The factors in many of the
QAMs are often derived from the same international standard,
such as ISO 9126 or ISO 25010 [8]. Since different QAMs
possess different purposes and context, the metrics adopted in
the different QAMs vary. Second, a QAM is a hierarchical
model. This describes a decomposition of the general product
quality into sub-qualities to make them easier to be understood
and controlled [14]. They usually depend on an aggregation
method to aggregate software metrics to quality factors [15]
as Figure 1 shows. Third, a QAM is an automatic or semi-
automatic process. A tool which implements the QAM can
assist users in adopting and popularizing the model. However,
many of the QAMs have not been implemented into a tool. In
addition, among the existing tools, some of which still stayed
in an academic usage and did not meet the expectations of
practitioners.

The goal of this work is to concentrate on QAMs with
particular respect to provide an organized and synthesized
summary in terms of above-mentioned features. To accomplish
this goal, we performed a systematic mapping study (SMS).



Fig. 1. The general concept of a QAM. A QAM depends on an aggregation
step to aggregate metrics to quality factors. Similar to ISO 9126, the factors
may be decomposed into sub-factors. In addition, there may be several number
of middle layers between metrics and quality factors to make the model more
comprehensive, such as the practice layer and criteria layer in Squale model
[18].

A SMS is a methodogy to systematically analyze a research
topic in order to provide an overview of a research area
through classification and counting contributions in relation to
the classified categories [16], [17]. In detail, the specific goals
of this article are as follows: (1) To identify the categories
of software metrics and quality factors used in QAMs. (2)
To synthesize which means are currently used to evaluation
QAMs. (3) To organize the current tools which implement
these QAMs.

This article is structured as follows: we provide our research
questions, mapping study process and an overview of selected
studies in Section 2. We report the answers for each research
question in Section 3. We describe the related works reviewing
software quality models in Section 5. We draw the conclusions
and provide our future plans in Section 6.

II. SYSTEMATIC MAPPING PROCESS

Our systematic mapping study aims to identify, structure,
and classify software quality assessment models according
to four research questions. This section reports the research
questions and details of the steps that we perform in this
systematic mapping study according to the guidelines provided
by [17].

A. Research Questions

Raising appropriate research questions is considered as of
high importance for a systematic survey. It helps to provide
structured and insightful findings in a specific field [19]. Table
I presents the three research questions and related motivations
in our study. First, RQ1 is raised to identify the adopted
software metrics. Second, RQ2 is raised to identify the adopted
quality factors. Third, RQ3 is raised to answer what validation
methods are currently used for evaluating QAMs. Fourth,
based on the studied QAMs, several tools have been proposed.

TABLE I
RESEARCH QUESTIONS AND MOTIVATIONS

Research question Motivation
RQ1. What software metrics are
commonly used by QAMs?

Identify the categories and trends
of metrics used in QAMs

RQ2. What quality factors are
commonly used by QAMs?

Identify the categories and trends
of quality factors used in QAMs

RQ3. What are the current
validation methods used for
evaluating QAMs?

Identify the current validation
methods in QAMs

RQ4. What are the current usage
of tools based on QAMs?

Identify the current usage of the
related tools

TABLE II
SELECTED DATABASES

Database Location
ISI web of knowledge isiknowledge.com
Scopus www.scopus.com
IEEE Xplore www.ieeexplore.ieee.org
ACM digital library www.portal.acm.org
Springer link.springer.com

RQ4 identifies the current state of these tools. The objective
of the question is to describe the usage states of current tools
based on these QAMs.

B. Search Strategy

The searching step is directly conducted through searching
on the publication databases online by using a set of tailored
strings. The databases utilized in this work are chosen using
the following criteria: (1) the database contains publications
that are relevant to the software quality model area; (2) the
database is adopted or suggested in previous software engi-
neering related reviews. Five of the largest and most complete
scientific databases are selected as the search databases (see
Table II). IEEE Xplore, ACM Digital Library and Springer
are widely recognized as being an efficient means to perform
reviews [20]. The ISI Web of Knowledge is suggested by
Chernyi [21] and Scopus is suggested by Barbara Kitchenham
[22] in conducting review.

The search strings we used in this work are created by
using the following steps under the guideline [17]: (1) Obtain
main search words from the research questions. (2) Obtain the
keywords in relevant papers. (3) Refined the words by identi-
fying alternative synonyms for the search words in a thesaurus.
(4) Construct search strings by concatenating semantically
similar words with Boolean OR. (5) Construct search strings
by concatenating the restricted words with Boolean AND. (6)
Form the advanced search strings for the different databases.
At last, the resulting search strings in different databases are
shown in Table III.

C. Study Selection

The selection of studies in this review is divided into three
stages. In the first stage, the initial selection of studies is
based on the search strings. This initial search was performed



TABLE III
SEARCH STRINGS IN DIFFERENT DATABASES

Database Search string and settings
ISI web of
knowledge

TS=((("software quality model*") OR ("software quality" AND "quality model*")) AND (metric* OR
measure*))

Scopus TITLE-ABS(("software quality model*") OR ("software quality" AND "quality model*") AND (metric*
OR measure*))

IEEE
Xplore

(((("Document Title":"software quality model*" OR ("software quality" AND "quality model*")) OR
(Abstract:"software quality model*" OR ("software quality" AND "quality model*"))))) AND
(("Document Title":"metric*" OR "measure*") OR ("Abstract":"metric*" OR "measure*"))

ACM
digital
library

(((Title: "software quality model*") OR ((Title: "software quality") and (Title: "quality model*"))) OR
((Abstract: "software quality model*") OR ((Abstract: "software quality") and (Abstract: "quality
model*")))) AND ((Title: "metric*") OR (Title: "measure*") OR (Abstract: "metric*") OR (Abstract:
"measure*"))

Springer ’"software quality model" or ("software quality" and "quality model") and ("measure*" or "metric*")’

between May 2015 and June 2015. As a result, there are 716
papers in our first stage as shown in Table VI.

In the second stage, we focused on the study inclusion
and exclusion criteria. Regarding our research questions, the
inclusion and exclusion criteria are shown in Table IV and
Table V respectively. There are two aspects to guide this
criteria. First, there are many works contain the keyword
“software quality”, such as software product quality, software
process quality and software defect prediction. In our work,
we focus on software product quality which is a counterpart
to process quality. Second, as stated in the introduction,
we focus on the software quality assessment model, which
includes software metrics, factors and aggregation methods.
Those studies which only define a quality model or focus on
software defect prediction are out of the scope of this paper.
In this stage, we closely examined the title and abstract of
each paper according to the inclusion and exclusion criteria.
As a result, there are 128 papers which have the relevant titles
and abstracts. These papers denote that they may be useful for
the motivation of this review through the titles and abstracts.
However, more verification efforts are required to examine
them by reading the contents.

In the third stage, it is necessary to examine the contents of
the selected papers from the second stage which have relevant
titles or abstracts. According to the inclusion and exclusion cri-
teria, 28 papers are selected in this stage. Finally, an additional
search process is necessary to enhance the completeness of the
selected studies. As a result, we considered two clues when
conducting the additional search: (1) examining satisfied (i.e.,
satisfy the inclusion criteria) papers in the stage 3 by reviewing
the references in the selected studies. (2) examining satisfied
papers by reviewing citations in the selected studies [23].
Under this way, three more studies [24]–[26] which satisfy
our inclusion criteria were selected in the additional search.
Specially, if the paper does not present the whole description
of the QAM, we obtain the detail information from other
related sources, such as the technical reports and the model’s
homepage. The summary of all the selected studies is shown
in Table VII in chronological order.

TABLE VI
OVERVIEW OF SEARCH RESULT

Stage Papers Added
papers

Total
papers

Stage 1: by search strings 716 0 716
Stage 2: by title and abstract 128 0 128
Stage 3: by content 28 3 31

III. RESULTS

A. RQ1: What software metrics are commonly used by QAMs?

This section provides the details of the metrics currently
used in the selected studies. We generalize the software metrics
used in QAMs into categories based on the literatures [53],
[54], and we also extended them based on the extra categories
found in the selected studies. These 11 categories are listed as
follows:

Complexity metrics. They are derived from McCabe complex-
ity [55] and Halstead complexity [56].

Design metrics. This category captures the design related met-
rics, such as OO metric [57], modularization, design pattern,
and dependencies metric [58], [59].

Code entity size metrics. Code entity size metrics are often
used in a normalized way combined with other metrics, such
as lines of code, number of classes, lines per method and Non-
comment lines of code.

Comment size metrics. They are often measured in order to
quantify documentation and understandability, such as density
of comment lines and ratio of comment lines to code.

Coding conventions violations. The number of coding con-
ventions violations is usually used as a quality determinant
for readability and maintainability. For Java projects, the Sun
Code Conventions are the most well-known coding conven-
tions.

Code smells. They are derived from the literature [60] and
often used to define the possible refactoring because of the
potential bugs.



TABLE IV
INCLUSION CRITERIA

IC Description
1 The paper proposes a software quality assessment model.
2 The paper is based on software product metrics.
3 The paper focuses on software product quality rather than process quality.
4 The paper presents a hierarchical mapping model which aggregates metrics to factors.

TABLE V
EXCLUSION CRITERIA

EC Description
1 The paper focuses on software process quality.
2 The paper focuses on a prediction model without an assessment model.
3 The paper only provides a definition quality model without an assessment method.
4 The paper is not accessible.
5 The document is not a paper, such as a conference cover, poster, etc.
6 The paper is not written in English.

Duplicated code. A measure of the size of duplicated code,
such as duplicated lines, duplicated blocks or duplicated
tokens. It is often used as an indicator of maintainability and
readability.

Testing metrics. To measure what percentage of code has been
tested by a test suite, such as function coverage and statement
coverage.

Change metrics. To measure what degree of change has been
made in a revision, such as function change and mean change
size.

Web metrics. To measure the particular properties of web
applications, such as navigation paths length and page click-
stream distances [43].

Others. Several of the selected QAMs contain both product
metrics and non-product metrics. Others represent the metrics
which are out of the design and product scope, such as defect
metrics in issue tracking systems, requirement documentation
and project community.

Figure 2 provides a graphic representation of the metric
category proportion distribution, the size of each bar represents
the proportion of the selected studies which adopted the metric
category. For all the QAMs, since the decomposition principles
used for factors usually dependent on the manual experience
and application specifics as Deissenboeck et al. [61] stated, the
adopted metrics are various according to the model objective
and context. In summary, the most popular metrics used in
QAMs are complexity (52%, used by S4, S5, S6, S11, S13,
S14, S17, S18, S19, S20, S21, S22, S24, S25, S27 and S29),
design (68%, used by S1, S4, S6, S7, S8, S9, S11, S12, S13,
S14, S17, S18, S19, S20, S21, S22, S24, S25, S26, S29 and
S31) and code entity size (58%, used by S1, S4, S6, S11, S12,
S13, S14, S16, S17, S18, S19, S20, S21, S22, S24, S25, S27
and S29 ) metrics. Additionally, the code entity size metrics
are traditional metrics which are often used in combination
with other metrics [62]. Many studies also include the size
metrics while using complexity and design metrics (S4, S6,

Fig. 2. Distribution of papers by metric category

S11, S13, S14, S17, S18, S19, S20, S21, S22, S24, S25, and
S29). This evidence indicates that the three basic software
metric categories are frequently used as quality determinants.
The use of metrics like coding conventions violations, code
smells and web metrics varies in different model contexts. For
example, coding conventions violations and code smells vary
in different program languages; web metrics are only suitable
for web applications.

B. RQ2: What quality factors are commonly used by QAMs?

We synthesize all the factors used in the selected studies.
Most of the studied QAMs assess the software quality through
multiple factors. Although we combine the synonyms, (e.g.
functionality and functional, usability and utilization) there are
still 42 factors occurred in all the selected studies. However,
most of them only happened in a few studies, such as compat-
ibility in S1 and S12. To identify the commonly used factors,
Figure 3 provides the graphic representation of the top ten
factors which are mostly happened in the selected studies,the
value of each bar represents the proportion of the selected
studies which adopted the factor. It is seen that the most
commonly focused factors are maintainability (58%, used by



TABLE VII
DETAILED INFORMATION OF SELECTED STUDIES

Study ID Titile Year
S1 [27] Operationalised product quality models and assessment: The Quamoco approach 2015
S2 [28] CLOUDQUAL: A Quality Model for Cloud Services 2014
S3 [26] Efficiency Measurement of Java Android Code 2014
S4 [29] Objective safety compliance checks for source code 2014
S5 [30] SCQAM: A Scalable Structured Code Quality Assessment Method for Industrial Software 2014
S6 [31] Test code quality and its relation to issue handling performance 2014
S7 [32] Indirect Method to Measure Software Quality using CK-OO suite 2013
S8 [33] MIDAS: A Design Quality Assessment Method for Industrial Software 2013
S9 [34] Objective Measurement of Safety in the Context of IEC 61508-3 2013
S10 [35] A Comprehensive Code-based Quality Model for Embedded Systems 2012
S11 [36] Standardized code quality benchmarking for improving software maintainability 2012
S12 [37] The Quamoco Product Quality Modelling and Assessment Approach 2012
S13 [2] A probabilistic software quality model 2011
S14 [38] Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach 2011
S15 [39] Evaluate the Quality of Foundational Software Platform by Bayesian Network 2010
S16 [40] Quality models for Free/Libre Open Source Software - towards the “Silver Bullet”? 2010
S17 [41] The Consortium for IT Software Quality 2010
S18 [42] The SQALE Analysis Model: An analysis model compliant with the representation condition for assessing the Quality of

Software Source Code
2010

S19 [43] OQMw: An OO Quality Model for Web Applications 2009
S20 [18] The Squale Model - A Practice-Based Industrial Quality Model 2009
S21 [44] DEQUALITE: building design-based software quality models 2008
S22 [45] 2-D Software Quality Model and Case Study in Software Flexibility Research 2008
S23 [46] The EMISQ method and its tool support-expert-based evaluation of internal software quality 2008
S24 [47] The SQO-OSS quality model: Measurement based open source software evaluation 2008
S25 [24] Legacy System Exorcism by Pareto’s Principle 2005
S26 [48] Construction of a Systemic Quality Model for Evaluating a Software Product 2003
S27 [25] software product and process assessment through profile-based evaluation 2003
S28 [49] Using quality models in software package selection 2003
S29 [50] A hierarchical model for object-oriented design quality assessment 2002
S30 [51] Multi-Criteria Methodology Contribution to the Software Quality Evaluation 2001
S31 [52] Software quality measurement: Concepts and fuzzy neural relational model 1998

Fig. 3. Distribution of papers by factors

S1, S5, S6, S7, S10, S11, S12, S13, S14, S16, S17, S18, S20,
S23, S24, S26, S28, S31), reliability (55%, used by S1, S2, S7,
S12,S14, S15, S16, S17, S18, S19, S20, S23, S24, S26, S27,
S28, S31) and efficiency (55%, used by S1, S3, S5, S6, S7,
S8, S12, S14, S15, S16, S17, S18, S23, S26, S28, S29, S30)
which are also stressed by the ISO 25010 and CISQ [41], [63].
We believe this fact is occurred because they are representative
and significant quality aspects for software product.

C. RQ3: What are the current validation methods used for
evaluating QAMs?

Model validation is significant because of its practical
application. It is used to evaluate whether the QAMs provide
valid and insightful assessment results. The difficulty lies in
evaluating the performance on the same environment. In our
selected studies, there are three categories of the validation
methods: expert opinion, issue handling indicators and indus-
try validation. Among the three methods, expert opinion is the
most frequently used evaluation method (39%, used by S1, S6,
S9, S10, S12, S13, S17, S21, S23, S24, S26 and S29) as Figure
4 shows. It is an empirical method which is often used in this
line of research, especially in problems which lack a public
labeled dataset. The common features of the expert opinion
evaluation method are listed below. First, developers which are
regarded as participants or experts possess certain experience
in the area. Second, a guide or checklist is often needed for the
evaluation process. The weakness of this method lies in the
bias coming from the diverse expertise of the participantąŕs
background.

The quality of software correlates with the performance in
handling issues, such as fixing bugs and introducing features
[31]. S2 and S11 evaluated the soundness of their models
through issue handling metrics. It revealed that their quality
model possessed a significant positive relation with issue



Fig. 4. Distribution of papers by evaluation methods

handling performance. Another evaluation method is industry
feedback which is adopted in S4, S5, S8, S16 and S20. For
example, the quality assessment model Squale [18] in S20
was designed by Air France-KLM and Qualixo Company at
first and its evaluation relied on the practical feedback from
PSA Peugeot-Citroen and Air France-KLM. They stated that
the model was well accepted by managers and developers.
The similarity between the method and expert opinion lies in
that both of them need participants. The difference is that the
industry feedback method based on a larger and more diverse
set of industrial projects and developers.

D. RQ4: What are the current usage of tools based on QAMs?

A tool which is implemented based on the QAMs plays
a significant role in popularizing a model. It is used to
facilitate automatic quality evaluation. However, the results
show that most of the selected studies did not provide a tool to
support the automatic assessment. In total, only eight selected
studies provide a tool to assist their evaluation as Table VIII
shows. We classify the usage of the tools into two categories:
Industrial usage and Academic usage. If the tool was proposed
or currently used in an industrial environment, we classify it
as Industrial usage. If the tool was proposed in an academic
institution and there is no further clue which indicating the
usage in industrial environment, we classify it as Academic
usage.

Table VIII lists the overview of the eight tools. The re-
sults show that half of the tools are used in an industrial
environment and half of the tools stay in academic usage.
This may imply that these tools which stay in academic
usage because they do not well satisfy industrial environment
requirements. Why are these tools not widely used in the
industrial environment? We suggest that further investigations
or real-world case studies should be performed to address this
question. With regard to the industrial usage tools, there are
two open source tools, namely Squale provided in study S20
and Quamoco provided in study S1 and S12. The other two
tools require purchase.

IV. THREATS TO VALIDITY

Despite the fact that our work is performed by following the
systematic mapping guide line, there may be several threats

to the validity.
Lack of universal taxonomy. Obviously, software quality is

a topic that is relevant to many software engineering fields,
including software defect prediction, software requirement
and process quality, software product quality, etc. All these
relevant studies may be termed as “software quality”. There
is not an appropriate and widely used taxonomy for the
QAM. For example, they may not mention the “product” and
“assessment” in the titles and abstracts. Thus, in order to
include the correct studies as completely as possible, we use
“software quality” in the search string to mitigate this problem.
The primary search results may include the studies in all the
above fields. Then, we make a manual selection by reading
the titles and abstracts (reading contents if needed) according
to the inclusion and exclusion criteria.

Study selection bias. We are not aware of biases we may
have had for selecting studies in a survey [64]. Improperly
selected search terms and inclusion/exclusion criteria may lead
to attrition bias. Some relevant papers may not been found in
the databases under our search and selection criteria. However,
the search step relied on both criteria: the databases and the
quality of the studies. The used databases cover the software
engineering research well and we manually read the titles and
abstracts (reading contents if needed) of each alternative to
decide the selection. Therefore, we are reasonably confident
that we are unlikely to have missed many significant relevant
studies.

Study completeness. Though the definition model, assess-
ment model and prediction model are defined for various
purposes, they are not distinctly independent of each other
[11]. For example, a prediction model cannot predict the
quality without knowing how to assess it. Some prediction
models many also contain an assessment model. Therefore,
we cannot claim that we have collected all the software
assessment models; however, we believe that we have captured
a significant and typical set.

V. RELATED WORK

There are several studies related to reviewing software
quality models which support the establishment of this work.
Deissenboeck et al. [11] classified existing quality models into
definition models, assessment models and prediction models.
According to this classification, they described the purpose
and the scenario for the usage of each category. Similar to
their work, Klas et al. [65] presented a comprehensive criteria
for classifying quality models which is named as CQML.
The classification scheme helps to obtain the summary and
the relationship of existing quality models. It is organized
by the following dimensions: object, purpose, quality focus
and resource. The difference between the above-mentioned
two works and our work lies in two aspects. First, they aim
to provide a classification scheme rather than a reviewing
study, while in our work, we try to review the existing
papers on one category (i.e., assessment models) according to
Deissenboeck’s definition by a mapping study. Second, they
provide the guide of how to classify a quality model, we aim



TABLE VIII
OVERVIEW OF THE EIGHT TOOLS

Tool Related study Current usage Publish year Open
source

SIG quality model S6,S11 Industrial 2007 No
Quamoco S1,S12 Industrial 2008 Yes
FSQQT S14 Academic 2011 No
SQALE S18 Industrial 2010 No
Squale S20 Industrial 2008 Yes
SPQR S23 Academic 2008 No

Alitheia S24 Academic 2008 Yes
Xradar S25 Academic 2004 Yes

to provide a systematical state-of-the-art in QAM research by
focusing on QAM specific aspects, such as metrics, factors,
evaluation methods.

Montagud et al. [66] focused on reviewing the existing
quality measures and attributes for software product lines
(SPL) in a systematic review. They found 165 measures and
91 different quality attributes. The similarity with our work is
that both of us focus on the product quality. The difference
is that they aimed to classify general measures and attributes,
while this work focuses on the assessment models.

In addition, there exist similar related systematic reviews
which focus on a particular factor of software quality. For
example, Riaz et al. [67] focused on the maintainability
predicting methods and metrics in their systematic review.
They selected 15 relevant studies to synthesize the forecasting
methods, metrics and factors, validation methods in maintain-
ability forecasting. The similarity with this work is that both
of us focus on the methods, metrics and factors. Febrero et
al. [16] presents a mapping study to analyze and structure the
literature on software reliability modeling. They investigated
the overview of relevant literature, research topics and adopted
models. Different from the above two reviews; our work aims
to review the integrated quality model rather than a particular
quality factor.

There are several related systematic reviews or mapping
studies which focus on metrics and tools in software quality
modeling. Barbara Kitchenham [22] focused on the software
metrics and aimed at identifying the trends in commonly used
metrics (e.g. OO metrics and web-metrics). A preliminary
mapping study was presented in Kitchenhamąŕs work which
tried to synthesize the relevant published papers. Tomas et
al. [54] presents a review study of the currently used open
source software tools that automate the collection of software
metrics in Java. Many of the tools in their work implemented
a software quality model, such as Squale [18] and SQALE
[42] which are also reviewed in this work.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this work is to provide a systematic
mapping study of quality assessment models for software
products. Five databases are searched and a total of 716
studies are obtained. Finally, according to our inclusion and
exclusion criteria, 31 studies are selected as relevant studies
which are taken into consideration for addressing our five

research questions. These studies are organized according to
their publication attributes and our research questions. The
synthesized data extracted from them allow us to observe the
development of QAMs from the following aspects: software
metrics, quality factors, evaluation methods, tool support,
model context and benchmark.

In summary, the conclusions are drawn as follows: (1)
QAMs are dependent on the application context, the structure
of quality factors and metrics adopted in different QAMs are
various in different model context. One problem is that few
studies propose a guideline in how to construct the quality
framework from metrics to factors in different application
context. Researchers in this area should continue to investigate
the guideline and criteria to tailor a quality framework (i.e.,
structure of quality metrics and factors) according to different
specifics. (2) We observe that model evaluation is a difficult
task due to the lack of standard data. It needs to be noted
that only a few systematic industrial case studies have been
published to evaluate the quality assessment model. Therefore,
more research is required to investigate the benefits and
problems of applying QAMs in the context of industrial cases.
(3) Only a small portion of the selected studies provide a tool
to implement the automatic assessment. Among these tools,
many of them are not widely used in the industrial environ-
ment. This may imply that these tools do not well satisfy
industrial environment requirement. Further investigations or
real-world case studies should be performed to address this
question.

In the future, we plan to enhance the existing QAMs by
addressing the current challenge and needs. For example, we
plan to organize a public and diverse benchmark for model
construction and evaluation. It will be beneficial to enhance
the diversity of QAMs in different application context. In
an addition, we plan to perform case studies on diverse
categories of real-word industrial systems to track the benefits
and problems of the existing QAMs.

Acknowledgment. This work was partially supported by NS-
FC Program (No. 61602403 and 61572426), National Key
Technology R&D Program of the Ministry of Science and
Technology of China (No. 2015BAH17F01), and Chongqing
Research Program of Basic Science & Frontier Technology
(No. cstc2017jcyjB0305).



REFERENCES

[1] I. ISO, “Iso/iec 14598-1,” Information Technology, Software Product
Evaluation, 1999.

[2] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A
probabilistic software quality model,” in Software Maintenance (ICSM),
2011 27th IEEE International Conference on. IEEE, 2011, pp. 243–
252.

[3] M. Yan, X. Zhang, C. Liu, J. Zou, L. Xu, and X. Xia, “Learning
to aggregate: an automated aggregation method for software quality
model,” in Proceedings of the 39th International Conference on Software
Engineering Companion. IEEE Press, 2017, pp. 268–270.

[4] M. Yan, X. Xia, X. Zhang, D. Yang, and L. Xu, “Automating aggregation
for software quality modeling,” in ICSME. IEEE, 2017, p. to appear.

[5] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, “Auto-
matically classifying software changes via discriminative topic model:
Supporting multi-category and cross-project,” Journal of Systems and
Software, vol. 113, pp. 296–308, 2016.

[6] B. W. Boehm, J. R. Brown, and H. Kaspar, “Characteristics of software
quality,” 1978.

[7] I. ISO, “Iec 9126-software engineering-product quality,” International
Organization for Standardization, 2001.

[8] ——, “Iec 25010,” Systems and Software Engineering-Systems and
Software Quality Requirements and Evaluation (SQuaRE)-System and
Software Quality Models, 2011.

[9] C. Catal and B. Diri, “A systematic review of software fault prediction
studies,” Expert Systems with Applications, vol. 36, no. 4, pp. 7346–
7354, 2009.

[10] M. M. Ozturk, U. Cavusoglu, and A. Zengin, “A novel defect prediction
method for web pages using k-means++,” Expert Systems with Applica-
tions, vol. 42, no. 19, pp. 6496–6506, 2015.

[11] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software
quality models: Purposes, usage scenarios and requirements,” in ICSE
Workshop on Software Quality, 2009, Conference Proceedings, pp. 9–14.

[12] R. G. Dromey, “A model for software product quality,” IEEE Transac-
tions on Software Engineering, vol. 21, no. 2, pp. 146–162, 1995.

[13] I. ISO, “Ieee, systems and software engineering–vocabulary,”
ISO/IEC/IEEE 24765: 2010 (E)) Piscataway, NJ: IEEE computer
society, Report, 2010.

[14] S. Wagner, Software product quality control. Springer, 2013.
[15] U. Chotjaratwanich and C. Arpnikanondt, “A visualization technique

for metrics-based hierarchical quality models,” in Software Engineering
Conference (APSEC), 2012 19th Asia-Pacific, vol. 1. IEEE, 2012, pp.
733–736.

[16] F. Febrero, C. Calero, and M. A. Moraga, “A systematic mapping study
of software reliability modeling,” Information and Software Technology,
vol. 56, no. 8, pp. 839–849, 2014.

[17] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in EASE, 2008, Conference
Proceedings.

[18] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, and P. Vaillergues, “The squale modeląła practice-based
industrial quality model,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on. IEEE, 2009, pp. 531–534.

[19] B. Kitchenham, Guidelines for performing systematic literature reviews
in software engineering. Keele University, 2007.

[20] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of systems and software,
vol. 80, no. 4, pp. 571–583, 2007.

[21] A. I. Chernyi, “The isi web of knowledge, a modern system for the
information support of scientific research: a review,” Scientific and
Technical Information Processing, vol. 36, no. 6, pp. 351–358, 2009.

[22] B. Kitchenham, “What’s up with software metrics? - a preliminary
mapping study,” Journal of Systems and Software, vol. 83, no. 1, pp.
37–51, 2010.

[23] J. Webster and R. T. Watson, “Analyzing the past to prepare for the
future: Writing a literature review,” Management Information Systems
Quarterly, vol. 26, no. 2, p. 3, 2002.

[24] K. Kvam, R. Lie, and D. Bakkelund, “Legacy system exorcism by
pareto’s principle,” in Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. ACM, 2005, pp. 250–256.

[25] M. Morisio, I. Stamelos, and A. Tsoukias, “Software product and process
assessment through profile-based evaluation,” International Journal of
Software Engineering and Knowledge Engineering, vol. 13, no. 05, pp.
495–512, 2003.

[26] N. Satrijandi and Y. Widyani, “Efficiency measurement of java android
code,” in Data and Software Engineering (ICODSE), 2014 International
Conference on. IEEE, 2014, pp. 1–6.

[27] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona,
K. Lochmann, A. Mayr, R. Plösch, A. Seidl, J. Streit et al., “Op-
erationalised product quality models and assessment: The quamoco
approach,” Information and Software Technology, vol. 62, pp. 101–123,
2015.

[28] Z. Xianrong, P. Martin, K. Brohman, and X. Li Da, “Cloudqual: A
quality model for cloud services,” IEEE Transactions on Industrial
Informatics, vol. 10, no. 2, pp. 1527–1536, 2014.

[29] A. Mayr, R. Plösch, and M. Saft, “Objective safety compliance checks
for source code,” in Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 115–124.

[30] S. Gupta, H. K. Singh, R. D. Venkatasubramanyam, and U. Uppili,
“Scqam: a scalable structured code quality assessment method for in-
dustrial software,” in Proceedings of the 22nd International Conference
on Program Comprehension. ACM, 2014, pp. 244–252.

[31] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code qual-
ity and its relation to issue handling performance,” IEEE Transactions
on Software Engineering, vol. 40, no. 11, pp. 1100–1125, 2014.

[32] S. Srivastava and R. Kumar, “Indirect method to measure software
quality using ck-oo suite,” in International Conference on Intelligent
Systems and Signal Processing, 2013, Conference Proceedings, pp. 47–
51.

[33] G. Samarthyam, G. Suryanarayana, T. Sharma, and S. Gupta, “Midas: a
design quality assessment method for industrial software,” in Proceed-
ings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 911–920.

[34] A. Mayr, R. Plösch, and M. Saft, “Objective measurement of safety
in the context of iec 61508-3,” in Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on. IEEE,
2013, pp. 45–52.

[35] A. Mayr, R. Plösch, M. Kläs, C. Lampasona, and M. Saft, “A com-
prehensive code-based quality model for embedded systems: systematic
development and validation by industrial projects,” in Software Reliabil-
ity Engineering (ISSRE), 2012 IEEE 23rd International Symposium on.
IEEE, 2012, pp. 281–290.

[36] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code
quality benchmarking for improving software maintainability,” Software
Quality Journal, vol. 20, no. 2, pp. 287–307, 2012.

[37] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz,
R. Plösch, A. Seidl, A. Goeb, and J. Streit, “The quamoco product
quality modelling and assessment approach,” in Proceedings of the 34th
international conference on software engineering. IEEE Press, 2012,
pp. 1133–1142.

[38] J. S. Challa, A. Paul, Y. Dada, V. Nerella, P. R. Srivastava, and A. P.
Singh, “Integrated software quality evaluation: A fuzzy multi-criteria
approach,” JIPS, vol. 7, no. 3, pp. 473–518, 2011.

[39] Y. Lan, Y. Liu, and M. Kuang, Evaluate the Quality of Foundational
Software Platform by Bayesian Network, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, vol. 6320, book section 43,
pp. 342–349.

[40] R. Glott, A.-K. Groven, K. Haaland, and A. Tannenberg, “Quality
models for free/libre open source software towards the ąřsilver bulletąś?”
in Software Engineering and Advanced Applications (SEAA), 2010 36th
EUROMICRO Conference on. IEEE, 2010, pp. 439–446.

[41] R. Soley and B. Curtis, The Consortium for IT Software Quality, ser.
Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, 2010, vol. 54, book section 2, pp. 2–5.

[42] J.-L. Letouzey and T. Coq, “The sqale analysis model: An analysis
model compliant with the representation condition for assessing the qual-
ity of software source code,” in International Conference on Advances
in System Testing and Validation Lifecycle. IEEE, 2010, Conference
Proceedings, pp. 43–48.

[43] A. Marchetto, “Oqmw: An oo quality model for web applications,”
Tamkang Journal of Science and Engineering, vol. 12, no. 4, pp. 459–
470, 2009.

[44] F. Khomh and Y.-G. Guéhéneuc, “Dequalite: building design-based
software quality models,” in Proceedings of the 15th Conference on
Pattern Languages of Programs. ACM, 2008, p. 2.



[45] Z. Li, L. Lin, and G. Hui, “2-d software quality model and case
study in software flexibility research,” in International Conference on
Intelligence for Modelling Control & Automation, 2008, Conference
Proceedings, pp. 1147–1152.

[46] R. Plosch, H. Gruber, A. Hentschel, C. Korner, G. Pomberger, S. Schif-
fer, M. Saft, and S. Storck, “The emisq method and its tool support-
expert-based evaluation of internal software quality,” Innovations in
Systems and Software Engineering, vol. 4, no. 1, pp. 3–15, 2008.

[47] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, The SQO-OSS
Quality Model: Measurement Based Open Source Software Evaluation,
ser. IFIP ĺC The International Federation for Information Processing.
Springer US, 2008, vol. 275, book section 19, pp. 237–248.

[48] M. Ortega, M. Perez, and T. Rojas, “Construction of a systemic quality
model for evaluating a software product,” Software Quality Journal,
vol. 11, no. 3, pp. 219–242, 2003.

[49] X. Franch and J. P. Carvallo, “Using quality models in software package
selection,” IEEE Software, vol. 20, no. 1, pp. 34–41, 2003.

[50] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[51] M.-J. Blin and A. Tsoukias, “Multi-criteria methodology contribution to
the software quality evaluation,” Software Quality Journal, vol. 9, no. 2,
pp. 113–132, 2001.

[52] W. Pedrycz, J. F. Peters, and S. Ramanna, “Software quality measure-
ment: concepts and fuzzy neural relational model,” in IEEE International
Conference on Fuzzy Systems Proceedings . IEEE World Congress on
Computational Intelligence, vol. 2, 1998, Conference Proceedings, pp.
1026–1031 vol.2.

[53] O. Gomez, H. Oktaba, M. Piattini, and F. Garcia, A Systematic Review
Measurement in Software Engineering: State-of-the-Art in Measures, ser.
Communications in Computer and Information Science. Springer Berlin
Heidelberg, 2008, vol. 10, book section 14, pp. 165–176.

[54] P. Tomas, M. J. Escalona, and M. Mejias, “Open source tools for
measuring the internal quality of java software products. a survey,”
Computer Standards & Interfaces, vol. 36, no. 1, pp. 244–255, 2013.

[55] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[56] M. H. Halstead, Elements of Software Science. Elsevier Science Inc.,
1977.

[57] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[58] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[59] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect
prediction: Unsupervised vs. supervised models,” in ESEM. ACM,
2017, p. to appear.

[60] M. Fowler, Refactoring: improving the design of existing code. Pearson
Education India, 1999.

[61] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard,
“An activity-based quality model for maintainability,” in Software Main-
tenance, 2007. ICSM 2007. IEEE International Conference on. IEEE,
2007, pp. 184–193.

[62] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518,
2015.

[63] R. Ploesch, S. Schuerz, and C. Koerner, “On the validity of the it-
cisq quality model for automatic measurement of maintainability,” in
Computer Software and Applications Conference (COMPSAC), 2015
IEEE 39th Annual, vol. 2. IEEE, 2015, pp. 326–334.

[64] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 33–53, 2007.

[65] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “Cqml scheme: A
classification scheme for comprehensive quality model landscapes,” in
Software Engineering and Advanced Applications, 2009. SEAA’09. 35th
Euromicro Conference on. IEEE, 2009, pp. 243–250.

[66] S. Montagud, S. Abrahão, and E. Insfran, “A systematic review of quality
attributes and measures for software product lines,” Software Quality
Journal, vol. 20, no. 3-4, pp. 425–486, 2012.

[67] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software
maintainability prediction and metrics,” in Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2009, pp. 367–377.


