
What Permissions Should This Android App
Request?

Lingfeng Bao∗, David Lo†, Xin Xia∗�, and Shanping Li∗
∗College of Computer Science and Technology, Zhejiang University, China

†School of Information Systems, Singapore Management University, Singapore

{lingfengbao, xxia, shan}@zju.edu.cn, davidlo@smu.edu.sg

Abstract—As Android is one of the most popular open source
mobile platforms, ensuring security and privacy of Android
applications is very important. Android provides a permission
mechanism which requires developers to declare sensitive re-
sources their applications need, and users need to agree with
this request when they install (for Android API level 22 or lower)
or run (for Android API level 23) these applications. Although
Android provides very good official documents to explain how
to properly use permissions, unfortunately misuses even for the
most popular permissions have been reported.

Recently, Karim et al. propose an association rule mining based
approach to better infer permissions that an API needs. In this
work, to improve the effectiveness of the prior work, we propose
an approach which is based on collaborative filtering technique,
one of popular techniques used to build recommendation systems.
Our approach is designed based on the intuition that apps that
have similar features – inferred from the APIs that they use
– usually share similar permissions. We evaluate the proposed
approaches on 936 Android apps from F-Droid, which is a
repository of free and open source Android applications. The
experimental results show that our proposed approaches achieve
significant improvement in terms of the precision, recall, F1-score
and MAP of the top-k results over Karim et al.’s approach.

Index Terms—Android, Permission Recommendation, Associ-
ation Rule, Collaborative Filtering

I. INTRODUCTION

Android has become a very popular platform that dominated

the smartphone market with a market share of 82.8% in

the second quarter of 2015 [1]. More and more Android

applications (also referred to as “apps”) are produced by

thousands of developers. In the first quarter of 2016, there are

about 1,900,000 apps in Google Play [2]. Meanwhile, the huge

number of Android apps attracts more attackers to develop

malicious apps, which are often designed to steal sensitive

data, such as private credentials and financial information.

In order to decrease the threats that Android apps pose

to the privacy and security of their users, Android pro-

vides a unique permission mechanism to control access of

third party applications to sensitive resources, such as the

user’s contact list, camera, network, etc. Android requires

app developers to write the needed permissions explicitly

in a config file named AndroidManifest.xml. Hence,

Android app developers not only need to know how to use

APIs to implement certain features of an application, but

also the corresponding permissions. For example, if an app

�Corresponding author

requires internet access, the developer not only needs to know

the network APIs, such as “android.net.ConnectivityManager”

and “java.net.Socket”, but also the corresponding permission-

s namely ACCESS NETWORK STATE and INTERNET

which need to be written to the AndroidManifest.xml file.

To reduce security risk, Android official document1 men-

tions that it is better for developers to minimize the number

of permissions that their apps request. However, often it is not

easy for Android app developers to decide which permissions

are needed. There are 151 system-level permissions available

and over 4,000 classes in Android library. Moreover, the offi-

cial Android documentation for API classes and permissions

is incomplete [3], [4]. Stevens et al. have also shown that there

exists many misuses even for the most popular permissions [5].

Hence, there is a need for a recommendation system that can

help developers decide suitable permissions for their apps.

To address this need, some researchers have proposed some

tools to recommend permissions by tracing APIs to specific

permissions. Stowaway extracts APIs used in apps through

static analysis and builds a permission map through dynamic

analysis of the Android OS/stack [3]. In a later work, Au et
al. propose PScout which maps permissions to APIs based

on the static analysis of the Android OS [4]. Androguard2

builds upon PScout’s methodology to also output likely API

to permission mappings for a given app [6]. Unfortunately,

these program analysis approaches are not perfect and many

wrong recommendations are made.

Recently Karim et al. process likely API to permission

mappings output by Androguard using association rule mining,

a popular data mining technique, to recommend the required

permissions of an app [7]. An experiment is conducted on

600 apps from F-Droid 3 and the results show that their

proposed approach named APMiner outperforms PScout and

Androguard [7]. Although their approach outperforms tools

which are based on static analysis, its effectiveness is not

optimal. Moreover, there are many other algorithms proposed

in the recommendation system area which could have been

applied to recommend permissions for Android apps. Hence,

in this paper, we want to investigate collaborative filtering

which has been widely adopted in many recommendation

1https://developer.android.com/training/articles/security-
tips.html#RequestingPermissions

2https://github.com/androguard/androguard
3https://f-droid.org/

2016 International Conference on Software Analysis, Testing and Evolution

978-1-5090-4517-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SATE.2016.13

36

systems [8] and compare its effectiveness with Karim et al.’s
approach which is based on association rule mining. We refer

to the best performing variant of APMiner as APRecRULE to

make this name be consistent with the name of our proposed

approach in this paper.

Our approach, which is based on collaborative filtering,

refers to as APRecCF . The intuition of using collaborative

filtering is that apps which use similar APIs, usually support

similar features, so the required permissions are usually similar

too. Hence, APRecCF first finds a list of most similar apps

to a target app, and then recommend permissions based on the

used permissions of these similar apps. We measure similarity

of two apps based on the APIs used by the apps.

We evaluate the proposed permission recommendation ap-

proach on 936 open source Android apps from F-droid which

have corresponding Github repositories. We measure the ef-

fectiveness of our approach in terms of precision, recall, F1-

score and Mean Average Precision (MAP) of the top-k rec-

ommendations. The experiment results show that APRecCF

outperforms APRecRULE .

The remainder of the paper is organized as follows. We first

describe the details of the two permission recommendation

approaches in Section II. Our experiment results are presented

in Section III. Related work is briefly reviewed in Section IV.

Finally, we conclude and outline potential future directions in

Section V.

II. APPROACH

In this section, we first describe how to extract the data

including APIs and permissions from Android apps. We then

present the details of two proposed recommendation approach-

es which are based on different data mining techniques, i.e.,

APRecRULE , APRecCF .

A. Data Collection and Processing

We use Android applications from F-Droid which is a

catalogue of free and open source applications for the Android

platform as data for this study. In total, we find 1,993 apps on

F-Droid4. The Android applications on F-Droid are hosted in

different platforms, such as Github, Bitbucket, Google Code,

etc. In this study, we only consider applications whose source

code is hosted on Github, since most of projects on Github
provide a readme file and we can get the readme file easily

by very convenient REST APIs provided by Github. Among

the 1,993 apps, 936 of them put their source code in Github
and have readme files.

Given an Android app, its permissions are specified in

the manifest file, i.e. AndroidManifest.xml, which is

located at the root level of the app, while its APIs can

be found in its Java source code files, declared in import

statements. To extract APIs from Java source code, we first

transform the source code into a single xml file using srcML
which is a lightweight static analysis tool [9]. Then we can

extract permissions and APIs using an XML processing tool

4https://f-droid.org/wiki/page/Repository Maintenance

Permissions

Rule Extractor

Model Construction Phase

Recommendation Phase

Training Apps with
Known PermissionsAPIs

Mapping

New Apps APIs Permissions

Fig. 1. The Framework of APRecRULE

very easily. We only consider the API class names in the

Android software stack and Java standard libraries, such as an-
droid.content.ContentResolver and java.net.URL, and ignore

user-defined classes.

We use Androguard to obtain likely mapping of each API

classes and permissions. This forms the transactions that are

used by APRecRULE . The list of APIs that are used by an app

is transformed into a feature vector and input to APRecCF .

B. APRecRULE Approach

Figure 1 presents the process of APRecRULE .

APRecRULE is an implementation of the best performing

variant of APMiner referred to as FilteredMiner’ in the original

paper [7]. APMiner utilizes association rule mining technique

and outperforms the prior state-of-the-art approaches:

Androguard and PScout. Hence, we use APRecRULE as

a baseline to compare our proposed approach. Each input

transaction of APRecRULE contains a single permission and

several APIs which can be traceable to the permission. These

transactions are the output of Androguard.

APRecRULE works in two phases: model construction

and recommendation phase. In the model construction phase,

APRecRULE takes as an input a set of transactions that is

generated by running Androguard on a training set of apps

with known permissions. A sub-component of APRecRULE

named RuleExtractor employs association rule mining to

mine API-permission rules (e.g., APIs =⇒ Permission),

referred to as APRules. In the recommendation phase, given

a set of APIs of a new app currentAPIs, a rule matches

currentAPIs if its precondition is a subset of currentAPIs.

APRecRULE then recommends permissions, based on the

post-conditions of the matching rules.

We assign a score to assess the probability of a permission

for which an app requires. The rule-based recommendation

score for a permission P is the sum of confidence of any

matching rule whose post-condition is P . This score is com-

puted by the following formula:

RecScoreRULE(P) =
∑

R∈RMatched(P)

conf(R)

In the above equation, RMatched(P) is the set of

rules whose pre-conditions is a superset of currentAPIs

37

APIs

Training Apps with
Known Permissions

Feature Vector
Extractor

New Apps

APIs

Nearest Neighbor
Processor Permissions

Model Construction Phase

Recommendation Phase

Fig. 2. The Framework of APRecCF

and whose post-condition is a permission P . If the set

RMatched(P) is empty, the recommendation score of P
is 0. Next, we will normalize RecScoreRULE to make the

value ranges from 0 to 1. The permissions with the highest

recommendation scores are deemed to be the most appropriate

permissions based on the mined association rules.

C. APRecCF Approach

Figure 2 presents the process of APRecCF . APRecCF

utilizes a collaborative filtering technique to recommend per-

missions for Android apps. APRecCF use cosine similarity to

calculate the similarity between two apps. For each Android

app, APRecCF uses the used APIs to form a feature vector,

then get the nearest neighbor apps from the training dataset to

perform permission recommendation.

APRecCF recommends permissions based on those that

are used by similar Android apps, following a nearest-

neighbor-based collaborative filtering approach. We mea-

sure the similarity of two apps based on their set of

commonly used APIs. APRecCF works in two phases:

model construction and recommendation phase. It consist-

s of the FeatureV ectorExtractor component and the

NearestNeighborProcessor component. The first compo-

nent is called in the model construction phase, while the latter

is called in the recommendation phase.

1) FeatureV ectorExtractor: This component converts

the list of APIs used by each app in a training set into a

feature vector. Let allAPIs be the set of all APIs arranged

in alphabetical order of their names. Each API can then

be assigned a unique index in allAPIs and referred to as

allAPIs[i]. The feature vector of app A, denoted as V (A), is

defined as follows:

V (A) = (ind(allAPIs[0], A), ..., ind(allAPIs[|allAPIs|], A))
where ind(I, A) = 1 if A uses API I , and ind(I, A) = 0 ,

otherwise.

2) NearestNeighborProcessor: Given a new app,

NearestNeighborProcessor first converts the list of APIs

used in the app into a feature vector in the same manner as is

done by the FeatureV ectorExtractor. It then calculates the

distance between this feature vector and the feature vectors of

apps in the training set. In this study, we use cosine similarity
to compute the distance.

The cosine similarity score of a new app A and an existing

app B in the training set is calculated as follows:

Scosine(A,B) =
V (A) · V (B)

|V (A)||V (B)|
In the above equation, · denotes dot product, and |V (i)|

denotes the size of a vector V (i), which is defined as the

square root of the sum of the squares of its constituent

elements. Cosine similarity ranges from 0 to 1, since the term

frequencies cannot be negative.

The higher the similarity score is, the more similar an app in

the training set is to the new app. We rank apps in the training

data based on their similarity scores. Then, we pick top-n apps

with the highest similarity score as the nearest neighbors of the

new app. The next step is to compute a recommendation score

for each permission. Given a permission P , the collaborative

filtering-based recommendation score of an app A is calculated

as follows:

RecScoreCF (P) =
∑

Bi∈Nearest

Sx(A,Bi), if P ∈ Bi

In the above equation, Nearest is the nearest neighbors,

P ∈ Bi means app Bi has permission P and Sx is one of

three similarity scores. Then, we normalize the recommenda-

tion score. The permissions with the highest recommendation

scores are the most appropriate permissions based on the

collaborative filtering.

III. RESULTS

In this section, we describe the experiment setup, followed

by our evaluation metrics. We then present our research

questions and the results of our experiments. Finally, we

discuss some threats to validity.

A. Experiment Setup

The dataset in this evaluation is 936 Android apps

from F-Droid. The apps in the dataset have 4.45 ± 2.57
(mean±standard deviation) permissions and 104.01 ± 83.59
APIs in average. We also use Androguard to filter the APIs

which are not traceable to the used permissions. Thus, the apps

have 8.31± 5.35 traceable APIs in average.

In our study, we use a fast Apriori [10] algorithm implemen-

tation [11] for association rule mining. Karim et al. has shown

that the best performing variant of their approach (referred to

as APRecRULE in this paper) has the best performance when

the confidence is set to 0.4, so we set confidence value to 0.4

too. For the collaborative filtering approach APRecCF , the

default numbers of nearest neighbors of them are all set to

10.

The experimental environment is a 64-bit, Intel(R)

Core(TM) i7-6500 2.50GHz computer with 8GB RAM run-

ning Windows 10

38

B. Evaluation Metrics

To evaluate the three permission recommendation approach-

es in this study, we use several well-known evaluation metric:

precision@k, recall@k, F1-score@k and the Mean Average

Precision (MAP) which have been used as yardsticks in many

studies, e.g., [12], [13], [14]. Consider m Android apps in the

testing dataset that should receive permission recommendation.

For each app Ai, let the actual set of permissions of Ai be

P t
i , and Nk

i be the number of permissions that are correctly

recommended in the top-k permissions P k
i recommended by

a permission recommendation system. The precision@k is the

ratio of Nk
i over k, i.e., (precision@k)i =

Nk
i

k , while recal-

l@k is the ratio of Nk
i over the actual number of permissions,

i.e., (recall@k)i =
Nk

i

|P t
i | Then the F1-score@k is a summary

measure that combines both precision@k and recall@k, i.e.,

(F1− score@k)i = 2× (precision@k)i × (recall@k)i
(precision@k)i + (recall@k)i

Finally, for m apps in a testing dataset, we calculate the

average precision@k, recall@k and F1-score@k.

Since a permission recommendation system returns a ranked

list of permissions, it is desirable to also consider the order in

which the returned permissions are presented. Hence, we also

use Mean Average Precision (MAP) which is one of the most

popular measures to evaluate ranked retrieval results as an

evaluation metric. MAP is known to be a stable [15] and highly

informative [16] measure. In this study, Average Precision

(AP) is the average of precisions computed at the point of

each of the permissions that are correctly recommended in

the ranked permission list. It is computed as follows:

AP =

∑n
k=1(P (k)× rel(k))

the number of actual permissions

where k is the rank in the sequence of recommended permis-

sions, n is the number of recommended permissions, P (k)
is the precision at cut-off k in the list and rel(k) is an

indicator function which is equal to 1 if the item at rank k is

a permission that the target app uses, and 0 otherwise. Then,

for the m apps in the testing dataset, MAP is calculated as

follows: MAP =
∑m

i=1 APi

m

C. Research Questions

RQ1: How effective are our permission recommendation
approach based on collaborative filtering? How much
improvement can our approach achieve over the baseline
approach?
Motivation. The better performance APRecCF have, the

more benefit they would give to their users. Thus, in this

research question, we evaluate the effectiveness of APRecCF

and compare them with the baseline approach APRecRULE .

Approach. To answer RQ1, we use 10 fold cross validation

to compute the top-k precision, recall and F1-score (k =
(1, 2, ..., 10)) and MAP to evaluate the performance of each

permission recommendation approach.

To check if the difference between the results of the baseline

APRecRULE and APRecRULE is significant, we apply the

TABLE I
CLIFFS DELTA AND THE EFFECTIVENESS LEVEL [18]

Cliff’s Delta (|δ|) Effectiveness Level
|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium

0.474 ≤ |δ| Large

TABLE II
THE RESULTS OF PRECISION@K, RECALL@K, F1-SCORE@K (K=5, 10)

AND MAP

APRecRULE APRecCF

Precision@5 0.5739 0.6064
Recall@5 0.6322 0.7487
F1-score@5 0.5671 0.6183
Precision@10 0.2869 0.3960
Recall@10 0.6322 0.9172
F1-score@10 0.3759 0.5176
MAP 0.6275 0.7651

Wilcoxon signed-rank test [17] at 95% significance level on 10

paired data which represents the results of 10 fold cross valida-

tion of compared approach. We also use Cliff’s delta (δ) [18],

which is a non-parametric effect size measure that quantifies

the amount of difference between the baseline APRecRULE

and APRecRULE . Table I describes the meaning of different

Cliff’s delta values and their corresponding interpretations.

Results. The results of top-k precision, recall and F1-score

are presented in Figure 3(a), 3(b) and 3(c), respectively. In

these figures, ‘Rule’ and ‘Cosine’, represent APRecRULE ,

APRecCF , respectively. From these figures, we can see that

the precisions of two approaches decrease when the number

of recommended permissions (i.e. top-k) increases while the

recalls increase when the number of recommended permis-

sions increases. This results make sense. For precision, the

permissions with high recommendation scores are more likely

to be correct, so the precision is high if k is small. But when

k increases, more permissions are wrongly recommended. For

recall, the more permissions are recommended, the higher the

recall is.

From Figure 3(a), we can see that when k is small (from

1 to 4), the precision of baseline APRecRULE is higher than

APRecCF , but the difference is very small. But the recalls and

F1-scores of APRecRULE is almost the same as APRecCF

when k is small, see Figure 3(b) and 3(c). However, when

k is bigger than 5, the precisions, recalls and F1-scores of

APRecRULE are all smaller than APRecCF . The precisions

of APRecRULE decrease more rapidly than APRecCF and

its recalls almost do not increase when k exceeds 5. As F1-

score is a harmonic mean of precision and recall, so the F1-

score of APRecRULE also decreases rapidly. But there are

small difference on the results of precision, recall and F1-

score for the APRecCF when k is varied from 1 to 10. In

summary, we can see our proposed approach APRecCF in

this paper outperforms the baseline approach APRecRULE .

We present the detailed top-k (k=5,10) precision, recall, F1-

score and MAP for two approaches in Table II. From this

table, we can see all metrics of APRecRULE are smaller than

39

0

0.5

1

1 2 3 4 5 6 7 8 9 10

Rule CF

(a) Precision

0

0.5

1

1 2 3 4 5 6 7 8 9 10

Rule CF

(b) Recall

0

0.5

1

1 2 3 4 5 6 7 8 9 10

Rule CF

(c) F1-score

Fig. 3. The Results of Top (1-10) Precision, Recall and F1-score

TABLE III
P-VALUE AND CLIFF DELTA (δ) BETWEEN APRecCF AND APRecRULE

p-value δ

Precision@5 6.43E-03 0.49
Recall@5 < 0.0001 0.89
F1-score@5 < 0.0001 0.80
Precision@10 < 0.0001 0.90
Recall@10 < 0.0001 0.90
F1-score@10 < 0.0001 0.90

those of APRecCF . And the improvements in terms of top-10

metrics are larger than those in terms of top-5 metrics. The

improvements on precision@10, recall@10 and F1-score@10

are more than 10%, 25%, and 13% respectively. The MAP of

APRecCF is larger than that of APRecRULE by ∼14%.

Table III represents the p-values and cliff’s delta values

for APRecCF with the baseline APRecRULE in terms of

precision@k, recall@k, F1-score@k (k=5, 10) and MAP. In

this table, all of the p-values are less than 0.05 and all of

the Cliff’s delta values are in large effectiveness level which

means the improvement of our approach over the baseline

APRecRULE is significant.

RQ2: How does the size of training data affect the results
of the permission recommendation approaches?
Motivation. We want to investigate whether different sizes

of training data affect the performance of the permission

recommendation approaches investigated in this study.

Approach. We run n fold cross validation to evaluate the

performance of each approach, where n ranges from 2 to

10. As we reduce the value of n, we reduce the amount of

training data. We evaluate the results in terms of F1-score@5,

F1-score@10 and MAP.

Results. Figure 4(a), 4(b) and 4(c) present the F1-score@5,

F1-score@10 and MAP of these permission recommendation

approaches for different n fold cross validation, respectively.

We notice that both the F1-score@5, F1-score@10 and MAP

change only very little when we vary the size of the training

dataset for two approaches in this study. Hence, we find that

the permission recommendation approaches evaluated in our

study perform well across a wide range of training data sizes.

D. Threats to Validity

One of threats to internal validity relates to errors in our

code and experiment bias. We have double-checked our code,

still there could be errors that we did not notice.

One of threats to external validity is the dataset used in

our study. We have analyzed 936 open source Android apps

from F-Droid. In the future, we plan to consider more open

source Android apps even closed source apps to reduce this

threat to validity. Closed source apps, such as those distributed

on GOOGLE PLAY, require reverse engineering which can be

performed by existing tools (e.g., Androguard) to extract the

API usage. Another threat to external validity is that not all

permissions are covered in out study. Out of the 151 system-

defined permission in Android, 45 permissions are used in our

dataset. We also do not consider the customized permissions.

Threats to construct validity refers to the suitability of our

evaluation measures. We use top-k precision, recall and F1-

score, and MAP which are also used by many prior automated

software engineering studies [12], [13], [14].

IV. RELATED WORK

Our work is inspired by the work of Karim et al. [7],

which uses association rule mining technique to recommend

permissions. The extracted rules in their study are based on the

co-occurrence of Android APIs and permissions. To our best

knowledge, there are no other studies that use recommendation

system algorithms to predict possible required permissions

for an app. In our study, we propose an approach based on

collaborative filtering and find that our approach achieve better

performance than that of the association rule mining approach.

Many researchers have proposed different approaches to

identify the mappings between APIs and permissions. Some

tools (e.g. Stowaway [3], PScout [4], and Androguard [6])

rely on static analysis to extract the mappings between APIs

and permissions. The results of PScout is more complete and

accurate than those of Stowaway. PScout have been applied

on four versions of Android and help figure out that about

22% of the non-system permissions are unnecessary. Andro-
guard is a reverse engineering tool which embeds PScouts

methodology and enables API to recommend permissions to

a given app. In our study, Androguard is used to extract the

possible mappings between APIs and permisions. Note that

these program analysis approaches are not perfect and many

mappings that are recovered are not correct. Furthermore, the

approach based on association rule mining has been proved to

have better performance than these tools which only rely on

program analysis in the study of Karim et al. [7]. Thus, we

do not compare our proposed approach with these tools.

The misuse of permissions in Android has been investigated

by researchers [5], [19]. For example, to understand whether

Android users pay attention to, understand, and act on permis-

sion information during installation, Felt et al. [19] conduct

40

7 8 9 10

Euclidean Correlation

0.5
2 3 4 5 6

Rule NBM Cosine

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

Rule CF

(a) F1-score@5

7 8 9 10

clidean Correlation

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

Rule CF

(b) F1-score@10

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

Rule CF

(c) MAP

Fig. 4. F1-score@5, F1-score@10 and MAP for N-Fold Cross Validation

an Internet survey with 308 Android users and a laboratory

study with 25 users. They find that only 17% of users pay

attention to permissions during installation and 3% of Internet

survey respondents could correctly answer all three permission

comprehension questions. These works provide the motivation

of our research. The phenomenon of permission misuses exists

in Android. Hence, permission recommendation approaches

could be very helpful to both developers and end-users.

The permission recommendation approaches in this study

could be used to detect malicious behavior, since the permis-

sion misuses could be indicative to stealthy and malicious be-

havior in Android apps. There are many approaches proposed

by researchers to help identify malicious behavior in Android

apps [20], [21], [22], [23], [24]. For example, AsDroid [20]

could identifying stealthy behavior by analyzing user interface

and program behavior contradiction.

V. CONCLUSION AND FUTURE WORK

Android provides permission mechanism to help protect the

privacy and security of Android app users. Unfortunately, there

still exist many misuses of permissions [5], [19] which may

be caused by the incompleteness of Android documentation.

An approach based on association rule mining, proposed by

Karim et al., has been reported to be useful to recommend

appropriate permissions for an app [7]. This gives us a hint that

other algorithms proposed in the recommend system area may

also be applied to recommend permissions to apps. Hence, in

this paper we propose another approach which is based on

collaborative filtering technique to recommend permissions for

a new app. We evaluate the approach on 936 Android Apps

from F-Droid and compare our proposed approach with the

association rule approach proposed by Karim et al. Results

show that our proposed approach outperforms the baseline

approach in terms of top-k precision, recall and F1-score and

MAP.

ACKNOWLEDGMENT

This work is supported by NSFC Program (No.61602403

and 61402406) and National Key Technology R&D Program

of the Ministry of Science and Technology of China under

grant 2015BAH17F01.

REFERENCES

[1] “Smartphone market share,” http://www.idc.com/prodserv/
smartphone-os-market-share.jspl.

[2] “Google play,” https://en.wikipedia.org/wiki/Google Play.
[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demystified,” in Proc. CCS. ACM, 2011, pp. 627–638.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proc. CCS. ACM, 2012, pp.
217–228.

[5] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen, “Asking for
(and about) permissions used by android apps,” in Proc. WCRE. IEEE
Press, 2013, pp. 31–40.

[6] A. Desnos, “Androguard: Reverse engineering, malware and goodware
analysis of android applications... and more (ninja!).”

[7] M. Y. Karim, H. Kagdi, and M. Di Penta, “Mining android apps to
recommend permissions,” in Proc. SANER. IEEE, 2016, pp. 427–437.

[8] F. Ricci, L. Rokach, and B. Shapira, Introduction to recommender
systems handbook. Springer, 2011.

[9] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An xml-based lightweight
c++ fact extractor,” in Proc. of 11th IEEE International Workshop on
Program Comprehension. IEEE, 2003, pp. 134–143.

[10] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[11] F. Bodon, “A fast apriori implementation,” in Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI’03), vol. 90, 19. November 2003.

[12] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: a comparative study of generic and composite text models,” in
Proc. MSR. ACM, 2011, pp. 43–52.

[13] X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang, “Cross-language bug
localization,” in Proc. ICPC. ACM, 2014, pp. 275–278.

[14] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in Proc. ICSE. IEEE, 2012, pp. 14–24.

[15] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure stabil-
ity,” in Proceedings of the 23rd annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM,
2000, pp. 33–40.

[16] J. A. Aslam, E. Yilmaz, and V. Pavlu, “The maximum entropy method
for analyzing retrieval measures,” in Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2005, pp. 27–34.

[17] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[18] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[19] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security.
ACM, 2012, p. 3.

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proc. ICSE. ACM, 2014, pp. 1036–1046.

[21] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe,
S. Albayrak, and C. Yildizli, “Smartphone malware evolution revisited:
Android next target?” in Proc. MALWARE. IEEE, 2009, pp. 1–7.

[22] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in NDSS, 2012.

[23] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in Proc. ESEM, 2016.

[24] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian, “How android app
developers manage power consumption?: an empirical study by mining
power management commits,” in Proc. MSR. ACM, 2016, pp. 37–48.

41

