
Recommending Code Reviewers for Proprietary
Software Projects: A Large Scale Study

Dezhen Kong∗‡, Qiuyuan Chen∗‡, Lingfeng Bao∗§, Chenxing Sun†, Xin Xia∗, Shanping Li∗
∗Zhejiang University, China, {timkong, chenqiuyuan, lingfengbao, shan}@zju.edu.cn, xin.xia@acm.org

†Tencent, China, marssun@tencent.com

Abstract—Code review is an important activity in software
development, which offers benefits such as improving code
quality, reducing defects and distributing knowledge. Tencent, as
a giant company, hosts a great number of proprietary software
projects that are only open to specific internal developers.
Since these proprietary projects receive up to 100,000 of newly
submitted code changes per month, it is extremely needed to
automatically recommend code reviewers. To this end, we first
conduct an empirical study on a large scale of proprietary
projects from Tencent, to understand their characteristics and
how code reviewer recommendation approaches work on them.
Based on the derived findings and implications, we propose
a new approach named CAMP that recommends reviewers by
considering their collaboration and expertise in multiple projects,
to fit the context of proprietary software development. The
evaluation results show that CAMP can achieve higher scores on
proprietary projects across most metrics than other state-of-the-
art approaches, i.e., REVFINDER, CHREV, TIE and COMMENT
NETWORK and produce acceptable performance scores for more
projects. In addition, we discuss the possible directions of code
reviewer recommendation.

Index Terms—reviewer recommendation, code review, propri-
etary projects

I. INTRODUCTION

Code review is an important activity in software develop-
ment, which is nowadays the best practice in both open source
and industrial software projects [1], [2]. The main goal of code
review is to improve the overall quality of a code change1, such
as reducing software defects and quality problems of source
code, through manual examination done by code reviewers [3],
[4]. Since the inefficiencies of traditional peer review practices,
such as code inspections [1], which are cumbersome and
time-consuming [5], many organizations have adopted a more
lightweight, tool-based code review process called Modern
Code Review (MCR) [6], [7], which can not only detect
defects and quality problems of source code as traditional code
review practices but also distribute knowledge and increase
team awareness [7].

In Tencent, a giant international company, there are a large
number of proprietary projects maintained in internal commu-
nity. Many teams in Tencent adopt similar MCR workflow as
open-source organizations, making a proportion of proprietary
projects open to internal developers. Internal developers can
contribute code to the projects they are concerned with, and a

‡Work done while this author was an intern at Tencent.
§Corresponding author.
1In this paper, we use code change and pull request (PR) interchangeably.

submitted code change will be merged after one or more code
reviewers approve it. In this context, although developers do
not build open-source software, the practices in open-source
development is used. Considering that there are too many
code changes to be reviewed (In Tencent, there are more than
100,000 code changes submitted to their proprietary projects
per month), it is still expensive and not efficient to manually
assign proper reviewers for each code change [8]. Therefore,
Code Reviewer Recommendation (CRR) tools are needed to
automatically find proper reviewers to promote the efficiency
of software development [8], [9].

Fortunately, there have been lots of studies dedicated to
CRR. Many proposed approaches [8], [10]–[15] mainly con-
sider the expertise of reviewers as a critical factor, and there
are also approaches [4], [16]–[19] considering other factors
such as collaboration, workload, and knowledge distribution.
Most researchers evaluated their approaches on open-source
projects, typically those hosted on Gerrit systems and GitHub.
A small part of studies [12], [18], [20], [21] evaluated their
approaches on a small number of proprietary software projects.
However, little effort is paid in systematically evaluating CRR
approaches on proprietary projects in a large company, and
the characteristics of these projects have not been studied.

To bridge this gap, we first conduct a large-scale empirical
study to investigate the characteristics of proprietary projects
in Tencent, and how existing state-of-the-art CRR approaches
perform on plenty of proprietary projects in a giant commercial
company. Based on the derived findings and implications, we
then propose a new approach to better recommend code re-
viewers in the context of proprietary software development. In
this work, we try to answer the following research questions:
RQ1: What are the characteristics of proprietary projects
in Tencent?

We first identify 300 proprietary projects with the most pull
requests in Tencent, and retain 163 accessible projects with
more than 1,000 historical code changes. After retrieving their
review data, we then clean our datasets (e.g., removing robot
reviewers and code changes with no commits) and categorize
the projects according to their dominant programming lan-
guages, since we find projects written in the same language
serve different applications and functionalities. Through the
quantitative analysis of our collected datasets, we obtain some
valuable results which can support our further study. For
instance, we find that most code changes in our collected
projects are only reviewed by a single person, while those



in open-source projects are often reviewed by several or even
a group of project members; most developers tend to work
with their dominant collaborators and a proportion of projects
are reviewed by only several developers. We also notice that
9.6% of the reviewers have worked on multiple projects
(contributing or reviewing code).
RQ2: How do existing approaches perform on proprietary
projects?

We evaluate four existing state-of-the-art approaches, i.e.,
REVFINDER [11], TIE [8], CHREV [12] and COMMENT NET-
WORK [16] on our collected datasets. The results show that
for each approach, performance scores on proprietary projects
vary greatly. For example, when COMMENT NETWORK is
applied, the mean reciprocal rank (MRR) can range from
below 0.3 to nearly 1.0. On most proprietary projects (137
out of 150, projects written in rare languages are excluded),
collaboration-based approach COMMENT NETWORK achieves
higher scores than other approaches in terms of almost all met-
rics. COMMENT NETWORK also produces the largest reviewer
participation rate for most projects. And TIE, which combines
text mining and file path similarity performs better than file
location-based approaches REVFINDER and CHREV. We also
qualitatively analyze our findings.
RQ3: Can we propose a new approach to better recom-
mend proper reviewers for proprietary projects?

On the basis of what we acquire in RQ1 and RQ2, i.e., (i)
considering the CollAboration as an important factor and (ii)
considering developers’ Multiple-Project working experience,
we propose a new approach that can fit the context of propri-
etary development named CAMP. Roughly speaking, CAMP
recommend reviewers according to developers’ collaboration
along with expertise on multiple projects. For collaboration,
CAMP builds a collaboration network (a directed graph) of all
participants in current and relative projects, then divides the
network into several communities. To supplement reviewers’
expertise, CAMP leverages an identifier splitting algorithm
to extract common information from text and file paths of
PRs in multiple relative projects. Finally CAMP builds a
term list for each candidate reviewer, containing terms in the
content of PRs that he/she has participated in. For an incoming
PR, CAMP first recommends reviewers who are in the same
communities as the author of the PR. If there are not enough
reviewers, CAMP then search the whole reviewer list for proper
ones measured by the relevance scores of their expertise.

We then evaluate CAMP on our collected datasets. The re-
sults show that on average, our approach outperforms baseline
approaches in terms of all metrics we use. CAMP produces
acceptable recommendation results for more projects, that is,
fewer projects only obtain very low top-5 accuracy. Addition-
ally, CAMP can increase the participation rate of proprietary
projects and can therefore boost knowledge distribution and
team awareness, as is one of the goal of code review [7].

In summary, the contributions of our work are two-fold:
1) To the best of our knowledge, we are the first to

investigate the characteristics of proprietary projects, and
the effectiveness of CRR approaches on them by a large-

scale empirical study involving 163 projects in total. We
derive several findings and implications, which provides
directions for our refined approach.

2) We propose a new approach based on our empirical
study. The new approach named CAMP outperforms
other baseline methods on proprietary projects also with
larger reviewer participation rate. And we further discuss
the direction for CRR approaches.

The remainder of the paper is organized as follows. Section
II provides the background about modern code review and
code reviewer recommendation. Section III and IV present
our empirical study on proprietary projects at Tencent, along
with derived findings and implications. Section V exhibits
the details and evaluation results of our approach. Section VI
discusses advantages and limitations of our methods, and also
focuses on the threats to validity. Section VII provides related
studies from literature and Section VIII concludes the paper.

II. BACKGROUND

A. Modern Code Review Practice

We briefly describe the workflow of MCR in Tencent, which
is similar to that on open source platform such as GitHub.
First, a developer forks the main repository, and makes some
code changes to the forked repository. Then she can open
a pull request to ask for adoption of code changes. Other
developers, so-called reviewers, will be invited to review code
changes automatically or manually and they can give some
comments. Some privileged reviewers can approve or reject
code changes. Notice that reviewers may also be robots, which
do some automated tasks like continuous integration (CI) and
sanity check. The approved code changes will be merged into
the main repository.

Most development teams in Tencent adopt MCR. To de-
termine code reviewers, developers maintain owner lists and
necessary reviewer lists in configuration files of projects,
containing developers responsible for reviewing code changes.
However, on the one hand, it costs a lot of time and effort to
maintain configuration files. On the other hand, developers
in maintained lists just have the privilege to manage code
repositories (e.g., submitting code changes), but not certainly
the proper reviewers. To this end, applying CRR algorithms to
proprietary projects is a possible way to improve code review
practice.

B. Code Reviewer Recommendation Approaches

There have been a lot of work related to CRR, which can
be considered to be evaluated on proprietary projects. A lot of
approaches are expertise-based. Thongtanunam et al. proposed
REVFINDER [11] to automatically recommend reviewers by
leveraging the similarity of changed files between reviews.
Reviewers who have participated in PRs that are similar to the
incoming code change in terms of file paths are probably to
be recommended. Xia et al. [8] proposed TIE, integrating file
location-based approach and text mining approach to improve
the performance of REVFINDER. Ouni et al. introduced a
search-based approach REVREC [13], to find proper reviewers



based on their expertise and collaboration in past reviews.
Rahman et al. [14] recommend reviewers considering not
only the relevant cross-project work history, but but also the
experience of a developer in certain specialized technologies
associated with a pull request. Zanjani et al. proposed CHREV
[12] that measures a reviewer’s expertise by her review history.

As for non-expertise-based approaches, Yu et al. proposed
an approach named COMMENT NETWORK [16], which lever-
ages social relations between contributors and reviewers to
build a collaboration network, achieving similar performance
as traditional approaches. Al-Zubaidi et al. proposed WL-
RREC [4], which leverages a multi-objective meta-heuristic
algorithm to search for proper reviewers with two objective,
i.e., maximizing the chance of participating in a review, and
minimizing the skewness of the review workload distribution
among reviewers. Rebai et al. formulated CRR as a multi-
objective search problem to balance the conflicting objectives
of expertise, availability, and history of collaborations [22].
Mirsaeedi et al. proposed CARROT [20] to mitigate turnover
in the development process, which can balance expertise,
workload, and knowledge distribution.

III. ANSWER RQ1: DATA RETRIEVAL AND ANALYSIS

In this section, we present our empirical study on the review
data collected from Tencent. We aim at finding the characters
of pull requests and how developers participate in code review
activities. The derived findings can provide supports for further
study.

A. Data Collection

In Tencent, there are a great number of proprietary projects
that are open to internal developers, and these projects desire
for the functionality of code reviewer recommendation. We
first identify 300 projects with the most PRs, and remove those
unrelated to real repositories and documentation websites. We
then retain 163 projects containing more than 1,000 historical
code changes from October 2018 to July 2021.

We group the collected projects based on the primary
programming language they are written in. We determine the
primary programming language of a project by the most source
code files written in it. Since TypeScript extends JavaScript by
adding types to the language, we regard TypeScript projects
as JavaScript projects. For projects that do not contain source
code, typically those only storing static datasets or written
in rare languages in Tencent (e.g., PHP, Dart and C#), we
categorize them into Others and do not use them in our further
discussion.

Table I presents the projects used in our study. JavaScript
and Java projects make great proportions (29% and 23%
respectively). By the way, most of the JavaScript projects are
frontend web applications, and most of the Java projects are
Android applications. Table I also exhibits mean and standard
deviation of some properties of selected projects, including the
number of contributors (#Contrib, the number of reviewers
(#Rev) and the number of PR (#PR).

We retain the following properties for each PR:

1) Review ID. A unique integer or string.
2) Created time. The time when the review was created.
3) Author or committer. The author or committer of the

review.
4) Changed files. Changed files in related commits.
5) Textual content. Description and commit messages of a

PR.
6) Reviewers. Actual reviewers of the PR.

We remove PRs which are not in merged or abandoned
state, since open changes may not be fully reviewed and
get eventual results. Additionally, Among the obtained pull
requests, we remove robot participants (typically those devel-
opers whose names end with bot) and those reviewers in
pending state. We also remove those PRs with no reviewer
or changed files. Finally, we sort reviews for each project in
chronological of their created time.

B. Pull Requests in Proprietary Projects

Since the high complexity of textual content of PRs, we first
concern the number of reviewers and changed files in a PR.
We define the following two properties applied to a project:

1) #Revpr: Mean count of reviewers in a PR, which can
be computed as:

#Revpr(P ) =
1

|P |
∑
pr∈P

ReviewerCount(pr) (1)

2) #Filespr: Mean count of changed files in a PR, which
can be computed as:

#Filespr(P ) =
1

|P |
∑
pr∈P

FileCount(pr) (2)

where P is a project, and | · | is the number of PRs in a
project.

We first compute #Revpr for each project. Table II shows
the distribution of #Revpr for each programming language.
Medians of #Revpr is near 1.0, indicating that in most
projects, code changes are just reviewed by one person on
average, while by two or more developers in a small proportion
of projects. This probably results from the review policy at
Tencent: a code change can be merged if one necessary
reviewer approves it. Here necessary reviewers are mainly
designated by the configuration files of a project.

Compared with Tencent, the situation in other commercial
companies is different. Rigby et al. [6] has reported that in
AMD, the median number of each review is 2, and this value
is 3 or 4 in some projects of Microsoft. On the other hand,
in open-source projects, developers can participate in reviews
they are interested in. For example, on OpenStack2, a code
change is reviewed by over three reviewers on average, and
up to 40.

2We retrieve code review data between August 2020 and January 2021 from
https://review.opendev.org using Gerrit REST API.

https://review.opendev.org


TABLE I
DETAILS OF PROPRIETARY PROJECTS USED IN OUR STUDY, GROUPED BY LANGUAGE.

Language # Project #Contrib (mean ± std) #Rev (mean ± std) #PR (mean ± std)

JavaScript (JS) 48 27.0 ± 21.8 34.0 ± 24.6 1993.8 ± 1411.3
Java 38 33.0 ± 36.8 41.7 ± 35.4 2998.7 ± 4620.2
C++ 19 43.5 ± 42.5 52.5 ± 41.9 1819.2 ± 1149.7
Python (Py) 9 28.8 ± 29.0 39.5 ± 44.8 1306.0 ± 130.2
Go 19 40.0 ± 35.7 40.3 ± 36.8 2359.8 ± 1300.9
Objective-C (OC) 17 34.8 ± 46.7 40.8 ± 44.3 4099.1 ± 7267.7
Others 13 – – –
* #Contrib, #Rev and #PR stands for the number of contributors, reviewers and PRs, respectively.

TABLE II
DISTRIBUTION OF #Revpr (PROJECTS ARE GROUP BY LANGUAGE).

Language mean std min median max

JavaScript (JS) 1.22 0.34 1.00 1.02 2.29
Java 1.10 0.19 1.00 1.02 1.81
C++ 1.15 0.28 1.00 1.02 2.03
Python (Py) 1.04 0.09 1.00 1.00 1.30
Go 1.35 0.43 1.00 1.06 2.07
Objective-C (OC) 1.12 0.20 1.01 1.04 1.82

TABLE III
DISTRIBUTION OF #Filespr (PROJECTS ARE GROUPED BY LANGUAGE).

Language mean std min median max

JavaScript (JS) 9.36 4.65 3.56 7.91 29.07
Java 12.41 5.39 1.73 11.84 24.40
C++ 11.52 7.27 2.89 10.75 28.26
Python (Py) 6.54 3.38 1.60 5.14 13.15
Go 10.79 7.51 4.11 7.90 37.32
Objective-C (OC) 14.66 6.67 5.72 14.66 31.21

Finding 1. On most proprietary projects at Tencent, code
changes are reviewed by only one developer on average.

We then count the distribution of #Filespr, and the result is
presented in Table III. All groups’ median #Filespr values
are below 15, which means that only few files are changed
in most pull requests. However, among all code changes, 2%
contain more than 100 files and are difficult for reviewers to
inspect. The largest number of contained files is above 2,000.
Some PRs with more than 500 but less than 1,000 files are not
very complex in fact (e.g., changing a class name that affects
many files with reference to it). Anyway, it is burden for some
CRR approaches to deal with these huge PRs.

Finding 2. Most code changes do not contain too many
files, but a small proportion contain a large number of
files.

C. Reviewer Participation in Proprietary Projects

For characteristics of reviewer participation, we first inves-
tigate the diversity of reviewers in a project. We measure the

diversity of reviewers (DoR) for each project using Shannon’s
entropy [23], which can be computed as follows:

DoR(P ) = −
∑

s∈rc(P )

p(s) · ln p(s) (3)

where P is the target project, rc(·) denotes the collection
of existing reviewer combinations of P , and p(·) stands for
probability of a reviewer combination. For example, if 5% of
the code changes in P are co-reviewed by A and B, and 4%
are reviewed by A only, then p({A,B}) and p({A}) are 0.05
and 0.04, respectively.

We discover that on each group, DoR values vary from
project to project. In our datasets, several projects are reviewed
just by one or two developers, therefore their DoR values
are relatively small (often less than 1.0). We also look into
the projects whose DoR values are below 2.0 and found that
those projects usually have dominant reviewers, i.e., reviewed
by several participants in turn. Except these dominant ones,
others usually just review a small part of code changes.

Finding 3. DoR values vary from project to project,
and there are a proportion of projects have dominant
reviewers.

Since many projects are written in the same language or
maintained by the same team, it is interesting to investigate
whether they share developers. Among 3,967 human reviewers
in all internal projects, 382 have participated in over two
projects, and 98 have participated in over four projects. We
also find that many of those developers participate in a group
of projects. For example, developers D1, D2 and D3 all
contribute code or review others’ code changes in P1, P2

and P3, we say that {P1, P2, P3} are a group of frequently
appearing projects. We leverage Apriori algorithm [24] to
generate frequently appearing projects, finally resulting in 13
groups of projects (involving 98 projects in total) that share
common participants.

Finding 4. Nearly 10% of the reviewers have worked in
multiple projects.



Since we have observed that some developers tend to review
certain colleagues’ code changes, or submit code changes that
are often reviewed by specific colleagues, we use dominant
collaborator to describe the phenomenon: if a developer Da

has reviewed more than half of the code changes contributed
by developer Db, then Da is Db’s dominant collaborator, and
vice versa. We compute the proportion of developers with
dominant collaborators (DDC) for each project. The result is
that over 50% of the total developers in our collected projects
are DDC. We only count the developers who have contributed
or reviewed more than 10 code changes.

Finding 5. Over 50% of the developers have dominant
collaborators.

IV. ANSWER RQ2: EVALUATING CRR APPROACHES

A. Evaluation Metrics

In this section, we mainly concern whether existing ap-
proaches can perform well on proprietary projects, and how
differently the existing approaches perform.

To evaluate existing methods on collected projects, we
use four metrics widely adopted by recommendation system
community, i.e., top-k accuracy, MRR, precision and recall.
Compared with our work, studies [8], [11] only consider top-
k accuracy and MRR as performance metrics, while other
studies such as [4], [12], [16] use precision and recall. These
evaluation metrics are described as follows.

Top-k accuracy is the percentage of reviews where their
ground truth code reviewers are ranked in the top k positions
in the returned ranked list of reviewers. It can be calculated
as follows:

Top-k Accuracy =
1

|SR|
∑
r∈SR

isRecomm(r, k) (4)

where SR is reviews in test set, isRecomm(r, k) denotes
whether there exists a correct reviewer for review r in the first
k positions of the recommendation list.

Mean Reciprocal Rank (MRR) [25] is a popular metric
used in information retrieval and recommendation system.
Given a query, its reciprocal rank is the multiplicative inverse
of the rank of the first correct document in a rank list produced
by a ranking technique. MRR can be computed as follows:

MRR =
1

|SR|
∑
r∈SR

1

rank(r)
(5)

where SR is reviews in test set, rank(r) is the rank of the
first correctly recommended code reviewer in the ranked list
for review r.

Mean Precision (MP). Here precision is the fraction of
recommended reviewers that are correct for a code change,
which can be computed as follows:

precision@k =
1

|SR|
∑
r∈SR

|Actual(r) ∩Recomm(r, k)|
k

(6)

Mean precision averages such measures for all pull requests
in the test set. In the equation above, SR is reviewers in
test set, Actual(r) is the actual reviewers of the review
r, and Recomm(r, k) denotes the first k reviewers in the
recommendation list of r.

Mean Recall (MR). Here recall is the fraction of ground-
truth reviewers that are correctly recommended, which can be
calculated as follows:

recall@k =
1

|SR|
∑
r∈SR

|Actual(r) ∩Recomm(r, k)|
|Actual(r)|

(7)

Mean recall (MR) averages such measures for all pull
requests in test set. In the equation above, SR is reviews
in test set, Actual(r) is the actual reviewers of the review
r, and Recomm(r, k) denotes the first k reviewers in the
recommendation list of r.

B. Baseline Approaches

To answer RQ2, we evaluate four CRR approaches, i.e.,
REVFINDER, CHREV, TIE, and COMMENT NETWORK on our
collected projects. Four approaches are presented as follows.

REVFINDER [11] is a file location-based approach that
recommends reviewers by leveraging the similarity of file
paths. For an incoming pull request, developers who have
reviewed many files similar to those in the pull request are
probably to be recommended.

CHREV [12] is also a file location-based approach, which
considers reviewers’ experience and working time on specific
files. CHREV outperforms REVFINDER on many open-source
projects.

TIE [8] combines the file location-based model and text
mining model together, and is proved to be one of the most
promising CRR approaches, that is, can achieve acceptable
performance on all evaluated open-source projects [26].

COMMENT NETWORK [16] is completely a collaboration-
based approach that recommends reviewers only considering
their collaboration relationship. For a new PR, developers who
always review the author’s code changes or are the dominant
participants of the project are tend to be recommended.

Other non-expertise-based approaches are not evaluated in
our experiments, including workload-aware approach WL-
RREC [4], and context-aware approach CARROT [20]. The
main reason is that these approaches need additional context
information, which is somehow difficult to acquire in Tencent,
e.g., review workload of each developer (a developer may
participate in many development tasks) and the background
knowledge of proprietary projects, even though the informa-
tion is very useful in recommending reviewers.

C. RQ2: Effectiveness of Existing Approaches

We evaluate four CRR approaches described above on our
collected projects. Due to space limitation, we only exhibit
the average of the top-k accuracy, mean precision, and mean
recall for each approach in Figure 1. Since MRR and top-5
accuracy are more concerned in Tencent (five candidates are
provided when the submitter of a code change tries to select
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Fig. 1. Averages of top-k accuracy, MP and MR.

reviewers), we also exhibit the distribution of MRR and top-10
accuracy of each group in Figure 2 and 3, respectively.

From Figure 2 and 3, for most categories, MRR and top-5
accuracy values vary from projects to projects. On JavaScript
projects, the difference is more noticeable. It is obvious that
on some projects, the top-5 accuracy is still very low (i.e., less
than 0.3), which is somewhat not acceptable in practice.

Finding 6. Performance of the four evaluated approaches
are various among different projects.

To investigate the reason behind various performance met-
rics, we use intuitive properties of collected projects, e.g.,
#PR, #Contrib, and the review frequency (measured by
submitted code changes per week). We first compute Pearson’s
correlation between MRR and properties mentioned above.
However, the results are very small (absolute values are about
0.01). Then we turn to the relationship between MRR and
DoR. We present the scatter plot of reviewer diversity and
MRR in Figure 4. Overall, projects with low reviewer diversity
can often obtain high MRR values. By contrast, projects
with higher reviewer diversity obtain relatively low MRR.
We compute the Pearson’s correlation between MRR and
DoR for each evaluated approach. Correlation coefficients
of REVFINDER, CHREV, COMMENT NETWORK and TIE
are −0.37, −0.48, −0.42 and −0.56, respectively. Overall,
MRR and DoR are negatively correlated. We mine the reasons
behind, shown below:

1) Nine projects engage only one or two reviewers. There-
fore, all kinds of CRR approaches can achieve great
scores.

2) Some projects (especially DoR values fall between
1.0 and 2.0) have multiple dominant reviewers. Yu et
al. discovered in their qualitative study that on those
projects with multiple dominant reviewers (i.e., where
multiple participants review code changes alternatively),
expertise-based approaches achieve relatively low scores
[16].

3) In some projects, many developers have multiple collab-
orators. For example, developer B, C and D review 30%
of code changes submitted by A, respectively, causing

it relatively difficult to determine which one is to be
chosen.

Finding 7. Performance scores are overall negatively
correlated to DoR.

1) Performance Comparison: Overall, COMMENT NET-
WORK outperforms other baseline approaches on propri-
etary projects. Specifically, COMMENT NETWORK achieve
the higher scores than other three approaches on 137 out
of 150 projects, with 13 projects in Others category ex-
cluded. As to open-source projects, Ouni et al. [13] eval-
uated their collaboration-based approach REVREC on three
open-source projects, i.e., Android, QT and OpenStack, and
found REVREC outperforms other expertise-based approaches
including REVFINDER, CHREV across a number of metrics.
They also found that if REVREC only takes collaboration
into account, the results are still acceptable. Therefore, it is
not too strange that in the context of proprietary software,
collaboration-based approach COMMENT NETWORK still per-
forms much better. In our prior findings, there are over 50% of
the reviewers have dominant collaborators, which means de-
velopers tend to select reviewers with whom they are familiar.
It also indicates that proprietary software development may
be similar to open-source development in some way. We also
apply the Wilcoxon Signed Rank test [27] to our evaluation
metrics (including accuracy, precision, recall and MRR) to
confirm that the performance of COMMENT NETWORK is
significantly better than other approaches, with all p-values
lower than 10−22.

As is shown in Figure 1, 2 and 3, TIE achieves higher
scores in terms of most metrics than CHREV and REVFINDER,
except top-1 accuracy (equivalent to precision@1), which is
not very important in practice [14]. We also utilize Wilcoxon
Signed Rank test to confirm the performance metrics of TIE
(except top-1 accuracy and precision@1) are significantly
higher than file location-based approaches, with all p-values
below 10−20.
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0 1 2 3 4 5
DoR

0.2
0.4
0.6
0.8

M
R

R

(a) REVFINDER

0 1 2 3 4 5
DoR

0.2
0.4
0.6
0.8

M
R

R

(b) CHREV

0 1 2 3 4 5
DoR

0.2
0.4
0.6
0.8

M
R

R

(c) COMMENT NETWORK

0 1 2 3 4 5
DoR

0.2
0.4
0.6
0.8

M
R

R

(d) TIE

Fig. 4. Scatter plot of DoR and MRR.

Finding 8. Collaboration-based approach outperforms
others by a large margin across most metrics, and text
mining-based approach TIE completely outperforms file
location-based approaches.

Another finding is that when REVFINDER is applied, the
performance scores varies by programming languages more
obviously. For example, we use Mann Whitney’s U test [28]
to confirm that the MRR and top-5 accuracy values on C++
projects are significantly less than those projects written in
other languages, with all p-values lower than 0.05. In the same
way, performance metrics on Java projects are significantly
lower than those on Python projects. This shows that the per-
formance of REVFINDER is strongly subject to programming
languages. By contrast, other approaches are not related to the

issue.

Finding 9. REVFINDER’s performance is more subject to
programming languages, compared to other approaches.

V. ANSWER RQ3: OUR APPROACH

A. Insights

With help of what we gained from RQ1 and RQ2, we can
conclude some directions and targets for our refined approach:

Insight 1: We’d better consider collaboration of devel-
opers as a dominant factor. On the one hand, we should
follow the nature that developers tend to select reviewers
they are familiar with. On the other hand, we notice that
approaches such as REVFINDER and TIE may slow down
the recommendation process while they cope with a small
proportion of huge PRs. As a result, we may supplement
developers’ expertise in a more lightweight way.

Insight 2: We can take into account the multiple-
project working experience of a proportion of reviewers.
Nearly 10% of the reviewers have multiple-project working
experience. We may extract reviewers’ expertise from multi-
ple projects. However, the content of reviewers of different
projects are various. Therefore, it is beneficial to extract
some general terms from identifiers, including file names and
programming tokens in description of a pull request. We can
further determine a reviewer’s expertise by extracted terms.
Also, we need to consider collaboration in multiple projects,
since close collaborators may also work together in another
project.

B. A New Approach to Better Recommend Reviewers

Our approach, namely CAMP, consists of training phase
and recommending phase. In training phase, relative projects



can be trained together. CAMP builds a collaboration network
from the collaboration history of a seris of relative projects,
and then divide the collaboration network into several com-
munities using community detection algorithm. Then CAMP
extracts terms from textual content and file paths of all PRs’
data in these relative projects, and generate a term list for
each candidate reviewer. In recommending phase, CAMP frist
recommend the developers in the same community as the
author by the weight of the edge between the developer and
the author. If there are not enough reviewers, than CAMP
extracts terms from the content of a given PR, and computes
the relation score of the PR and each reviewer. Then reviewers
with high relation scores are recommended.

1) Training Phase: Training phase comprises four steps,
i.e., constructing relation network, extracting technical terms,
removing too common terms and generating term list for
reviewers. Steps are described as follows.
Step 1: Constructing relation network. Like COMMENT
NETWORK, CAMP also builds a relation network from a
given project and its relative projects. Two members with
collaboration share a undirected edge whose weight is the
number of PRs they commonly participate in. If a developer
has reviewed another reviewer’s code change, or the two
developers worked in a common review, we say that they
are with collaboration. Unlike COMMENT NETWORK, we
use undirected graph instead, since the relationship between
developers are two-way, e.g., if A often review B’s code
changes, then B will also review A’s from time to time. It
then divides the network into some communities using Louvain
algorithm [29] which is one of the widely used community
detection approaches. Each community consists of a set of
developers.
Step 2: Extracting terms from pull requests. We extract
items from text and file paths of historical PRs in multiple
relative projects. For textual content, we first remove stop
words, URLs, email addresses and some unique identifiers,
e.g., Commit IDs, Pull Request IDs and related Issue IDs.
We do not split words in English dictionary3. And for those
words that are absent from dictionary, we utilize Samurai [30]
algorithm to split them into soft words. However, we re-define
scoring function in the splitting algorithm:

Score(t) = αDocFreq(t) + (1− α)RevFreq(t) (8)

where t is the given term, DocFreq(t) is the frequency
of t in documentation website of corresponding project,
RevFreq(t) is the frequency of t in review datasets, and
α is a coefficient, we set it 0.5 in experiments. We crawl
HTML content from documentation websites, and only retain
plain text. If there is no systematic documentation or the
documentation is inaccessible, we ignore it.

For file paths, we split them by trailing slash into file
and directory names. Then we also adopt Samurai algorithm
to split file names into soft words, using the same scoring

3We use the dictionary in https://github.com/dwyl/english-words

function defined in Equation 8. After PRs’ content has been
split into terms, we collect all terms to build a global term
list.
Step 3: Removing common terms. If anyone of a community
C has reviewed a code change containing the term t, we say
that term t appears in community C. Intuitively, if a term
appears in most communities, it is probably a general word. If
a term appears only in few communities with high frequency,
it is possibly a representative technology of a community.

For each term, CAMP computes the number of communities
where it appears. We notice that terms such as from, with,
and commit probably appear in almost all communities. In
other words, these terms can hardly be used to distinguish
proper reviewers since almost everyone uses them. Through
our preliminary experiments, most terms in a PR appear in
less than half of the communities, only a small proportion
of terms appear in many communities. Therefore, we remove
terms that appear in half of the communities, and finally the
rest make up the term list.
Step 4: Generating term list for each pariticipant. For
each reviewers, we obtain the PRs in multiple projects he/she
has participated in. Among all PRs he/she has participated in,
We then count the appearing times of each term in term list
obtain from Step 3. Finally this step produce a term list (with
appearing time) for each participant.

2) Recommending Phase: In recommending phase, we first
recommend reviewers in the same community as the author of
a given PR. We rank the reviewers by the undirected weight
between them and the author of the PR. If there are not enough
reviewers, we then recommend reviewers by their expertise.
We regard each incoming PR as a bag of terms, where terms
are extracted in the training phase. Define SR as the set of
terms in a PR, and SRev as the term set related to a candidate
reviewer. The confidence value between the incoming PR and
a specific reviewer can be computed as follows:

Conf(R,Rev) =
∑

t∈SRev ∩SR

Count(t, R) · Count(t, Rev)

CommunityCount(t)

(9)
where Count(t, R) is the times t appears in the review

R, and Count(t, Rev) is the times t appears in the pull
requests which have been reviewed by the reviewer Rev.
CommunityCount(t) denotes the number of community
where the term t appears, as defined in Step 3.

C. Evaluation

We evaluate CAMP on our datasets described in Section
III-A using the same performance metrics and baseline ap-
proaches listed in Section IV-B. Due to space limitation, we
only present the average top-k accuracy, precision and recall
in Figure 5 and distribution of MRR and top-5 accuracy
in Figure 6, respectively. Overall, CAMP outperforms other
baseline approaches across almost all metrics. From Figure
6(a), CAMP achieves significantly higher MRR on JavaScript,
Java and Go projects than COMMENT NETWORK. As is shown

https://github.com/dwyl/english-words


in Figure 6(b), there are less projects that only receive very
low top-5 accuracy when recommended by CAMP, that is,
CAMP produces acceptable recommendation results for more
projects. Specifically, there are about 21% of the projects that
only receive top-5 accuracy lower than 0.7 when COMMENT
NETWORK is adopted, while only 10% when CAMP is applied.
Similar to Section IV, we utilize Wilcoxon Signed Rank test
[27], and also compute Cliff’s Delta [31] to confirm that CAMP
performs significantly better than other approaches.

CAMP outperforms state-of-the-art approaches, and can
produce acceptable results for more projects.

We further compute the proportion of code changes that
receive more accurate recommendation. The results show that
nearly 20% pull requests get more accurate recommendation
on average, up to 29%. We pay attention to those pull requests
with a large number of files as well, and discover that over
50% of such PRs get more accurate recommendation with our
approach CAMP. These findings also prove the effectiveness
of our approach as well.

We also quantitatively analyze two kinds of projects: (i)
projects that the traditional CRR approaches cannot satisfac-
torily cope with, but CAMP can produce acceptable results,
(ii) projects on which CAMP performs much better. We find
that for many code changes, CAMP can recommend more
participants close to the contributors, and these participants
did not often collaborate with the contributors in the past but
have collaborated in other projects. This can confirm the effec-
tiveness of considering multiple-project working experience.

Besides, we use reviewer coverage to measure the participa-
tion rate of reviewers. CAMP can improve reviewer coverage
of COMMENT NETWORK, REVFINDER, CHREV and TIE by
about 10% (from 73% to 81%), 55% (from 52% to 81%), 8%
(from 75% to 81%) and 8% (from 75% to 81%), respectively.
CAMP tends to recommend reviewers in the same community
and have relative expertise (e.g., having worked on files with
a specific token many times). This proves the effectiveness of
extracting terms from the content of pull requests. We define
reviewer coverage (RC) as follows:

RC(P,Rec) =

card(
⋃

pr∈P

Rec(pr, 10))

#Rev(P )
(10)

where P denotes a certain project, Rec stands for a recom-
mendation approach and thus Rec(pr, k) denotes the first k
recommended reviewers for pr, and #Rev(P ) indicates the
total number of reviewers in P .

CAMP can recommend more diverse reviewers, as a result,
increasing the participation rate.

VI. DISCUSSION

A. Directions for Code Reviewer Recommendation

Better goals should be set for CRR approaches. Through
our exploratory study and evaluation of our proposed ap-
proach, we confirm that our approach can achieve acceptable
performance scores on almost all projects. However, we should
also lay stress not only on traditional performance metrics,
but also on whether reviewer recommenders can distribute
knowledge, promote team awareness, etc. Through our eval-
uation, our approach CAMP outperforms others in reviewer
coverage, which means CAMP can increase the participation
rate of internal developers. We believe it is what our approach
can benefit internal development.
A wide range of external knowledge should be mined to
better recommend reviewers. Terms in a text and file paths
may relate to a wide range of external knowledge, such as
documentation of the project and programming conventions.
In this work, many proprietary projects lack relative docu-
mentation or their documentation is inaccessible. We notice
that CARROT [20], a context-aware recommendation approach
leverages some metadata, including directory, repositories and
file extensions. Some recommendation systems in Software
Engineering tasks, such as [32], [33] make use of knowledge
from technical websites, such as StackOverflow. Additionally,
we may utilize knowledge graph (KG) to better organize
a wide range of information when recommending proper
reviewers. Recently knowledge graph has been applied in
many software engineering tasks, e.g., API recommendation,
bug localization.

B. Limitation and Threats to Validity

One limitation of CAMP is that it cannot fully outperform
COMMENT NETWORK on a small part of projects with a large
number of pull requests. The scores in terms of top-k accuracy
and precision when k are relatively small. It indicates that
for those projects, the expertise of reviewers are difficult to
determine, since pull requests contain too much noise, thus
considering expertise factors may lower the performance. On
the contrary, although recommending reviewers only by their
collaboration cannot achieve very high scores in terms of
most metrics, it can yet obtain very high performance on a
proportion of projects.

Another limitation of our study is that we do not investigate
the universality of our findings and proposed approaches. Al-
though we do empirical study and evaluate our new approach
on up to 163 proprietary projects to mitigate threats to external
validity, our findings and approach may not be suitable for
other proprietary projects in Tencent and other commercial
companies. Also, we do not collect many relevant open-source
projects, thus we cannot check whether CAMP is suitable for
OSS development. It is left for future studies to investigate
how CRR approaches perform proprietary projects in different
commercial software companies.

There may also be some errors and biases in our datasets
and experiments. First, in Tencent, contributors may make
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wrong decisions or only receive the default choices when
selecting reviewers. Second, we do not collect code changes
contributed or reviewed by robots, which may ignore technical
terms related to some developers. Also, the identifier splitting
method might wrongly cut out-of-vocabulary words, causing
errors in computing similarity between pull requests.

VII. RELATED WORK

Recommendation systems are also widely used in many
other software engineering tasks as well as code reviewer
selection, e.g., library recommendation, API recommendation,
and code snippet recommendation. We mainly concern the first
two in this section.

For library recommendation, many approaches leverages
collaborative filtering, heuristic search that is used in some
CRR approaches. For example, Thung et al. proposed Li-
bRec [34] to automatically recommend relative libraries for
developers using both associate rule mining and collaborative
filtering. Ouni et al. formulated library recommendation as
a multi-objective search problem [35]. Chen et al. proposed
an approach to mine analogue libraries base on the knowl-
edge base from StackOverflow [33]. Recently Nguyen et al.
proposed CROSSREC [36] to recommend third-party libraries
also using collaborative filtering.

For API recommendation, McCarey et al. recommend meth-
ods to a developer in a group of developers by investigating
the historical methods that the developers have used [37].
Chan et al. propose a new approach that recommends API
methods by text phrases [38]. Thung et al. proposed an API
recommendation framework [39] based on both history-based
and description-based recommenders. They also proposed an
approach WEBAPIREC [32] dedicated to automatically rec-
ommending that takes as input a project profile and outputs

a ranked list of web APIs that can be used to implement the
project. Moreno et al. proposed MUSE to recommend code
examples by extracting concrete method usages [40].

VIII. CONCLUSION AND FUTURE WORK

Code Reviewer Recommendation (CRR) is an important
task for modern software development. Since a large number
of submitted code changes, it is necessary to automate CRR to
improve development efficiency. In this paper, we first conduct
an empirical study on a large scale of proprietary projects from
Tencent. We both quantitatively and qualitatively illustrate the
characteristics of proprietary projects and the effectiveness of
existing CRR approaches. Based on our findings and impli-
cations, we propose a new method CAMP that recommends
reviewers according to their collaboration and expertise on
multiple projects. We evaluate our proposed approach, and the
results show that CAMP can obtain higher scores than other
baseline approaches across most performance metrics. Addi-
tionally, CAMP can mitigate diversity of performance scores
on proprietary projects, i.e., offer acceptable performance for
more projects. We hope our study can provide insights for
both researchers and practitioners.

In the future, we plan to integrate our new approach in
development platforms in Tencent and investigate how CAMP
works in practice. We also plan to conduct a further study to
deeply understand the developers’ perception and advice of
CRR to meet practitioners’ expectations.
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