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Abstract—Many automated commit message generation
(CMG) approaches have been proposed for facilitating the un-
derstanding of software changes. They are shown to be promising
and can generate commit messages that are semantically relevant
to the reference messages for a number of commits. However, a
large proportion (over 50%) of semantically irrelevant commit
messages are also generated simultaneously. Such messages may
mislead developers, require additional efforts of developers to
confirm and filter out, and hinder the application of existing
CMG approaches in practice. For tackling this problem, prior
work mainly focuses on proposing new methods to improve
the generation accuracy. However, another promising way for
bridging the gap between CMG approaches and the practice has
not been well investigated, which is: can we automatically assure
the semantic relevance of the generated messages?

To that end, in this work, we propose an automated Quality
Assurance framework for commit message generation (QAcom).
QAcom can assure the quality of generated commit messages by
automatically filtering out the semantically-irrelevant generated
messages and preserving the semantically-relevant ones as many
as possible. In particular, QAcom consists of a Collaborative-
Filtering-based (CF) component and a Retrieval-based (RE)
component. Given a commit message generated by a CMG
approach, QAcom estimates whether this generated message is
semantically relevant to its ground truth, which is unknown when
estimating, based on both the collaborative filtering algorithm
and the similarity between this commit and historical commits.
We evaluate the effectiveness of QAcom by “plugging” it in
three state-of-the-art CMG approaches. Experimental results on
three public datasets show that QAcom can effectively filter
out semantically-irrelevant generated messages and preserve
semantically-relevant ones.

Index Terms—Commit message generation, Quality assurance,
Collaborative Filtering

I. INTRODUCTION

During software development and maintenance, developers

continuously commit software changes to a version control

system (e.g., Git) for bug fixing, feature addition/enhancement,

or refactoring [1]. A software change can be presented as a diff,
which lists the differences between the pre- and post-change

versions of the repository. Also, developers can attach a natural

language text named commit message to each software change,

∗Corresponding authors.†also with Pengcheng Laboratory, Shenzhen, China.

which usually summarizes what happened in this change and

why this change was made [1], [2].

Good commit messages can facilitate the understanding of

software changes and software evolution history. For example,

good commit messages can help developers capture the high-

level purposes of the corresponding software changes quickly

before they comprehend the diffs or source code [1], [3],

[4]. However, writing good commit messages is a challenging

task for developers due to the lack of experience and direct

motivation, time pressure and the complexity of diffs [5], [6].

To address this issue, many automated commit message

generation (hereon, CMG) approaches have been proposed

recently [2], [5]–[11]. Such approaches can automatically

generate a commit message according to the diff of a change.

For example, Jiang et al. [9] and Liu et al. [6] proposed

neural-machine-translation-based (NMT-based) approaches for

CMG. The main idea of NMT-based approaches is to learn the

semantic patterns between diffs and commit messages from

large-scale datasets. Liu et al. [5] proposed a retrieval-based

approach for CMG, of which the main idea is to reuse the

commit messages of similar historical changes.

Although these CMG approaches achieve promising results,

they may also generate unexpected commit messages due to

the limitations of the used approach and the complexity of the

task [5]. According to prior studies and our manual verifica-

tion, approximately over 50% of commit messages generated

by existing CMG approaches are semantically irrelevant to

their reference messages. We refer to such generated messages

as semantically-irrelevant messages. Figures 1 presents an

example where the commit messages generated by three state-

of-the-art approaches are all semantically-irrelevant messages.

Such messages may mislead developers, require additional

efforts to confirm and filter out, and hence can reduce de-

velopers’ confidence in CMG tools. As a result, the existence

of semantically-irrelevant messages hinders the practical usage

of a CMG tool.

An intuitive way to improve the practicability of CMG is to

propose new CMG approaches that are more accurate, which

has been investigated by a number of prior studies [5], [6],

[9]. However, another promising idea has not been well inves-

tigated, which is: can we automatically assure the semantic

260

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-7281-9630-5/21/$31.00 ©2021 IEEE
DOI 10.1109/SANER50967.2021.00032



Fig. 1. An example where the commit messages generated by NMT [9],
NNGen [5] and PtrGNCMsg [6] are all semantically-irrelevant messages.

relevance of the generated commit messages? In other words,

can we automatically filter out the semantically-irrelevant

messages generated by CMG approaches before presenting

generated commit messages to developers? If so, developers

can confidently refer to or use the preserved ones without the

worry of being misled.

To that end, we propose an automated Quality Assurance

framework for commit message generation (QAcom). QAcom

serves as a plugin for existing NMT-based and retrieval-based

CMG approaches. Specifically, given a diff and a commit

message generated for it, QAcom aims to calculate several

quality scores to estimate the semantic relevance between

the generated message and the ground truth (unknown when

estimating). With such scores, we can assure the quality of

generated commit messages by filtering out the generated

messages with low quality scores. Jiang et al. [9] proposed

a quality assurance filter for CMG, which is trained with

human-labeled quality scores and is supervised. In contrast,

our framework does not require human-labeled scores and is,

therefore, unsupervised and automated. To the best of our

knowledge, this is the first unsupervised quality assurance

approach for CMG.

In particular, QAcom consists of two components: a

Collaborative-Filtering-based (CF) component and a Retrieval-

based (RE) component. The CF component first builds the

mappings between the words in the diffs of historical commits

and their corresponding reference messages. Then it calculates

two CF scores for each generated message according to such

mappings using the collaborative filtering algorithm. Given a

generated message, the RE component computes its RE score

based on the similarities between its corresponding diff and the

diffs of historical commits. The two kinds of quality scores are

combined in QAcom. The generated messages with either low

CF scores or low RE scores are predicted to be semantically-

irrelevant messages and are then filtered out by QAcom.

To automatically evaluate QAcom, we first integrate QAcom

with three selected state-of-the-art CMG approaches, i.e.,

NMT [9], NNGen [5] and PtrGNCMsg [6], and then compare

the performance of each CMG approach with and without

QAcom on three public datasets in terms of BLEU [12],

METEOR [13] and ROUGE-L [14]. A human evaluation is

also conducted to assess the effectiveness of QAcom further.

The experimental results show that QAcom can effectively

filter out semantically-irrelevant messages generated by the

three CMG approaches and preserve semantically-relevant

ones simultaneously. We believe QAcom can be leveraged to

improve the practicability of existing CMG approaches and

bridge the gap between CMG and the practice.

In summary, the contributions of this paper include:

• We propose a quality assurance framework named QA-

com for CMG, which can serve as a plugin for exist-

ing CMG approaches. By predicting and filtering out

semantically-irrelevant messages, QAcom can assure the

quality of the commit messages generated by a CMG

approach.

• We propose two novel components in QAcom, i.e., the

CF component and the RE component, for estimating

semantic relevance between generated commit messages

and ground truths.

• We extensively evaluate QAcom with three state-of-the-

art CMG approaches on three public datasets. The evalua-

tion results indicate that QAcom can effectively filter out

semantically-irrelevant messages, preserve semantically-

relevant ones and improve the practicability of these

CMG approaches.

• We open source our replication package [15], including

the dataset and the source code for follow-up studies.

Paper organization. Section II presents the details of our

framework. Section III presents the experimental setup of

research questions, selected CMG approaches and datasets,

evaluation methods and evaluation metrics. Section IV details

the experimental results of each research question, respec-

tively. Section V discusses the impact of varying the BLEU

constraint of our framework, the possibility to combine several

existing CMG approaches, and the limitations of QAcom.

Section VI reviews the related studies. Section VII draws a

conclusion of this paper.

II. APPROACH

In this section, we introduce the overall idea and the

technical details of QAcom. For simplification, we use msg
as the commit message of the diff.
A. Overall Idea of QAcom

Our key idea is to estimate the semantic relevance between

generated msgs and their ground truths (unknown when es-

timating) automatically. To achieve this goal, we design two

components: a Collaborative-Filtering-based (CF) component

and a Retrieval-based (RE) component, each of which calcu-

lates one or more quality scores to estimate such semantic

relevance.

Inspired by Zheng et al. [16], the CF component calculates

two quality scores, namely CF scores, for each generated msg
by inspecting whether this msg is under-translation or over-
translation. In CMG, a generated msg is under-translation if

the information in its corresponding diff is not fully used for

generation. An over-translation msg is a generated msg with

some unnecessary words. We observed that under-translation

or over-translation msgs are more likely to be semantically

irrelevant to their references, i.e., semantically-irrelevant msgs.
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Fig. 2. The overall framework of QAcom and the workflow of the CF
component and the RE component

The idea behind the RE approach is that NMT-based and

RE CMG approaches all generate commit msgs based on

historical commits, so it may be difficult for them to generate

semantically-relevant msgs for commits that are not similar to

any historical commit. Hence, the RE component calculates

a Retrieval-based score for each generated msg based on the

similarities between its corresponding commit and historical

commits.

QAcom combines the two components, and its overall

framework is presented in Figure 2. It first calculates two CF

and one RE scores for each generated msg using the two com-

ponents, respectively. Then it searches for the best thresholds

of the three quality scores based on a validation dataset and

an objective function. Finally, based on the quality scores and

the thresholds, QAcom predicts and filters out semantically-

irrelevant msgs to assure the quality of the generated msgs.

B. CF Component

The CF component leverages the Item-based Collaborative

Filtering algorithm [17] to calculate two CF scores for each

generated msg automatically. Figure 2 shows its workflow,

which consists of two steps:

Word Mapping Construction. The Item-based Collabora-

tive Filtering algorithm measures the similarity between two

items by calculating the similarity between their user-rating

vectors. In CMG, we can view commits as users, each word

in diffs or msgs as an item and the user-rating vectors are

hence the word-occurrence vectors. In detail, each word in

diffs (msgs) is represented as an N-dimensional vector, where

N is the total number of historical commits. If the diff (msg)

of the nth historical commit Cn contains the word w, the nth

dimension of w’s vector is 1, else, 0:

Vw,n =

{
1 if w appears in Cn

0 otherwise
(1)

Given a word wd from diffs and a word wm from msgs,

we measure the relevance between them through the cosine

similarity between Vwd
(i.e., the vector of wd) and Vwm

(i.e.,

the vectors of wm):

Rel(wd, wm) =

−−→
Vwd,. ·

−−−→
Vwm,.∥∥∥−−→Vwd,.

∥∥∥
2
·
∥∥∥−−−→Vwm,.

∥∥∥
2

(2)

Next, for each word from diffs, i.e., wd, we find a total of

k words from msgs, i.e., wm, with the highest Rel(wd, wm).
Such k words are treated as the mapped word of wd. Formally,

the mappings M are calculated as follows:

M(wd, k) = {w | Rel(wd, w) ∈ Maxk(Rel(wd, wm))} (3)

where Maxk returns the top-k max values. In order to reduce

the size of M and speed up the computation, we set k as 10

by default.

Quality Score Calculation. Given a generated msg mi

and its corresponding diff di, we calculate two CF scores, i.e.,

Precisioni and Recalli, for mi. Precisioni is the proportion of

words in mi whose mapped words appear in di, while Recalli
is the proportion of words in di whose mapped words appear

in mi. Based on the mappings, the Precisioni and Recalli of

mi can be calculated by:

Precisioni =
|{wm | ∃wd ∈ di, wm ∈ M(wd, k)}|

|{wm | wm ∈ mi}|
Recalli =

|{wd | ∃wm ∈ mi, wm ∈ M(wd, k)}|
|{wd | wd ∈ di}|

(4)

where | · | is the length of a set. In addition, we notice that

some words are useless for estimating the relevance of diffs
and generated msgs, such as “the” and “to”. Therefore, we

set a threshold ignore-rate to filter out such useless words of

diff. Specifically, for each word in historical diffs, we calculate

the probability that its mapped words do not appear in the

corresponding historical msgs. The diff words of which the

probabilities are less than the ignore-rate will be ignored when

calculating Precisioni and Recalli.

C. RE Component

The RE component calculates one RE score for each gen-

erated msg. In detail, we first represent the diff of each his-

torical commit as a tf-idf (Term Frequency-Inverse Document

Frequency) vector. Next, given the diff di of a new commit,

we also convert it as a tf-idf vector based on historical diffs
and calculate the cosine similarities between the new commit

and historical commits. Then, we select the top-n historical

diffs with the largest similarities for the new commit. Finally,

the RE score of the msg mi generated for di is defined as a

sentence-level BLEU score with multiple reference sentences

considered:

RetScore(di) = BLEU(di, {dtop-1, · · · , dtop-n}) (5)

where dtop-j is the historical diff with the jth highest

similarity to di. To speed up this component, we set n as

5 by default.

D. Semantically-irrelevant Message Prediction and Filtering

With the quality scores output by the two components,

QAcom still needs to know the threshold of each quality score

for predicting and filtering out semantically-irrelevant msgs.

Its solution to this problem is to tune the best thresholds on

a validation dataset with an objective function. Each public

dataset for CMG provides a validation set. Following [18], we

regard a set of generated msgs as high quality if their corpus-

level BLEU score is over 40. Consequently, the objective
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function of QAcom is set to preserve as many generated msgs
as possible while ensuring the BLEU score of the preserved

msgs exceeds 40.

Since there are three quality scores, i.e., Precisioni, Recalli
and RetScore(di), QAcom needs to tune three thresholds,

namely Prect, Rect and Rett. In addition, the ignore-rate used

in the CF component also requires fine tuning. Therefore, for

each CMG approach and each CMG dataset, QAcom applies

the differential evolution algorithm [19] to fine tune Prect,
Rect, Rett and ignore-rate. The tuning range of each threshold

is from 0 to 1.

After obtaining the thresholds, QAcom predicts the gener-

ated msgs whose Precisioni, Recalli or RetScore(di) is not up

to the corresponding threshold as semantically-irrelevant msgs,

and filters out them accordingly.

III. EXPERIMENTAL SETUP

This section presents our research questions, selected CMG

approaches and datasets, evaluation methods and evaluation

metrics.

A. Research Questions

We want to investigate the following research questions:

• RQ1: How effective is QAcom when integrated with the

state-of-the-art CMG approaches?

• RQ2: How effective are the CF and the RE components

in QAcom?

• RQ3: How effective is QAcom compared to the super-

vised quality assurance filter proposed by Jiang et al. [9]?

B. Selected CMG Approaches and Datasets

We select three state-of-the-art CMG approaches to conduct

experiments and implement them with their code, settings and

parameters:

NMT [9], [20] adopts a neural machine translation model

to translate diffs into concise commit messages automatically.

NNGen [5], [21] generates commit messages by using the

nearest neighbor algorithm to retrieve from historical commits.

PtrGNCMsg [6], [22] improves NMT with the pointer-

generator network generate commit messages from diffs.

We also select three public datasets to apply CMG ap-

proaches and evaluate QAcom:

Top1000 dataset is built by Jiang et al. [9], including

commits from the top 1000 Java projects on Github. There

are 26208, 3000 and 3000 commits in the training, validation

and test sets, respectively.

Cleaned dataset is built by Liu et al. [5], which remove

some noisy commits from the Top1000 dataset. The training,

validation and test sets contain 22112, 2511 and 2511 com-

mits, respectively.

Top2000 dataset is built by Liu et al. [6], and is collected

from top 1001-2081 Java projects on GitHub. There are 23623,

5051 and 3989 commits in the training, validation and test sets,

respectively.

C. Evaluation Methods

Automatic Evaluation. QAcom assures the quality of
the generated commit messages by predicting and filtering

out semantically-irrelevant messages. The direct and intuitive

way to evaluate QAcom is to calculate the prediction precision

and recall of QAcom. However, to calculate such metrics, we

need to know whether each generated message is semantically

relevant to its ground truth, i.e., the label of each message,

which requires slow and expensive human evaluation. To

automate the evaluation, we propose an indirect evaluation

method. The idea is that the overall quality of the generated

messages preserved by QAcom can be viewed as an indicator

of QAcom’s performance. If the overall quality of such pre-

served messages is higher than that of the generated messages

without filtering, we can infer that QAcom is effective and

can successfully filter out semantically-irrelevant messages.

The overall quality of a set of generated messages can be

measured using automatic metrics, like BLEU.

More specifically, Given a CMG approach, e.g., NMT, and

a dataset, we first train, validate and test the approach without

QAcom on this dataset. Automatic metrics like BLEU are

calculated to measure the overall quality of the messages

generated for the test set, namely the generated messages.

Next, we tune the thresholds of QAcom for this approach on

the validation set. With these thresholds, we apply QAcom on

the generated messages to predict and filter out semantically-

irrelevant messages. Finally, the same automatic metrics are

used to assess the overall quality of the preserved generated

messages, which are also regarded as the performance of this

approach with QAcom, e.g., NMT+QAcom. We also report

the ratio of the preserved generated messages to all generated

messages in the test set, namely Preserved-Ratio. Moreover, to

ensure the fairness of comparison, we add a special baseline,

which randomly preserves the generated messages to meet

the same Preserved-Ratio and then compute the evaluation

metrics. This random-select (RS) process is performed 10

times and the average performance is reported.

Human Evaluation. We also conduct a human evaluation to

investigate the effectiveness of QAcom further. Following prior

studies [5], [9], we invite 6 non-author participants (2 Ph.D.

students and 4 master students) for our human evaluation. All

of participants’ majors are software engineering and have 4-

7 years of Java programming experience. They are asked to

assess the quality of the generated message by checking the

semantic relevance between the reference messages and the

messages generated by NMT, NNGen and PtrGNCMsg. Based

on the user study, we can explicitly check whether QAcom

can filter out semantically-irrelevant messages and preserve

semantically-relevant ones. In detail, we randomly select 200

commits from each dataset, and randomly divide them into

two equal groups. The 6 participants are also evenly divided

into two groups. Each participant group is asked to evaluate

100 commits from each dataset, i.e., a total of 300 commits,

and each commit is hence scored by 3 participants.

In our survey, each question first provides the diff and

reference message of a commit, and then presents the commit
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messages generated by NMT, NNGen and PtrGNCMsg. The

order of the generated messages is random. The participants

are asked to give a quality score between 1 to 5 to each gener-

ated message to measure the semantic relevance between this

message and the reference. Score 1 means there is no semantic

relevance between the two messages, and score 5 means two

messages are identical in meaning. In particular, we consider

the messages with score 4 or 5 as semantically-relevant, and

the remaining messages as semantically-irrelevant. The score

range and scoring criterion are kept the same as Liu et al. [5]’s

human evaluation.

For each generated message in a commit, we obtained three

scores from three different participants, respectively. The final
quality score of this message is computed by averaging the

three scores and then rounding the average score. To evaluate

the effectiveness of QAcom, we apply QAcom to predict and

filter out semantically-irrelevant messages from the subsets

used for the user study, i.e., the 200 commits from each

dataset, and calculate the precision and recall of QAcom on

each subset. The thresholds of QAcom are keep the same

as the ones fine tuned in the automatic evaluation. We also

analyze the score distribution and mean score of the generated

messages preserved by QAcom in each subset.

D. Evaluation Metrics
Following the prior studies [5], [6], [9], we use BLEU [12],

METEOR [13] and ROUGE [14] to automatically measure the

performance of CMG approaches. All of them are widely used

for CMG and other natural language generation tasks, and are

shown to correlate highly with human judgments.

BLEU is measures the similarity between a generated

message and its reference(s) using an average modified n-gram

precision with a penalty for overly short sentences.

METEOR is based on word matches between the generated

message and its reference. It is calculated using the F-score

of word matches and a fragmentation penalty for considering

word order differences.

ROUGE is a set of metrics originally proposed for text

summarization. Unlike BLEU, ROUGE is the harmonic mean

between n-gram precisions and recalls of a generated message

to the reference message.

We obtain these metric scores using nlg-eval [23] and

rouge [24] package. For ROUGE, we only report ROUGE-

L, in which n-gram the longest common sequence.

In our human evaluation, besides the mean human-evaluated

score, we also report Precision and Recall, which use human-

evaluated scores as the ground truth (i.e., semantically-relevant

or semantically-irrelevant) of our prediction.

It’s worth noting that unlike these evaluation metrics, our

proposed quality scores in Section II (i.e., Precisioni, Recalli
and RetScore(di)) are measured according to the diff and the

generated commit message, i.e., without the ground truth.

IV. EVALUATION RESULTS

A. RQ1: Effectiveness of QAcom
1) Automatic Evaluation: To investigate how effective QA-

com is, we conduct an automatic evaluation and a human

TABLE I
EFFECTIVENESS OF QACOM WHEN INTEGRATED WITH THREE

STATE-OF-THE-ART APPROACHES ON THREE DATASETS.

Dataset Approach BLEU METEOR ROUGE-L Preserved-Ratio

Cleaned

NMT 14.19 12.99 24.06 100%
NMT+RS 14.01 13.20 24.36 24.12%
NMT+QAcom 39.33 32.07 50.46 24.12%

NNGen 16.42 14.03 27.83 100%
NNGen+RS 15.99 13.83 27.40 32.17%
NNGen+QAcom 39.34 29.28 51.87 32.17%

PtrGNCMsg 12.00 12.28 26.93 100%
PtrGNCMsg+RS 11.89 11.93 26.43 16.66%
PtrGNCMsg+QAcom 40.10 29.64 50.35 16.66%

Top1000

NMT 30.24 24.04 32.50 100%
NMT+RS 30.21 23.97 32.46 81.36%
NMT+QAcom 40.51 30.84 38.43 81.36%

NNGen 38.55 25.55 38.70 100%
NNGen+RS 38.37 25.46 38.62 96.13%
NNGen+QAcom 40.52 27.57 39.89 96.13%

PtrGNCMsg 34.72 22.10 33.60 100%
PtrGNCMsg+RS 34.78 22.13 33.62 90.87%
PtrGNCMsg+QAcom 40.57 26.57 38.95 90.87%

Top2000

NMT 31.81 24.54 32.64 100%
NMT+RS 31.86 24.52 32.66 72.51%
NMT+QAcom 44.04 30.32 46.98 72.51%

NNGen 37.76 25.37 38.34 100%
NNGen+RS 37.63 25.28 38.20 77.96%
NNGen+QAcom 44.80 30.98 46.72 77.96%

PtrGNCMsg 37.61 25.30 40.85 100%
PtrGNCMsg+RS 37.64 25.32 40.09 82.57%
PtrGNCMsg+QAcom 45.36 29.06 46.58 82.57%

evaluation following the methods described in Section III-C.

We conduct automatic evaluation following the method de-

scribed in Section III-C. Table I shows the performance of the

three CMG approaches with and without QAcom on the three

selected datasets. Taking the NMT approach as the example,

the row of “NMT” represents the performance of NMT on all

test commits, i.e., the overall quality of all generated messages,

and Preserved-Ratio is 100%. The row of “NMT+RS” repre-

sents the overall quality of the randomly selected generated

messages, which meet the same Preserved-Ratio as QAcom.

The row of “NMT+QAcom” represents the overall quality of

the generated messages preserved by QAcom. We make four

observations from Table I:

(1) In all cases, there is almost no difference between the

overall quality of all generated messages and the randomly-

selected generated messages, which indicates the trivial in-

fluence of randomly filtering on the quality of the generated

message.

(2) The overall quality of the generated messages pre-

served by QAcom is substantially better than that of the

generated messages that are randomly selected. For instance,

on the Cleaned dataset, CMG+QAcom, e.g., NMT+QAcom,

can improve CMG+RS, e.g., NMT+RS, by averagely 177%,

134% and 96% in terms of BLEU, METEOR and ROUGE,

respectively. With observation (1), we can infer that at least

QAcom can filter out more semantically-irrelevant messages

than semantically-relevant ones.

(3) The BLEU scores of the three CMG approaches with

QAcom are all close to or more than the BLEU constraint used

when tuning, i.e., 40, which indicates the good overall quality

of the generated messages preserved by QAcom. Therefore,

QAcom can successfully assure the overall quality of the

generated messages preserved by it.

(4) The preserved-ratio of QAcom varies with the used

dataset and CMG approach. For example, on the Top2000

datasets, the Preserved-Ratio of PtrGNCMsg+QAcom is the
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TABLE II
THE HUMAN EVALUATION RESULTS OF QACOM WHEN INTEGRATED WITH

THREE STATE-OF-THE-ART APPROACHES ON THREE DATASETS.

Dataset Approach 1 2 3 4 5 #Preserved Mean Score

Cleaned

NMT 38.0% 29.0% 16.0% 10.5% 6.5% 200 2.18
NMT+RS 31.5% 29.6% 20.4% 11.1% 7.4% 54 2.33
NMT+QACom 13.0% 5.6% 25.9% 33.3% 22.2% 54 3.46

NNGen 35.0% 27.0% 19.5% 9.0% 9.5% 200 2.33
NNGen+RS 32.1% 25.0% 21.4% 10.7% 10.7% 56 2.43
NNGen+QACom 10.7% 19.6% 17.9% 26.8% 25.0% 56 3.36

PtrGNCMsg 30.0% 30.5% 16.5% 14.0% 9.0% 200 2.39
PtrGNCMsg+RS 27.6% 31.0% 20.7% 13.8% 6.9% 29 2.41
PtrGNCMsg+QACom 6.9% 13.8% 17.2% 27.6% 34.5% 29 3.69

Top1000

NMT 30.5% 15.0% 16.0% 14.5% 24.0% 200 2.85
NMT+RS 32.0% 15.0% 15.7% 13.7% 23.5% 153 2.82
NMT+QACom 25.5% 13.7% 12.4% 15.7% 32.7% 153 3.16

NNGen 29.5% 15.0% 13.0% 15.0% 27.5% 200 2.94
NNGen+RS 30.2% 15.3% 13.8% 14.3% 26.5% 189 2.92
NNGen+QACom 28.6% 14.3% 13.2% 14.8% 29.1% 189 3.02

PtrGNCMsg 26.0% 16.0% 16.0% 18.5% 23.5% 200 2.95
PtrGNCMsg+RS 26.5% 16.0% 16.0% 17.3% 24.1% 162 2.96
PtrGNCMsg+QACom 20.4% 14.2% 16.7% 20.4% 28.4% 162 3.22

Top2000

NMT 36.0% 11.0% 14.5% 27.0% 10.5% 200 2.66
NMT+RS 40.1% 10.6% 14.8% 26.8% 7.7% 142 2.51
NMT+QACom 28.9% 12.7% 15.5% 31.0% 12.0% 142 2.85

NNGen 27.5% 13.0% 19.0% 27.5% 13.0% 200 2.86
NNGen+RS 27.2% 12.7% 21.5% 25.3% 13.3% 158 2.85
NNGen+QACom 25.3% 13.3% 17.7% 29.7% 13.9% 158 2.94

PtrGNCMsg 23.5% 12.0% 20.5% 28.5% 15.5% 200 3.00
PtrGNCMsg+RS 22.6% 11.6% 22.0% 29.9% 14.0% 164 3.01
PtrGNCMsg+QACom 22.6% 11.0% 19.5% 30.5% 16.5% 164 3.08

highest among the three CMG approaches. On the Cleaned

dataset, PtrGNCMsg+QAcom preserves only 16.66% of the

generated messages, while the Preserved-Ratios of NMT and

NNGen are 24.12% and 32.17%, respectively. The reason

might be that the effectiveness of PtrGNCMsg is limited on the

Cleaned dataset. In other words, PtrGNCmsg cannot generate

enough semantically-relevant messages on Cleaned dataset.

Based on these observations, we believe QAcom can effec-

tively assure the quality of the commit messages generated

by a CMG approach, and can consequently improve the

practicability of existing CMG approaches.

2) Human Evaluation: Table II shows the results of our

human evaluation. The columns of “1” to “5” present the dis-

tribution of each CMG approach’s final quality scores on each

dataset. The “#Preserved” column refers to the numbers of

preserved messages, and the “Mean Score” column represents

the mean scores of the final quality scores.

We can see that first the “#Preserved” are basically consis-

tent with the Preserved-Ratio shown in Table I. For example,

the Preserved-Ratio of NNGen on Top1000 dataset is 96.13%,

and the “Preserved Num” of NNGen is 189 out of 200. In

all cases, QAcom can filter out more semantically-irrelevant

messages and preserve more semantically-relevant ones than

random selection (RS). Moreover, in all cases, the ratio of

semantically-relevant messages to the generated messages

preserved by QAcom is larger than the ratio of semantically-

relevant messages to all generated messages. In addition, the

mean scores of the generated messages preserved by QAcom

are higher than both the mean scores of the original message

sets and the mean scores of the randomly-selected message

sets.

As shown in Table III, we also calculate the precision and

recall of QAcom concerning predicting semantically-relevant

messages, for short SR, and predicting semantically-irrelevant

messages, for short SI. First, we note that QAcom consistently

outperforms random selection. The precisions of CMG+RS

concerning predicting SR and SI are basically consistent with

TABLE III
THE EVALUATION RESULTS OF QACOM CONCERNING PREDICTING THE

SEMANTICALLY-RELEVANT MESSAGES AND SEMANTICALLY-IRRELEVANT

MESSAGES.

Dataset Approach
SI

#F SI%
SR

#P SR%
Precision Recall Precision Recall

Cleaned

NMT+RS 83.56% 73.49% 146 83.0% 18.52% 29.41% 54 17.0%
NMT+QACom 97.26% 85.54% 55.56% 88.24%

NNGen+RS 82.64% 73.01% 144 81.5% 21.43% 32.43% 56 18.5%
NNGen+QACom 94.44% 83.44% 51.79% 78.38%

PtrGNCMsg+RS 76.61% 85.06% 171 77.0% 20.69% 13.04% 29 23.0%
PtrGNCMsg+QACom 83.63% 92.86% 62.07% 39.13%

Top1000

NMT+RS 57.45% 21.95% 47 61.5% 37.25% 74.03% 153 38.5%
NMT+QACom 93.62% 35.77% 48.37% 96.10%

NNGen+RS 27.27% 2.61% 11 57.5% 40.74% 90.59% 189 42.5%
NNGen+QACom 81.82% 7.83% 43.92% 97.65%

PtrGNCMsg+RS 55.26% 18.10% 38 58.0% 41.36% 79.76% 162 42.0%
PtrGNCMsg+QACom 86.84% 28.45% 48.77% 94.05%

Top2000

NMT+RS 51.72% 24.39% 58 61.5% 34.51% 65.33% 142 37.5%
NMT+QACom 72.41% 34.15% 42.96% 81.33%

NNGen+RS 52.38% 18.49% 42 59.5% 38.61% 75.31% 158 40.5%
NNGen+QACom 71.43% 25.21% 43.67% 85.19%

PtrGNCMsg+RS 55.56% 17.86% 36 56.0% 43.90% 81.82% 164 44.0%
PtrGNCMsg+QACom 69.44% 22.32% 46.95% 87.50%

SI: The semantically-irrelevant messages. SI%: The ratio of SI in Total 200 commits. SR: The semantically-relevant

messages. SR%: The ratio of SR in Total 200 commits. #F: The number of filtered messages. #P: The number of

preserved messages.

the ratio of SR and SI in the subset used for human evaluation,

for short SR% and SI%. Therefore, randomly preserving

generated messages hardly affects the overall quality of the

generated messages. Moreover, the recalls of QAcom with

respect to predicting SR are over 80% in most cases, which

means QAcom preserves most SR. The precisions of QAcom

with respect to predicting SI are over 80% in most cases,

which means most SI predicted by QAcom are also regarded

as semantically irrelevant by evaluators.

The results of our human evaluation confirm that QAcom

can assure the quality of the commit messages generated

by CMG approaches and further present the effectiveness of

QAcom on filtering out semantically-irrelevant messages and

preserving semantically-relevant messages.

QAcom can effectively filter out semantically-irrelevant
messages and preserve semantically-relevant messages, as-
sure the quality of the commit messages generated by CMG
approaches and consequently improve the practicability of
existing CMG approaches.

B. RQ2:Ablation Study

To demonstrate the effectiveness of the two components in

QAcom, we conduct an ablation study. We compare QAcom

with its two variants, i.e., QAcomCF and QAcomRE, which

only use the CF component and the RE component to estimate

quality scores and predict semantically-irrelevant messages,

respectively. The thresholds of QAcomCF and QAcomRE are

re-tuned for each CMG approach on every dataset in this

research question.
1) Automatic Evaluation: The automatic evaluation results

are shown in Table IV. We can see from Table IV that in all

cases, QAcom preserves more generated messages than the

two variants. Especially for PtrGNCMsg on Cleaned dataset,

QAcomCF preserves only 6.35% messages of the total and

QAcomRE cannot preserve enough messages, while QAcom

can preserve 16.6% of the messages. Meanwhile, a CMG

approach with QAcom consistently outperforms the approach

with QAcomCF and QAcomRE. These results show that both
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TABLE IV
THE AUTOMATIC EVALUATION RESULTS OF THE ABLATION STUDY.

Dataset Approach BLEU METEOR ROUGE Preserved-Ratio

Cleaned

NMT+QAcomCF 37.80 31.35 48.33 15.43%
NMT+QAcomRE 37.62 31.99 50.12 20.79%
NMT+QAcom 39.33 32.07 50.46 24.12%

NNGen+QAcomCF 38.10 28.42 49.32 13.72%
NNGen+QAcomRE 39.26 29.08 51.76 29.59%
NNGen+QAcom 39.34 29.28 51.87 32.17%

PtrGNCMsg+QAcomCF 39.41 28.55 50.19 6.35%
PtrGNCMsg+QAcomRE - - - -
PtrGNCMsg+QAcom 40.10 29.64 50.35 16.66%

Top1000

NMT+QAcomCF 39.84 29.55 37.03 79.33%
NMT+QAcomRE 40.16 31.33 39.67 71.67%
NMT+QAcom 40.51 30.84 38.43 81.36%

NNGen+QAcomCF 40.29 26.73 38.84 94.33%
NNGen+QAcomRE 39.93 26.46 38.51 95.53%
NNGen+QAcom 40.52 27.36 39.89 96.13%

PtrGNCMsg+QAcomCF 39.25 25.32 37.59 89.70%
PtrGNCMsg+QAcomRE 38.63 24.70 36.84 88.50%
PtrGNCMsg+QAcom 40.57 26.57 38.95 90.87%

Top2000

NMT+QAcomCF 44.90 31.35 43.50 70.47%
NMT+QAcomRE 45.47 33.99 46.51 63.93%
NMT+QAcom 44.04 30.32 46.98 72.51%

NNGen+QAcomCF 42.36 28.03 43.87 74.64%
NNGen+QAcomRE 44.38 30.23 45.95 75.90%
NNGen+QAcom 44.80 30.98 46.72 77.96%

PtrGNCMsg+QAcomCF 45.30 28.88 46.13 80.70%
PtrGNCMsg+QAcomRE 44.84 28.76 46.25 80.62%
PtrGNCMsg+QAcom 45.36 29.06 46.58 82.57%

TABLE V
THE HUMAN EVALUATION RESULTS OF THE ABLATION STUDY.

Dataset Approach 1 2 3 4 5 #Preserved Mean Score

Cleaned

NMT+QAcomCF 12.9% 6.5% 22.6% 35.5% 22.6% 31 3.48
NMT+QAcomRE 11.8% 7.8% 25.5% 35.3% 19.6% 51 3.43
NMT+QAcom 13.0% 5.6% 25.9% 33.3% 22.2% 54 3.46

NNGen+QAcomCF 20.7% 10.3% 20.7% 24.1% 24.1% 29 3.21
NNGen+QAcomRE 13.5% 21.2% 17.3% 23.1% 25.0% 52 3.25
NNGen+QAcom 10.7% 19.6% 17.9% 26.8% 25.0% 56 3.36

PtrGNCMsg+QAcomCF 16.7% 16.7% 25.0% 25.0% 16.7% 12 3.08
PtrGNCMsg+QAcomRE - - - - - - -
PtrGNCMsg+QAcom 6.9% 13.8% 17.2% 27.6% 34.5% 29 3.69

Top1000

NMT+QAcomCF 25.7% 14.5% 11.8% 15.1% 32.9% 152 3.15
NMT+QAcomRE 25.7% 13.2% 13.9% 16.0% 31.3% 144 3.14
NMT+QAcom 25.5% 13.7% 12.4% 15.7% 32.7% 153 3.16

NNGen+QAcomCF 29.1% 14.3% 13.8% 14.3% 28.6% 189 2.99
NNGen+QAcomRE 28.5% 15.0% 13.5% 14.5% 28.5% 193 2.99
NNGen+QAcom 28.6% 14.3% 13.2% 14.8% 29.1% 189 3.02

PtrGNCMsg+QAcomCF 22.0% 15.3% 17.5% 19.2% 26.0% 177 3.12
PtrGNCMsg+QAcomRE 20.3% 14.6% 15.8% 20.9% 28.5% 158 3.23
PtrGNCMsg+QAcom 20.4% 14.2% 16.7% 20.4% 28.4% 162 3.22

Top2000

NMT+QAcomCF 25.7% 13.2% 22.8% 28.7% 9.6% 136 2.83
NMT+QAcomRE 28.1% 12.5% 19.5% 28.1% 11.7% 128 2.83
NMT+QAcom 28.9% 12.7% 15.5% 31.0% 12.0% 142 2.85

NNGen+QAcomCF 27.9% 14.3% 18.8% 27.9% 11.0% 154 2.80
NNGen+QAcomRE 31.7% 9.9% 16.1% 28.0% 14.3% 161 2.83
NNGen+QAcom 25.3% 13.3% 17.7% 29.7% 13.9% 158 2.94

PtrGNCMsg+QAcomCF 34.3% 10.5% 16.3% 26.7% 12.2% 172 2.72
PtrGNCMsg+QAcomRE 31.6% 9.9% 17.5% 28.1% 12.9% 171 2.81
PtrGNCMsg+QAcom 22.6% 11.0% 19.5% 30.5% 16.5% 164 3.07

the CF component and the RE component are helpful for

QAcom.
2) Human Evaluation: We apply QAcomCF, QAcomRE

and QAcom to predict and filter out semantically-irrelevant

messages from the subsets used for the user study like RQ1.

Table V shows the evaluation results. We note that the “Mean

Score” of QAcom are higher than QAcomCF and QAcomRE in

most cases. Although on the Cleaned dataset, the QAcomCF

gains a slightly higher mean score (3.48) than QAcom (3.46),

QAcom preserves 23 more messages and more semantically-

relevant messages than QAcomCF. In addition, the precision

and recall of QAcomCF, QAcomRE and QAcom concerning

predicting SR and SI are shown in Table VI. In most cases,

QAcom has the highest precision in predicting SI and the

highest recall in predicting SR. These results confirm that the

two components aare complementary to each other.

We manually check the evaluation results and find that the

CF component and the RE component have their own benefits

for different CMG approaches. Taking the Cleaned dataset

TABLE VI
THE EVALUATION RESULTS (INCLUDE PRECISION AND RECALL) OF

QAcomCF, QAcomRE AND QACOM CONCERNING PREDICTING THE

SEMANTICALLY-RELEVANT MESSAGES AND SEMANTICALLY-IRRELEVANT

MESSAGES.

Dataset Approach
SI

#F SI%
SR

#P SR%
Precision Recall Precision Recall

Cleaned

NMT+QAcomCF 90.5% 92.2% 169

83.0%

58.1% 52.9% 31

17.0%NMT+QAcomRE 96.0% 86.1% 149 54.9% 82.4% 51
NMT+QAcom 97.3% 85.5% 146 55.6% 88.2% 54

NNGen+QAcomCF 86.5% 90.8% 171

81.5%

48.3% 37.8% 29

18.5%NNGen+QAcomRE 91.9% 83.4% 148 48.1% 67.6% 52
NNGen+QAcom 94.4% 83.4% 144 51.8% 78.4% 56

PtrGNCMsg+QAcomCF 78.2% 95.5% 188

77.0%

41.7% 10.9% 12

23.0%PtrGNCMsg+QAcomRE - - - - - -
PtrGNCMsg+QAcom 83.6% 92.9% 171 62.1% 39.1% 29

Top1000

NMT+QAcomCF 91.7% 35.8% 48

61.5%

48.0% 94.8% 152

38.5%NMT+QAcomRE 83.9% 38.2% 56 47.2% 88.3% 144
NMT+QAcom 93.6% 35.8% 47 48.4% 96.1% 153

NNGen+QAcomCF 63.6% 6.1% 11

57.5%

42.9% 95.3% 189

42.5%NNGen+QAcomRE 71.4% 4.3% 7 43.0% 97.6% 193
NNGen+QAcom 81.8% 7.8% 11 43.9% 97.6% 189

PtrGNCMsg+QAcomCF 82.6% 16.4% 23

58.0%

45.2% 95.2% 177

42.0%PtrGNCMsg+QAcomRE 85.7% 31.0% 42 49.4% 92.9% 158
PtrGNCMsg+QAcom 86.8% 28.4% 38 48.8% 94.0% 162

Top2000

NMT+QAcomCF 60.9% 31.7% 64

61.5%

38.2% 69.3% 136

37.5%NMT+QAcomRE 63.9% 37.4% 72 39.8% 68.0% 128
NMT+QAcom 72.4% 34.1% 58 43.0% 81.3% 142

NNGen+QAcomCF 54.3% 21.0% 46

59.5%

39.0% 74.1% 154

40.5%NNGen+QAcomRE 66.7% 21.8% 39 42.2% 84.0% 161
NNGen+QAcom 71.4% 25.2% 42 43.7% 85.2% 158

PtrGNCMsg+QAcomCF 25.0% 6.3% 28

56.0%

39.0% 76.1% 172

44.0%PtrGNCMsg+QAcomRE 37.9% 9.8% 29 40.9% 79.5% 171
PtrGNCMsg+QAcom 69.4% 22.3% 36 47.0% 87.5% 164

SI: The semantically-irrelevant messages. SI%: The ratio of SI in Total 200 commits. SR: The semantically-relevant

messages. SR%: The ratio of SR in Total 200 commits. #F: The number of filtered messages. #P: The number of

preserved messages.

Fig. 3. An example in the ablation study.

as an example, when integrated with NMT and NNGen,

QAcomRE preserves more messages (20.79% and 29.59% re-

spectively) than QAcomCF (15.43% and 13.72% respectively),

but when integrates with PtrGNCMsg, the QAcomCF performs

better QAcomRE. Figure 3 shows a test commit, its generated

messages, the human-evaluated scores and the decision, i.e.,

preserve or filter out, provided by QAcom and its variants

for each generated message. We notice that the results of

QAcom are consistent with human evaluation, but the results

of QAcomCF and QAcomRE are not satisfactory. Especially for

the message generated by the PtrGNCMsg, the results given

by either variant are not correct. Such finding highlights the

benefit and necessity of combining the two components.

Both the CF component and the RE component are helpful
to boost the effectiveness of QAcom.

C. RQ3:QAcom VS. QA Filter

QA filter is an expert-guided quality assurance filter pro-

posed by Jiang et al. [9]. It takes as input the TF-IDF vector

of a diff, and leverages a linear SVM to predict the human-

evaluated score of the commit message generated by a CMG

approach for this diff. To train such SVM, QA filter needs a

dataset with <diff, human-evaluated score> pairs. Therefore,

it is a supervised method.
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TABLE VII
COMPARISON BETWEEN THE GENERATED MESSAGES PRESERVED BY QA

FILTER AND QACOM ON THE CLEANED DATASET

Approach 1 2 3 4 5 #Preserved Mean Score

NMT 38.0% 29.0% 16.0% 10.5% 6.5% 200 2.18
NMT+QA Filter 36.8% 21.1% 21.1% 0.0% 21.1% 19 2.42
NMT+QAcom 13.0% 5.6% 25.9% 33.3% 22.2% 54 3.46

NNGen 35.0% 27.0% 19.5% 9.0% 9.5% 200 2.33
NNGen+QA Filter 43.5% 26.1% 13.0% 8.7% 8.7% 23 2.46
NNGen+QAcom 10.7% 19.6% 17.9% 26.8% 25.0% 56 3.36

PtrGNCMsg 30.0% 34.5% 16.5% 10.0% 9.0% 200 2.36
PtrGNCMsg+QA Filter 36.4% 18.2% 18.2% 9.1% 18.2% 11 2.58
PtrGNCMsg+QAcom 6.9% 13.8% 17.2% 27.6% 34.5% 29 3.69

To compare the effectiveness of QAcom and QA filter,

we integrate QAcom and QA filter to NMT, NNGen and

PtrGNCMsg, respectively, and perform an evaluation. As a

supervised method, QA filter requires a lot of human-evaluated

scores for training. So, different from the previous RQs, we

only compare QAcom and QA filter on the Cleaned dataset,

which is shown to be more reliable [5]. To train QA filter, we

randomly select 800 commits (no overlap between them and

the commits used in our human evaluation) from the Cleaned

dataset, and two co-authors are asked to give quality scores for

the messages generated by NMT, NNGen, and PtrGNCMsg.

The Cohen’s Kappa score [25] of quality scores given by the

two co-authors is 0.853, and all disagreements are eliminated

through negotiation. Such labeled data are then used to train

a QA filter for each CMG approach. In addition, since we use

the data selected from the original test set to train QA filter,

we can not perform automatic evaluation when investigating

this research question.

To compare QAcom and QA filter, we use the 200 com-

mits collected from the Cleaned dataset and labeled in the

aforementioned human evaluation for evaluation. For each

of the 200 commits, the QA filter predicts its quality score

using the trained SVM. Similar to Jiang et al., if the quality

score of a commit is predicted to be 4 or 5, we regard the

message generated by the corresponding CMG approach for

this commit as a semantically-relevant message. The precision

of the QA filter with respect to predicting the quality score on

the 200 commits is 40.7%.

Table VII shows evaluation results. We can see tht QAcom

consistently preserves more semantically-relevant messages

than QA filter. For instance, NMT+QAcom preserves 30

semantically-relevant messages which accounting for 55.5%

of the preserved messages, and QA filter preserves only 4

messages with a score of 4 or 5 which accounting for only

21.1%. The mean scores of the messages preserved by QAcom

are also consistently higher than QA filter. Furthermore, QA-

com is an unsupervised and automated (i.e., without experts’

guide) approach, which is different from QA filter.

Besides, we calculate the precision and recall of QA filter

and QAcom with respect to predicting SR and SI, as shown

in Table VIII. We note that QAcom substantially outperforms

QA filter for predicting SR, both in precision and recall. In

addition, we see that QA filter has a higher recall than QAcom

with respect to predicting “SI”. This is because the number

of messages filtered out by the QA filter is more, and the

proportion of SI is inherently high in original. Therefore,

TABLE VIII
THE EVALUATION RESULTS (INCLUDE PRECISION AND RECALL) OF QA

FILTER AND QACOM CONCERNING PREDICTING THE

SEMANTICALLY-RELEVANT MESSAGES AND SEMANTICALLY-IRRELEVANT

MESSAGES.

Approach
SI

#F SI%
SR

#P SR%Precision Recall Precision Recall

NMT+QA Filter 83.43% 90.96% 181 83.0% 21.05% 11.76% 19 17.0%
NMT+QACom 97.26% 85.54% 146 55.56% 88.24% 54

NNGen+QA Filter 81.36% 88.34% 177 81.5% 17.39% 10.81% 23 18.5%
NNGen+QACom 94.44% 83.44% 144 51.79% 78.38% 56

PtrGNCMsg+QA Filter 77.25% 94.81% 189 77.0% 27.27% 6.52% 11 23.0%
PtrGNCMsg+QACom 83.63% 92.86% 171 62.07% 39.13% 29

SI: The semantically-irrelevant messages. SI%: The ratio of SI in Total 200 commits. SR: The semantically-relevant

messages. SR%: The ratio of SR in Total 200 commits. #F: The number of filtered messages. #P: The number of

preserved messages.

TABLE IX
THE Preserved-Ratios OF QACOM INTEGRATED WITH CMG APPROACHES

USING DIFFERENT BLEU CONSTRAINTS.

Dataset Approach
BLEU Threshold 50 60 70

Cleaned

NMT+QAcom 5.4% 1.7% -
NNGen+QAcom - - -
PtrGNCMsg+QAcom - - -

Top1000

NMT+QAcom 61.7% 46.8% 34.6%
NNGen+QAcom 72.7% 56.0% 39.6%
PtrGNCMsg+QAcom 58.9% 44.8% 33.6%

Top2000

NMT+QAcom 59.9% 59.6% 28.5%
NNGen+QAcom 64.2% 42.4% 15.2%
PtrGNCMsg+QAcom 66.4% 42.9% 12.6%

compared with QA filter, QAcom can predict semantically-

relevant messages and semantically-irrelevant messages more

effectively.

Compared to the supervised QA filter, QAcom can filter out
semantically-irrelevant messages and preserve semantically-
relevant messages more effectively.

V. DISCUSSION

A. The Impact of Varying the BLEU Constraint of QAcom

To tune the thresholds of the CF and RE scores, QAcom

uses the following objective: (1) ensuring the BLEU score

of the preserved generated messages is greater than 40, i.e.,

the BLEU constraint; (2) meanwhile, preserving as many

generated messages as possible. By default, we set the BLEU

constraint to 40, since it means the generated messages are of

high quality. Here, we investigate the impact of varying the

BLEU constraint on the effectiveness of QAcom.

To that end, we re-evaluate the effectiveness of QAcom

with the BLEU constraint set to 50, 60 and 70. We do not

set the constraint smaller than 40. Because QAcom aims to

preserve high-quality generated messages, and according to the

interpretation of BLEU score [18], a BLEU score of smaller

than 40 should not be interpreted as ”high quality translations”.

Table IX shows the Preserved-Ratio of QAcom with

different BLEU constraints. We observe that: (1) The

Preserved-Ratio decreases along with the increment of the

BLEU constraint. For example, on the Cleaned dataset, the

Preserved-Ratio decreases to zero in most cases when the

BLEU constraint is set to 50, 60, and 70. (2) On the Cleaned

dataset, after integrated with QAcom, only NMT can preserve

the generated messages to meet the BLEU constraints of

50 and 60. (3) On the Top1000 and Top2000 datasets, the

Preserved-Ratios are still promising with the BLEU constraints
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TABLE X
THE ANALYSIS RESULTS OF THE 200 COMMIT MESSAGES GENERATED BY

THE CMG APPROACHES.

Dataset Approach Good Good(Only) Good(All) Good(Any)

Cleaned

NMT 34 6

13 49NNGen 37 8
PtrGNCMsg 38 7

Top1000

NMT 77 10

51 119NNGen 85 12
PtrGNCMsg 84 19

Top2000

NMT 75 7

52 119NNGen 81 13
PtrGNCMsg 88 18

Fig. 4. A commit which is only a good commit for NMT.

of 50, 60 or even 70 in some cases. The reason may be that

Top1000 and Top2000 datasets could contain noisy commits

(e.g., bot or trivial commits) as shown by Liu et al. [5].

B. QAcom Integrates with Multiple CMG Approaches

Table II presents the human evaluation results of the three

CMG approaches. We note that for the same 200 commits,

the ratios of semantically-relevant messages, i.e., messages

with human-evaluated scores of 4 or 5, generated by the

three CMG approaches are different. Taking the Top2000

dataset as the example, the ratio of semantically-relevant

messages generated by NMT, NNGen and PtrGNCMsg are

37.5%, 40.5% and 44%, respectively. For convenience, we

refer to the commits that a CMG approach can generate

semantically-relevant messages for as good commits for this

approach. By reading these commits and the corresponding

generated messages, we observe that the sets of good commits

for different CMG approaches are not the same. We further

analyze the good commits of each CMG approach verified

by our human evaluation. Table X shows the analysis results.

The column “Good” represents the number of good commits

for each CMG approach. The column “Good(only)” represents

the number of the commits that are good commits for only

one CMG approach. The column “Good(All)” represents the

number of the commits that are good commits for all CMG

approaches. And the column “Good(Any)” represents the

number of the commits that are good commits for at least

one CMG approach.

We can see from Table X that the “Good(Only)” of all CMG

approaches are not zero, which means each CMG approach

has its distinctive good commits. For example, there are 10

commits in the Top1000 dataset for which only NMT can

generate semantically-relevant messages. Figure 4 shows one

of them. We note that the message generated by NMT is

the same as the reference message. But messages generated

by NNGen and PtrGNCMsg are not semantically relevant

(human-evaluated score is 3) to the reference. Consequently,

on each dataset, the “Good(Any)” is larger than the “Good”

of each CMG approach. These phenomena denote that it is

possible to propose an ensemble CMG approach with better

performance by properly combining several existing CMG

approaches. We believe this is an interesting direction for

future work.

C. Threats to Validity

One threat to validity is about the original results of existing

CMG approaches. In order to obtain the original results, we

implement the three state-of-the-art approaches using their

public code. However, the hyper-parameters of a CMG ap-

proach may also affect its effectiveness. To mitigate this issue,

we set the hyper-parameters of each CMG approach based on

its public code or following the description in its paper.

The second threat to validity is that we do not have the

human-evaluated scores of Jiang et al. [9]. We implement

QA filter proposed by Jiang et al. using the dataset labeled

by ourselves. However, we can not guarantee that the QA

filter re-trained by us is exactly the same as that trained by

Jiang et al. [9]. To mitigate this threat, the commits used to

train QA filter are carefully labeled by two co-authors. The

disagreements between the two authors were rare (Cohen’s

Kappa score of 0.853) and each disagreements is resolved

through discussion. Also, on our test set, the precision of the

QA filter trained by us with respect to predicting quality scores

is 40.7%, which is close to the result reported by Jiang et al.

VI. RELATED WORK

A. Commit Message Generation

There are three categories of approaches for prior commit

message generation studies, i.e., rule-based, NMT-based and

Retrieval based.

Rule-based approaches generate commit messages by man-

ually pre-defined rules. For example, Buse et al. [2] proposed

a rule-based approach DeltaDoc, which can generate messages

based on predefined rules by analyzing the control flows

between different code versions. Changescribe [7], [8] can

generate the commit message by filling a pre-defined template

using the exacted information. Similar to Changescribe, Shen

et al. [26] used method stereotypes and the type of changes to

generate commit messages by filling a rule with what/why in-

formation. The difference is that Shen et al. control the length

of generated messages by removing repeated information in

the change.

NMT-based approaches treat the commit message gener-

ation as a translation task, i.e., translate diffs into commit

messages. The main idea is to generate commit messages

by learning the semantic patterns between diffs and messages

using NMT. For example, Jiang et al. [9] adopted the NMT

trained on a corpus of diffs and commit messages from the

top 1k Github projects for generating commit messages using

Nematus toolkit [27]. Loyola et al. [10], [28] proposed to

improve the NMT-based approach by integrating the context
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of code changes. Liu et al. [6] proposed PtrGNCMsg to

address the out-of-vocabulary (OOV) issue of NMT-based

approach using a pointer-generator network. Different with

the aforementioned studies, Xu et al. [29] only focused on

code changes. They proposed CODISUM by jointly learning

the representations of both code structure and code semantics

from the source code changes.

Retrieval-based approaches aim to reuse the commit mes-

sages by retrieving similar commits. For example, Huang et

al. [11] proposed to retrieve similar commits by measuring the

similarity of code changes. Such similarity considered both

syntactic and semantic information of code changes. Liu et

al. [5] proposed NNGen to retrieve nearest neighbour diffs for

reusing commit messages. NNGen measures the similarity of

diffs using a bag-of-words model.

Our proposed quality assurance framework is on the top

of the aforementioned approaches. Such framework can serve

as a plugin for complementing the practicability of these

approaches.

B. Other Document Generation for Software Artifacts

Prior studies have proposed diverse automated document

generation approaches for software artifacts other than com-

mit messages, such as code comments [30]–[41], release

notes [42], [43], pull request descriptions [44] and summary

of bug report [45]–[48].

As for code comments generation, Hu et al. [37], [38] pro-

posed an attentional encoder-decoder model based approach

to generate comments for Java methods. Zhang et al. [40]

proposed a retrieval-based neural source code summarization

approach which can take advantages of both neural and

retrieval-based techniques.

As for release notes generation, Abebe et al. [49] proposed a

machine leaning based approach for automatically identifying

the issues to be mentioned in release notes. Moreno et al. [42],

[43] proposed ARENA to generate release notes. ARENA first

summarizes changes in a release and then integrates these

summaries with their related information in the issue tracker.

As for bug reports summarization, Rastkar et al. [45], [46]

proposed a conversion-based summarizer for bug reports by

identifying important sentences of bug reports automatically.

Mani et al. [47] and Lotufo et al. [48] proposed unsupervised

bug report summarization approaches based on noise reducer

or heuristic rules.

In this paper, our proposed quality assurance framework

is applied on the commit message generation task. For other

document generation tasks for software artifacts, our frame-

work could also be adapted for their quality assurance which

remained as a future work.

C. Quality Assurance for Document Generation

Our technical idea is inspired by quality assurance for

document generation in natural language processing field [16],

[50]–[52]. For example, Zheng et al. [16] proposed a novel

testing approach for a NMT system (e.g., translating English

into Chinese). Their approach can identify translation failures

by conducting statistical analysis on both the inputs (i.e., the

original texts) and outputs (i.e., the translated texts) of the

NMT system without using the ground truth (i.e., the reference

translations). He et al. [52] proposed a structure-invariant

testing approach for quality assurance of machine translation

system. Their key idea is that the translation results of similar

source sentences should typically exhibit a similar sentence

structure. The CF implementation of our QAcom framework

is derived from Zheng et al.’s approach [16]. However, we

differ from them by the application task.

The closest approach to our work is the quality assurance

filter for commit message generation proposed by Jiang et

al. [9]. Their filter is a learning based approach which is trained

using human-evaluated messages (with human-evaluated qual-

ity scores) and their corresponding diffs. As a result, their

filter can predict whether their generater will generate a bad

commit message. Different from their expert-guided approach,

our approach is an unsupervised and automated (i.e., without

expert’s guide) approach. To the best of our knowledge, we

are the first to propose automated quality assurance approach

for commit message generation.

VII. CONCLUSION

Writing a good commit message is helpful for software de-

velopment but challenging for developers. Although a number

of automated commit message generation (CMG) approaches

have been proposed, a large proportion of messages generated

by them are semantically irrelevant to the ground truths, which

can mislead developers and hinder their usage in practice. In

this paper, instead of proposing yet another CMG approach,

we tackle this problem in another promising way: proposing

an automated Quality Assurance framework for COMmit mes-

sage generation (QAcom). QAcom can automatically predict

and filter out the generated messages that are semantically

irrelevant to the ground truths in an unsupervised way. In

particular, QAcom combines a Collaborative-Filtering-based

component and a Retrieval-based component to estimate the

semantic relevance of generated messages to references. We

evaluate the effectiveness of QAcom with three state-of-the-

art CMG approaches on three public datasets. Automatic and

human evaluation demonstrate that QAcom can effectively

filter out semantically-irrelevant generated messages and suc-

cessfully preserve semantically-relevant ones. QAcom is also

shown to outperform a supervised quality assurance method

named QA filter.

In the future, we plan to investigate whether QAcom can

be integrated with multiple CMG approaches simultaneously

and whether the idea behind QAcom can be used to devise

a better CMG approach by intelligently combining several

existing CMG approaches.
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