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Abstract—Plot-based Graphic API recommendation
(Plot2API) is an unstudied but meaningful issue, which
has several important applications in the context of software
engineering and data visualization, such as the plotting guidance
of the beginner, graphic API correlation analysis, and code
conversion for plotting. Plot2API is a very challenging task,
since each plot is often associated with multiple APIs and the
appearances of the graphics drawn by the same API can be
extremely varied due to the different settings of the parameters.
Additionally, the samples of different APIs also suffer from
extremely imbalanced.

Considering the lack of technologies in Plot2API, we present
a novel deep multi-task learning approach named Semantic
Parsing Guided Neural Network (SPGNN) which translates
the Plot2API issue as a multi-label image classification and
an image semantic parsing tasks for the solution. In SPGNN,
the recently advanced Convolutional Neural Network (CNN)
named EfficientNet is employed as the backbone network for
API recommendation. Meanwhile, a semantic parsing module is
complemented to exploit the semantic relevant visual information
in feature learning and eliminate the appearance-relevant visual
information which may confuse the visual-information-based
API recommendation. Moreover, the recent data augmentation
technique named random erasing is also applied for alleviating
the imbalance of API categories.

We collect plots with the graphic APIs used to drawn them
from Stack Overflow, and release three new Plot2API datasets
corresponding to the graphic APIs of R and Python programming
languages for evaluating the effectiveness of Plot2API techniques.
Extensive experimental results not only demonstrate the superi-
ority of our method over the recent deep learning baselines but
also show the practicability of our method in the recommendation
of graphic APIs.

Index Terms—API Recommendation, Data Visualization, Im-
age Recognition

I. INTRODUCTION

Figures and plots are the indispensable tools for data visu-

alization which provide people with intuitive understanding

of data and interaction with data. In software engineering,

almost all the programming languages support such functions

and possess a series of relevant APIs as one of core libraries

or packages. It is very common for the software developer

particularly the beginner to search API on the web based on

∗Corresponding authors.†also with Pengcheng Laboratory, Shenzhen, China.

Fig. 1. The help post about Plot2API in Stack Overflow from link:
https://stackoverflow.com/questions/12786334/how-to-plot-in-r-like-this

a case figure for guiding the plot. Figure 1 shows a help post

where a developer asks how to draw a figure like the one posts

in Stack Overflow. What’s more, people might want to know

the APIs starting from a plot, such as imitating visualization

styles. In agile development, developers often sufficiently

utilize the materials of previous projects for speeding up the

development, thereby they expect to convert the figures plotted

in one language into APIs of the other directly to reduce the

time cost. In these scenarios, a tool that can automatically

recommend graphic APIs based on a plot can provide guidance

for developers and improve their productivity. Therefore, how

to identify API based on Plot (Plot2API) is a meaningful task

in software engineering and data visualization.

Plot2API can be deemed as a plot-based API recommen-

dation task, since the set of APIs regards to a programming

language is fixed and a plot is often drawn by multiple

APIs. API recommendation is not a new issue now in soft-

ware engineering and many researchers have worked in this

direction [1]–[6]. However, these existing works are quite
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Fig. 2. Examples of data graphics with APIs.

different to the Plot2API since they accomplished the API

recommendation tasks based on the source code or textual

descriptions. It is not convenient to first convert a plot into

textural descriptions or code and then accomplish the task

in text to text manner, since the translation of the plot to

the code or the textual description leads to the unnecessary

time cost and the misinterpretation risk which may target the

question to the wrong answer. Instead, the plot-based API

recommendation provides an image to text solution which is

more intuitional, convenient, and efficient. Nevertheless, to the

best of our knowledge, the Plot2API issue remains unstudied.

Although the Plot2API issue can be deemed as a common

multi-label image classification, it is very challenging due

to the extremely varied appearances of the plots drawn by

the same API and the unnoticed visualization functions of

some subsidiary APIs. Moreover, the APIs also suffer from a

serious imbalance which is also a fatal limitation for Plot2API.

Figure 2 gives some of such examples in the R programming

language.

In the recent decade, the Convolutional Neural Networks

(CNN) have achieved a significant advance in supervised

learning particularly in image classification [7]–[11]. They

are proficient in learning the discriminative features for im-

ages. Here, we leverage a recently advanced CNN model

named EfficientNet [7] as the backbone network to develop

a novel end-to-end trainable deep learning approach named

Semantic Parsing Guided Neural Network (SPGNN) for filling

the aforementioned missing technology. SPGNN introduces

an extra semantic parsing module to the EfficientNet which

considers the Plot2API issue as a multi-task learning problem

for the solution. Besides the conventional EfficientNet-based

plot classification flow path, SPGNN extra employs a semantic

translation network to translate the visual features of a plot

learned from EfficientNet into the semantic representations

of APIs and then uses a relation network to compare these

estimated semantics with their ground truth for accomplishing

the task from the perspective of semantic parsing. By fully

exploiting the semantics of APIs, the semantic parsing module

facilitates the EfficientNet to better learn the semantic relevant

visual features which are more robust to the appearance

variation caused by the different parameter settings of the same

API. In order to alleviate the sample distribution imbalance of

APIs, the random erasing trick is applied to the plots for gen-

erating more training data for each category. We release three

Plot2API datasets which are collected from Stack Overflow

and are carefully preprocessed for evaluating our work. The

experimental results show that SPGNN consistently performs

better than EfficientNet with a considerable improvement and

defeats all deep learning baselines on all datasets.

The main contributions of our work are summarized as

follows:

• A novel software engineering task named Plot2API is

introduced, which attempts to recommend the graphic APIs

based on the plots. Plot2API has many potential and mean-

ingful applications in software engineering.

• A novel deep learning method named Semantic Parsing

Guided Neural Network (SPGNN) for tackling the Plot2API

task is proposed. SPGNN translates this task into the multi-

label image classification and the semantic parsing tasks for

the solution. The semantic parsing is expected to facilitate

EfficientNet to extract deep features that are more robust to

appearance variation and thereby supports the plot-based API

recommendation.

• Three novel Plot2API datasets, namely Python-Plot13, R-

Plot32 and R-Plot14, are released for evaluation.

• An empirical comparison of classical CNN models on

Plot2API is conducted and extensive experimental results on

the released datasets demonstrate the superiority of our method

over the recent deep learning baselines and its significant

improvement over EfficientNet.

II. APPROACH

In this section, we first introduce the Plot2API issue and

then elaborate on our proposed method named Semantic

Parsing Guided Neural Network (SPGNN).

A. Overview

Problem Formulation: In this paper, we formulate a new

problem in software engineering named Plot2API which stud-

ies how to recommend the graphic APIs from plots or figures.

According to the facts that each plot may be drawn by multiple

APIs and the set of graphic APIs regarding to a programming

language is fixed, Plot2API can be deemed as a multi-label im-

age classification task. Let X = {xi|i = 1, 2, . . . , n} ∈ Rn×d
be the collection of figures and Y = {yi|i = 1, 2, . . . , n} ∈
Rn×c be the corresponding labels where xi is the i-th plot and

its label yi is a binary vector. n, d, and c are the number of

samples, the dimension, and the number of APIs respectively.

The Plot2API technique aims at learning a mapping function

F (·) to map the plots to the labels, i.e.,

X
F (·)→ Y, (1)

where yi = F (xi). In multi-label image classification, such

mapping function is often further divided into two steps,

F (·) := Pω(Eφ(·)) where E(·) and P (·) are the feature

learning and API recommendation respectively. φ and ω are

their learnable parameters.

We consider Plot2API as a multi-label image classification

issue for the solution. The recently advanced CNN model

is adopted as the backbone of the framework. However,

459



Fig. 3. The overview of our method. The input data graphics xi are sent to the feature learning network to extract the visual features fi, and then generating
the predicted API labels ŷi in API recommendation network and generating the semantic information v̂i in semantic translation network. The real semantic
information is produced by word2vec. After concatenating the semantic vectors, these features are sent to the semantic metric network to evaluate the relational
reasoning. The relation is stronger, the output of relation network ri is more approximate to 1. And then, the ŷi and ri are used to recommend APIs in API
recommendation network.

Plot2API is quite different from the original object-based

image classification where the samples from the same cate-

gory often share similar visual appearances. The appearances

of the figures drawn by the same API often suffer from

the extreme variation since different parameter settings can

seriously perplex the plot-based API recommendation, as

shown in Figure 2. To overcome this challenge, we intend

to utilize the semantics of APIs to guide the feature learn-

ing and preserve the semantic relevant visual information

which reflects the semantic nature of appearances. Instead

of considering the issue as a single-task learning problem,

we present a novel deep learning method named Semantic

Parsing Guided Neural Network (SPGNN) and regard this

issue as a multi-task learning problem for the solution. The

merit of this fashion is that relevant tasks can benefit from the

solution of each other due to the information complementary.

SPGNN contains two relevant tasks namely plot-based API

recommendation and plot-based semantic parsing. The plot-

based API recommendation is the main task while the plot-

based semantic parsing is extra introduced for extracting the

semantics of APIs from plots. More specifically, SPGNN

consists of feature learning, API recommendation, semantic

translation and semantic metric modules. The feature learning

and API recommendation modules compose the flow path of

plot-based API recommendation while the feature learning,

semantic translation and semantic metric modules compose the

flow path of plot-based semantic parsing, as shown in Figure 3.

The following subsections give the details of these modules.

B. Feature Learning

In the recent decade, CNN is deemed as the most influential

machine learning technique for visual feature learning. Here,

we also adopt CNN as the feature learning module. Here,

we choose a very recent CNN model named EfficientNet-

B3 [7] as the feature learning network by considering the

trade off between the performance and the efficiency. The

empirical study in Section III also indicates that it is the

best performed CNN model for Plot2API. We use the feature

extraction network as the mapping function of our feature

learning module, which can be denoted as follows,

fi = Eφ(xi), (2)

where the visual feature fi is the pooling result of the last

convolutional layer’s output.

C. Semantic Translation

The feature learning is the key to the success of the

supervised learning model. The single-task learning schema

is easy to fall into the overfitting due to the single view of

optimization. Here we integrate the semantic parsing module

with the aforementioned CNN-based API recommendation

flow path and convert such a single task learning issue into a

two-task learning issue. The semantic parsing module utilizes

a semantic translation network, which consists of one fully

connected layer followed by a ReLU layer, to translate the

visual feature learned by CNNs into the semantic representa-

tion of APIs. Here, we employ the Wikipedia dataset retrained

word2vec [12], [13] to attain the ground truth semantic rep-

resentation of each API, Vi = [vi1, · · · , vit, · · · , vic] where

vit is a 400-dimensional word embedding corresponding to

the t-th API and regarding to the i-th sample. The semantic

translation can be denoted as follows,

V̂i = Tψ(fi), (3)

where T (·) is the mapping function of the semantic translation

network with parameters ψ, and V̂i = [v̂i1, · · · , v̂ic] is the

translated semantics of all APIs corresponding to sample xi.

D. Semantic Metric

By applying the idea of learning to compare [14], we

establish a relation network for judging if the translated

semantics are identical to the ground truth,

si = Rϑ(Vi, V̂i), (4)
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where si is a c-dimensional semantic relation vector whose j-
th element sji encodes the semantic relation score between Vi
and V̂i. R(·) is the mapping function of the relation network

with parameters ϑ which consists of two fully connected

layers followed by ReLU layers. For supervising the semantic

translation network to extract the true semantics of APIs, the

semantic relation scores should be higher if the corresponding

APIs exist in the given figure, and vice versa. We employ

the sigmoid function σ(·) to normalized the semantic relation

scores, ri = σ(si), and consider the normalized ones as the oc-

currence probabilities of APIs in semantics. Then, the above-

mentioned target can be reached by measuring the distribution

difference between the normalized semantic relation scores

and the labels based on the cross-entropy again,

Lsem = −
N∑

i=1

c∑

j=1

yji log(r
j
i ) + (1− yji ) log(1− rji ). (5)

By optimizing this loss, the normalized semantic relation score

is expected to be 1 or 0 when the figure is not drawn by the

corresponding API. Finally, if we rank APIs according to the

relation scores, we can obtain a list of API semantics of a plot

and then accomplish the plot-based semantic parsing task.

E. API Recommendation

A one-layer fully connected neural network is leveraged

to map the extracted feature fi into a c-dimensional binary

label vector. The API recommendation module is denoted as

follows,
ŷi = Pω(fi), (6)

where P (·) is the mapping of the neural network with param-

eters ω, and ŷi is a c-dimensional predicted label vector whose

elements are essentially the estimated occurrence probabilities

of the corresponding APIs. In the API recommendation task,

we expect to keep the predicted labels be consistent with the

ground truth, therefore we adopt the cross-entropy function

for measuring such label consistency and denote the label

recommendation loss as follows,

Lvis = −
N∑

i=1

c∑

j=1

yji log(ŷ
j
i ) + (1− yji ) log(1− ŷji ), (7)

where yji and ŷji ∈ [0, 1] are the label and the predicted

occurrence probability of the j-th API for the i-th sample,

and N is the number of samples. Conventionally, for each

sample, the graphic APIs are sorted according to ŷi and then

output as the recommendation.

We formulate the model of SPGNN which tackles both the

plot-based API recommendation and the plot-based semantic

parsing tasks via integrating their losses in Equation 5 and 7,

F̂ ← arg min
φ,ψ,ϑ,ω

L := Lvis + α× Lsem, (8)

where F̂ is the trained model and α is a manually tunable

positive hyper-parameter for reconciling the losses. After ad-

justing α, we can obtain the trained model.

F. Data Augmentation and API Recommendation

However, there is a problem that we cannot overlook, that

the Plot2API data are extremely imbalanced due to the usage

frequency of different APIs. Such imbalance can easily corrupt

the supervised learning model. Data augmentation is one of

the commonest means for alleviating such problem and also

a practical way for avoiding the overfitting. Here, we adopt

the random horizontal flips and the very recently proposed

data augmentation approach named random erasing [15] for

enriching the training data of each API. Please note that the

semantic parsing module is deemed as a booster, and after

the SPGNN model is trained, we only preserve the plot-based

API recommendation flow path for API recommendations.

Specifically, in testing phase, a plot or figure xt is input into

the feature learning module and then the extracted feature

is fed into the API recommendation module for getting its

estimated API occurrence probabilities,

ŷt = Pω(Eφ(xt)). (9)

Finally, the recommended graphic APIs which are corre-

sponding to the top k-highest occurrence probabilities are

recommended to this plot.

III. EXPERIMENTAL SETUP

In this section, we first present the three datasets newly

released by us. Then, we introduce the evaluation metrics, the

implementation details and baselines.

A. Datasets

To construct datasets for this problem, we first downloaded

the Stack Overflow Data Dump of March 2018. Next, we

extracted the Python-related and R-related threads from the

data dump according to the tags of each thread. Each thread

contains a question post and zero or more answer posts.

We choose Python and R because they are two popular

programming languages and are frequently used for plotting.

We further processed the extracted threads, and only kept

their posts which are answer posts and contain both image

URLs and code. Then, we crawled the images in each answer

post from thousands of websites. What’s more, the crawled

images and extracted code in each post are associated with

each other and manually verified by us. The image-code pairs

of which the image and code are not matched, the image is not

a visualization plot and the code is not Python or R code were

removed by us. Finally, we classified the dataset relying on the

APIs used in code. To avoid missing and incorrect labels, the

labels of each image are manually checked and adjusted by

us too.

1) Python-Plot13 Dataset1: We present a novel Python-

based Plot2API dataset named Python-Plot13 dataset. It con-

sists of 6350 python-related plot instances in total and involves

13 APIs, namely bar, barh, boxplot, broken barh, errorbar,

hist, pie, plot, polar, scatter, stackplot, stem and step. We

utilize 5080 samples for training and the rest of 1270 for

testing. The data distribution of the Python-Plot13 dataset is

shown in Figure 4. From the figure, it is not hard to find that

the data are extremely imbalanced. For example, the API plot()
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Fig. 4. The data distribution of the Python-Plot13 dataset.

TABLE I
THE DATA DISTRIBUTION OF THE R-PLOT32 DATASET.

API # API # API # API #
bar 2111 bin2d 12 density 205 density 2d 4
map 90 jitter 105 boxplot 638 quantile 4
rug 20 smooth 395 segment 385 contour 21
hex 20 curve 8 dotplot 40 errorbar 335
step 38 line 2312 freqpoly 10 errorbarh 39
sf 16 spoke 4 crossbar 14 linerange 49

path 232 violin 46 polygon 303 pointrange 49
point 3665 raster 73 ribbon 223 histogram 387

possesses more than 4000 instances while broken barh() only

has 10 instances. Clearly, such imbalance makes the Plot2API

very challenging.

2) R-Plot32 Dataset1: The R programming language is

regarded as an influential statistical computing language that

owns fruitful graphic APIs. Hence, we also propose a new R-

based Plot2API dataset named R-Plot32 dataset. The R-Plot32

dataset contains 9114 images where 7292 for training and 1822

for testing. The R-Plot32 involves 32 graphic APIs, namely

bar, bin2d, boxplot, contour, crossbar, curve, density, den-

sity 2d, dotplot, errorbar, errorbarh, freqpoly, hex, histogram,

jitter, line, linerange, map, path, point, pointrange, polygon,

quantile, raster, ribbon, rug, segment, sf, smooth, spoke, step

and violin. The number of samples for each API is tabulated

in Table I. Similar to the Python-Plot13 dataset, this dataset

also suffers from the extreme imbalance of data. Moreover, it

is larger and possesses more categories which makes it more

challenging than the Python-Plot13 dataset.

3) R-Plot14 Dataset1: As we can see in Table I, some API

functions are used by few images. For example, density 2d(),

spoke() and quantile() classes only have four images in R-

Plot32. These functions are used to draw 2D density, direc-

tional data points and percentile ratio of total respectively.

Besides them, there are some APIs which are rarely used, such

as rug(), step(), sf(), curve(), dotplot(), freqpoly(), bin2d(),

crossbar() and so on. Hence, we removed these classes from

R-Plot32 dataset and construct a reduced version of R-Plot32

named R-Plot14. In addition, there are some APIs belonging

to the same super class, such as bar(), errorbar(), errorbarh()

and segment(), point(), jitter() and pointrange(), line(), path()

and linerange(), which are also removed in R-Plot14. As

a supplement dataset, R-Plot14 remove 502 samples(about

5.51%) from the original 9114 samples, and contains 8612

graphics where 6890 for training and 1722 for testing. The R-

Plot14 dataset involves 14 graphic APIs, namely bar, boxplot,

contour, density, hex, histogram, line, map, point, polygon,

raster, ribbon, smooth, and violin, which have the same images

with R-Plot32.

4) Data Split Protocol: We randomly select around 80%

of the data to produce the training set while the rest is used

as the testing set. In the data split, we ensure that the testing

set at least contains one instance for each API.

B. Evaluation Metrics

We employ Average Precision (AP) as the performance

metric for evaluating the recommendation performance for

each API. And the AP is essentially the area under the

Precision-Recall (P-R) curve which is a popular metric for

evaluating the binary classification performances. The mean

Average Precision (mAP), known as the mean of APs over all

classes, is adopted as a comprehensive metric for evaluating

the API-recommendation performance of different methods.

The mAP is also known as the commonest metric for multi-

label image classification.

C. Implementation Details

We here choose the EfficientNet-B3 [7] as our backbone

for the trade off between performance and efficiency. Like

other deep learning baselines, our backbone network is also

pre-trained on ImageNet [16]. The feature learning module

is built from successive MBConv [17], [18] and convolution

layers. After these layers, there is a global average pooling

layer. Before being fed into the network, the data graphics

will be resized to 300 × 300. And the dimension of the

learned visual feature is 1536. Please refer to the original

paper [7] for the detailed architecture of EfficientNet-B3. We

adopt word2vec [13] trained on the Wikipedia dataset [12]

to generate the 400-dimensional semantic representations of

APIs (word embeddings) for all datasets. Note, the word2vec

is retrained, since there is a word (“histogram”) not included

in the Wikipedia dataset. With regard to the case that an API

contains multiple words, we average the embeddings of the

words as the API’s semantic representation. The semantic

translation network and API recommendation network all

consist of just one fully connected layer while the relation

network is a neural network with two fully connected layers,

whose hidden layer is 256.

We train the proposed model using an Adam optimizer [19]

with the batch size of 32 and momentum of 0.99. ReLU is used

as the activation function in all the fully connected layers. The

network is trained for 100 epochs in total. We implement the

network based on PyTorch.

1The datasets and the source code are publicly available at
https://github.com/cqu-isse/Plot2API.
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TABLE II
THE PERFORMANCE COMPARISON ON ALL DATASETS.

mAP

Datasets
Python-Plot13 R-Plot32 R-Plot14

VGG-16 67.46 38.39 66.08

VGG-16 + DA 64.10 40.84 67.96

ResNet-50 56.33 29.64 55.81

ResNet-50 + DA 55.95 29.81 56.53

Inception-v1 52.92 26.06 51.84

Inception-v1 + DA 54.93 32.59 53.41

EfficientNet-B3 68.51 44.61 70.75

EfficientNet-B3 + DA 69.33 44.46 71.29

SPGNN 71.16 45.63 71.84

SPGNN + DA 75.95 47.76 75.13

D. Baselines

VGG-16 [9], ResNet-50 [20], Inception-V1 [8], and

EfficientNet-B3 [7] are deemed as representative deep learning

approaches for image classification and are regarded as the

baseline methods. The main contribution of VGGNet is the

increased depth with very small convolution filters [9]. ResNet

utilized a residual network, which is easy to optimize, to im-

prove the accuracy from considerably increased depth [20]. To

improve the utilization of the computing resources, Inception

was proposed as a sparse structure by readily available dense

building blocks to improve neural networks for computer

vision [8]. EfficientNet balanced network depth, width, and

resolution to lead a better performance than other CNNs [7].

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate our

proposed model on three datasets. Then, we carry out ablation

studies to evaluate the effectiveness of the proposed module

in SPGNN. The goal of experimental results shown in this

section is to answer the following questions:

• RQ1: How effective is SPGNN for API recommendation?

• RQ2: How well do our SPGNN model perform after

combining the semantic parsing module and the random

erasing-based data augmentation?

• RQ3: How well do our SPGNN model perform when

training and testing across different programming languages?

A. RQ1: How effective is SPGNN for API recommendation?

We compare SPGNN with four well-known image classi-

fication approaches, including VGG-16 [9], ResNet-50 [20],

Inception-V1 [8], and EfficientNet-B3 [7] on our datasets.

Table II tabulates the mAP of different methods on different

datasets. Tables III, IV and V report the AP of each API on

Python-Plot13, R-Plot32 and R-Plot14 datasets respectively.

Clearly, EfficientNet-B3 significantly outperforms VGG-16,

ResNet-50 and Inception-V1 on all datasets. Therefore, we

choose the EfficientNet-B3 as our backbone. From obser-

vations, it is not hard to find that our proposed model

consistently performs much better than state-of-the-art CNN

approaches and achieves considerable mAP improvement over

EfficientNet-B3 which is our baseline on all datasets. Here, we

will present the detail experimental analysis individually.

1) Results on Python-Plot13 dataset: SPGNN and

SPGNN+DA respectively achieve 71.76% and 75.95% mAP

and perform the best in comparison with all baselines. The

performance gains of SPGNN+DA over VGG-16, ResNet-50,

Inception-V1 and EfficientNet-B3 in mAP are 8.49%, 19.62%,

23.03% and 7.44% respectively. After introducing the same

data augmentation to these four baselines, our method still

demonstrates the significant advantages over these methods

and the performances gains are 11.85%, 20.00%, 21.02% and

6.62% respectively. Moreover, it also worthwhile to point out

DA is not always work for all CNNs. For examples, VGG-16

and ResNet-50 with DA are performs much worse than their

original versions on Python-Plot14 dataset.

According to Table III, our model also gets the first on

the API recommendations of barh(), broken barh(), errorbar(),

pie(), plot(), stackplot() and step() APIs among all 13 APIs.

Particularly, our model gets 100% AP in broken barh() predic-

tion where such numbers of VGG-16, ResNet-50, Inception-

V1 and EfficientNet-B3 are only 50.29%, 0.58%, 4.61% and

1.72% respectively. In bar(), boxplot(), scatter() and stem(),

the performance of our model is very close to the first one.

More than half of APIs get over 80% AP via our model.

This implies that SPGNN possesses the good potential for

Python graphic API recommendation in reality. Moreover,

the experimental results demonstrate that the random erasing-

based data augmentation improves SPGNN by the mAP of

4.79% and makes SPGNN become more balanced cross all

APIs. We attribute these to the fact that the random erasing-

based data augmentation enriches the appearances of plots and

mitigates the overfitting of the proposed model.

All the methods do not perform well on the API recom-

mendation of barh(), errorbar(), polar(), stem() and step().

The reason behind this phenomenon we believe is that the

appearances of the plots drawn by barh() and errorbar() are

extremely similar, since barh() and errorbar() are both variants

of bar(), while the figures drawn by polar() have the similar

appearance with pie(), which both contain the circle element.

The graphics plotted by step() share the similar feature with

bar() and the plots drawn by stem() have the visual features

of point() and line(). What’s more, the number of step() and

stem() is only 42 and 31 in the dataset, which limits the

learning power of CNNs to a certain extent. Even so, by

incorporating the semantic information of APIs, SPGNN still

significantly improves the performance of the recommendation

of these APIs.

2) Results on R-Plot32 dataset: The R-Plot32 dataset is a

more challenging dataset with more samples and more APIs.

Our method still performs the best. The gains of SPGNN over

VGG-16, ResNet-50, Inception-V1 and EfficientNet-B3 in

mAP are 7.24%, 15.99%, 19.57% and 1.02% respectively and

such numbers of SPGNN+DA are 9.37%, 18.12%, 21.70% and

3.15%. The improvements of SPGNN+DA over baselines+DA

are 6.92%, 17.95%, 15.17% and 3.30%. Moreover, our method

also achieves the first rank 18 times among 32 APIs.

According to the results, many similar phenomena on the

Python-Plot13 dataset are also observed on the R-Plot32
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TABLE III
THE PERFORMANCE COMPARISON ON THE PYTHON-PLOT13 DATASET (THE AP FOR EACH CATEGORY WHILE THE MAP FOR ALL, THE BOLD NUMBER

INDICATES THE BEST PERFORMANCE AND DA = RANDOM ERASING-BASED DATA AUGMENTATION ).

Methods mAP bar barh boxplot broken barh errorbar hist pie plot polar scatter stackplot stem step
VGG-16 67.46 85.02 45.33 95.11 50.29 55.29 71.62 91.16 92.97 66.11 80.39 55.80 66.90 20.98

VGG-16 + DA 64.10 85.72 46.57 96.10 6.87 56.44 71.45 91.69 93.61 73.65 77.66 66.79 25.33 41.50
ResNet-50 56.33 79.04 44.33 84.56 0.58 24.13 55.63 98.66 92.66 70.41 74.76 38.36 34.56 34.66

ResNet-50 + DA 55.95 80.29 47.59 89.49 1.30 24.72 54.17 99.36 92.89 70.33 76.01 40.32 35.22 15.63
Inception-V1 52.92 82.91 42.77 90.41 4.61 17.59 56.17 100.00 90.47 55.68 74.79 50.11 6.56 15.91

Inception-V1 + DA 54.93 83.64 42.66 88.49 1.41 17.46 62.87 96.10 91.67 67.42 75.01 47.98 21.06 18.34
EfficientNet-B3 68.51 87.67 53.36 97.82 1.72 58.66 78.47 100.00 93.53 68.00 77.82 74.36 66.75 32.48

EfficientNet-B3 + DA 69.33 88.53 49.02 97.91 75.00 55.88 65.52 100.00 92.87 82.23 79.13 47.39 33.63 34.19
SPGNN 71.16 86.57 54.68 95.85 4.32 71.98 73.50 100.00 94.00 79.29 79.12 75.76 66.85 43.15

SPGNN + DA 75.95 86.15 56.76 96.72 100.00 55.71 77.50 93.41 94.08 62.93 80.37 80.95 66.81 35.97

TABLE IV
THE PERFORMANCE COMPARISON ON THE R-PLOT32 DATASET (THE AP FOR EACH CATEGORY WHILE THE MAP FOR ALL, THE BOLD NUMBER

INDICATES THE BEST PERFORMANCE AND DA = RANDOM ERASING-BASED DATA AUGMENTATION).

Methods mAP bar bin2d boxplot contour crossbar curve density density 2d dotplot errorbar errorbarh freqpoly hex histogram jitter line
VGG-16 38.39 92.09 7.22 92.14 31.48 0.69 33.78 79.05 100.00 17.89 65.73 46.44 0.72 42.20 50.88 10.24 83.80

VGG-16 + DA 40.84 93.96 8.22 91.43 12.92 3.42 0.46 82.17 0.28 30.59 75.26 56.52 0.32 43.49 63.33 15.25 87.31
ResNet-50 29.64 92.31 0.80 83.25 14.94 5.79 5.12 69.49 0.44 11.57 39.05 41.09 0.79 41.16 41.35 13.63 79.73

ResNet-50 + DA 29.81 92.05 1.71 83.37 12.84 4.01 4.46 71.83 0.69 12.75 40.66 53.58 0.66 26.10 44.13 12.72 79.91
Inception-V1 26.06 90.80 1.24 86.61 0.79 0.42 0.84 56.00 2.63 1.58 35.48 15.79 0.41 67.33 46.21 6.01 80.38

Inception-V1 + DA 32.59 92.96 4.26 89.36 1.91 17.04 0.33 69.66 100.00 1.73 51.69 26.44 0.16 34.40 50.89 7.58 81.21
EfficientNet-B3 44.61 94.82 29.08 92.55 6.39 1.85 13.61 87.66 100.00 50.07 71.56 49.74 0.72 47.89 69.99 19.68 87.54

EfficientNet-B3 + DA 44.46 95.38 31.94 92.86 12.40 0.36 17.23 92.00 3.33 32.44 71.14 54.44 5.15 35.37 67.10 34.03 87.02
SPGNN 45.63 92.55 2.00 94.10 10.67 2.63 34.19 85.69 100.00 51.66 77.56 47.02 2.74 64.65 63.32 13.26 87.95

SPGNN + DA 47.76 95.96 4.01 91.74 8.83 1.32 34.49 88.69 100.00 47.61 75.36 41.49 0.31 68.55 69.57 26.71 86.43

Methods map path point pointrange polygon quantile raster ribbon rug segment sf smooth spoke step violin linerange -
VGG-16 34.55 12.96 94.68 31.05 44.09 0.35 41.97 40.16 18.09 15.88 10.07 42.14 0.31 34.42 26.97 26.45 -

VGG-16 + DA 37.60 20.70 93.68 61.31 43.70 0.20 45.63 42.03 19.93 20.43 10.16 49.06 0.39 35.66 31.24 16.94 -
ResNet-50 48.33 18.81 87.94 19.59 43.14 0.32 47.27 27.41 9.09 9.18 13.66 39.53 0.31 28.92 11.28 3.29 -

ResNet-50 + DA 37.82 19.02 88.28 22.37 44.47 0.36 42.76 28.13 8.28 9.16 8.40 39.42 0.28 22.15 11.08 2.51 -
Inception-V1 31.77 9.05 89.83 32.07 42.32 0.25 8.52 41.08 0.50 11.46 3.83 37.11 0.11 20.61 7.98 5.00 -

Inception-V1 + DA 44.70 8.66 89.92 43.96 43.29 0.22 38.93 39.22 3.69 15.44 0.53 37.28 0.21 37.85 7.41 1.85 -
EfficientNet-B3 49.80 29.90 94.54 41.42 47.68 0.08 60.25 64.86 31.41 26.77 2.86 50.70 6.82 26.90 40.36 30.02 -

EfficientNet-B3 + DA 48.90 26.66 95.46 48.76 56.90 0.34 50.93 59.81 29.15 26.81 1.17 50.76 70.00 43.18 51.47 30.17 -
SPGNN 40.61 22.18 94.84 79.04 42.72 0.17 49.02 63.89 27.03 26.92 0.80 52.29 0.46 31.40 57.21 41.71 -

SPGNN +DA 60.50 23.40 95.13 64.05 58.65 0.20 48.88 65.57 44.15 23.96 7.06 50.97 0.94 38.11 60.08 45.73 -

TABLE V
THE PERFORMANCE COMPARISON ON THE R-PLOT14 DATASET(THE AP FOR EACH CATEGORY WHILE THE MAP FOR ALL, THE BOLD NUMBER

INDICATES THE BEST PERFORMANCE AND DA = RANDOM ERASING-BASED DATA AUGMENTATION).

Methods mAP bar boxplot contour density hex histogram line map point polygon raster ribbon smooth violin
VGG-16 66.08 95.09 93.10 33.26 81.24 59.19 59.10 88.98 43.24 95.02 52.35 60.62 36.28 52.16 75.46

VGG-16 + DA 67.96 93.93 94.42 23.82 78.75 53.28 70.69 88.03 45.15 94.61 48.39 69.73 43.02 58.57 89.08
ResNet-50 55.81 91.57 88.32 20.97 71.17 38.48 51.85 83.77 47.41 90.66 45.23 34.48 25.57 50.59 41.32

ResNet-50 + DA 56.53 91.49 89.33 22.93 71.35 41.76 50.79 83.48 46.66 90.54 45.29 37.50 26.74 50.71 42.79
Inception-V1 51.84 93.54 86.20 20.01 57.59 32.64 57.72 79.96 30.34 92.24 30.88 25.96 29.25 45.09 44.29

Inception-V1 + DA 53.41 93.28 90.14 32.89 54.12 18.29 56.70 83.89 32.11 93.20 39.08 28.60 35.01 51.24 39.19
EfficientNet-B3 70.75 96.23 97.28 23.29 84.52 76.86 74.93 90.17 54.83 95.56 56.00 62.84 42.31 60.35 75.37

EfficientNet-B3 + DA 71.29 93.81 97.78 25.37 83.30 39.49 81.64 91.85 53.99 95.98 55.64 70.79 51.81 61.88 94.76
SPGNN 71.84 95.83 97.03 29.36 87.61 63.58 79.39 90.27 52.91 95.52 59.66 63.08 46.68 67.56 77.24

SPGNN + DA 75.13 95.04 96.61 39.87 84.20 75.09 80.55 90.42 51.37 95.81 54.96 75.79 55.05 69.41 87.72

dataset. Here, we will not give the same conclusions intro-

duced in the previous section and only focus on analyzing

the phenomena specific to the R-Plot32 dataset. The most

obvious phenomenon is that almost all methods fail on the

recommendation of some APIs, such as bin2d(), contour(),

crossbar(), freqpoly(), qunatitle(), sf() and spoke(). We believe

the reason behind this is the small training size of these APIs

limits the learning power of CNN. For example, sf(), spoke()

and qunatitle() only have 4 samples in total. Additionally,

the figures or shape appearances drawn by the subsidiary

APIs, such as contour() and spoke(), often highly relate to the

appearances of the main objects in the plot or only cover a

tiny fraction of the figure which is hard to be visually noticed.

It is also difficult to distinguish the figures drawn by APIs like

bin2d() and crossbar(), since some other APIs can draw very

similar figures. For example, the figure drawn by bin2d() can

be easily identified as a rectangle, and there are many graphic

APIs in R, such as bar() and line(), can draw the rectangle-like

shapes.

Although our method performs fairly well on some fre-

quently used APIs, such as line(), point() and bar(), there

exists a large gap between the Python-Plot13 and the R-Plot32

datasets in terms of the overall performance measured by mAP.

The main reason of such low mAP we believe is the lack of

sufficient training data for some APIs. Hence, we have also

conducted several experiments on a reduced version of the

R-Plot32 dataset, namely R-Plot14, for validating the effects

of our methods in the case that each API contains enough

training data.

3) Results on R-Plot14 dataset: The results on R-Plot14

are shown in Table V. We find in surprise that all methods’

performance is significantly boosted on the R-Plot14 dataset,

which removed the similar APIs and the classes with few

graphics. Since the classes have obvious distinguishing fea-

tures, our model demonstrates a better performance (+27.37%)

on R-Plot14 compared with R-Plot32, which is very similar

to that of the Python-Plot13 dataset. This phenomenon reflects

the application possibility of our method on R programming
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(a) Python graphic example

(b) R graphic example

Fig. 5. The Python and R graphic API recommendation examples. The top-3
APIs recommended by EfficientNet and our method via giving the Python or
R based plots. The green ones are the correct APIs while the red ones are the
wrong API.

language in the future.

As we can see from Table V, the performance of most APIs

is boosted compared with the R-Plot32 dataset. SPGNN+DA

gets 75.13% in mAP, which is 9.05%, 19.32%, 23.29% and

4.38% higher than VGG-16, ResNet-50, Inception-V1, and

EfficientNet-B3, and also gets a better performance than

baselines+DA about 7.17%, 18.60%, 21.72% and 3.84%.

Specifically, among 14 APIs, our approach achieves the best

API recommendation performance on contour(), density(),

polygon(), raster(), ribbon(), and smooth(). As for the other

APIs, EfficientNet-B3 achieves the best performance, but our

model has the little gap with it.

The performance of contour() is not good among all the

methods on the API recommendation because there are only

24 samples in total, but our model still performs best via all

the methods. After getting more training data, we believe that

the performance will be better. It is also worthwhile to point

out that data augmentation trick significantly improves the

recommendation performance of contour(). This implies that

the random erasing-based data augmentation indeed alleviate

the imbalance of sample across the categories, particulary

can benefit the recommendation of API which owns limited

Fig. 6. The influence of hyper-parameter α to the performance of SPGNN
(in mAP).

samples.

4) Some Successful Plot2API Examples of SPGNN: Fig-

ure 5 shows two cases that our method obtains a better API

recommendation over EfficientNet on Python and R plots.

In Figure 5(a), SPGNN gets the right python API label as

the first recommendation with the confidence of 0.97 while

EfficientNet fails. Figure 5(b) indicates that SPGNN finds all

three correct R graphic APIs while EfficientNet misses the

line().

Result 1: The SPGNN outperforms the state-of-the-
art baselines VGG-16, ResNet-50, Inception-v1 and
EfficientNet-B3 substantially on the respect of API recom-
mendation. The results reflect that our model is effective
and can be used to assist developers in plotting.

B. RQ2: How well do our SPGNN model perform after com-
bining the semantic parsing module and the random erasing-
based data augmentation?

The EfficientNet-B3 can be deemed as the plain version

of SPGNN without the semantic parsing. From the observa-

tions in Table III, IV and V, SPGNN are consistently better

than EfficientNet-B3 on all three datasets. More specifically,

the mAP improvements of SPGNN over EfficientNet-B3 are

2.65%, 1.02% and 1.09% on Python-Plot13, R-Plot32 and

R-Plot14 datasets respectively. Moreover, these observations

also demonstrate the considerable improvement of the off-

the-shelf data augmentation trick on SPGNN. As we can see

from Table III, IV and V, the performance of SPGNN+DA are

4.79%, 2.13% and 3.29% higher than SPGNN.

SPGNN only involves one manually tunable parameter α,

which is used to reconcile the optimization of the involved two

tasks. A greater α means to pay more attention on the solution

of the semantic parsing task. Figure 6 shows the impacts of

different α on the performance of SPGNN. According to the

results, the best α is 1, 10 and 1 on Python-Plot13, R-Plot32

and R-Plot14 datasets respectively, which means the visual

features and semantic features have the similar weight in our

model.

Result 2: The semantic parsing and data augmentation
modules are two important parts of our model. After
composing these two tricks, the performance confirms the
effectiveness of these modules for the API recommenda-
tion.

C. RQ3: How well do our SPGNN model perform when
training and testing across different programming languages?

TABLE VI
THE CROSS-LANGUAGE API RECOMMENDATION PERFORMANCES OF

SPGNN IN MAP.

Datasets
APIs

bar boxplot plot/line

Python-Plot13 87.07 84.85 96.70
R-Plot32 93.65 82.20 93.04
R-Plot13 90.40 89.74 97.54

In order to evaluate the effectiveness of our method in

dealing with the cross-language API recommendation, ten
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developers independently pick up the shared APIs in Python-

Plot13, R-Plot32 and R-Plot14, namely bar(), boxplot() and

plot(), which is called line() in R programming language. In

these experiments, we employ the data of one programming

language for training our model while the data of the other

programming language is used for testing. Table VI records

such experimental results. Taking the first row of results as an

example, we train our model on Python-Plot13 dataset, and

test the model using the figures plotted by R programming

language. In such case, the recommendation accurcies of

bar(), boxplot() and plot() are 87.07%, 84.85% and 96.70%

respectively. With regard to the experiments related to the last

two rows of results, the data of R-Plot32 and R-Plot14 are

used for trained respectively, while the samples of Python-

Plot13 related to the involved APIs are used for testing. The

observations on the last two rows of Table VI show that our

method still obtains the similarly good results. Moreover, the

recommendation performance of these three APIs via using

our model trained in a cross language way is very similar

to the one observed in Tables III, IV and V, which are

the results produced by our model trained in normal way.

These phenomena all imply that SPGNN essentially learns

the structural geometric characteristics of plots across different

languages and it is possible to conduct the cross-language API

conversion based on the plots.

Result 3: Our model shows the effectiveness of cross-
language API recommendation. No matter what language
is used for plotting, it can recommend the APIs of Python
and R programming languages successfully, as long as
similar features shared among the graphics.

V. DISCUSSION

In this section, we first present the real-world user scenarios.

Then, threats to validity will be introduced.

A. Usage Scenarios

To validate the effectiveness of our method, we visualize

several practical applications for demonstrating the utility of

our model in reality. Figures 7 and 8 show plot-based API

recommendation and plot-based cross-language API conver-

sion user scenarios respectively.

Consider the sample of the “Breakdown of building types”

shown in the first case in Figure 7(a), we suppose that Peter, a

developer with little experience, needs to do a similar project

to show the newly breakdown of building types. Therefore, the

task of Peter is to plot a similar figure to demonstrate the data.

If Peter knows which API can draw the figure, he can report

the presentation successfully. To solve the drawing problem,

he can use Plot2API model for API recommendation. In this

step, the only thing he needs to do is to input the graphic

in Figure 7(a) (such graphics may be just downloaded from

web or acquired from other documents) to our tool, and then

the tool will recommend the relevant APIs. There is another

circumstance that Peter does not have a similar figure. So he

has to draw a figure manually by himself. Then, he can do

(a) The Plot2API example of web figure

(b) The Plot2API example of hand-drawn figure

Fig. 7. Several Plot2API Examples. The top-3 APIs recommended by the
different models via giving the plot. The green ones are the correct APIs
while the red ones are the wrong API.

Fig. 8. Two examples of cross-language API conversion. The green ones are
the correct APIs while the red ones are the wrong API.

the same workflow with our tool to acquire the recommended

APIs just based on this hand-drawn figure as the case shown

in Figure 7(b).

In agile development, some junior developers may not

have broad knowledge of different programming languages

and there are many software projects have similar modules

or functions that can be referenced. In such a manner, the

developers expect to use the output plots in some old projects

developed with the familiar languages as the cues to obtain

the APIs in other language which can draw the similar figures

directly to accelerate the development process. Our method

can support such a plot-based cross-language API recommen-

dation scheme. Figure 8 shows two successful examples in this

scheme. The first case is a R-Plot32 trained SPGNN gives the

reasonable API recommendation for a plot drawn by Python

language while the second one is a Python-Plot13 trained

SPGNN recommends the correct APIs for a plot drawn by

R language.

B. Threats To Validity

Since our tool is limited to Python and R programming

languages, our techniques may not generalize for other pro-
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gramming languages. However, if the features of figures drawn

from other programming languages are similar to R or Python,

our tool may still work at these languages. With regard

to the application to the other programming languages, we

believe that our method can still success if the training data

is sufficient.

The other issue is that the performance of API recommen-

dation in some APIs of Python and R is not very well. This is

due to the insufficient training data and the extremely similar

characteristics of different APIs in visual appearance. The

increased training samples of these APIs can address this issue,

since the abundant data can facilitate SPGNN to learn more

visual knowledge to better distinguish the APIs particularly

the similar APIs with each other.

We only pick up some same named APIs between Python

and R programming languages for validating the cross-

language API recommendation due to the lack of ground

truth of automatic evaluation. The manual verification will be

conducted to make a more comprehensive verification in the

future.

VI. RELATED WORK

API Recommendation: There are a lot of impressive works

in API recommendation [21]–[26]. The most common way for

API recommendation is to rank APIs via using the similarity

between the natural language query and the API description,

and then recommend the APIs according to the ranks. For

example, Rahman et al. [27] offered a recommendation of the

relevant API list by using keyword-API mapping from the

crowdsourced knowledge of Stack Overflow. Huang et al. [1]

proposed BIKER to tackle the lexical gap and knowledge gap,

so that BIKER could automatically recommend relevant APIs

for a programming task described in natural language. Besides

the natural language query, source code is also an important

cue for API recommendation, several researchers work in

this direction. McMillan et al. [2] proposed Portfolio to find

highly relevant APIs and projects from a large archive of

C/C++ source code. Chan et al. [28] improved the Portfolio by

employing further sophisticated graph-mining and textual sim-

ilarity techniques. A graph-based statistical language model

named GraLan was proposed to develop an API suggestion

engine via computing the probability of usage graphs which

were learned from a corpus of source code to compute the

probability of usage [29].

In conclusion, the existing API recommendation works are

quite different from us. They used the natural language query

or source code as cues for API recommendation task in

these works, which is essentially a text to text pure Natural

Language Processing (NLP) task while Plot2API is an image

to text cross-model machine learning task.

Visual Semantic Embedding: Semantics are widely used

in many neural network models for boosting the visual recog-

nition or classification [30]–[32], since the visual recognition

models are often limited by the increasing difficulty of obtain-

ing sufficient training data in the form of labeled images as the

number of object categories grows [33]. For example, Wang et

al. [34] utilized recurrent neural networks(RNNs) to address

the label dependencies in an image. By combining CNNs,

the proposed CNN-RNN model learned both the semantic

redundancy and the co-occurrence dependency in an end-to-

end way. To improve multi-label image classification, Zhu et

al. [35] proposed a unified deep neural network to capture both

semantic and spatial relations of these multiple labels based on

weighted attention maps. A generic structured model proposed

in [36] employed a stacked label prediction neural network,

capturing both inter-level and intra-level label semantics to

improve image classification performance.

Multi-task Learning: Multi-task learning is a popular

machine technique. It aims at developing an integrated model,

which can tackle multiple relevant tasks simultaneously, to

exploit the complementary information among tasks for fur-

ther benefiting the solution of each task [37]. The multi-

task learning works often enjoy a better generalization ability

than the single-task learning method, and have already been

successfully applied to many domains such as computer vision

[38]–[40], medical image analysis [41]–[43], and natural lan-

guage processing [44]–[46], and so on. For example, Sanh

et al [47] proposed a hierarchically supervised multi-task

learning model focused on a set of semantic tasks, such as

entity recognition and entity mention detection. Liu et al. [48]

presented a multi-task framework to guide the generation

of TIR-specific discriminative features for distinguishing the

TIR objects belonging to different classes and fine-grained

correlation features for TIR tracking. Lu et al. [30] studied

the correlation between vision-and-language tasks for large-

scale, multi-modal, multi-task learning, which shown signif-

icant gains over independent task training. Inspired by these

successes, our method intends to introduce the extra semantic

parsing task to boost the performance of API recommendation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we cast a novel and meaningful software

engineering task named Plot2API. To address such an issue,

a deep multi-task learning method named Semantic Parsing

Guided Neural Network (SPGNN) is presented. SPGNN in-

troduces the plot-based semantic parsing to the EfficientNet for

pairing the semantic parsing of plots with the plot-based API-

recommendation. Then the semantics of APIs can be exploited

via the semantic parsing module for boosting the plot-based

API recommendation. Three new Plot2API datasets named

Python-Plot13, R-Plot32 and R-Plot14 are released for evalua-

tion. The experimental results demonstrate the superiority over

other deep learning baselines for Plot2API with a significant

advantage and validate the effectiveness of our method in some

application contexts of software engineering.
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