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Abstract—GitHub contains millions of repositories among
which many are similar with one another (i.e., having similar
source codes or implementing similar functionalities). Finding
similar repositories on GitHub can be helpful for software
engineers as it can help them reuse source code, build prototypes,
identify alternative implementations, explore related projects,
find projects to contribute to, and discover code theft and
plagiarism. Previous studies have proposed techniques to detect
similar applications by analyzing API usage patterns and soft-
ware tags. However, these prior studies either only make use of
a limited source of information or use information not available
for projects on GitHub.

In this paper, we propose a novel approach that can effectively
detect similar repositories on GitHub. Our approach is designed
based on three heuristics leveraging two data sources (i.e., GitHub
stars and readme files) which are not considered in previous
works. The three heuristics are: repositories whose readme files
contain similar contents are likely to be similar with one another,
repositories starred by users of similar interests are likely to be
similar, and repositories starred together within a short period of
time by the same user are likely to be similar. Based on these three
heuristics, we compute three relevance scores (i.e., readme-based
relevance, stargazer-based relevance, and time-based relevance) to
assess the similarity between two repositories. By integrating the
three relevance scores, we build a recommendation system called
RepoPal to detect similar repositories. We compare RepoPal to a
prior state-of-the-art approach CLAN using one thousand Java
repositories on GitHub. Our empirical evaluation demonstrates
that RepoPal achieves a higher success rate, precision and
confidence over CLAN.

Index Terms—Similar Repositories, GitHub, Information Re-
trieval, Recommendation System

I. INTRODUCTION

GitHub is a large and popular open-source project platform,
which hosts various open-source projects including database
applications, operating systems, gaming software, web applets,
and mobile applications. Large organizations like Google,
Facebook and Microsoft are using GitHub to host their open-
source projects. Many influential open-source projects are
also on GitHub; these include popular programming language
projects such as Python1 and Go2, popular server projects such
as Nginx3 and Cherokee4, popular development frameworks,

‡Corresponding author
1https://github.com/python
2https://github.com/golang
3https://github.com/nginx/nginx
4https://github.com/cherokee/webserver

platforms and libraries such as Bootstrap5, Node.js6, and
JQuery7. In total, GitHub contains over 38 million reposito-
ries8 developed by more than 15 million developers spread
around the world. A repository, which is a basic unit in
GitHub, typically contains the source code and resource files
of a software project. It also stores information related to the
project’s evolution history and high-level features, and persons
who create, contribute, fork, start and watch it.

While GitHub meets various needs of developers due to its
various open-source projects, there exists a problem. Mockus
shows that more than 50% of the source code files are reused
in more than one open-source projects [1], which indicates
that a large proportion of open-source projects (i.e., reposi-
tories) on GitHub are similar. Two repositories are regarded
as similar if they have some similar source code files or
implement some similar functionalities. The large number of
similar repositories provides developers a plethora of options
to choose the project they want to use or contribute to, which
may cost developers much selection time and even interfere
them to select a proper project. Although GitHub provides
a search engine to help developers find relevant repositories
among the millions of repositories it hosts, the search engine
is only a simple text-based tool that receives as input a list of
query words and returns repository names, files, issue reports
and user names that contains the query words. This search
engine is certainly not an ideal tool to find similar repositories.
Therefore, there is a heavy need for developers to have a tool
that can detect similar repositories on GitHub.

Detecting similar repositories can be useful for code reuse,
rapid prototyping, identifying alternative implementations, ex-
ploring related projects, finding projects to contribute to,
and discovering code theft and plagiarism (when they are
reused inappropriately) [2], [3], [4]. Moreover, by detecting
similar repositories, developers can reuse code and focus on
implementing the functionalities which are not provided by
any existing projects. In the literature, past studies have pro-
posed several techniques to detect similar projects. McMillan
et al. develop an approach named CLAN (Closely reLated
ApplicatioNs) that assess similarity between Java projects by
comparing the API calls made by the two projects [5]. They

5https://github.com/twbs/bootstrap
6https://nodejs.org/en/
7https://github.com/jquery/jquery
8https://github.com/about
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show that their technique performs better than a previously
proposed technique MUDABlue [6]. Thung et al. propose a
technique that leverages software tags instead of the API usage
patterns used by CLAN, to recommend similar projects [7].
Their approach automatically identifies important tags used
by a project and assign different weights to different tags.
The tags along with their weights are then used to assess the
similarity of projects.

Although the prior work has made significant progress in
the identification of similar projects, there are a number of
challenges in applying them to detect similar repositories on
GitHub. First, GitHub contains millions of repositories that
get updated frequently over time and statically analyzing them
periodically to retrieve API calls is a task with too much cost.
Second, GitHub does not allow users to tag repositories. In
addition to the above two main challenges, prior works do
not leverage additional data sources specific to GitHub that
can provide new insights. For example, GitHub allows users
to star repositories to keep track of the repositories that they
find interesting. Starring a repository is a public activity that
can be viewed and tracked by others. Moreover, repositories
often contain readme files that describe the high-level features
of the projects developed in the repositories.

To deal with the limitations and leverage the additional data
sources, in this work, we propose a novel approach to detect
similar repositories on GitHub. Our approach is based on
three heuristics: First, repositories whose readme files contain
similar contents are likely to be similar with one another.
Second, repositories starred by users of similar interests are
likely to be similar. Third, repositories starred together within
a short period of time by the same user are likely to be similar.
Based on these three heuristics, we compute three relevance
scores which measure how similar two repositories are. The
first relevance score, named readme-based relevance, is based
on the first heuristic. It is computed by calculating the cosine
similarity of the vector space representations of the readme
files of the two repositories. The second relevance score,
named stargazer-based relevance, is based on the second
heuristic. It is computed by calculating the similarities of
stargazers9 of the two repositories. The third relevance score,
named time-based relevance, is based on the third heuristic.
It is computed based on the period of time that lapsed
between the time the two repositories were starred by each
person. By integrating these three relevance scores, we build
a recommendation system named RepoPal to detect similar
repositories for a given query repository on GitHub.

To evaluate the effectiveness of RepoPal, we compare Re-
poPal with a state-of-the-art approach CLAN [5]. We conduct
an empirical study on 1,000 Java repositories from GitHub. We
focus on only Java repositories since CLAN can only handle
Java programs. We first randomly choose 50 repositories as
query repositories among the 1,000 Java repositories and
achieve a top-5 recommendation for each query repository.

9A stargazer is a user in Github who stars a repository. A stargazer can
continuously get updated information of the starred repository.

Then, we invite 4 participants to evaluate the relevance of
the top-5 recommendations generated by RepoPal and CLAN.
The participants in the study rate each recommended similar
project with a score ranging from 1 (highly irrelevant) to 5
(highly relevant). Based on the ratings, we use three yardsticks,
i.e., success rate [7], confidence [5], [7], and precision [5],
[7], to measure effectiveness. Our user study results show
that RepoPal outperforms CLAN in terms of success-rate,
confidence, and precision by up to 66.67%, 46.30%, and
97.06% respectively.

The contributions of our work are as follows:
• We propose a novel recommendation system RepoPal to

detect similar repositories on GitHub. The system is based
on three new heuristics leveraging two data sources (i.e.,
GitHub star and readme files) which are not considered
in prior works.

• We evaluate RepoPal and CLAN on a dataset of 1,000
Java repositories and showed that our technique outper-
forms CLAN by substantial margins in terms of success-
rate, confidence, and precision.

The rest of our paper is organized as follows. In Section II,
we introduce the three heuristics that our approach uses
with some motivating examples. In Section III, we present
the overall architecture of our proposed system RepoPal and
elaborate its main components. In Section IV, we describe our
experiments and the results. We discuss the threats to validity
in Section V. Related work is briefly reviewed in Section VI.
Section VII concludes and mentions future work.

II. THREE HEURISTICS

In this section, we describe the three heuristics that are
used in our system and illustrate them by some motivating
examples.

Heuristic 1: Repositories whose readme files contain
similar contents are likely to be similar with one another.

It is intuitive that repositories that implement similar func-
tionalities or have similar source code files have higher like-
lihood of using similar words in their readme file, even if
they are not developed by the same group of developers or
organization.

For example, consider two repositories Android-
HttpClient10 and android-async-http11. The two repositories
are similar to each other since they implement a number
of common functionalities, e.g., asynchronous HTTP client
functionality for Android applications. Excerpts of their
readme files are shown in Figure 1, and we find that they
share a number of words, e.g., asynchronous, HTTP, cookie,
JSON, GET, POST, etc.

Heuristic 2: Repositories starred by users of similar
interests are likely to be similar.

GitHub users can star a repository to show their approval
and interest. The user who stars a GitHub repository is called
a stargazer of that repository. A stargazer can continuously

10https://github.com/levelup/Android-HttpClient
11https://github.com/loopj/android-async-http
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(a) An example from Android-HttpClient’s Readme File

(b) An example from android-async-http’s Readme File

Figure 1: Readme Files of Two Similar Projects

get updated information of the starred repository. GitHub
users often have sufficient motivation to star a repository
when they find it interesting or useful. If the code developed
in a repository is used by a stargazer, he/she may want to
keep track of it in order to update his/her own code when
the original repository is updated. Even if a developer does
not use the code in a repository, he/she can still star an
interesting repository to allow his/her to have an easier access
to it, and potentially use the code developed in the repository
in the future. Since starring is a public activity in GitHub,
starring a repository indicates a stargazer’s appreciation and
approval to the repository. Starring can be used as a means to
promote a repository of interest; it appears on a stargazer’s
public activity timeline, which allows the repository to be
known by the followers of the stargazer. GitHub itself also
encourages users to star repositories. Repository star count is
used in many GitHub functionalities. For example, GitHub
uses the number of stars that various repositories have to help
rank repositories returned by its search engine.12 GitHub also
promotes repositories that accumulate stars rapidly by putting
them in the GitHub explore page.13

Intuitively, repositories starred by two users who have
starred many common repositories are likely to be similar.
For example, we track two GitHub users who starred at
least five common repositories. The two GitHub users,
Will Sahatdjian14 and Aldiantoro Nugroho15, have starred
contra/react-responsive16, Ramotion/folding-cell17, so-
fancy/diff-so-fancy18, corymsmith/react-native-fabric19

12https://help.github.com/articles/about-stars/
13https://github.com/explore
14https://github.com/kwcto?tab=activity
15https://github.com/kriwil
16https://github.com/contra/react-responsive
17https://github.com/Ramotion/folding-cell
18https://github.com/so-fancy/diff-so-fancy
19https://github.com/corymsmith/react-native-fabric

and danielgindi/ios-charts20. Many other repositories
Will Sahatdjian starred and Aldiantoro Nugroho starred
are similar. For example, Will Sahatdjian starred
jessesquires/JSQMessagesViewController21, and Aldiantoro
Nugroho starred facebook/pop22; both repositories are UI
libraries for iOS.

Heuristic 3: Repositories starred together within a short
period of time by the same user are likely to be similar.

When a software developer meets with a problem, the
developer may seek help from GitHub, hoping to find some
repositories for code reuse and inspiration. During surfing on
GitHub, the developer may encounter some useful repositories,
and subsequently star those that are related to the problem. In
this way, multiple related repositories can be starred by the
same GitHub user in a short time period.

Intuitively, problems that a single developer meets tend to
be similar. This is especially so, if the time gap between
when the problems are encountered is short. A developer may
solve one problem in the morning, another related problem in
the afternoon, and a less related one 5 days later. Our third
heuristic is based on the hypothesis that repositories stared by
one user in a shorter time period are likely to have higher
similarities than those starred by the user in a longer time
period.

For example, consider a GitHub user LiqiangZhang23 and
his public activities on Nov 18, 2015. On that date, he starred
three repositories in one hour, i.e., bunnyblue/DroidFix,
jasonross/Nuwa, and dodola/HotFix. These repositories
are all related to Android hot fix (Android hot fix is
a framework that allows developers to update Android
applications without publishing a new version). If we look
at his activities two days earlier, we would notice that
he also starred three repositories in one hour, spongebo-
brf/MaterialIntroTutorial, alafighting/CharacterPickerView,
and fengjundev/DoubanMovie-React-Native. These three
repositories are all Android design and user interaction
projects. The repositories starred on Nov 18 are highly
similar to one another, and those starred on Nov 16 are also
highly similar to one another. The two groups of repositories
are less but yet still similar to each other, since they are all
Android repositories. This example illustrates that repositories
that are starred together by a single user are likely to be
similar. This is especially true if the period in which they are
starred together is short.

This phenomenon is not limited to LiqiangZhang,
and we find many similar examples: On Nov 23 and
24, 2015, GitHub user fenixlin24 starred two repos-
itories: heshibidahe/Active learning ml 100k and scikit-
learn/scikit-learn. They are both Python machine learn-
ing tools or modules. On Jan 26, 2016, GitHub user

20https://github.com/danielgindi/ios-charts
21https://github.com/jessesquires/JSQMessagesViewController
22https://github.com/facebook/pop
23https://github.com/StormGens
24https://github.com/fenixlin
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Figure 2: Snapshots of LiqianZhang’s Public Activities

shichaohao25 starred two repositories, getlantern/lantern and
ziggear/shadowsocks. Once deployed, both of them can
be used for assessing public websites in regions where
these websites are blocked. Another GitHub user Dreaming-
inCodeZH26 starred three repositories consequently on
Jan 17, 2016, including timusus/RecyclerView-FastScroll,
AndroidDeveloperLB/ThreePhasesBottomSheet and daima-
jia/AndroidImageSlider. These repositories are similar in that
they all deal with the scrolling or sliding action on Android.

III. REPOPAL

In this section, we first present the overall architecture of
RepoPal. Next, we describe each of its main components in
detail.

A. Architecture

Figure 3 shows the overall architecture of our technique,
RepoPal, with its constituent parts, inputs and output. It takes
as input a set of GitHub repositories (GitHub Repository Set),
and a query repository (Query Repository). It outputs a ranked
list of repositories that are similar to the query repository
(Similar Repository List). It consists of four main components:
Readme Relevance Calculator, Stargazer Relevance Calculator,
Time Relevance Calculator and Composer. The first, second,
and third components compute readme-based, stargazer-based,
and time-based relevance scores, respectively. The last compo-
nent composes the three relevance scores to rank repositories
in the Repository Set based on their similarity to the Query
Repository. We describe these four components of RepoPal in
the next sub-sections.

B. Readme Relevance Calculator

The Readme Relevance Calculator component computes the
readme-based relevance score of two repositories by compar-
ing their readme files. We compute this relevance score using
the Vector Space Model (VSM), which is commonly used to
find similarity between documents in information retrieval.
We pre-process all the readme files by removing stopwords
and performing stemming to reduce the words to their root
form. We then convert the files into vectors of weights. Each

25https://github.com/shichaohao
26https://github.com/DreaminginCodeZH

preprocessed word corresponds to an element in the vector
and its weight is computed using the standard tf-idf weighting
scheme [8]. The weight of word t given document (i.e., readme
file) R in a collection of documents C, denoted as wt,R is
computed as follows:

wt,R = (1 + logtft,R)× log(
|C|
dft

) (1)

In Equation 1 above, tft,R denotes the term frequency of
word t in document R, i.e., the number of times t occurs
in readme file R. dft denotes the document frequency of t,
i.e., the number of documents (i.e., readme files in C) that
contain word t. After the weights are computed, each readme
file R can represented as a vector of weights. Given two
repositories and their two representative vectors of weights, we
can compute their readme-based relevance score, denoted as
Relevancer(R1, R2), by taking the cosine similarity of their
representative vectors as follows:

Relevancer(R1, R2) =

∑
tεR1∩R2

wt,R1 × wt,R2√∑
tεR1

w2
t,R1
×
√∑

tεR2
w2
t,R2

(2)

C. Stargazer Relevance Calculator

The Stargazer Relevance Calculator component leverages
the GitHub stars to rank repositories. This component is based
on the second heuristic described in Section II. It calculates a
stargazer-based relevance score between two repositories.

Before we define a formula to compute the star-based
relevance score, we need to introduce several notations. Let
R denote a GitHub repository, U denote a single GitHub user,
S(R) denote all the users who starred R, and S(U) denote all
the repositories a user starred. Given a user U1 who starred
repositories S(U1), and a user U2 who starred repositories
S(U2), we compute the similarity score between the two users
(denoted as Sim(U1, U2)) as follows:

Sim(U1, U2) =
|S(U1)

⋂
S(U2)|

|S(U1)
⋃
S(U2)|

(3)

In the above equation, we denote the size of set S as |S|.
Two users achieve a higher similarity score if they starred
more common repositories.

Then given two repositories R1 and R2 which are starred
by users S(R1) and users S(R2), we can calculate stargazer-
based relevance score between these two repositories (denoted
as Relevances(R1, R2)) as follows:

Relevances(R1, R2) = Avg
Ui∈S(R1)
Uj∈S(R2)

Sim(Ui, Uj)
(4)

For repositories R1 and R2, we compute all user pairs’ sim-
ilarity scores between sets S(R1) and S(R2). The stargazer-
based relevance score is calculated as the average score of the
user pairs’ similarity scores. In this way, for two repositories,
when the user similarity scores of the two repositories are
higher, the relevance score will be higher.

16



Figure 3: RepoPal Architecture

D. Time Relevance Calculator

The Time Relevance Calculator is based on the third
heuristic described in Section II. It calculates a time-based
relevance score between two repositories. Before we define
a formula to compute the time-based relevance score, we
need to introduce a new notation. Given the fact that user
U starred repositories Ri and Rj , we use D(U,Ri, Rj) to
represent the difference in time at which user U starred the
two repositories rounded up to the nearest number of hours.
Using this notation, given two repositories R1 and R2 which
are starred by users S(R1) and users S(R2), we can calculate
time-based relevance score between these two repositories
(denoted as Relevances(R1, R2)) as follows:

Relevancet(R1, R2) = Avg
Ui∈S(R1)

⋂
S(R2)

1

|D(Ui, R1, R2)|
(5)

For repositories R1 and R2, we compute all similarity
scores for users in the intersection of S(R1) and S(R2). The
time-based relevance score is calculated as the average of
these scores. In this way, for two repositories, when the time
differences are smaller, the relevance score will be higher. If
the intersection is empty, the time-based relevance score is set
to 0.

E. Composer

The Composer component composes the three relevance
scores and calculates the overall relevance score for two
repositories R1 and R2 as follows:

Relevance(R1, R2) = Relevancer(R1, R2)×
Relevances(R1, R2)×
Relevancet(R1, R2)

(6)

The pseudocode of the Composer Component is shown
in Algorithm 1. Given a query repository, it computes the
readme-based, stargazer-based, time-based, and overall rele-
vance scores between the query repository and each repository
in the GitHub Repository Set (RepoSet) – lines 1 – 6. The
repositories in RepoSet are then be sorted based on their

overall relevance scores (lines 7). Finally, the top-k most
similar repositories are output (line 8).

Algorithm 1: Find Top-K Most Similar Repositories
Input : QRepo: Query repository, RepoSet: Set of

repositories
Output: Top-k repositories
1 for each repository r in RepoSet do
2 compute Relevancer(QRepo, r)
3 compute Relevances(QRepo, r)
4 compute Relevancet(QRepo, r)
5 Relevance=

Relevancer ×Relevances ×Relevancet
6 end
7 Sort the RepoSet repositories in descending order

based on Relevance score
8 Output the top-k most similar repositories

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our rec-
ommendation system RepoPal. The experimental environment
is an Intel(R) Core(TM) i7-4710HQ 2.50 GHz CPU, 16GB
RAM desktop running Windows 10 (64-bit). We first present
our experiment setup in Sections IV-A, then introduce user
study and evaluation metrics in Sections IV-B and IV-C
respectively. We then present three research questions and our
experiment results that answer the three research questions in
Section IV-D.

A. Experiment Setup

We compare RepoPal with a prior work CLAN (Closely
reLated ApplicatioNs) [5]. To the best of our knowledge,
CLAN is the most related work we can compare with. Actu-
ally, there is another closely related work by Thung et al. [7].
However, the work cannot be applied to our setting since
it requires the availability of manually assigned tags, while
tagging is not supported by GitHub. CLAN identifies similar
applications by measuring the similarity of their Java API (i.e.,
JDK) method invocations. CLAN first parses the source code
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of programs and represents each program by the Java API
methods that it calls. CLAN then assigns weights to the Java
API methods following the popular term frequency - inverse
document frequency (TF-IDF) weighting scheme [8], in which
API methods that are called more often are given higher
weights, and API methods that are called in less applications
are given lower weights. In the end CLAN compares two
applications based on the weighted Java API methods using
Latent Semantic Indexing (LSI) [9].

To evaluate the two systems (i.e., RepoPal and CLAN),
we use a dataset containing 1,000 unique (i.e., none of the
repositories are forked of one another) popular Java repos-
itories on GitHub which receive more than 20 stars from
GHTorrent [10]27. The repositories in the dataset are randomly
picked according to the two requirements. First, we set the
requirement for number of stars since many repositories in
GitHub are of low quality [11], [12], which is especially true
when they do not have many stars. Ideally, only high-quality
repositories should be recommended. Among the selected
repositories the number of stars ranges from 21 to 1712.
Second, we only consider Java repositories since we would
like to compare our approach with CLAN which only works
for Java. For each of these 1,000 repositories, we collect its
readme file, star events, and source code. We then randomly
pick 50 repositories among the 1,000 as queries (see Table I),
and generate the top five similar repositories using RepoPal
and CLAN.

B. User Study

We perform a user study to evaluate the effectiveness of
the two systems (i.e., RepoPal and CLAN) in recommending
similar repositories. We invited 4 participants for the user
study, who are PhD students in Zhejiang University. All
participants are skillful programmers with at least 4 years of
Java coding experience and have good English reading skills.
The 4 participants are GitHub users and frequently search
interesting repositories in GitHub.

We randomly partitioned the 4 participants into 2 groups,
each of which has 2 participants. Each participant in each
group was randomly assigned to evaluate 25 of the query
repositories. Each query repository was manually labeled by
two participants. For each query repository, the user study
contains two parts. First, we ask the two participants to inde-
pendently label the 10 retrieved repositories generated by the
two systems (5 from each system). Second, the two annotators
discussed their disagreements (if any) to reach a common
decision; for cases where the two annotators cannot reach an
agreement, they asked other participants to be involved in the
decision process.

In the labeling process, participants were given the URLs
of all the query and retrieved repositories so that they can
access the code, authors and contributors, readme file, related
links (if any) and other information to assess similarity. To
further reduce bias, we do not instruct participants to focus

27http://ghtorrent.org/

on a specific piece of information. We hope participants could
judge the similarity of repositories fairly using various sources
of information. Participants are instructed to comprehend all
repositories carefully to assess similarities and assign rel-
evance degrees of each retrieved repository and the query
repository.

The degree of relevance of the retrieved repository to the
query repository is shown in Table II. We map each participant
response to a score from 1 to 5, with 1 corresponding to
“Highly Irrelevant” and 5 corresponding to “Highly Relevant”.
We use the final scores generated after the participants have
discussed and resolved their differences to evaluate the effec-
tiveness of the two recommendation systems (i.e., RepoPal and
CLAN).

In the labeling process, we randomly mix the top-5 repos-
itories generated by our approach RepoPal and the top-5
repositories generated by CLAN – participants do not know
which result is produced by which approach. We used Fleiss
Kappa [13] to evaluate the agreement between the two annota-
tors. The overall Kappa value28 between the two participants
considering all queries is 0.614, which indicates substantial
agreement between them.

C. Evaluation Metrics

Following prior studies [5], [7], we use three evaluation met-
rics, i.e., success rate, confidence and precision, to summarize
the ratings from the participants and evaluate the effective-
ness of the two recommendation systems (i.e., RepoPal and
CLAN).

1) SuccessRate@T: SuccessRate@T is defined as the pro-
portion of successful top-5 recommendations among all the
recommendations a system generates. A top-5 recommenda-
tion is deemed to be successful if there is at least one retrieved
repository among the top 5 with rating T or higher; T refers to
the score of each repository marked by participants in the user
study. For example, if a top-5 recommendation receives ratings
4, 1, 2, 3, 1, considering T to be 4, the recommendation is
deemed successful. On the other hand, if T is set to 5, the
recommendation is deemed unsuccessful since none of the
top-5 recommendations receives a rating of 5. If a system
can generate successful top-5 recommendations for 800 out
of 1,000 repositories, the SuccessRate@T of the system is
80%. In our work, we only consider SuccessRate@4 and
SuccessRate@5 since lower ratings (i.e., 1, 2 and 3) can not
be regarded as successful recommendations.

2) Confidence: Median and mean confidence is defined as
the median and mean relevance degrees participants give to
all retrieved repositories recommended by a system. There
are 50 query repositories, and each query repository has
top-5 retrieved repositories. Therefore, the median and mean
confidence is computed from 250 relevance degrees for each
system.

28Kappa values of < 0, [0.01, 0.20], [0.21, 0.40], [0.41, 0.60], [0.61,
0.80], [0.81, 1.00] are considered as poor agreement, slight agreement,
fair agreement, moderate agreement, substantial agreement, almost perfect
agreement, respectively
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Table I: Queries Used to Evaluate RepoPal and CLAN

Num. Query Num. Query Num. Query Num. Query Num. Query
1 Xinstaller 11 android-pin 21 make-it-easy 31 Garum 41 AndroidSlidingUpPanel-ScrollView
2 RxApacheHttp 12 AndroidImageCrop 22 xPlodMusic 32 RC4A 42 Android-CountdownTimer
3 Swiftnotes 13 SpringSecurityOAuth2 23 MultipleModel 33 ADP 43 spring-security-oauth2-google
4 dragqueen 14 better-java-monads 24 CubicChunks 34 android-linq 44 android-keystore-password-recover
5 CopperMod 15 emberjs-plugin 25 Protocoder 35 viritin 45 Uber-Android-SDK
6 Goreinu 16 MultipleChoiceAlbun 26 WelikeAndroid 36 ez-vcard 46 Android-TrackingRingWidget
7 NativerSDK 17 simple-netty-source 27 android-bind 37 pellet 47 Android-SVProgressHUD
8 KJController 18 SourceWall 28 houdini 38 Subspace 48 material-navigation-drawer
9 WearPomodoro 19 restfulie-java 29 MyAppList 39 Rosetta 49 FastScrollRecyclerView

10 Avaritia 20 Simple-Image-Blur 30 presenta 40 archi 50 elasticsearch-analysis-kuromoji

Table II: Degree of relevance of the retrieved repository to the query repository

Score Relevance Explanation
1 Highly

Irrelevant
The participant finds that there is absolutely nothing in common between the retrieved and query
repositories.

2 Irrelevant The participant finds that the two repositories only have little in common.
3 Neutral The participant finds that the two repositories are marginally relevant.
4 Relevant The participant finds that the two repositories are similar on a number of aspects.
5 Highly

Relevant
The participant finds that the retrieved and query repositories are similar in most aspects, and even
some parts may be identical.

3) Precision: Precision is defined as the proportion of
relevant and highly relevant repositories (i.e., whose final
relevance degrees are equal to or greater than 4) among the
top-5 recommendations that a system generates for a query.
Given a set of queries, we can define the mean and median of
the precision scores. Note that recall is often computed along
with precision. The precision metrics reflects the accuracy
of the similarity search. However, we do not compute recall
since we do not know the total number of relevant and highly
relevant repositories (i.e., whose average scores are equal to
or greater than 4) in our collection of 1,000 repositories.
Identifying all relevant and highly relevant repositories given
a query repository would require too much manual labeling
cost.

D. Research Questions

Our experiments are designed to answer the following
research questions:

RQ1: What are the proportions of queries for which
RepoPal and CLAN return at least a relevant (or
highly relevant) search result?

RQ2: How high are the median and mean confidence
of participants using RepoPal as compared to
CLAN?

RQ3: What are the precision scores of RepoPal and
CLAN?

The three research questions correspond to the three eval-
uation metrics introduced in the above Section. We present
the experiment results for the three research questions in the
follow text.

1) Result for RQ1 – Success Rate: The success rates of
RepoPal and CLAN are shown in Table III. We note that
RepoPal achieves higher success rates than CLAN. RepoPal
can generate successful recommendations that contain at least
one relevant (highly relevant) repository 88% (60%) of the

Table III: Success Rate: RepoPal VS. CLAN

Approach Success Rate Success Rate
(Score ≥ 4) (Score ≥ 5)

RepoPal 88% 60%
CLAN 62% 36%

times, which is a reasonably high percentage. CLAN only
achieves SuccessRate@4 score and SuccessRate@5 score of
62% and 36%, respectively. In terms of SuccessRate@4,
RepoPal outperforms CLAN by 41.94%. In terms of Suc-
cessRate@5, which is a stricter criteria, RepoPal outperforms
CLAN by higher margins of 66.67%.

We note that 38% and 64% query results generated by
CLAN do not include a single repository rated as relevant (4)
or highly relevant (5) respectively. This shows the limitation
of using only JDK API method invocations to characterize
repositories. Many JDK API method invocations are generic
and do not fully characterize the semantics of the applications
implemented in repositories. RepoPal heuristics capture the
semantics of applications more effectively, and thus it can
better identify similar repositories.

We perform Wilcoxon signed rank test [14] to evaluate
whether the improvement of RepoPal over CLAN is statis-
tically significant in terms of SuccessRate@4 and Success-
Rate@5, and we find that the two p-values are < 0.001. There-
fore, the improvement of RepoPal over CLAN is significant
at the confidence level of 99.9%.

RepoPal outperforms CLAN in terms of SuccessRate@4 and
SuccessRate@5 by 41.94% and 66.67% respectively. The
improvement is statistically significant.

2) Result for RQ2 – Confidence: Table IV and Figure 4
show the experiment results for confidence. Figure 4 is a box
plot diagram showing the distribution of the 250 ratings that
RepoPal and CLAN each receives. According to the table
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Figure 4: Confidence Box Plot

and the box plot, RepoPal achieves higher mean and median
confidence scores than the results of CLAN out of the 250
ratings. The mean confidence scores of RepoPal and CLAN
are 3.16 and 2.16, respectively. RepoPal outperforms CLAN in
terms of mean confidence by 46.30%. The median confidence
of RepoPal is 4 (relevant), while that of CLAN is 2 (Irrelevant).

Table IV: Confidence: RepoPal VS. CLAN

Approach Sample Size Median Mean
RepoPal 250 4.0 3.16
CLAN 250 2.0 2.16

We perform Wilcoxon signed rank test [14] to evaluate
whether the improvement of RepoPal over CLAN is statis-
tically significant in terms of confidence, and we find that the
p-value is < 0.001. Therefore, the improvement of RepoPal
over CLAN is significant at the confidence level of 99.9%.

RepoPal outperforms CLAN in terms of mean confidence by
46.30%. The improvement is statistically significant.

3) Result for RQ3 – Precision: Table V shows the median
and mean precision of RepoPal and CLAN for the 50 queries.
We notice that RepoPal has higher median and mean precision
than CLAN. The median precision of RepoPal is 0.6, and the
mean precision is 0.536. The median precision of CLAN is 0.4,
and the mean precision is 0.272. The mean precision scores
of RepoPal outperforms that of CLAN by 97.06%. Figure 5
is the box plot showing the distribution of mean precision out
of the 50 queries. We note that the upper quartile for CLAN
is substantially lower than that of RepoPal.

Wilcoxon signed rank test is performed again to test whether
the improvement of RepoPal over CLAN is statistically signif-
icant in terms of precision. The p-values of RepoPal compared

Table V: Precision: RepoPal VS. CLAN

Approach Sample Size Median Mean
RepoPal 50 0.6 0.536
CLAN 50 0.4 0.272

Figure 5: Precision Box Plot

with CLAN is < 0.001, which indicate that the improvement
of RepoPal over CLAN is statistically significantly at the
confidence level of 99.9%.

RepoPal outperforms CLAN in terms of mean precision by
97.06%. The improvement is statistically significant.

V. THREATS TO VALIDITY

In this section, the threats to validity of our system and
experiment is discussed. The threats to validity is mainly
divided into threat to internal validity, threats to external
validity, and threats to construct validity. We also present what
steps we have taken to minimize the threats.

A. Threats to Internal Validity

Threats to internal validity relates to experiment bias. We
highlight two threats in terms of participants and repositories
used to evaluate the two systems below.
Participants: The empirical evaluation is based on the scores
given by the 4 participants. Some factors may cause some
threats to the validity of the findings; these include: the
familiarity of participants with Java and GitHub, participant
motivation to give careful evaluation, and consistency in
participants’ standard of relevance.

Although it is guaranteed that all participants reported
themselves to be familiar with Java and GitHub, their pro-
ficiency is not independently evaluated by us. The lack of
knowledge in Java language and GitHub may influence the
participants’ judgments. This threat is limited by the fact
that all student participants are from college of computer
science and technology in Zhejiang University and have taken
sufficient technical courses.

Meanwhile, if participants do not have interest or motivation
in evaluating the similarity of repositories, they may also make
irresponsible choices. We minimize this threat by choosing
participants who said they are interested in our research,
and asking them to spend enough time to comprehend the
repositories (in our study, each participant spend around 6
hours to label the data).
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The inconsistency of evaluation standard among participants
may also have negative effect. We try to minimize this by
assigning the two system outputs for one query to be rated
by the same participant. Thus, the strictness or leniency of
this participant in his/her rating, would be fairly distributed
to all evaluated systems. Also, we assign each query to two
participants for evaluation, and ask them to discuss with
the disagreements, which we believe can much reduce the
evaluation bias.
Repositories: In this study, we only use 50 queries to retrieve
similar repositories to evaluate RepoPal and CLAN. We also
only retrieve similar repositories from a pool of 999 reposito-
ries (i.e., 1,000 minus the one as query). In the future, we plan
to use more queries, repositories, and participants to reduce the
threats to validity.

The quality of repositories also poses a threat. If a repository
is of low quality, possibly with no description or specification
and a bad coding style, it is hard for participants to give proper
evaluation. We select repositories with more than 20 stars to
build the dataset. Intuitively these popular repositories should
have better quality. A similar strategy of filtering repositories
using stars, which indicate the popularity of the repositories,
was also done in many prior studies, e.g., [12], [15]. Although
CLAN does not require repositories to have stars, if we do not
limit the number of stars, it is likely that CLAN will retrieve
many repositories that has similar API invocations as the query
repository but with low quality, which will also harm CLAN’s
performance.

B. Threats to External Validity

Threats to external validity mainly deals with the gener-
alizability of our research and experiment. We highlight the
threats in terms of the programming languages and the number
of stars of repositories considered in this work.
Programming Languages: GitHub contains numerous repos-
itories written in languages other than Java (e.g. Python, PHP,
C++), or combinations of multiple programming languages.
RepoPal is not designed for a single language and can be
applied to all GitHub repositories. However, since we want
to compare RepoPal with CLAN and CLAN only supports
Java, we focus on Java repositories in this study. We plan
to evaluate RepoPal with other repositories written in various
programming languages in the future.
Number of Stars: When the repositories’ star number reduces,
the quality of RepoPal’s retrieval may decrease. However,
as discussed before, most GitHub repositories with low star
number are also of low quality, making them unfavorable to
be reused.
Poor Readme Files: RepoPal may fail to recommend relevant
repositories with poor readme files (e.g., default or blank
readme files). However, such repositories tend to be of low
quality. Among the 1,000 repositories that we use to evaluate
RepoPal (which receive more than 20 stars and thus of
substantially good quality), none of them have blank readme
files.

C. Threats to Construct Validity

Threats to construct validity relates to the suitability of our
evaluation metrics. In this work, we use the same metrics as
used by the most closely related work by McMillan et al. [5]
and Thung et al. [7]. These metrics are: SuccessRate@T, con-
fidence and precision. These metrics are well known metrics
that have also been used in many previous studies [5], [7],
[16], [17], [18], [19].

VI. RELATED WORK

We classify related work into several parts. We first intro-
duce the most related works to ours in Section VI-A. Then we
introduce several other related works about recommendation
systems, software categorization and code search. At last, we
briefly introduce some studies on GitHub.

A. Detecting Similar Repositories

The closest works to our approach are the studies conduted
by McMillan et al. [5] and Thung et al. [7]. McMillan et al.
propose an approach CLAN, which compares similarity be-
tween projects using the API usage patterns [5]. They evaluate
their technique on over 8,000 Java applications and find that
their approach has a higher precision than previously proposed
technique. Thung et al. propose a technique to recommend
similar repositories based on software tags mentioned along
with the project on SourceForge [7]. They perform a user study
which shows that their technique outperforms JavaClan, that
only uses Java API method calls.

Unfortunately, GitHub does not support repository tagging
and the approach by McMillan et al. only relies on API
usage patterns. In this work, we propose a new approach that
addresses the limitations of prior approaches to identify similar
repositories on GitHub. It relies on two sources of information,
GitHub stars and readme files, which were not used in the
prior works. We have also compared our approach against the
work by McMillan et al. (i.e., CLAN) on Java repositories
and demonstrated that our work outperforms theirs. We do
not compare our approach with Thung et al.’s work since their
approach relies on tags which are not available for repositories
on GitHub.

B. Recommendation Systems

There have been a number of studies on software recom-
mendation systems [20], [21], [22], [23], [24], [25], [26],
[27]. Bajracharya et al. present a technique Structural Se-
mantic Indexing (SSI) which associates words to source code
entities based on similarities of API usage, to recommend
API usage examples [20]. Thung et al. present a technique
that recommends libraries to developers using association rule
mining, which is based on the current library usage, and col-
laborative filtering, which finds libraries used by other similar
projects [21]. The evaluation of their technique on 500 Java
projects shows high recall rates. Bauer et al. present a tech-
nique to detect re-implementations of source code by leverag-
ing identifier based concept location and static analysis [22].
Teyton et al. present an approach that analyzes source code
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changes in software projects, which have migrated from one
third-party library to another, and extract mappings between
functions of old library and new library [23]. They evaluate
their approach on a large dataset from repositories such as
GitHub and SourceForge and find that their technique is able
to detect migrated code segments and achieves better results
than context-based approach. Cubranic et al. propose a tool
named Hipikat that recommends artifacts from the archives
which might be useful for a newcomer to a project [24].
They evaluate their tool by conducting a qualitative study on
graduate students in software engineering and a case study for
a task on Eclipse.

Our work is orthogonal to the above studies. We recommend
similar repositories to a given query repository, which is a
different problem compared with the the problems addressed
by the above mentioned works.

C. Software Categorization

Several approaches categorize projects into different cate-
gories [6], [28], [29], [30], [31]. Kawaguchi et al. propose
a technique MUDABlue, that uses source code and applies
Latent Semantic Analysis (LSA) to automatically determine
different categories from a collection of software systems and
classifies these systems into the above categories [6]. They
also implement a web-based interface to visualize different
categories and compare their technique to some previously
proposed techniques based on information retrieval. Wang et
al. propose a SVM-based approach to hierarchically categorize
software projects by aggregating different online profiles into
multiple repositories [28]. They conduct an experiment on over
18,000 projects and find that their technique shows significant
improvement in terms of precision, recall and F-measure.

The above studies can classify projects into different cat-
egories. However, there can be many projects in a category
without any ranking by similarity. Given a query project, it is
not possible to use the above mentioned approaches to rank
the projects by similarity and find the most similar projects.
In our work, our proposed recommendation system can rank
similar repositories with each of them having a similarity score
and recommend the most similar repositories according to the
rank.

D. Code Search Engine

Several studies have proposed source code search engines,
for example, Exemplar [32], Sourcerer [33], SNIFF [34],
Portfolio [35], SpotWeb [36], Parseweb [37], and S6 [38].
These search engines can discover source code fragments that
match a certain natural language query. However, they are not
good at detecting similar projects. In this work, we consider a
different yet related problem, namely the detection of similar
repositories on GitHub, given a query repository.

E. Studies on GitHub.

A number of studies have analyzed repositories on
GitHub [39], [40], [41], [42]. For example, Bissyande et

al. study 100,000 GitHub projects to examine the popu-
larity, interoperability and impact of various programming
languages [39]. Ray et al. analyse more than 700 projects on
GitHub to understand the effect of programming languages
on software quality [40]. Vasilescu et al. investigate the inter-
play between StackOverflow activities and the development
process, which is reflected by code changes committed to
the largest open source project platform GitHub. [41]. They
show that active GitHub committers ask fewer questions and
provide more answers than others. In a later work, Vasilescu
et al. analyse thousands of projects and survey GitHub users
to investigate the influence of gender and tenure diversity
on team productivity and turnover [42]. Different from the
above studies, we focus on an orthogonal problem namely the
detection of similar repositories on GitHub.

VII. CONCLUSION AND FUTURE WORK

Detecting similar repositories on GitHub can help software
engineers to reuse source code, identify alternative implemen-
tations, explore related projects, find projects to contribute to,
discover code theft and plagiarism, among others. A number
of prior approaches have been proposed to identify similar
applications, unfortunately they are not optimal or proper for
GitHub. One approach relies only on similarity in API method
invocations [5], while another relies on tags which are not
present in GitHub [7]. In this work, we propose a novel
recommendation system named RepoPal to identify similar
repositories on GitHub. RepoPal leverages two data sources
(i.e., GitHub stars and readme files) which can intuitively
help to identify similar repositories but are not considered in
previous works. And it is designed based on three heuristics:
First, repositories whose readme files contain similar contents
are likely to be similar with one another. Second, repositories
starred by users of similar interests are likely to be similar.
Third, repositories starred together within a short period of
time by the same user are likely to be similar. To evaluate the
effectiveness of RepoPal, we perform experiments on 1,000
Java repositories on GitHub and compare it against a state-
of-the-art approach CLAN [5]. We invite several participants
to evaluate our experiment results and the evaluation shows
that RepoPal can outperform CLAN in terms of success rate,
confidence, and precision.

In a future work, we plan to reduce the threats to validity
by including additional queries, repositories, and participants
in the evaluation of RepoPal. Moreover, we plan to include
additional sources of information to boost the effectiveness of
RepoPal further.
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