
An Empirical Study of Bugs in Build Process

Xiaoqiong Zhao1, Xin Xia1, Pavneet Singh Kochhar2, David Lo2, and Shanping Li1
1College of Computer Science and Technology, Zhejiang University, China

2School of Information Systems, Singapore Management University, Singapore
{zhaoxiaoqiong, xxkidd}@zju.edu.cn, {kochharps.2012, davidlo}@smu.edu.sg,

shan@zju.edu.cn

ABSTRACT
Software build process translates source codes into executable pro-
grams, packages the programs, generates documents, and distributes
products. In this paper, we perform an empirical study to char-
acterize build process bugs. We analyze bugs in build process in
5 open-source systems under Apache namely CXF, Camel, Felix,
Struts, and Tuscany. We compare build process bugs and other bugs
across 3 different dimensions, i.e., bug severity, bug fix time, and
the number of files modified to fix a bug. Our results show that the
fraction of build process bugs which are above major severity level
is lower than that of other bugs. However, the time effort required
to fix a build process bug is around 2.03 times more than that of a
non-build process bug, and the number of source files modified to
fix a build process bug is around 2.34 times more than that modified
for a non-build bug.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Build Process, Bugs, Empirical Study

1. INTRODUCTION
Software build process, which compiles source code into bina-

ry code, packages the binary code, executes test cases, runs static
analysis, generates documents, and distributes products, is a criti-
cal task in software development and maintenance. This automated
process enhances product quality, reduces redundant tasks and aids
in efficient management of a project. Despite these benefits, build
system maintenance increases the cost of software development by
12%-36% [1].

In this paper, we perform an empirical study on build process
bugs and their potential impact on software development. Our em-
pirical study provides insights about the importance of build pro-
cess bugs and differentiates these bugs with other bugs which we
refer to as non-build bugs. We analyze build process bugs from 5

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Table 1: Size of Analyzed Projects.
Project LOC # Files # Components

CXF 410,809 4,326 25
Camel 466,797 8,272 102
Felix 438,456 4,836 54

Struts2 274,360 1,973 12
Tuscany 237,075 3,006 41

projects under The Apache Software Foundations including CXF,
Camel, Felix, Struts, and Tuscany.

We investigate the following research questions:

1. What are the distributions of severity levels assigned to
build process bugs and non-build bugs?

2. How long does it take to fix build process bugs and non-
build bugs?

3. How many source files are modified to fix build process
bugs and non-build bugs?

2. METHODOLOGY & BASIC STATISTIC-
S

To collect build process bugs we follow a two step approach: bug
report collection and build process bug identification.
Bug Report Collection. In this study, we consider 5 large open
source projects each containing more than 100 kLOC. Table 1 shows
some statistics of these 5 projects. We collect bug reports from the
JIRA bug tracking systems of these projects. In total, we collect
more than 10,286 bug reports from the 5 projects. The number of
bug reports collected for each project is shown in Table 2.

Table 2: Collected Bug Reports.
Projects # Bug Reports

CXF 2,402
Camel 1,168
Felix 1,213

Structs 3,642
Tuscany 1,861

Total 10,286

Build Process Bug Identification. Identifying build process bugs
from more than 10,000 bug reports is an arduous task. In our identi-
fication step, we first semi-automatically reduce the number of bug
reports that we need to manually analyze to identify build process
bugs. Next, we manually analyze these bug reports and categorize
them as build process bugs or non-build bugs.

Build tools such as Ant and Maven use build files i.e., build.xml,
and pom.xml, respectively, to automate the software build process-
es. These build files contain information about different modules
and the relationships between source code, packages, and modules.
The modules closely correspond to the components in bug report-
s, and not all components appear in the build files. For example,

1187http://dx.doi.org/10.1145/2554850.2555142

for CXF, component “Documentation” does not appear in the build
file. Bug reports related to documentation are unlikely to be build
process bugs. For CXF, only 8 modules are included in the build
file, however there are 25 different components in the bug report-
s. So, we reduce the search space by only considering bug reports
related to the modules present in the build files. The name of a mod-
ule (in the build file) and the name of its corresponding component
(in the bug reports) might not be exactly the same. For example,
for CXF, the module “tools” corresponds to component “Tooling”.
Also, the module “services” corresponds to components “Services”
and “Services Model”. We manually map the names of the mod-
ules to the names of their corresponding components by analyzing
the lexical and semantic similarities of their names. After we filter
out bug reports that are not related to the modules in the build files,
we are left with 3,205 bug reports (642, 836, 811, 343, and 573 for
CXF, Camel, Felix, Struts2, and Tuscany, respectively).

Next, we keep bug reports with status “closed” and “fixed”. Then,
we search these reports by using keywords like “build”, “xml”,
“pom”, etc. For all the bug reports which match one or more key-
words, we manually decide if it is a build process bug or a non-
build bug. To decide whether a bug report is a build process bug
or a non-build bug, we investigate the bug report and the commits
that fix the bug. JIRA links a bug report to the commits (made to
a version control system) that address it by a unique bug identifier
which is automatically inserted to the logs of the relevant commits.
Bissyande et al. have shown that these links are reliable [2]. We
investigate the files that are changed by the commits and decide
whether a bug report is a build process bug or not. For a bug report,
if we judge it to be a build process bug, we also consider whether
there would be more keywords, in the newly identified build pro-
cess bug, which can be used to search other build process bugs. We
iterate these steps until there is no new bug report which matches
the keywords. At the end of this process, we identified 121 build
process bugs (27, 33, 12, 11, and 38 for CXF, Camel, Felix, Struts2,
and Tuscany, respectively).

3. EMPIRICAL STUDY RESULTS
RQ1: Severity Distribution of Build Process Bugs. To answer
this question, we investigate the severity distributions for the build
process bugs and non-build bugs. Severity represents the impor-
tance of that bug as compared to other bugs. The higher the sever-
ity level, the more attention a developer would pay to that bug.
There are five severity levels that a bug reporter can assign in JIRA:
Blocker, Critical, Major, Minor, and Trivial. Blocker represents the
most severe bugs while trivial represents the least severe bugs. In
JIRA, the default severity for a bug report is Major. If a bug re-
port’s severity is Critical or Blocker, it means the bug could cause
fatal system problems (e.g., system crash, data corruption, etc) and
developers would fix these kinds of bugs first.

Table 3: Number of Build and Non-Build Bugs of Different
Severity Levels.

Projects Types Blocker Critical Major Minor Trivial

CXF Build. 0 2 23 2 0
Non-build 13 26 505 66 5

Camel Build. 0 3 24 6 0
Non-build 2 31 588 170 12

Felix Build. 0 0 9 2 1
Non-build 9 16 636 122 16

Structs Build. 0 0 9 2 0
Non-build 9 92 188 30 13

Tuscany Build. 1 1 26 10 0
Non-build 29 33 406 64 3

Table 3 presents the severity distribution for the build process
bugs and other bugs in CXF, Camel, Felix, Structs, and Tuscany.

We notice that the number of bug reports with severity above major
are small for both build process bugs and non-build bugs. For ex-
ample, in CXF, there are 0 and 2 build process bugs with severity
blocker and critical, respectively. Also, there are only 13 and 26
non-build bugs with severity blocker and critical, respectively. A-
mong the 121 build process bugs, only 7 bugs (5.8%) are assigned
severity critical or blocker. On the other hand, among the 3,084
non-build bugs, 260 bugs (8.4%) are assigned severity critical or
blocker. Thus, the fraction of critical and blocker bugs in build
process bugs is lower than that in non-build bugs.

We use the Pearson’s chi-squared test [3] to check whether the
distribution of severity levels of build process bugs is different from
that of non-build bugs. The test returns a p-value of less than
2.2e−16. Thus, considering a significance level of 0.05, there is
a significant difference in the proportions of bug reports of various
severity levels for build process bugs and non-build bugs.

The fraction of build process bugs whose severity levels are crit-
ical or blocker is lower than that of non-build bugs. The distri-
bution of severity levels for build process bugs is different from
that for non-build bugs.

RQ2: Bug Fix Time. In this research question, we analyse the
time to fix build and non-build bugs. We record the time dura-
tion as the difference between the bug reporting timestamp and bug
closing (i.e., the bug report is assigned status “closed”) timestamp.
Although not a perfect measure, this time duration is related to the
effort required to fix a bug [4, 5]. Table 4 shows the mean fix time
for build process bugs and non-build bugs in CXF, Camel, Felix,
Structs, and Tuscany, respectively.

Table 4: Mean Fix Time (Hours) for Build Process Bugs and
Non-Build Bugs.

Projects Build Process Bugs Non-Build Bugs
CXF 1,587 898

Camel 430 228
Felix 705 681

Structs 6,014 2,293
Tuscany 1,146 766
Average 1,976 973

We notice the mean fix time for build process bugs is much
longer than that of other bugs, i.e., on average across the 5 projects,
the mean fix time for build process bugs is 1,976 hours, while that
of non-build bugs is 973 hours. To fix a bug, the time effort for a
build process bug is around 2.03 times the time required to fix a
non-build bug. Moreover, the mean fix time of bug reports whose
severity levels are either Major, Critical, or Blocker is much longer
for build process bugs than for other bugs, i.e., on average across
the 5 projects, the mean fix time of build process bugs whose sever-
ity levels are either Major, Critical, or Blocker is 2,175 hours, while
that of other bugs is 1,043 hours.

We perform a Mann-Whitney-Wilcoxon (MWW) test [6] to com-
pare the bug fix time of build and non-build bugs and find that the
difference is statistically significant with a p-value of 0.004345.
Thus, we can conclude that build process bugs take more time to
fix than non-build bugs.

The time required to fix a build process bug is almost double
that of a non-build bug.

RQ3: Number of Modified Source Files. Here, we investigate
the number of modified source files for build process bugs and non-
build bugs. Table 5 presents the number of source files modified to
fix build process bugs and non-build bugs in CXF, Camel, Felix,
Structs, and Tuscany, respectively.

We notice that the number of source files modified for build pro-

1188

cess bugs is much more than that of non-build bugs, i.e., on average
across the 5 projects, the number of source files modified for build
process bugs is 14.9, while that of other bugs is 6.36. To fix a
bug, the number of source files modified for a build process bug is
around 2.34 times for that of a non-build bug. Moreover, the num-
ber of source files modified for bug reports whose severity levels
are either Major, Critical, or Blocker is much more for build pro-
cess bugs than for other bugs, i.e., on average across the 5 projects,
the number of source files modified to fix bug process bugs whose
severity levels are either Major, Critical, or Blocker is 16.65, while
that of other bugs is 6.79.

Table 5: Number of Source Files Modified for Build Process
Bugs and Non-Build Bugs.

Projects Build Process Bugs Non-Build Bugs
CXF 19.89 9.55

Camel 16.21 7.03
Felix 11.08 3.54

Structs 14.82 4.10
Tuscany 12.50 7.56
Average 14.90 6.36

We perform a Mann-Whitney-Wilcoxon (MWW) test to com-
pare the number of files modified to fix build and non-build bugs
and find that the difference is statistically significant with a p-value
of less than 2.2e−16. Thus, we can conclude that the number of
source files modified to fix build process bugs is significantly larg-
er than that of other bugs.

The number of source files modified to fix a build process bug is
more than twice the number required to fix a non-build bug.

Threats to Validity. Threats to internal validity relates to experi-
menter bias and errors. We use a heuristic method to identify build
process bugs. Some build process bugs might be missed. We man-
ually examine 3,205 bug reports. We might make some mistakes
in categorizing a bug report as build process bugs or not. Threat-
s to external validity refers to the generalizability of our findings.
In this preliminary study, we only analyze 10,286 bugs (121 build
process bugs and 10,165 non-build bugs) in 5 software systems.
In the future, we plan to reduce this threat to external validity by
analyzing more bugs in more software systems.

4. RELATED WORK
Seaman et al. investigate bugs in various NASA projects and

categorize bugs depending on the location of the defects: require-
ment documents, code, and test plans [7]. Li et al. categorize bugs
in Mozilla and Apache Web Server based on their root causes, im-
pacts, and the affected software components [8]. Pan et al. perform
an empirical study on bug fixing performed in various projects writ-
ten in Java [9]. Zaman et al. perform an empirical study on security
and performance bugs in Firefox [10]. Chou et al. investigate the
distribution of bugs in Linux and OpenBSD kernels [11]. Thung
et al. perform an empirical study of bugs in 3 machine learning
systems, i.e., Mahout, Lucene, and OpenNLP [12]. Xia et al. cate-
gorize bugs in Make, Ant, CMake, Maven, Scons, and QMake, and
they find that most of the bugs belong to external interface and logic
categories [13]. Different from the above studies, in this work, we
investigate build process bugs and analyze the differences between
these bugs and non-build bugs.

5. CONCLUSION AND FUTURE WORK
In this paper, we investigate build process bugs. To identify build

process bugs, we employ a semi-automated heuristic method which
analyzes the build files (i.e., build.xml for ant, pom.xml for maven)

to detect build related components. Next, we search the bug report-
s for these components by using relevant keywords, and for each
retrieved bug report, we read the description and comments, and
check the modified source files to identify whether it is a build pro-
cess bug or not. We find 121 build process bugs in 5 open-source
projects (CXF, Camel, Felix, Struts, and Tuscany). Based on the
121 build process bugs, we perform an empirical study, and we
compare build process bugs and other bugs across 3 different di-
mensions, i.e., bug severity, bug fix time, and the number of files
modified to fix a bug. Our preliminary experiment results show that
the fractions of build process bugs whose severity are above major
is lower than that of other bugs. However, the time effort to fix a
build process bug is around 2.03 times more than that of a non-build
bug, and the number of source files modified to fix a build process
bug is around 2.34 times more than that of a non-build bug.

In the future, we plan to investigate more build process bugs in
more projects. We also plan to develop an automated method to
identify build process bugs.
Acknowledgment This research is sponsored in part by NSFC Pro-
gram (No.61103032) and National Key Technology R&D Program
of the Ministry of Science and Technology of China (No2013BAH
01B03).

6. REFERENCES
[1] G. K. Kumfert and T. G. W. Epperly, “Software in the DOE:

The Hidden Overhead of “The Build”,” Tech. Rep., 2002.
[2] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and

L. Réveillère, “Empirical evaluation of bug linking,” in
CSMR, 2013.

[3] K. Pearson, “On the criterion that a given system of
deviations from the probable in the case of a correlated
system of variables is such that can be reasonably supposed
to have arisen from random sampling,” Philosophical
Magazine, 1900.

[4] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing
time: an empirical study of commercial software projects,” in
ICSE, 2013.

[5] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A
market-based bug allocation mechanism using predictive bug
lifetimes,” in CSMR, 2012.

[6] H. B. Mann and D. R. Whitney, “On a test of whether one of
two random variables is stochastically larger than the other,”
The Annals of Mathematical Statistics, 1947.

[7] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L.
Feldmann, Y. Guo, and S. Godfrey, “Defect categorization:
making use of a decade of widely varying historical data,” in
ESEM, 2008.

[8] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have
things changed now? An empirical study of bug
characteristics in modern open source software,” in ASID,
2006.

[9] K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an
understanding of bug fix patterns,” Empirical Software
Engineering, 2009.

[10] S. Zaman, B. Adams, and A. E. Hassan, “Security versus
performance bugs: a case study on firefox,” in MSR, 2011.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
empirical study of operating systems errors,” in SOSP, 2001.

[12] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study
of bugs in machine learning systems,” in ISSRE, 2012.

[13] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study of
bugs in software build systems,” in QSIC, 2013, pp. 200–203.

1189

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryList_V1
 qi2base

