
Build System Analysis with Link Prediction

Xin Xia1∗, David Lo2, Xinyu Wang1, and Bo Zhou1

1College of Computer Science and Technology, Zhejiang University, China
2School of Information Systems, Singapore Management University, Singapore

xxkidd@zju.edu.cn, davidlo@smu.edu.sg, {wangxinyu, bzhou}@zju.edu.cn

ABSTRACT
Compilation is an important step in building working soft-
ware system. To compile large systems, typically build sys-
tems, such as make, are used. In this paper, we investigate a
new research problem for build configuration file (e.g., Make-
file) analysis: how to predict missed dependencies in a build
configuration file. We refer to this problem as dependency
mining. Based on a Makefile, we build a dependency graph
capturing various relationships defined in the Makefile. By
representing a Makefile as a dependency graph, we map the
dependency mining problem to a link prediction problem,
and leverage 9 state-of-the-art link prediction algorithms to
solve it. We collected Makefiles from 7 open source projects
to evaluate the effectiveness of the algorithms.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids

Keywords
Build System, Link Prediction, Makefile

1. INTRODUCTION
Software build process converts source code, libraries and

other data into executable programs by orchestrating the
execution of compilers and other tools. The whole building
process is managed by a build system, such as make, ant,
scon, or cmake. The build system make reads a build
configuration file known as a Makefile to build a system,
and it is one of the most widely used build system.
In this paper, we investigate a new research problem for

software build systems: automatic mining of missed depen-
dencies in build systems, and we mainly focus on the build
system make. We notice that for a large-scale software
project, such as Linux, the dependencies among the source

∗The work was done while the author was visiting Singapore
Management University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

code files are complex. It is easy to miss some dependencies,
which is hard to detect.

To solve the dependency mining problem, we first convert
a Makefile into a dependency graph. Nodes in the graph
corresponds to entities in the Makefile and edges in the
graph correspond to relationships among these entities. The
dependency mining problem is then reduced to the prob-
lem of predicting missing edges (links) in this graph. We
propose the usage of link prediction algorithms [1] to find
these missing edges. Nine state-of-the-art link prediction
algorithms are investigated in this paper, which are: com-
mon neighbors (CN), cosine similarity (CS), Jaccard Index
(JI), Adamic-Adar (AA), Resource Allocation (RA), Leicht-
Holme-Newman (LHN1), preferential attachment (PA), Katz,
and local path index (LP).

2. PRELIMINARIES
Figure 1 presents a simple Makefile which specifies the

build process of a calculator. We define 6 targets in this
Makefile: add.o, subtract.o, mult.o, divide.o (object files),
calculator (executable file), clean (a label). The target cal-
culator depends on several prerequisites: add.o, substract.o,
mult.o, divide.o and a static library lib.a. The object files
depend on their own source code files and a common header
file num.h.

Using MAKAO [2], we can convert a Makefile into a de-
pendency graph. Figure 2 shows the dependency graph de-
rived from the simple Makefile in Figure 1. The targets and
prerequisites in the Makefile become nodes, and the depen-
dency relationships become edges (links) in the graph.

1: calculator :add.o subtract.o mult.o divide.o lib.a
2: gcc add.o subtract.o mult.o divide.o -L . lib.a -o

calculator
3:
4: add.o: add.c num.h add.h
5: gcc -c add.c
6:
7: subtract.o: subtract.c num.h add.h
8: gcc -c subtract.c
9:
10: mult.o: mult.c num.h
11: gcc -c mult.c
12:
13: divide.o: divide.c num.h
14: gcc -c divide.c
15:
16: clean:
17: rm -rf *.o

Figure 1: An Example Makefile which Specifies the
Build Process for calculator.

1184http://dx.doi.org/10.1145/2554850.2555134

We formalize the definition of a dependency graph and
the task of dependency mining below:

Definition 1. (Dependency Graph.) A dependency
graph is graph G(V,E), where each node v ∈ V denotes a
target or a prerequisite in a corresponding Makefile, each
edge (link) e ∈ E denotes a dependency between a target
and a prerequisite node. We denote the edge from node v′

to node v as e(v′, v).

Definition 2. (Dependency Mining.) Consider a de-
pendency graph G(V,E), and let us denote U as the set con-

taining all |V |×(|V |−1)
2

possible edges (links) among nodes in
G(V,E). The dependency mining task is to mine the missed
edges from U − E edges.

calculator

substract.o

divide.o

mult.o

lib.a

num.h

add.c

substract.c

mult.c

divide.c

add.o

add.h

Figure 2: The Dependency Graph for The Simple
Makefile in Figure 1.

3. LINK PREDICTION
In this section, we present 9 state-of-the-art link predic-

tion algorithms (c.f., [1]) that is used in this paper. They
are: common neighbors (CN), cosine similarity (CS), Jac-
card Index (JI), Adamic-Adar (AA), Resource Allocation
(RA), Leicht-Holme-Newman (LHN1), preferential attach-
ment (PA), Katz, and local path index (LP). These algo-
rithms compute similarities of pairs of nodes and return a
sorted list of most similar pairs. The more similar the n-
odes in a pair is, the higher is the probability that a link
(edge) exists between the nodes. Given a dependency graph
G(V,E), for each node pair x, y ∈ V , we denote the similar-
ity score of nodes x and y as scores(x, y). We can represent
a dependency graph as an adjacency matrix M where for
any two different nodes v and v′, if there is a link between
them, (M)vv′ = 1. We denote neighbors of a node v as
Γ(v), which represents a set of nodes v′ which are adjacent
to v in G(V,E). We denote the degree of a node v as k(v),
which represents the number of neighbors that v has. Based
on these notations, the 9 algorithms compute similarities of
pairs of nodes in the following ways.

Common Neighbors (CN). Common neighbors (CN) com-
putes a score based on the number of common neighbors that
nodes x and y share as follows:

scoreCN (x, y) = |Γ(x) ∩ Γ(y)| (1)

Cosine Similarity (CS). Cosine similarity (CS) computes
a score based on the common neighbors that x and y share,

and the degree of the nodes as follows:

scoreCS(x, y) =
|Γ(x) ∩ Γ(y)|√
k(x)× k(y)

(2)

Jaccard Index (JI). Jaccard Index computes a score based
on the ratio of common neighbors to all neighbors that node
x or y have as follows:

scoreJI(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| (3)

Adamic-Adar (AA). Adamic-Adar (AA) computes a s-
core based on the degrees of the common neighbors that
node x and y have as follows:

scoreAA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log(k(z))
(4)

Resource Allocation (RA). RA also computes a score
based on the degrees of the common neighbors that node x
and y have as follows:

scoreRA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

k(z)
(5)

Leicht-Holme-Newman (LHN1). Leicht-Holme-Newman
Index (LHN1) computes a score based on the actual and ex-
pected number of common neighbors that nodes x and y
have as follows:

scoreLHN1(x, y) =
|Γ(x) ∩ Γ(y)|
k(x)× k(y)

(6)

Preferential Attachment (PA). Preferential Attachment
(PA) computes a score based on the idea that the probabil-
ity of a new link to take node x as one of its endpoint is
proportional to the current number of neighbors that x has,
in the following way:

scorePA(x, y) = k(x)× k(y) (7)

Katz. Katz [1] computes a score based on the paths (i.e.,
series of nodes) between nodes x and y, as follows:

scorekatz(x, y) =
∞∑
l=1

βl × |Pathl(x, y)| (8)

where Pathl(x, y) denote paths of length l between two n-
odes x and y, and βl > 0 is a weight which controls the
contribution of length l paths to the similarity score. By
default, we set β = 0.0005.

Local Path Index (LP). Local path index (LP) is a mix
between common neighbors (CN) and Katz. It is defined as:

score(x, y) = (M2)xy + β(M3)xy (9)

where, the first term in Equation (9) (i.e., (M2)xy) refers
to the number of common neighbors between node x and y,
and the second term refers to the number of paths of lengths
2 between the two nodes. By default, we set β = 0.0005.

4. EXPERIMENTS AND RESULTS
We evaluate the 9 link prediction algorithms presented

in Section 3 on the collected Makefiles whose statistics are
presented in Table 1. The experimental environment is a

1185

Table 1: Statistics of Collected Build Systems.
Projects # Nodes # Links

Zlib 91 233
putty 99 411
vim 146 1,144
APR 289 1,223

Memcached 227 2,443
Nginx 291 6,798
Tengine 320 8,258

Windows 7 64-bit, Intel(R) Xeon(R) 2.53GH server with
24GB RAM. One feature of our dependency mining prob-
lem is the imbalance data phenomenon, i.e., the number of
actual dependencies is small compared to the total number
of possible dependencies. For example, in APR project,
the number of nodes is 289, and thus the number of pos-
sible dependencies is 289∗288

2
= 41, 616, but the number of

actual dependencies is 1,223, which is only 1,223
41,616

= 2.94%
of the number of possible dependencies. We evaluate the
performance of the 9 algorithms in terms of the area under
the ROC curve (AUC). AUC is a commonly used metric to
evaluate the performance of link prediction algorithms [1].
The higher an AUC value is, the better performance an al-
gorithm achieves. Moreover, if AUC is below 0.5, it means
an algorithm is even worse than random guess.

Table 2: AUC Scores for The 9 Algorithms. Z.=Zlib.
P.=putty. V.=vim. A.=APR. M.=Memcached.
N.=Nginx. T.=Tengine.

Algo. Z. P. V. A. M. N. T. Avg.
CN 0.38 0.37 0.39 0.38 0.29 0.33 0.33 0.36
CS 0.38 0.37 0.38 0.38 0.29 0.33 0.33 0.35
JI 0.38 0.37 0.39 0.38 0.29 0.33 0.33 0.35
AA 0.38 0.37 0.39 0.38 0.30 0.33 0.33 0.36
RA 0.38 0.37 0.39 0.38 0.30 0.33 0.33 0.36

LHN1 0.38 0.37 0.39 0.38 0.29 0.33 0.33 0.35
PA 0.71 0.82 0.85 0.86 0.87 0.84 0.85 0.83
Katz 0.58 0.59 0.64 0.71 0.50 0.64 0.64 0.61
LP 0.61 0.64 0.64 0.70 0.50 0.70 0.70 0.64

Table 2 presents the AUC scores for the 7 Makefiles and 9
algorithms. AUC scores for CN, CS, JI, AA, RA, and LHN1
are extremely low (< 0.5). And AUC scores for PA, Katz
and LP are better (> 0.5). Among the 9 algorithms, PA
achieves the best performance – the AUC scores vary from
0.71 to 0.87 with an average of 0.83.

5. RELATED WORK
There have been a number of studies studies on build sys-

tem maintenance. McIntosh et al. investigate version his-
tories of one proprietary and nine open source projects [3].
Adams et al. [4] analyze changes to the Linux kernel build
system from its inception up to version 2.6 using MAKAO.
They conclude that a good balance between obtaining a fast,
correct build system and migrating in a step by step way is
the general approach followed by developers maintaining the
Linux build system. A similar conclusion is also observed for
ant-based build systems [5]. Suvorov et al. perform an em-
pirical study on build system migration [6]. Neitsch et al.
analyze build systems for programs which are developed in
multiple programming languages [7]. They identify major
issues in building multi-language software, and explore the
reasons why these issues occur. Tu and Godfrey perform a
case study on build-time software architecture, and intro-
duce the “code robot” architectural style [8]. Tamrawi et al.

propose SYMAKE which processes Makefiles and produce
symbolic build graphs (SDGs) [9, 10]. Xia et al. analyze
and categorize bugs in Make, Ant, CMake, Maven, Scons,
and QMake [11]. Zhao et al. investigate bugs in the build
processes of 5 software systems including CXF, Camel, Felix,
Struts2, and Tuscany [12].

6. CONCLUSION AND FUTURE WORK
In this paper, we investigate a new research problem: au-

tomatic inference of missed dependencies in build configu-
ration files. To solve this research problem, we first con-
struct a dependency graph using MAKAO [2], and then use
9 state-of-the-art link prediction algorithms to infer missed
dependencies. The experiment results show that on average
the preferential attachment (PA) algorithm performs best in
terms of AUC which is a commonly used evaluation metric.
PA can achieve AUC scores of 0.71-0.87 when analyzing the
7 systems.

In the future, we plan to investigate more build configu-
ration files from large software systems to reduce threats to
external validity. We also plan to develop another algorithm
which can achieve better AUC scores.

Acknowledgment This research is sponsored in part by
NSFC Program (No.61103032) and National Key Technolo-
gy R&D Program of the Ministry of Science and Technology
of China (No2013BAH01B03).

7. REFERENCES
[1] L. Lü and T. Zhou, “Link prediction in complex

networks: A survey,” Physica A: Statistical Mechanics
and its Applications, pp. 1150–1170, 2011.

[2] B. Adams, H. Tromp, K. De Schutter, and
W. De Meuter, “Design recovery and maintenance of
build systems,” in ICSM, 2007, pp. 114–123.

[3] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and
A. Hassan, “An empirical study of build maintenance
effort,” in ICSE, 2011, pp. 141–150.

[4] B. Adams, K. De Schutter, H. Tromp, and
W. De Meuter, “The evolution of the linux build
system,” EASST, 2008.

[5] S. McIntosh, B. Adams, and A. Hassan, “The
evolution of ant build systems,” in MSR, 2010.

[6] R. Suvorov, M. Nagappan, A. Hassan, Y. Zou, and
B. Adams, “An empirical study of build system
migrations in practice: Case studies on kde and the
linux kernel,” in ICSM, 2012.

[7] A. Neitsch, K. Wong, and M. Godfrey, “Build system
issues in multilanguage software,” in ICSM, 2012.

[8] Q. Tu and M. Godfrey, “The build-time software
architecture view,” in ICSM, 2001.

[9] A. Tamrawi, H. Nguyen, H. Nguyen, and T. Nguyen,
“Build code analysis with symbolic evaluation,” in
ICSE, 2012, pp. 650–660.

[10] ——, “Symake: a build code analysis and refactoring
tool for makefiles,” in ASE. ACM, 2012, pp. 366–369.

[11] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical
study of bugs in software build systems,” in QSIC,
2013, pp. 200–203.

[12] X. Zhao, X. Xia, P. Kochhar, D. Lo, and S. Li, “An
empirical study of bugs in build process,” in SAC,
2014.

1186

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryList_V1
 qi2base

