2013 13th International Conference on Quality Software

An Empirical Study of Bugs in Software
Build Systems

Xin Xia*f, Xiaozhen Zhou*, David Lo, and Xiaoqiong Zhao*

*College of Computer Science and Technology, Zhejiang University

School of Information Systems, Singapore Management University
{xxkidd, zxztc} @zju.edu.cn, davidlo@smu.edu.sg, zhaoxiaogiong @zju.edu.cn

Abstract—Build system converts source code, libraries and
other data into executable programs by orchestrating the execu-
tion of compilers and other tools. The whole building process is
managed by a software build system, such as Make, Ant, CMake,
Maven, Scons, and QMake. The reliability of software build
systems would affect the reliability of the build process. In this
paper, we perform an empirical study on bugs in software build
systems. We analyze four software build systems, Ant, Maven,
CMake and QMake, which are four typical and widely-used
software build systems, and can be used to build Java, C, C++
systems. We investigate their bug database and code repositories,
randomly sample a set of bug reports and their fixes (800 bugs
reports totally, and 199, 250, 200, and 151 bug reports for Ant,
Maven, CMake and QMake, respectively), and manually assign
them into various categories. We find that 21.35% of the bugs
belong to the external interface category, 18.23% of the bugs
belong to the logic category, and 12.86% of the bugs belong to
the configuration category. We also investigate the relationship
between bug categories and bug severities.

Keywords—Software Build System, Bug Category, Empirical
Study

I. INTRODUCTION

The most common goal of a build system is to convert
source code, libraries and other data into executable programs
by orchestrating the execution of compilers and other tools.
In addition, build systems also support the packaging of web-
based application, the generation of software product docu-
mentation, the automatic static analysis of source code, and
other related activities [1]. A prior research study has shown
that build system maintenance could add 12%-36% more costs
on software development [2].

The whole build process use various systems and tools:
version-control tools, which store the source code and ensure
concurrent development for developers; compilation tools,
which convert input source code into object code or executable
programs; software build systems, which collect sufficient
information about the relationship between source files and
object files, and use necessary compilation tools to produce the
final build output (e.g., executable programs, software package,
documentation, static analysis results). Software build systems
play the most important roles in building systems, since they
orchestrate the entire build process, and control the final build
output. There are various software build systems, such as
Make, Ant, CMake, Maven, Scons, and QMake.

#The work was done while the author was visiting Singapore Management
University.

978-0-7695-5039-8/13 $26.00 © 2013 IEEE
DOI 10.1109/QSIC.2013.60

200

A number of studies have investigated bugs and their fixes
in various systems [3], [4], [5], these studies provide guide for
triaging bug reports, detecting duplicated bug reports, design-
ing bug location tools, reduce testing and maintenance costs,
and helping to improve development efficiency. However, to
our best knowledge, none of these studies focus on bugs in
software build systems. One significant feature of software
build systems is that they should work on various platforms,
i.e., various operating systems (e.g., Windows, Linux), various
development environments (e.g., Eclipse, Visual Studio), and
various programming languages (e.g., C, C++, Java, C#).
Thus, analyzing bugs and their fixes in software build systems
deserves a special consideration.

In this study, we analyze four software build systems:
)
2)

Apache Ant', one of the most popular build systems
for Java-based projects.

Apache Maven?, a software build automation and
comprehension tool used primarily for Java projects.
CMake?, a software build automation which trans-
lates a high-level build description into a lower-level
description which can be used by other build system,
such as GNU Make.

QMake?, a part of the QT development environment,
which is similar to CMake.

3)

4)

To investigate bugs that appear in the four systems, we
analyze their bugs and code repositories. We collect bug reports
with status “closed”, and manually check their fixes. For
Apache Ant, it uses Bugzilla to track all the bugs; we manually
check the commit logs in CVS to retrieve the fixes related to
a bug. For Apache Maven and QMake, they use JIRA to track
bugs, and JIRA contains links from bug reports to a list of
changes in the source control repositories that fix those bugs.
For CMake, it uses MantisBT to track bugs, and uses Github®
to manage source code, and we notice developers post links
of source code changes related to the corresponding bugs in
Github.

In this paper, we aim to answer a number of research
questions: How often a bug appears in software build systems?
How much bugs per kLOC? What categories of bugs appear
in software build systems? What are the severity distribution
for each category of bugs? To answer the above questions, we

'http://ant.apache.org/

Zhttp://maven.apache.org/

3http://www.cmake.org/
“http://qt-project.org/doc/qt-4.8/qmake-manual.html
Shttps://github.com/

IEEE
computer
psouety

TABLE L. STATISTICS INFORMATION OF CLOSED BUGS IN SOFTWARE

BUILD SYSTEMS

[Projects | Version [Lines of Code | No. Files | Bug Count | Duration |
Ant 1.8.4 254,431 1,167 2,567 5.18 years
Maven 3.05 51,651 346 2,945 10.66 years
CMake 2.8.10 406,715 1,104 5,192 9.72 years
QMake 5.0.1 33,583 53 844 6.96 years
Bug 1
Repository 3 4 ®
Bug Reports Sampled _1 Metric .| Statistics
and Code Bug Reports| | Extraction Computation
T
Code |
Repository)
Fig. 1. The Whole Process of the Empirical Study

perform both manual and automated analysis on a randomly
sampled set of “closed” bug reports and their corresponding
bug fixing commits. We find that 21.35% of the bugs belong
to the external interface category, 18.23% of the bugs belong
to the logic category, and 12.86% of the bugs belong to the
configuration category.

II. METHODOLOGY

We focus on only closed bugs from the bug repositories,
as bug reports that are not closed may not be bugs or have no
fixes or enough information for our analysis yet. Table I shows
version, lines of source code, number of source files, and the
numbers of closed bugs for Ant, Maven, CMake, and QMake,
respectively. We also show the durations (in years) between
the first and last bugs we collected in column Duration.

Figure 1 presents the whole process of our empirical study.
We first download the bug reports from bug repositories and
the source code from code repositories of the four software
build systems (Steps 1 and 2). Next, we randomly select a set
of bug reports from the whole bug report collection for each
system (Step 3). Then, we extract some information, identity
the fixes for each bug report in the four systems, and assign bug
reports into different categories (Step 4). Finally, we compute
some statistics based on the collected information extracted in
Step 4 (Step 5). We explain more on the information extraction
and statistics computation (i.e., Steps 4 and 5, respectively) in
the following paragraphs.

1) Information Extraction: To get bug fixes we check both
bug and code repositories. For Apache Ant, since it doesn’t
contain source code change information in bug reports, we
check its commit log in CVS to identity the fixes (bugs whose
fixes can’t be identified from the commit logs are discarded).
For Apache Maven, CMake, and QMake, we find the list of
source code changes for each closed bug report either in the
comment text (CMake) or in the source section (Maven and
QMake).

We assign bug reports to several categories manually. We
make use of bug description, bug comment textual information,
and also bug fixes to infer the bug category. We use the set
of categories proposed by Seaman et al. in [6], and we extend
it by adding 1 category (i.e., configuration). Table II presents
the bug categories and their description.

201

TABLE II BUG CATEGORIES FOR SOFTWARE BUILD SYSTEMS
[Category [Definition
algorithm/method The implementation of an algorithm/method works in

an unexperted way.

assignment/ initialization A variable or data item is assigned a wrong value or

not properly used.

checking Missing necessary checks for potential error condi-
tions, or an error response specified for error condi-
tions.

data Wrong usage of data structure, point, and type con-
versions.

logic Incorrect logical expression in condition statements

(e.g., if, case, and loop blocks).

non-functional defects Failure to meet non-functional requirements, such as
defines improper variable or method, implement non-

compliance method with standard documentation.

timing / optimization Error related to times, concurrency or performance

issues, e.g., slow complication, memory leak, etc.

internal interface Errors in interfaces between different component in
the same system, such as incorrect operation of files
or database, and errors of inheritance. For software
build systems, it also refers to errors of build system
dependency graph, such as generating wrong depen-
dency, losing dependency, etc

external interface Errors of user interface (including usability issues).
For software build systems, it also refers to er-
rors of the usage of build system tools in different
platforms, such as various operation systems (e.g.,
Windows, Linux), various development environments
(e.g., Eclipse, Visual Studio), various program lan-
guages (e.g., C, C++, Java, C#).

configuration Error in non-code files (e.g., configuration files) that
cause error in functionality.

others Other bugs not fall into one the above categories.

TABLE III. BUG DENSITIES IN FOUR SOFTWARE BUILD SYSTEMS

[Projects | # Bug Per KLOC [# Bug Per File | # Bug Per Year

Ant 10.09 bugs/kLOC 2.20 bugs/file 495.56 bugs/year
Maven 57.02 bugs/kLOC 8.51 bugs/file 276.27 bugs/year
CMake 12.77 bugs/kLOC 4.70 bugs/file 534.16 bugs/year
QMake 25.13 bugs/kLOC 15.92 bugs/file 121.26 bugs/year

2) Statistics Computation: We compute various statistics
for each bug category and for all the bug reports we investigate
in the four software build systems. These statistics are then
used to answer various research questions in Section III-A.
We investigate the relationships between bug categories and
bug severities, bug fixing time, and number of bug comments
by using these statistics.

III. EMPIRICAL STUDY

In this section, we present the research questions and their
answers of our empirical study.

A. Research Questions
We are interested in the following research questions:
RQ1 How often bugs appear in software build systems?
RQ2 What are the categories of bugs appearing in
software build systems?
RQ3 What are the severity distribution of the various
categories of bugs?
B. RQI: Bug Densities

We present the bug densities of Ant, Maven, CMake, and
QMake in Table III. We found that Maven has the highest aver-
age number of bugs per kLOC (57.02 bugs/kLOC), followed
by QMake (25.13 bugs/kLOC), CMake (12.77 bugs/kLOC),

TABLE IV. BUG CATEGORIES IN FOUR SOFTWARE BUILD SYSTEMS

[Category [Number | Percentage |
algorithm/method 36 4.49%
assignment/ initialization 67 8.36%

checking 61 7.62

data 100 12.48%
logic 146 18.23%
non-functional defects 12 1.50%
timing / optimization 13 1.62%
internal interface 74 9.24%
external interface 171 21.35%
configuration 103 12.86%
others 17 2.12%

and Ant (10.09 bugs/kLOC). These numbers indicate that that
for every line of code, developers of Maven need to fix more
bugs than the others.

We also report the average number of bugs per source file,
and year in the last two columns of Table III. QMake is a
component of QT toolkit, which only has 53 C/C++ source
files and 844 bugs reported in QT bug tracking system, but
it contains the highest number of bugs per source file (15.92
bugs/file), followed by Maven (8.51 bugs/file), CMake (4.70
bugs/file), and Ant (2.20 bugs/file). Moreover, Maven and
CMake have received bug reports for a long period of time
- 10.66 and 9.72 years respectively. CMake has the highest
average number of bugs per year (534.16 bugs/year), followed
by Ant (495.56 bugs/year), Maven (276.27 bugs/year), and
QMake (121.26 bugs/year).

C. RQ2: Bug Categories

We randomly sample 800 bug reports from the four build
tool systems. There bugs are then manually assigned into
different categories. The distribution of bugs based on the 11
categories is presented in IV. We notice that most bugs are
categorized as external interface (21.35%), followed by logic
(18.23%), and then followed by configuration (12.86%). There
are only 2.12% of bugs that fall into the category others. The
small proportion of bugs in the category others indicates that
the remaining 10 categories are sufficient to cover most of bugs
for software build systems.

External interface category corresponds to bugs of user
interface and those related to usability issues. Software build
systems need to work for various systems, and on various plat-
forms, i.e., various operating systems (e.g., Windows, Linux),
various development environments (e.g., Eclipse, Visual Stu-
dio), and various programing languages (e.g., C, C++, Java,
C#). Also as users need to use these systems often, they would
pay attention to build system usability and user interface. These
explain why bugs in external interface category are the most.

Logic category corresponds to bugs of incorrect expres-
sion appearing in conditional statements. For software build
systems, since we need to make them platform-independent,
we have to consider different conditions, such as the variable
assignment in different platform conditions, which make the
logic bugs appear more than many other bug categories.
To identify logic bugs, we need to check the source code
modification logs.

Configuration category corresponds to bugs in non-code
files (e.g., configuration files). The whole build process can
be simply viewed as reading from a configuration file (e.g.,

202

Makefile, build.xml), and building the system according to the
command in the configuration file. For some software build
systems, such as CMake and QMake, they are based on low-
level build systems such as make, thus they need to parse their
configuration files and generate low-level configuration files.
This makes configuration bugs appear more than many other
bug categories.

D. RQ3: Bug Severity

Next, we investigate the relationship between bug category
and bug severity. We study the same five severity levels® as [3],
i.e., Block, Critical, Major, Minor, and Trivial. Block is the
most severe category while Trivial is the least severe category.
Table V presents the relationship between bug category and
bug severity in Ant, Maven, CMake and QMake.

We notice that major and minor severities dominate all the
bug categories. It is notable that in JIRA (Maven, QMake),
the default severity level when a user creates a new bug report
is major, while in Bugzilla (Ant), the default severity level is
normal, and in MantisBT (CMake), the default severity level
is minor. This default setting maybe the reason that major
and minor severities take the majority of bugs in all of the
categories; Users might not be able to distinguish the meaning
of different severity levels well, and they may simply use the
default severity level [7].

Following the definition of the various severity levels, block
bug refers to a bug that causes system crash, data corruption, ir-
reparable harm, etc, and critical bug refers to a bug that affects
an important function and it has no reasonable workaround.
Analyzing block and critical bugs can provide insight towards
developing a more robust application. From Table V, we
notice all the bug categories except algorithm/method and
timing/optimization contain bugs of block or critical severity
levels. For external interface and logic categories, they contain
the most of block and critical bugs, i.e., with 50 (29.24%) and
59 (40.41%) bugs, respectively.

IV. RELATED WORK

Mclntosh et al. investigate version histories of one propri-
etary and nine open source projects [8]. They conclude that
build maintenance incurs up to a 27% overhead on source
code development and a 44% overhead on test development.
Adams et al. [9] analyze the changes to the Linux kernel
build system from its its inception up to version 2.6 using
MAKAO [10]. Suvorov et al. provide an empirical study for
build system migration; they analyze two cases: KDE and
Linux kernel [11]. Neitsch et al. perform an empirical study of
the build systems for programs that are developed in multiple
programming languages [12]. Tu and Godfrey perform case
studies on build-time software architecture, and introduce the
“code robot” architectural style [13].

OWe notice in JIRA (Maven and QMake), the word priority is used instead
of severity. In Bugzilla (Ant), there are 7 severity levels (blocker, critical,
major, normal, minor, trivial, and enhancement). And in MantisBT (CMake),
there are 8 severity levels (blocker, crash, major, minor, tweak, text, trivial, and
feature). To make the severity level consistent with a previous study [3], we
assign them into 5 severity levels, i.e., we assign normal to minor, enhancement
to trivial for Ant, and we assign crash to critical, and tweak, text, feature to
trivial for CMake.

TABLE V. RELATIONSHIP BETWEEN BUG CATEGORY AND BUG SEVERITY IN FOUR SOFTWARE BUILD SYSTEMS
[Category [Severity [Number [Proportion || Category [Severity [Number [Proportion |
Block 0 0.00% Block 0 0.00%
Critical 0 0.00% Critical 0 0.00%
algorithm/method Major 8 22.22% timing/optimization Major 2 15.38%
Minor 28 77.78% Minor 10 76.92%
Trivial 0 0.00% Trivial 1 7.69%
Block 0 0.00% Block 9 12.16%
Critical 14 20.90% Critical 10 13.51%
assignment/initialization Major 16 23.88% internal interface Major 36 48.65%
Minor 36 53.73% Minor 14 18.92%
Trivial 1 1.49% Trivial 5 6.76%
Block 1 1.64% Block 8 4.68%
Critical 8 13.11% Critical 42 24.56%
checking Major 36 59.02% external interface Major 53 30.99%
Minor 15 24.59% Minor 57 33.33%
Trivial 1 1.64% Trivial 11 6.43%
Block 0 0.00% Block 3 2.91%
Critical 13 13.00% Critical 17 16.50%
data Major 28 28.00% configuration Major 25 24.27%
Minor 47 47.00% Minor 48 46.60%
Trivial 12 12.00% Trivial 10 9.71%
Block 3 2.05% Block 1 5.88%
Critical 56 38.36% Critical 4 23.53%
logic Major 68 46.58% others Major 7 41.18%
Minor 14 9.59% Minor 5 29.41%
Trivial 5 3.42% Trivial 0 0.00%
Block 4 33.33%
Critical 2 16.67%
non-functional defects Major 4 33.33%
Minor 2 16.67%
Trivial 0 0.00%

There are various empirical studies on bugs and fixes. Sea-
man et al. make use of NASA historical data by creating model
to guide future software development, and propose a set of bug
categories [6]. Thung et al. perform an empirical study of bugs
in machine learning systems [3]. Chou et al. investigate bugs
in operating systems in the Linux and OpenBSD kernels [5].
They analyze the root cause of bugs, bug distribution, bug
life cycle, bug clusters, and the difference between operating
system bugs and other bugs. Pan el al. investigate bug fix
patterns in a number of systems, and categorize the bug fix
types based on the syntax of code changes [14].

V. CONCLUSIONS AND FUTURE WORK

To better understand software build systems, we perform
an empirical study on bugs in these systems. We analyze four
software build systems: Apache Ant, Apache Maven, CMake,
and QMake. We first download their bug repositories and
code repositories. Next, we randomly pick 800 bugs (199,
250, 200, and 151 bug reports for Ant, Maven, CMake and
QMake, respectively), and manually assign them into different
categories. We further investigate the relationship between bug
categories and bug severities, and we find that among the 800
bug reports, 21.35% of the bugs belong to the external interface
category, 18.23% of the bugs belong to logic category, and
12.86% of the bugs belong to configuration category.

In the future, we plan to investigate more software build
systems, and analyze more bug reports. We also plan to design
an automatic bug categorization tool to assign bugs into their
categories.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program
(No0.61103032) and National Key Technology R&D Pro-

203

gram of the Ministry of Science and Technology of China
(No2013BAHO01BO1).

REFERENCES

[1]1 P. Smith, Software Build Systems: Principles and Experience. Addison-

Wesley Professional, 2011.

G. Epperly, “Software in the doe: The hidden overhead of the build,”
2002.

F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs
in machine learning systems.” ISSRE, 2012.

S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in MSR, 2011, pp. 93-102.

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, An empirical
study of operating systems errors. ACM, 2001, vol. 35, no. 5.

C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
and S. Godfrey, “Defect categorization: making use of a decade of
widely varying historical data,” in ESEM. ACM, 2008, pp. 149-157.
I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles,
“Towards a simplification of the bug report form in eclipse,” in MSR.
ACM, 2008, pp. 145-148.

S. MclIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan, “An
empirical study of build maintenance effort,” in /CSE. 1IEEE, 2011,
pp. 141-150.

B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, 2008.

B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in /CSM. 1EEE, 2007,
pp. 114-123.

R. Suvorov, M. Nagappan, A. Hassan, Y. Zou, and B. Adams, “An
empirical study of build system migrations in practice: Case studies on
kde and the linux kernel,” in /CSM. 1EEE, 2012.

A. Neitsch, K. Wong, and M. Godfrey, “Build system issues in
multilanguage software,” in ICSM. 1EEE, 2012.

Q. Tu and M. Godfrey, “The build-time software architecture view,” in
ICSM. 1EEE, 2001, pp. 398-407.

K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286-315, 2009.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[13]

[14]

