
How Android App Developers Manage
Power Consumption?

An Empirical Study by Mining Power Management Commits

Lingfeng Bao1, David Lo2, Xin Xia1∗, Xinyu Wang1, Cong Tian3

1College of Computer Science and Technology, Zhejiang University, China
2School of Information Systems, Singapore Management University, Singapore

3ICTT and ISN Lab, Xidian University, Xi’an, China
lingfengbao@zju.edu.cn, davidlo@smu.edu.sg, xxia@zju.edu.cn

wangxinyu@zju.edu.cn, ctian@mail.xidian.edu.cn

ABSTRACT
As Android platform becomes more and more popular, a
large amount of Android applications have been developed.
When developers design and implement Android applica-
tions, power consumption management is an important fac-
tor to consider since it affects the usability of the applica-
tions. Thus, it is important to help developers adopt proper
strategies to manage power consumption. Interestingly, to-
day, there is a large number of Android application reposito-
ries made publicly available in sites such as GitHub. These
repositories can be mined to help crystalize common power
management activities that developers do. These in turn can
be used to help other developers to perform similar tasks to
improve their own Android applications.

In this paper, we present an empirical study of power man-
agement commits in Android applications. Our study ex-
tends that of Moura et al. who perform an empirical study
on energy aware commits; however they do not focus on An-
droid applications and only a few of the commits that they
study come from Android applications. Android applica-
tions are often different from other applications (e.g., those
running on a server) due to the issue of limited battery life
and the use of specialized APIs. As subjects of our empirical
study, we obtain a list of open source Android applications
from F-Droid and crawl their commits from Github. We get
468 power management commits after we filter the commits
using a set of keywords and by performing manual anal-
ysis. These 468 power management commits are from 154
different Android applications and belong to 15 different ap-
plication categories. Furthermore, we use open card sort to
categorize these power management commits and we obtain
6 groups which correspond to different power management
activities. Our study also reveals that for different kinds of

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901748

Android application (e.g., Games, Connectivity, Navigation,
Internet, Phone & SMS, Time, etc.), the dominant power
management activities differ. For example, the percentage
of power management commits belonging to Power Adapta-
tion activity is larger for Navigation applications than those
belonging to other categories.

Keywords
Power Consumption, Power Management, Mining Software
Repository, Empirical Study

1. INTRODUCTION
Mobile devices such as smartphone and tablet have be-

come a commonplace in our daily lives. For such mobile
devices, Android1 is a very popular open source mobile
platform and has dominated the smartphone market with
a share of 82.8% in the second quarter of 2015 [2]. More
and more Android applications are produced by thousands
of developers. In the first quarter of 2016, there are about
1,900,000 apps in Google Play [1]. As the functionality of
these Android applications becomes more and more power-
ful, their power consumption increases too. Battery usage
has become a very important quality metric for Android
apps; for example, in a survey conducted with more than
3,500 respondents from 4 different countries [3], long-lasting
battery life has been cited as the most desired feature in a
new phone by 71% of the respondents. Thus, power man-
agement optimization is an important goal for Android app
developers.

In the recent years, many research groups have focused
on the energy consumption or power management of mo-
bile devices. Some researchers propose useful tools to help
developers to gain insights into the energy usage patterns
of their applications. These tools include cycle-accurate
simulators [27, 4], power monitors [24], program analysis
techniques [9, 10], and statistical-based measurement tech-
niques [20]. Additionally, many energy-efficient techniques
have been proposed and they work at the operating system
level [39, 6, 37], VM-level [34] and application-level [40, 25,
8]. Although these research studies provide techniques that
can help developers understand and optimize power con-

1www.android.com

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 37

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 37

sumption, they do not provide direct guidance on how to
write power efficient mobile apps.

Interestingly, today, there is a large number of Android
application repositories made publicly available. More and
more open source Android applications also begin to pay
attention on power management. Thus, we can possibly
crystallize their power management practices to help other
developers. In a previous study, Moura et al. performed an
empirical study to investigate solutions that software devel-
opers employ to save energy [26]. They analyzed hundreds
of energy consumption-related commits from Github2. The
commits analyzed in their study are from a wide spectrum
of repositories and only a few comes from repositories of
mobile software. They state that:“they found 47 commits
that are targeting mobile software”. Also, they mention that
“Although most of these commits are related to Android Ker-
nels, we found several commits that focus on the application-
level”. In this work, we want to complement their study by
focusing on power management commits that focus on An-
droid and the application level. We focus on the application
level since this is what matters to most Android develop-
ers – much fewer developers contribute to Android kernels
than the millions of Android applications. Our purpose is
to understand what are the activities performed by devel-
opers in order to manage energy consumption in Android
applications.

As subjects of our study, we analyze Android applications
listed in F-Droid3, which is an installable catalogue of free
and open source Android applications. F-Droid contains
some meta information for each Android app, such as source
code website, category, license, etc. A majority of apps in
F-Droid put their source code in Github, and these apps
are the focus of our study. We extract commits of these
apps from Github and filter those that are related to power
management.

To obtain the power management commits we follow a
semi-automated approach. First, we use four keywords:
“power”, “energy”, “battery” and “wakelock” to identify a set
of commits that are likely to be power management related.
Two of these keywords“battery”and“wakelock”are not used
in the study of Moura et al. [26]. Unique from other applica-
tions, Android applications mostly run on hardware that are
dependent on battery. Android applications also use a spe-
cialized library and “wakelock” is a key power management
API for the Android platform. We find about 1,500 com-
mits using these four key words. Second, we manually check
the 1,500 commits to remove irrelevant ones. We identify a
total of 468 power management commits which are part of
154 different Android applications.

After we identify the power management commits, we
perform an open card sort to categorize the commits into
groups. Card sorting is widely used to generate a category
tree or folksonomy. In an open card sort, participants cre-
ate their own names for categories. By contrast, in a closed
card sort, participants are provided with a predetermined
set of category names. At the end of the open card sort,
six groups emerge which correspond to different power man-
agement activities. Finally, we identify the dominant power
management activities for different categories of Android ap-
plications (e.g., Games, Connectivity, Navigation, etc.).

2www.github.com
3https://f-droid.org/

The main findings of this study are the following:

• We identify 6 main power management activities,
namely: Power Adaptation, Power Consumption
Improvement, Power Usage Monitoring, Optimizing
Wake Lock, Adding Wake Lock and Bug Fix & Code
Refinement.

• We confirm that wake lock is a key factor in Android
power management. We find many power management
commits (i.e., 156 (33.33%)) that contain keywords
“wakelock”; 66 (14.10%) of them are in the group Op-
timizing Wake Lock and 90 (19.23%) of them are in
the group Adding Wake Lock.

• We find that power management commits appear in
applications across 15 out of the 17 application cate-
gories in F-Droid. The remaining two categories (i.e.,
Graphics and Sports & Health) only contain a few ap-
plications.

• We also find that 12.04% of the crawled applications
include power management commits. The percentage
of crawled applications with power management com-
mits is higher for categories Phone & SMS and Con-
nectivity. For these categories, 32.26% and 22.03% of
the applications that we crawl contain power manage-
ment commits. The percentages are lowest for Them-
ing, Writing and Games categories – they are 3.90%,
4.35% and 6.45% respectively.

• We find that different application categories have dif-
ferent dominant power management activities. For in-
stance, the dominant power management activities for
the Navigation category is Power Adaptation, while
the dominant power management activities for the
Games category is Power Usage Monitoring.

Paper organization.
The remainder of this paper is organized as follows. Sec-

tion 2 describes the methodology that we follow for this
empirical study. Section 3 presents our empirical study re-
sults. Section 4 discusses the implications of our study and
the threats to validity. Section 5 briefly reviews the related
work. Section 6 draws the conclusions and presents future
work.

2. CASE STUDY SETUP
In this section, we describe the details of our approach

which contains two phases: a data collection phase and a
data analysis phase. Figure 1 presents the overall framework
of our aproach. In the data collection phase, we crawl meta
data from thousands of open source Android applications in
F-Droid3. By using these meta data, we then mine the com-
mits from Github. In the data analysis phase, we obtain the
commits that are related to power management in Android
by an automatic filtering process and a manual checking
step. At last, we analyze these commits by computing some
statistics and performing a qualitative analysis. Our data
is available for researchers wishing to replicate our study at
https://github.com/baolingfeng/AndroidPowerCommits.

3838

F-Droid

Android Application
Meta Data

Github

Commits
Power Management

Commits Filtering

Manual Checking Power
Management

Commits

Statistics &
Qualitative Analysis

Data Collection Data Analysis

Figure 1: The Overall Framework of Our Proposed Approach

2.1 Data Collection
As data for this empirical study, we use mobile applica-

tions from F-Droid which is a catalogue of free and open
source applications for the Android platform. In total, we
find 1,993 apps on F-Droid4. Each mobile application avail-
able on F-Droid has a corresponding wiki page which pro-
vides details about the app. For us, wiki pages are very
important since they provide us the meta data of the apps,
such as description, license, web site, source code, issue
tracker, category, etc. For example, Figure 2 presents a
partial screenshot of the wiki page of F-Droid Application
Manager. Table 1 presents the 17 categories of applications
that are present on F-Droid. Notice one app can be assigned
to one or more categories. For example, DroidShow which
is a TV Series/TV show browser and tracker is assigned two
categories – Multimedia and Internet.

Figure 2: A Partial Screenshot of F-Droid Application Man-
ager Wiki Page

These Android applications are hosted in different plat-
forms, such as Github, Bitbucket, Google Code, etc.
In this paper, we only consider applications whose source
code is hosted on Github. Github provides very conve-
nient REST APIs. We find that there are 1,208 applications

4https://f-droid.org/wiki/page/Repository Maintenance

Table 1: The Categories of Android Applications on F-Droid

Application Categories
Connectivity Development
Games Graphics
Internet Money
Multimedia Navigation
Phone & SMS Reading
Science & Education Security
Sports & Health System
Theming Time
Writing

on F-Droid whose source code is hosted on Github. We
also compare our collected applications with the data set of
Krutz et al. [16] which contains 1,179 applications in total.
There are 65 applications that are in their data set but not
in our collected data. We manually check the data and find
that the difference is caused by F-Droid recently deleted
some applications. Since we could still get these applica-
tions in Github, we also add these 65 applications into our
dataset. Finally, we get 1,273 Android applications in total.

After obtaining this set of applications, we obtain all their
commits from Github using the Github source code link in
the meta data. At last, we get 671,443 commits from all of
the 1,273 open source Android applications.

2.2 Data Analysis
For the collected commits, we first filter power manage-

ment commits by using several regular expressions automat-
ically, then we check the filtered commits manually. At last,
we do some quantitative and qualitative analysis on power
management commits.

2.2.1 Power Management Commit Filtering
Previous studies on power/energy saving [26, 30] automat-

ically select commits that are most likely to be related to en-
ergy consumption by using the following regular expressions:
energy consum, *energy efficien*, *energy sav*, *save en-
ergy*, *power consum*, *power efficien*, *power sa*, and
save power. The character ‘*’ in each regular expression
corresponds to a wildcard. Unfortunately, for Android appli-
cations, we find that using these regular expressions would
cause us to miss many relevant commits. For example, one
relevant commit message says: “added accelerometer track-
ing and GPS tweaking to save battery power”. Such commit

3939

Table 2: The Different Wake Lock Flags for Android Power
Management

Flag Value CPU Screen Keyboard
PARTIAL WAKE LOCK On Off Off
SCREEN DIM WAKE LOCK On Dim Off
SCREEN BRIGHT WAKE LOCK On Bright Off
FULL WAKE LOCK On Bright Bright

would be omitted since it does not match any of the regular
expressions. To prevent such case, we generalizes the above
regular expressions to “*power*” and “*energy*”. The use
of more general regular expressions make it necessary for us
to perform a manual step to exclude irrelevant commits (see
Section 2.2.2). We get 510 and 59 commits whose messages
contain the keywords “power” and “energy” respectively.

We also observe that the keyword “battery” is indicative
of power management commits in Android applications. For
instance, we find a commit which says: “Fix battery drain”.
So we also use the regular expressions“*battery*”and“*bat-
teries*” to filter the commits in our collected data and get
an additional 582 commits.

Android developers use specific APIs to manage power
consumption. After looking up the Android API document,
we find the API PowerManagement.WakeLock plays a key
role in Android power management. A wake lock can be
used to indicate that an application requires a mobile de-
vice to stay on because the application needs to use sys-
tem resources. The wake lock can be used to keep the sta-
tus of CPU, screen and keyboard on or off. The Android
Power Management API document describes the different
wake lock flags available that change the power state of the
device. Table 2 presents the different wake lock flags for
Android power management5.

Thus, the appropriate use of wake lock could affect the
Android device’s power or battery. When we are checking
the commits filtered by the keywords “power”, “energy” and
“battery”, we find some commits that are related to wake
lock use. For instance, one commit contains both the key-
words battery and wakelock, it says “Lower wakelock time to
hopefully improve on active battery usage”. Another exam-
ple commit message does not contain keyword “wakelock”,
but we find in this commit the developer sets wake lock to be
null (see Figure 3) and claims that the power consumption
has been fixed. Based on these findings, we decide to also
use the regular expressions “*wakelock*” and “*wake lock*”
to filter the collected commits. Using these two regular ex-
pressions, we get an additional 331 commits.

Figure 3: An Example Commit that Contains Wakelock Re-
lated Code

5http://developer.android.com/reference/android/os/
PowerManager.html

Summary: We use four keywords: “power”, “energy”, “bat-
tery”and“wakelock”to filter the commits automatically and
get 510, 59, 582, and 331 commits respectively. There are
some overlaps among the four sets of commits since some
commit messages contain multiple keywords, such as save
battery power. For such cases, we only consider the commit
once.

2.2.2 Manual Checking
We manually check each of the filtered commits through

the interface provided by Github which greatly increases
the readability of a patch. By using this interface, we can
easily map a commit to its source code modifications, ob-
serving which lines of code were added, modified, or re-
moved. We use this interface to investigate the source code
corresponding to a given commit in order to check whether
it is relevant to Android power management.

There are many commits that are unrelated to Android
power management since the filtering regular expressions
that we use is not very strict. These kinds of commits are
often easily recognizable by human; for example, there are
some commits with the word “PowerPC” which is a RISC
instruction set architecture in the application “dolphin-
emu/dolphin”. These commits match the regular expression
“*power*”which we use, and we exclude them after a manual
checking step. Another example is a commit whose message
is: “Fixed voltage and battery level (were negative)”. This
commit is a bug fix on battery level display, and is not re-
lated to Android power management. There are many other
kinds of commits which are unrelated to Android power
management; due to the page limitation, we do not list all
of them.

The manual check process is performed by the first author
and another two graduate students in Zhejiang University.
We divide all filtered commits into three parts according
to the keywords we use: “power” and “energy”, “battery”,
“wakelock”. Each person analyzes two of the three parts,
and thus each commit is at least checked by two people. For
each commit, if the two people’s opinions differ, then the
third person will be involved and everyone would discuss it
together and decide whether it is related to Android power
management.

At the end of this manual check process, we get 468 com-
mits that are related to Android power management.

2.2.3 Quantitative and Qualitative Analysis
We collect the statistics of Android applications that con-

tain at least one power management commit. The collected
statistics include their lines of code (LOC), number of com-
mits, number of contributors, and their age. For each ap-
plication category, we also compute the number of applica-
tions under that category, the number of applications under
that category that contain at least one power management
commit, and the number of commits of applications in that
category that are related to power management.

We also perform a qualitative analysis to group the
power management commits into power management ac-
tivity groups. To do so, we follow an open card sort ap-
proach [36]. Our card sort process consists of two phases:
In the preparation phase, we create one card for each com-
mit message. In the execution phase, cards are sorted into
meaningful groups with a descriptive title. Our card sort
was open, meaning we had no predefined groups; instead,

4040

we let the groups emerge and evolve during the sorting pro-
cess. By contrast, a closed card sort has predefined groups,
which is typically used when the themes are known in ad-
vance. The first author and the other two graduate students
of Zheiang University jointly sorted the card.

3. CASE STUDY RESULTS
In this section, we first present the statistics of the col-

lected power management commits. We then consider the
following two research questions:

RQ1: How developers manage power consumption
in Android applications?

RQ2: What type of Android application are more
concerned about power management?

3.1 Statistics of Power Management Commits
We find a total of 468 Android power management com-

mits. This number represents 32.12% of the total number
of commits we found in our initial query with four keywords
“power”, “energy”, “battery”and“wakelock”. These commits
are performed in 154 different Android applications which
belong to 15 different categories. Notice there are 17 cat-
egories in F-Droid, and only two categories Graphics and
Sports & Health are not involved in our collected commits.
This is due to the low number of apps belonging to these
two categories, i.e., the two categories only contain 11 and
13 apps respectively. Figure 4 presents a box plots show-
ing the distribution of the lines of code (LOC), number of
commits, number of contributors, and age (in years) of the
154 apps. Age is calculated as the interval between the first
commit and the last commit that we collect. In the figure,
the symbol × represents the mean value.

(a) LOC (b) Commits

(c) Contributors (d) Age

Figure 4: Distributions of the Lines of Code, Number of
Commits, Number of Contributors, and Age of the Applica-
tions.

The 154 Android applications have 51,347±201,789
(mean±standard) lines of code (3rd quartile: 40,665, min:
317, max: 2,137,398), 25±42 different contributors (3rd

quartile: 25, min: 1, max: 284), 2,594 commits (3rd quar-
tile: 1568, min: 29, max: 82,692) and are 3.8±2.4 years old
(3rd quartile: 5.4, min: 0.1, max: 14.25). The size of 3.18%
of the applications are at most 1,000 lines of code, 38.85% of
them are from 1,001 to 10,000 lines of code and more than
half (i.e., 57.86%) of them are over 10,000 lines of code.

Table 3 shows the top-10 Android applications which have
the largest number of power management commits. From
the table, we notice that Zanshinmu/Wifi-Fixer, which is a
Connectivity application, has the highest number of power
management commits (i.e., 25 commits). We reanalyze these
commits and find that the purposes of these power manage-
ment commits vary. For example, some commits are per-
formed to conserve battery by reducing network scan fre-
quency, or optimize wake lock usage. Some commits add
wake lock to ensure that some functionalities work correctly.
This shows that the same Android application often requires
developers to perform different power management activi-
ties. We can find a similar conclusion by analyzing other ap-
plications in the table. Their commits were also performed
for different purposes related to power management. Note
that these 10 applications belong to 6 different categories,
i.e., Connectivity, Navigation, Development, Games, System,
and Phone & SMS.

Table 3: Top-10 Android Applications with Largest Number
of Power Management Commits

Application Name (Owner/Repo) Category
#Power Management
Commits

Zanshinmu/Wifi-Fixer Connectivity 25
mozilla/MozStumbler Navigation 23
Mobiperf/MobiPerf Development 20
scummvm/scummvm Games 12
Grarak/KernelAdiutor Development 11
yuriykulikov/AlarmClock System 10
dolphin-emu/dolphin Games 10
jonatkins/ingress-intel-total-conversion Games 9
servalproject/batphone Phone & SMS 9
Yakoo63/gtalksms Phone & SMS 9

3.2 RQ1: How developers manage power con-
sumption in Android applications?

To answer this research question, we cluster the collected
power management commits into different groups. We per-
form an open card sort [36] to create the groups. First we
print each commit message on a card, we then discuss the
commit message and iteratively sort them into groups. Our
card sort identify six categories, as shown in Table 4. In the
following paragraphs, we discuss the detail of each category.

Table 4: The Different Categories of Selected Commits

Category # Commits
Power Adaptation 51
Power Consumption Improvement 64
Power Usage Monitoring 84
Optimizing Wake Lock Usage 66
Adding Wake Lock 90
Power Management Bug Fix or Code Refinement 113

3.2.1 Power Adaptation
For mobile devices, their batteries could be under differ-

ent conditions, such as power-save mode, low power mode or
high power mode. Some Android applications would adjust
their power management strategies to ensure that their func-
tionalities work optimally as the battery condition changes.
Different power adaptation actions are performed in this

4141

group of commits according to different battery conditions.
We list the messages of some representative commits for dif-
ferent battery conditions below:
Power-save mode

5 Make CircleView respect power-save mode + code clean-
up (1)

5 adding new battery saving gps handling mode (2)

5 Only disable WiFi (battery saving mode) when JAWS
switched it automatically on (3)

5 Merge pull request #1270 from garvankeeley/motion-
detection. Battery-saving mode (by pausing GPS and
scanners) on unchanging location. (4)

Low power or under certain power threshold

5 ActiveMode: Option to disable on low battery. Not tested,
but should be fine (5)

5 Send turn off broadcast when battery is low (6)

5 Stop scanning on low battery (7)

5 Auto-off on low battery only if the device is not plugged-in
Fixed compilation with standard ARM version (8)

5 shutdown at certain battery level (9)

High power or battery is charging

5 Add ability to only do autodl when charging. Defaults to
allow autodl on battery to preserve existing behavior (10)

5 activate artist and album search by default on higher
power phones (11)

5 Added Wifi on when power connected rule (12)

5 added ”turn wifi on when power connected” and ”don’t
turn wifi on when in airplane mode” feature (13)

From the above examples, we notice battery condition has
an important effect on Android power management, and de-
velopers need to consider adapting the functionalities of the
applications in different battery conditions. For example, if
the power is lower than a threshold or if the mobile device
is in a power-save mode, some features such as GPS, Wifi,
animation, etc., may be disabled to save power (see commit
1-9). And if the mobile devices are in high-power or are
charging, Android applications can enable more functional-
ities to improve user experience, since the battery usage is
not a big issue then (see commit 10-13).

3.2.2 Power Consumption Improvement
The commits in power consumption improvement group

perform changes to optimize the power consumption by us-
ing different methods, such as disabling certain applica-
tion features, optimizing some functions or models, using
more power efficient libraries, etc. Some commits in this
group clearly write the reason why the improvement is made
and/or how to modify the code to optimize power consump-
tion. Some representative examples are listed below:

5 Pebble: try to shut up datalog, which might cause battery
drain on the watch (14)

5 Testing new fix for massive battery usage caused by GPS
not being disabled during application pause. (15)

5 added accelerometer tracking and GPS tweaking to save
battery power - WIP (16)

5 Reduce battery drain caused by insainly high value of wid-
get update period. The period is now set to 1 hour but we
still wake up the device to perform the update. We might
consider the use of an alarm to avoid waking up the de-
vice when it is asleep, or at least let the user configure the
update period himself. (17)

5 Revert ”Add event content observer”. Content observer is
called multiple times without any apparent reason which
leads to high battery usage. (18)

5 user more battery efficient heartbeat (19)

5 added multicore power saving (20)

5 Improve CPU resources when ignoring blocked apps. Use
improved iptables rules to ignore logging for blocked apps.
Instead of logging all apps and having to parse each and
every log message to determine if a message belongs to
a blocked app, we can now simply add an iptables rule
to not provide any log messages for blocked apps! This
means we no longer have to waste precious CPU/battery
resources parsing messages that we don’t care about. (21)

From the above examples, we notice that various abnor-
mal battery usage problems are fixed in different ways, e.g.,
disabling a functionality such as GPS (see commit 15, 16)
and logging (see commit 14, 21), using more power efficient
libraries or functionalities (see commit 16, 19), reducing the
update frequency or number of function calls (see commit
17, 18), and supporting multicore power saving (see commit
20).

Some commits just claim that they solve the power con-
sumption problems but do not say how they solve the prob-
lems, such as “Fix battery consumption” or “Fixed battery
drain”. But through looking into the commit patch using
Github interface, we also know what is the power consump-
tion problem and how it is fixed. For example, Figure 5 is the
screenshot of the commit patch with message: “Fixed bat-
tery drain” viewed from Github interface. From this patch,
we could know that in order to save battery, the developer
makes one thread of this application to stop waiting if the
waiting time exceeds 10 seconds.

Figure 5: Screenshot of An Example Patch Viewed Using
the Github Interface

3.2.3 Power Usage Monitoring
In the power usage monitoring group, the Android de-

velopers usually add some UIs or configurations to inform
users the status of battery usage. These commits do not
change the application behavior directly but inform users
the status of battery usage to help users manage the power
consumption by themselves. The following are some of the
representative example commits in this group:

5 Display battery label in RED when battery is LOW (22)

4242

5 Use CircleChart for battery level (23)

5 Added battery level from/to to screen (with pref) (24)

5 footer: battery value monitoring is added. myBat-
teryLevel is added to ZLApplication. FBReader battery
monitor is added. (25)

5 show system battery usage (26)

5 Display current energy for whole portal (27)

5 Added battery level indicator when device is not charging
(28)

5 New dna binary with instrumentation logging mode &
more battery monitoring. (29)

3.2.4 Optimizing Wake Lock Usage
The commits in this group try to optimize wake lock us-

age. Wake lock is used to help developers control the CPU,
screen and keyboard, and its usage may affect the power con-
sumption. Inappropriate wake lock usage will cause power
to be wasted unnecessarily. For example, in commit 36, the
developer tried to use wake lock instead of a handler but this
change causes battery drain, so they had to revert back to
previous code. The following are some of the representative
example commits in this group:

5 Cleaned up wakelock. Cleaned up dialog constants. Added
JOU to the database (30)

5 Release WakeLock when it isn’t needed. Release Wake-
Lock in Presto’s MediaPlayer when it is not needed. That
way, it is going to behave just like Android’s MediaPlayer.
(31)

5 eliminated wake locks for network check when wifi is dis-
abled (32)

5 changed wakelock timing (33)

5 changed to use PARTIAL WAKE LOCK (34)

5 Try again to only use partial wakelock (35)

5 TokencodeBackend: Revert back to Handler in favor of
AlarmService. AlarmService wound up holding wakelocks
and draining the battery. Use Handler instead, and add
checks to make sure we don’t try to update the UI when
the display is off. (36)

5 Lower wakelock time to hopefully improve on active bat-
tery usage (37)

These examples give us some hints on how to use wake
lock appropriately: 1) Release wake lock after using it (see
commit 30). 2) Try lower wake lock time if possible (see
commit 33, 37). 3) Use PARTIAL WAKE LOCK if possi-
ble since it only requires to keep CPU on and keep screen
and keyboard off (see commit 34, 35). 4) Use wake lock
correctly (see commit 30, 32, 36).

3.2.5 Adding Wake Lock
The commits in this group are performed to keep the apps

running well by adding wake locks. Any usage of wake lock
has impact on battery power. But it is often necessary to
ensure the normal working of applications. Comparing with
the previous commit group “Optimizing Wake Lock Usage”
which tries to lower power consumption, the commits in this
group will increase power consumption. For example, com-
mit 41 tries to keep network connection on using a wake
lock. More examples are shown below.

5 Use a wake lock during syncing. Ensure that the device
remains on until the sync is complete. (38)

5 Added a WakeLock to keep the device awake until scrob-
bling is completed. Changed the scrobble waiting time to
1 minute. (39)

5 Switching to startService instead of alarm manager. Us-
ing a partial wake lock in the service to prevent CPU from
stopping. (40)

5 Create and release a wakelock every 25 minutes, to avoid
having the network disconnect after 30 minutes (41)

3.2.6 Power Management Bug Fix or Code Refine-
ment

The purpose of commits in power management bug fix or
code refinement group is to fix Android power management
bug, or refine and refactor related code. If a code fragment
is related to Android power management, and a bug or a
code refinement happens in the code fragment, we consider
this kind of commit to belong to this group. Below are some
of the representative examples in this group.

5 Fix crash when notification received on API < 7. -Caused
by calling powerMan.isScreenOn() which was introduced
in API 7. (42)

5 added a few features to power manager (43)

5 Fixed the remaining known power bugs; cleaned code a
bit- 2∧ 3∧ 2 is 64 instead of 512; not a bug but not ideal
either (44)

5 Bugfix: Leaked wake lock via scan code path (45)

Some bugs are caused by using inconsistent version of
APIs. (see commit 42). In some commits, developers re-
fine the power management code; for example in commit
43, we find that the developer refined the code about bat-
tery status update. We also observe that there are many
commits that contain keyword “wakelock” in this group (see
commit 45).

3.3 RQ2: What types of Android applications
are more concerned about power manage-
ment?

Although power consumption is a very important aspect
for Android applications, for certain applications or certain
categories of applications, developers often need to focus on
other aspects such as functionality, user experience, perfor-
mance, etc. and pay little even no attention on power man-
agement. In this work, we are interested to find the types of
Android applications (out of the 17 that appear in F-Droid
– see Table 1) whose developers are more concerned about
power management.

Table 5 shows the percentage of applications for each ap-
plication category that contain some power management
commits. The first column is the application category, the
2nd column is the number of applications we crawled from
F-Droid whose source code is in Github, the 3rd column is
the number of applications with power management com-
mits, and the last column is the percentage of applications
with power management commits over the total number of
crawled applications for each category.

Two out of the 17 categories, i.e., Graphics and Sport
& Health, contain no applications with power management

4343

commits. This is maybe because there are only few applica-
tions for these two categories – 11 and 13 respectively (see
the last two rows in the Table 5). Notice that since some
Android applications can belong to multiple categories, the
total number of applications (across all categories) shown in
this table is larger than the number of applications in our
data set.

Table 5: Percentage of Applications with Power Manage-
ment Commits (#AppsWithPM

#Apps
) For Each Application Cate-

gory

Category #Apps #AppsWithPM Percentage
Connectivity 59 13 22.03%
Development 74 10 13.51%
Games 124 8 6.45%
Internet 187 27 14.44%
Money 24 3 12.50%
Multimedia 172 27 15.70%
Navigation 95 14 14.74%
Phone & SMS 31 10 32.26%
Reading 76 7 9.21%
Science & Education 91 8 8.79%
Security 56 7 12.50%
System 175 19 10.86%
Theming 77 3 3.90%
Time 75 6 8.00%
Writing 46 2 4.35%
Graphics 11 0 0.00%
Sport & Health 13 0 0.00%
All 1362 164 12.04%

On average, power management commits appear in the
repositories of 12.04% Android applications in our dataset.
This suggests that many Android apps pay more attention
on other aspects such as user experience, performance, etc.
However, this percentage is significantly larger and smaller
for some categories of apps.

Among the 17 categories in Table 5, the percentages for
categories Phone & SMS and Connectivity are much higher
than other categories, i.e., 32.26% and 22.03% respectively.
Android apps that belong to Phone & SMS category help
manage call and message data of users and they usually
run in the background. One power management commit
of an app named GTalkSMS which allows users to control
phone and send/receive SMS has the following message: “set
keepAlive interval to 15 min to save energy”. Many apps like
GTalkSMS that run in the background are doing so for good
reason, e.g. syncing, providing location data or otherwise
doing what they were designed to do, etc. However, it is also
necessary to keep these kinds of apps energy efficient at the
same time. The apps in the category Connectivity help users
manage connections between their mobile device and other
devices over Bluetooth, NFC, Wi-Fi P2P, USB, and SIP, etc.
The connectivity function can consume much power. Thus,
these apps are often careful with power consumption.

Excluding Graphics and Sport & Health categories which
have very few applications, Theming, Writing and Games
have very low percentages of applications with power man-
agement commits, i.e., 3.90%, 4.35% and 6.45%, respec-
tively. This suggests that developers of apps in these cate-
gories focus more on other concerns beyond power consump-
tion. For instance, for game apps, user experience is often
the most important thing. Often these game apps consume
much power to support good user experience.

Figure 6 shows the number of power management com-
mits for each category. From this figure, we could see that
categories Connectivity, Internet and System have the most

numbers of power management commits, while the cate-
gories Money, Theming and Writing have the least number
of power management commits.

0

10

20

30

40

50

60

70

P
o

w
er

 M
an

ag
em

en
t

 C
o

m
m

it
s

Figure 6: The Number of Power Management Commits for
Each Category

For each of the six power management activities described
in RQ1 (Section 3.2), we also calculate the number and per-
centage of power management commits for each application
category. Table 6 shows the result where percentages which
are larger than 25% are highlighted in bold. We ignore the
percentages for application categories Money, Theming and
Writing since the number of commits in these categories are
very small (≤ 10).

From this table, we can see for many application cate-
gories, the percentage of power management commits be-
longing to Bug Fix & Code Refinement activities is the
largest (24.19% on average). This shows that writing power
management code is not trivial and developers need to be
careful lest they introduce bugs.

The percentage of power management commits belonging
to Power Adaptation activity is larger for application cat-
egory Navigation than other categories (i.e., 26.53%). We
find that an application named MozStumbler in category
Navigation contributes 10 out of the 13 power management
commits belonging to this activity. MozStumbler is a data
gathering application for Mozilla Location Service. It re-
quires GPS and has a scanner mode, and both consume a
lot of energy. Thus, it chooses to disable these two function-
alities when in power save mode or low power. For example,
one of its power management commits says: “Battery-saving
mode (by pausing GPS and scanners) on unchanging loca-
tion”.

The percentage of commits belonging to Power Consump-
tion Improvement activity is larger than others for the ap-
plication categories Internet and Time (26.98% and 27.27%
respectively). The applications in these two categories often
optimize power consumption by reducing update frequency
or function calls. For example, the commit 18 described
in Section 3.2 belongs to a Time application named Polite-
Droid which activates silent mode during events recorded in
user’s calendar.

Some categories of applications, i.e., Games, Navigation
and Phone & SMS, made more Power Usage Monitor-
ing commits than other power management commits (i.e.,
42.22%, 30.61% and 38.46% of the total number of commits
respectively). Often users know that some applications (e.g.,
Games and Navigation applications) would consume a lot of
power, but they still want to launch these applications. For

4444

Table 6: Numbers and Percentages of Power Management Commits Belonging to Different Activities for Each Application
Category

#Power Adaptation
#Power Consumption

Improvement
#Power Usage

Monitoring
#Optimizing
Wake Lock

#Adding
Wake Lock

#Bug Fix &
Code Refinement

Connectivity 12 (17.91%) 8 (11.94%) 9 (13.43%) 12 (17.91%) 9 (13.43%) 17 (25.37%)
Development 2 (4.35%) 4 (8.70%) 6 (13.04%) 5 (10.87%) 9 (19.57%) 20 (43.48%)
Games 4 (8.89%) 6 (13.33%) 19 (42.22%) 3 (6.67%) 1 (2.22%) 12 (26.67%)
Internet 1 (1.59%) 17 (26.98%) 1 (1.59%) 12 (19.05%) 19 (30.16%) 13 (20.63%)
Money 5 (50.00%) 0 (0%) 1 (10.00%) 1 (10.00%) 2 (20.00%) 1 (10.00%)
Multimedia 3 (6.38%) 6 (12.77%) 1 (2.13%) 10 (21.28%) 16 (34.04%) 11 (23.40%)
Navigation 13 (26.53%) 7 (14.29%) 15 (30.61%) 1 (2.04%) 2 (4.08%) 9 (18.37%)
Phone & SMS 2 (5.13%) 4 (10.26%) 15 (38.46%) 5 (12.82%) 11 (28.21%) 2 (5.13%)
Reading 2 (9.09%) 1 (4.55%) 2 (9.09%) 6 (27.27%) 5 (22.73%) 6 (27.27%)
Science & Education 0 (0%) 2 (11.76%) 4 (23.53%) 2 (11.76%) 6 (35.29%) 3 (17.65%)
Security 1 (7.69%) 3 (23.08%) 0 (0%) 2 (15.38%) 2 (15.38%) 5 (38.46%)
System 6 (10.53%) 8 (14.04%) 9 (15.79%) 8 (14.04%) 9 (15.79%) 17 (29.82%)
Theming 0 (0%) 1 (33.33%) 2 (66.67%) 0 (0%) 0 (0%) 0 (0%)
Time 2 (18.18%) 3 (27.27%) 1 (9.09%) 1 (9.09%) 2 (18.18%) 2 (18.18%)
Writing 0 (0%) 1 (33.33%) 0 (0%) 0 (0%) 1 (33.33%) 1 (33.33%)
All 53 (10.77%) 71 (14.43%) 85 (17.28%) 68 (13.82%) 94 (19.11%) 119 (24.19%)

such cases, it is better to show users the battery usage of
the applications or notify low battery situations.

Wake locks are often required to ensure that some func-
tionalities remain workable and to improve user experience.
There are many commits that belong to Optimizing Wake
Lock activity across all application categories, especially
Reading. The percentages of commits belonging to Adding
Wake Lock activity are high for four application categories,
i.e., Internet, Multimedia, Phone & SMS and Science &
Education. They are 30.16%, 34.04%, 28.21% and 35.29%
respectively.

4. DISCUSSION

4.1 Implications
Our study shows that power consumption management

is important when developing many Android applications.
Many developers care about power consumption and made
commits which improve power management. We identify
six groups of power management commits which correspond
to different power management activities. We also find the
dominant power management activities performed by apps
in different groups. We make the following recommendations
to Android developers related to power management:

• Extra attention must be given to resources or features
that consume much energy. These include resources
such as GPS, wifi, etc. and features such as anima-
tion, frequent updates, etc. Many power management
commits in our dataset control the usage of such re-
sources and features.

• It is a good practice to consider the battery condition
(e.g., power is low, battery is charging) and manage
power consumption accordingly. Developers need to
balance application usability and battery life.

• Showing power usage is a frequently used alternative
strategy which delegates power management decision
to end users. This is useful for applications that always
consume much power, such as game apps.

• Wakelock needs to be used with care. It can help save
power if it is used appropriately. However, misuse of
wakelock will cause power consumption problems.

• Power management needs to be designed with care and
not an after-thought. Our study shows that many bugs
affect power management code.

• When performing power management activities, the
category of the Android app is a very important factor
to be considered.

4.2 Threats to Validity
Internal validity. We perform a semi-automated process
to identify power management commits. The process may
miss some power management commits that do not contain
either “power”, “energy”, “battery”, or “wakelock” in their
messages. Still, compared with previous studies [30, 26], we
have included more keywords, i.e., “battery”and“wakelock”,
which are closely related to Android power management.
Furthermore, the keywords we use are less strict than those
used in prior studies [30, 26], e.g., *power* versus *power
consum* or *power sav*. In this way, we miss less relevant
commits, but need to make extra effort to manually filter
unrelated commits. Note that we may wrongly include or
exclude a commit as a power management commit in the
manual analysis process. To reduce this threat to internal
validity, three people perform this manual analysis, and each
commit is analyzed by at least two people, and any conflict
is resolved by everyone.

The open card sort process relies on human judgement and
it is possible that we make wrong generalizations. To reduce
this threat to internal validity, three people performed this
process. Similar open card sort processes were performed in
many studies in the literature [12, 22, 33, 35, 41].

External validity. We only analyze 1,273 open source An-
droid applications from F-Droid whose source code is in
Github. Out of these applications, we only investigate a
total of 468 power management commits from 154 different
applications. It is possible that our findings do not gener-
alize to all Android applications. Still, we are the first to
analyze hundreds of power management commits from more
than a hundred Android applications by investigating the
version control systems of more than a thousand Android
applications. In the future, we plan to expand our study
to include even more applications and power management
commits. Finally, the commit messages we analyzed in this
work are all written in English.

4545

5. RELATED WORK
The energy consumption problem has been investigated by

many studies. Most of them focus on the trade-off of indi-
vidual characteristics of an application and energy consump-
tion. These characteristics vary from data structures [15,
7, 23], VM services [5], cloud offloading [17], code obfusca-
tion [32], design patterns [31, 18], and static OO metrics [13,
14]. Such studies give software developers some assistance
to develop energy efficient applications. However, the appli-
cations in these studies are in wide spectrum, ranging from
operating systems, kernels and mobile applications but not
focused on mobile applications, so some of their findings
might not be generalizable for power consumption manage-
ment of applications running on the Android platform. An-
droid applications have unique properties (e.g., high reliance
of libraries) and use unique libraries (e.g., wake lock API)
and thus require special treatment. Thus, in this paper,
different from the above studies, we focus on Android ap-
plications and perform an empirical study on their power
consumption management commits.

Our study is inspired by the studies of Pinto et al. [30]
and Moura et al. [26]. Both of their studies want to investi-
gate what are the solutions proposed by software developers
in order to improve software energy consumption. Pinto et
al. [30] use StackOverflow which is a developer oriented
Q&A website as their primary data source. They analyze
many questions and answers that were related to energy ef-
ficiency in StackOverflow and get some interesting find-
ings which provide useful insights such as the most common
energy consumption related problems, and the solutions to
them. Moura et al. [26] use Github as their primary data
source. Notice the commits in Github represent the actual
solutions that developers employ in practice, and their study
also provides some useful findings about power consumption
in practice, such as developers are not always certain that
their source code modifications will affect energy consump-
tion. Similar to the studies mentioned in the previous para-
graph, these studies analyze various kinds of applications
and are not focused on Android applications. Moura et al.
stated that“‘they found 47 commits that are targeting mobile
software”, and “Although most of these commits are related
to Android Kernels, we found several commits that focus on
the application-level”. Different from these studies we fo-
cus on Android applications and analyze hundreds commits
from 147 Android apps. Indeed, if we only use the regular
expressions used in the previous studies by Moura et al. and
Pinto et al. (i.e., *energy consum*, *energy efficien*, *en-
ergy sav*, *save energy*, *power consum*, *power efficien*,
power sa, and *save power*) only few commits are filtered
(i.e., 21 commits). Thus in this paper, we use regular ex-
pressions *power* and *energy* instead, and add other two
additional keywords “battery” and “wakelock”. Then, we
manually check these retrieved commit messages.

Pathak et al. [28] crawl 4 online forums and bug trackers
relating to mobile platforms and their applications, search-
ing for energy-efficiency issues. They analyze posts relating
to energy problems and derive a taxonomy for faulty imple-
mentations and hardware errors they classified as different
types of energy bugs. They also present an investigation
aiming to understand the root causes for energy consump-
tion problems in mobile applications [29]. Most of energy
bugs in their studies are in hardware level, such as battery
problems, SIM card problems and OS configuration prob-

lems. On the other hand, our study focuses on Android
power consumption in application level.

Heikkinen et al. [11] study energy problems of mobile
handsets through a questionnaire-based study. Their find-
ings reveal that users are interested in energy consumption
statistics of their mobile devices as well as in information on
how they could optimize their devices. Wilke et al. [38] per-
form a study using apps of Google Play as their data source.
Their study focus on post-programming stages of software
lifecyle which is different from our study. Their work is
particularly interesting in correlating energy consumption
problems with the user ratings to the apps, the pricing of
apps, and different natures of apps. Different from the above
studies, in this paper, we study the power management ac-
tivities that developers perform on Android applications by
mining their commit logs.

Some researchers such as Li et al. [19] and Linares-Vasquez
et al. [21] analyze power consumption of Android applica-
tions by analyzing their source code and APIs. Their stud-
ies focus on what kinds of APIs and source code usage are
more energy-greedy or energy-efficient. There are several
interesting findings, such as HTTP request is the most en-
ergy consuming operation of the network. In this work, we
analyze commits rather than code; different from analyzing
raw code, we have short textual description that can pro-
vide semantics of changes made in a commit. Our goal is to
find power management activities that developers perform
on Android applications which are different from the goals
of the works by Li et al. and Linares-Vasquez et al.

6. CONCLUSION AND FUTURE WORK
In this paper, we conduct an empirical study on power

management commits of Android apps. Starting from a set
of 1,273 Android apps in F-Droid who host their source code
in Github, we get 468 power management commits through
automatic filtering and manual analysis. We identify 6 dif-
ferent kinds of power management commits using an open
card sort process: Power Adaptation, Power Consumption
Improvement, Power Usage Monitoring, Optimizing Wake
Lock, Adding Wake Lock and Bug Fix & Code Refinement.
These correspond to six common power management activ-
ities that developers perform. We find that the dominant
power management activities differ for different application
categories. For example, the percentage of commits belong-
ing to Power Consumption Improvement activity is larger
than others for the application categories Internet and Time,
while Navigation apps make more Power Adaptation com-
mits.

In future work, we plan to survey Android developers to
understand their view of power consumption management.
We also plan to develop automated techniques that can help
developers detect, locate, and fix power consumption prob-
lems. Furthermore, we want to compare the energy commits
to other classes of commits and integrate issue tracker infor-
mation to analysis power consumption commits.

Acknowledgment
This research was supported by NSFC Program
(No.61572426) and National Key Technology R&D
Program of the Ministry of Science and Technology of
China under grant 2015BAH17F01. We also would like to
thank Qiao Huang and Qingye Wang for their help in the
manual checking of commits and card sort process.

4646

7. REFERENCES
[1] Google play.

https://en.wikipedia.org/wiki/Google Play.

[2] Smartphone market share. http://www.idc.com/
prodserv/smartphone-os-market-share.jspl.

[3] New research reveals mobile users want phones to have
a longer than average battery life, November 2013.

[4] Brooks, D., Tiwari, V., and Martonosi, M.
Wattch: A framework for architectural-level power
analysis and optimizations. In Proceedings of the 27th
Annual International Symposium on Computer
Architecture (2000), pp. 83–94.

[5] Cao, T., Blackburn, S. M., Gao, T., and
McKinley, K. S. The yin and yang of power and
performance for asymmetric hardware and managed
software. In ACM SIGARCH Computer Architecture
News (2012), vol. 40, IEEE Computer Society,
pp. 225–236.

[6] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and
Patti, A. Clonecloud: elastic execution between
mobile device and cloud. In Proceedings of the Sixth
Conference on Computer Systems (2011), ACM,
pp. 301–314.

[7] Daylight, E. G., Fermentel, T.,
Ykman-Couvreur, C., and Catthoor, F.
Incorporating energy efficient data structures into
modular software implementations for internet-based
embedded systems. In Proceedings of the 3rd
International Workshop on Software and Performance
(2002), ACM, pp. 134–141.

[8] Gu, X., Nahrstedt, K., Messer, A., Greenberg,
I., and Milojicic, D. Adaptive offloading for
pervasive computing. Pervasive Computing, IEEE 3, 3
(2004), 66–73.

[9] Hao, S., Li, D., Halfond, W. G., and Govindan,
R. Estimating android applications’ cpu energy usage
via bytecode profiling. In Proceedings of the First
International Workshop on Green and Sustainable
Software (2012), IEEE Press, pp. 1–7.

[10] Hao, S., Li, D., Halfond, W. G., and Govindan,
R. Estimating mobile application energy consumption
using program analysis. In Proceedings of the 35th
International Conference on Software Engineering
(ICSE) (2013), IEEE, pp. 92–101.

[11] Heikkinen, M. V., Nurminen, J. K., Smura, T.,
and Hämmäinen, H. Energy efficiency of mobile
handsets: Measuring user attitudes and behavior.
Telematics and Informatics 29, 4 (2012), 387–399.

[12] Hemmati, H., Nadi, S., Baysal, O., Kononenko,
O., Wang, W., Holmes, R., and Godfrey, M. W.
The msr cookbook: Mining a decade of research. In
Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR) (2013), IEEE,
pp. 343–352.

[13] Hindle, A. Green mining: investigating power
consumption across versions. In Proceedings of 34th
International Conference on Software Engineering
(ICSE) (2012), IEEE, pp. 1301–1304.

[14] Hindle, A. Green mining: a methodology of relating
software change and configuration to power
consumption. Empirical Software Engineering 20, 2
(2015), 374–409.

[15] Hunt, N., Sandhu, P. S., and Ceze, L.
Characterizing the performance and energy efficiency
of lock-free data structures. In Proceedings of the 15th
Workshop on Interaction between Compilers and
Computer Architectures (INTERACT) (2011), IEEE,
pp. 63–70.

[16] Krutz, D. E., Mirakhorli, M., Malachowsky,
S. A., Ruiz, A., Peterson, J., Filipski, A., and
Smith, J. A dataset of open-source android
applications. In Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR)
(2015), pp. 522–525.

[17] Kwon, Y.-W., and Tilevich, E. Reducing the
energy consumption of mobile applications behind the
scenes. In Proceedings of the 29th International
Conference on Software Maintenance (ICSM) (2013),
IEEE, pp. 170–179.

[18] Li, D., and Halfond, W. G. An investigation into
energy-saving programming practices for android
smartphone app development. In Proceedings of the
3rd International Workshop on Green and Sustainable
Software (2014), ACM, pp. 46–53.

[19] Li, D., Hao, S., Gui, J., and Halfond, W. G. An
empirical study of the energy consumption of android
applications. In Proceedings of 2014 International
Conference on Software Maintenance and Evolution
(ICSME) (2014), IEEE, pp. 121–130.

[20] Li, D., Hao, S., Halfond, W. G., and Govindan,
R. Calculating source line level energy information for
android applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis (ISSTA) (2013), ACM, pp. 78–89.

[21] Linares-Vásquez, M., Bavota, G.,
Bernal-Cárdenas, C., Oliveto, R., Di Penta,
M., and Poshyvanyk, D. Mining energy-greedy api
usage patterns in android apps: an empirical study. In
Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR) (2014), ACM, pp. 2–11.

[22] Lo, D., Nagappan, N., and Zimmermann, T. How
practitioners perceive the relevance of software
engineering research. In Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering
(FSE) (2015), ACM, pp. 415–425.

[23] Manotas, I., Pollock, L., and Clause, J. Seeds: a
software engineer’s energy-optimization decision
support framework. In Proceedings of the 36th
International Conference on Software Engineering
(ICSE) (2014), ACM, pp. 503–514.

[24] McIntire, D., Ho, K., Yip, B., Singh, A., Wu,
W., and Kaiser, W. J. The low power energy aware
processing (leap) embedded networked sensor system.
In Proceedings of the 5th International Conference on
Information Processing in Sensor Networks (2006),
ACM, pp. 449–457.

[25] Messer, A., Greenberg, I., Bernadat, P.,
Milojicic, D., Chen, D., Giuli, T. J., and Gu, X.
Towards a distributed platform for
resource-constrained devices. In Proceedings of the
22nd International Conference on Distributed
Computing Systems (2002), IEEE, pp. 43–51.

[26] Moura, I., Pinto, G., Ebert, F., and Castor, F.
Mining energy-aware commits. In Proceedings of the

4747

12th Working Conference on Mining Software
Repositories (MSR) (2015), pp. 56–67.

[27] Mudge, T., Austin, T., and Grunwald, D. The
reference manual for the sim-panalyzer version 2.0.

[28] Pathak, A., Hu, Y. C., and Zhang, M.
Bootstrapping energy debugging on smartphones: a
first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics
in Networks (2011), ACM, p. 5.

[29] Pathak, A., Hu, Y. C., and Zhang, M. Where is
the energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM European Conference on Computer
Systems (2012), ACM, pp. 29–42.

[30] Pinto, G., Castor, F., and Liu, Y. D. Mining
questions about software energy consumption. In
Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR) (2014), pp. 22–31.

[31] Sahin, C., Cayci, F., Gutiérrez, I. L. M., Clause,
J., Kiamilev, F., Pollock, L., and Winbladh, K.
Initial explorations on design pattern energy usage. In
Proceedings of First International Workshop on Green
and Sustainable Software (GREENS) (2012), IEEE,
pp. 55–61.

[32] Sahin, C., Tornquist, P., McKenna, R.,
Pearson, Z., and Clause, J. How does code
obfuscation impact energy usage? In Proceedings of
IEEE International Conference on Software
Maintenance and Evolution (ICSME) (2014), IEEE,
pp. 131–140.

[33] Sartoli, S., and Namin, A. S. Poster: Reasoning
based on imperfect context data in adaptive security.
In Proceedings of the 37th IEEE International
Conference on Software Engineering (ICSE) (2015),
vol. 2, IEEE, pp. 835–836.

[34] Satyanarayanan, M., Bahl, P., Caceres, R., and
Davies, N. The case for vm-based cloudlets in mobile
computing. Pervasive Computing, IEEE 8, 4 (2009),
14–23.

[35] Siegmund, J., Siegmund, N., and Apel, S. Views
on internal and external validity in empirical software
engineering. In Proceedings of the 37th International
Conference on Software Engineering (ICSE) (2015).

[36] Spencer, D. Card sorting: Designing usable
categories. Rosenfeld Media, 2009.

[37] Weissel, A., Beutel, B., and Bellosa, F.
Cooperative i/o: A novel i/o semantics for
energy-aware applications. ACM SIGOPS Operating
Systems Review 36, SI (2002), 117–129.

[38] Wilke, C., Richly, S., Gotz, S., Piechnick, C.,
and Aßmann, U. Energy consumption and efficiency
in mobile applications: A user feedback study. In
Green Computing and Communications (GreenCom),
2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference
on and IEEE Cyber, Physical and Social Computing
(2013), IEEE, pp. 134–141.

[39] Yuan, W., and Nahrstedt, K. Energy-efficient soft
real-time cpu scheduling for mobile multimedia
systems. ACM SIGOPS Operating Systems Review 37,
5 (2003), 149–163.

[40] Zhang, Y., Huang, G., Liu, X., Zhang, W., Mei,
H., and Yang, S. Refactoring android java code for
on-demand computation offloading. In ACM
SIGPLAN Notices (2012), vol. 47, ACM, pp. 233–248.

[41] Zimmermann, T., Nagappan, N., Guo, P. J., and
Murphy, B. Characterizing and predicting which
bugs get reopened. In Proceedings of 34th
International Conference on Software Engineering
(ICSE) (2012), IEEE, pp. 1074–1083.

4848

