
The Journal of Systems & Software 180 (2021) 111005

T
a

b

c

d

(
t
m
t
A
m
(
a
c
a
t
a
e

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Mining Architecture Tactics and Quality Attributes knowledge in Stack
Overflow✩

ingting Bi a,c, Peng Liang a,∗, Antony Tang b,d, Xin Xia c

School of Computer Science, Wuhan University, 430072 Wuhan, China
Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 Melbourne, Australia
Faculty of Information Technology, Monash University, VIC 3166 Melbourne, Australia
Software and Services Research Group, Vrije Universiteit Amsterdam, 1101, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 2 January 2020
Received in revised form 27November 2020
Accepted 10 May 2021
Available online 13 May 2021

Keywords:
Architecture Tactic
Quality Attribute
Knowledge mining
Empirical analysis
Stack Overflow

a b s t r a c t

Context: Architecture Tactics (ATs) are architectural building blocks that provide general architectural
solutions for addressing Quality Attributes (QAs) issues. Mining and analysing QA–AT knowledge can
help the software architecture community better understand architecture design. However, manually
capturing and mining this knowledge is labour-intensive and difficult.
Objective: Using Stack Overflow (SO) as our source, our main goals are to effectively mine such
knowledge; and to have some sense of how developers use ATs with respect to QA concerns from
related discussions.
Methods: We applied a semi-automatic dictionary-based mining approach to extract the QA–AT posts
in SO. With the mined QA–AT posts, we identified the relationships between ATs and QAs.
Results: Our approach allows us to mine QA–AT knowledge accurately with an F-measure of 0.865 and
Performance of 82.2%. Using this mining approach, we are able to discover architectural synonyms of
QAs and ATs used by designers, from which we discover how developers apply ATs to address quality
requirements.
Conclusions: We make two contributions in this work: First, we demonstrated a semi-automatic
approach to mine ATs and QAs from SO posts; Second, we identified little-known design relation-
ships between QAs and ATs and grouped architectural design considerations to aid architects make
architecture tactics design decisions.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Software systems typically have multiple Quality Attributes
QAs) and design decisions are made to satisfy them. Archi-
ects make trade-off decisions to improve one QA to the detri-
ent of another QA. Complex QA relationships, whilst known

o experienced architects, are not well explored or documented.
part from balancing inter-QA relationships, design decisions
ay sometimes involve the use of Architecture Tactics (ATs)

Bogner et al., 2019). AT aims to provide an established design to
ddress a particular type of design problems with particular QA
oncerns. ATs serve as a building block of software architecture,
nd part of their purpose is to satisfy certain QAs. As opposed
o architecture patterns which are related to multiple QAs, ATs
re used for addressing one specific QA (Bass et al., 2012). For
xample, ATs for performance, such as resource pooling, help

✩ Editor: Eduardo Almeida.
∗ Corresponding author.

E-mail addresses: bi_tingting@whu.edu.cn (T. Bi), liangp@whu.edu.cn
P. Liang), atang@swin.edu.au (A. Tang), xin.xia@monash.edu (X. Xia).
ttps://doi.org/10.1016/j.jss.2021.111005
164-1212/© 2021 Elsevier Inc. All rights reserved.
to optimize response time (see an example from Stack Over-
flow1 (SO) in Fig. 1). Furthermore, unlike design patterns that
are described in terms of specific classes and associations, ATs
are defined at a higher conceptual level of roles and responsi-
bilities (Mirakhorli and Cleland-Huang, 2016). Tracing QAs and
ATs can be useful for several reasons (Falessi et al., 2011). ATs
can be analysed in terms of QAs for understanding architec-
tural design decisions, which can further enrich software and
architecture documentation (Ding et al., 2014). Documenting and
understanding ATs and their rationale could be helpful for devel-
opers when they understand, implement, and modify the code
of ATs for satisfying certain QAs (Mirakhorli and Cleland-Huang,
2016; Bachmann et al., 2007).

Approaches of mining AT knowledge from specific software
artefacts such as source code have been tried (Mirakhorli and
Cleland-Huang, 2016; Mirakhorli et al., 2012a, 2013). Some re-
search focuses on understanding specific ATs and how the im-
plementation of fault tolerance tactics affects architecture pat-
terns (Harrison et al., 2010). Whilst these approaches can be

1 https://stackoverflow.com/.

https://doi.org/10.1016/j.jss.2021.111005
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111005&domain=pdf
mailto:bi_tingting@whu.edu.cn
mailto:liangp@whu.edu.cn
mailto:atang@swin.edu.au
mailto:xin.xia@monash.edu
https://stackoverflow.com/
https://doi.org/10.1016/j.jss.2021.111005

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

v
a
s
t
a
a
a
o
b

A
d
e
w
k
i
k
p
W
t
i
c
t
v
a
a

d
A
m
s
s
S
Q

R
a
P

Fig. 1. An example of how ATs impact QAs from SO.
aluable in helping developers to understand AT, little is known
bout the relationships between ATs and its impacts on QAs of a
ystem. Whilst some of these AT–QA relationships are known in
he industry, they are not commonly mentioned in research liter-
ture and books. We call them little-known QA–AT relationships
nd we intend to use machine learning algorithms to re-discover
nd highlight them. A better understanding of the characteristics
f ATs and QAs as well as their inter-relationships would provide
etter and more tailored support for architects.
In addition, inexperienced architects sometimes find applying

Ts to address QAs challenging mainly because of the numerous
esign decisions that need to be made in order to implement AT
ffectively (Mirakhorli et al., 2012a). In order to provide architects
ith such architectural knowledge, we need to build up this
nowledge base by learning how ATs are used to address QA
ssues. To achieve this goal, we can gather and organize this
nowledge from software discussion forums. In this work, we
ropose an approach for mining such architectural knowledge.
e use Neural Language Model and machine learning techniques

o train a dictionary-based classifier for the purpose of automat-
cally mining the presence of ATs and QAs in online developer
ommunities (i.e., Stack Overflow), and then we manually relate
he ATs to relevant QAs to build a knowledge base of how de-
elopers use ATs. As such, our approach is designed to address
rchitecture knowledge mining issues (e.g., ATs employed for
ddressing certain QAs) for undocumented AT decisions.
Our approach to knowledge mining is: firstly, we trained

ictionary-based classifiers, which can be used for mining QA–
T posts from SO. Then we used the trained classifiers to mine
ore QA–AT posts from SO. We analysed the mined posts for
tructuring an overview of QA–AT knowledge through under-
tanding how developers apply ATs to address QAs in practice.
pecifically, this study aims to address the following Research
uestions (RQs):

Q1: Given our proposed semi-automatic knowledge mining
pproach, is it effective, in terms of accuracy (F-measure) and
erformance (defined in Section 3.2.6), to mine QA–AT posts in

SO?

RQ2: Applications of mined QA–AT knowledge.
RQ2.1: What are the common architectural design rela-
tionships between QAs and ATs that we can learn from
the mined discussions?
RQ2.2: What design considerations can we provide to
developers for making use of AT–QA relationships?

By answering the RQ1, we would be able to evaluate the
effectiveness of our approach for mining QA–AT knowledge. The
answers to RQ2 allow us to provide an overview of QA–AT knowl-
edge through understanding how developers address QAs when
using ATs. In particular, this work mainly has two contributions:
(i) We proposed a semi-automatic approach, which can mine QA–
AT posts in SO. Our approach can achieve an F-measure (0.865) by
2

SVM with a trained dictionary to exploit term semantics for QA–
AT posts mining. (ii) We conducted a qualitative analysis of the
mined QA–AT posts for relating QAs and ATs. We also suggested a
set of design considerations for developers to consider when us-
ing this QA–AT knowledge. Such knowledge can help developers
make informed decisions of applying ATs to address certain QAs.

The remainder of the paper is organized as follow: Section 2
presents the motivation of this work. Section 3 gives the overview
and details of each stage of our proposed approach. Sections 4
and 5 address the research questions and discuss the results,
respectively. Section 6 describes the related works. Section 7
discusses the threats to validity. Finally, Section 8 concludes this
work with future directions.

2. Motivation

Architects employ architectural frameworks, patterns, and tac-
tics in design to address QA concerns such as performance, mod-
ifiability, maintainability etc. ATs are interrelated, it may be used
with a complementary tactic or its use may exclude a conflicting
tactic (Kim et al., 2009). Since the application of AT, singly and
in combination, influences the QA behaviours of a system, archi-
tects need to consider AT–QA knowledge appropriately (Bi et al.,
2018b).

Software development questions and answers (Q&A) sites
(e.g., SO and R community2) gather knowledge that covers a
wide range of topics (Abdalkareem et al., 2017). These sites
allow developers to share experience, offer help, and learn new
techniques (Vassileva, 2008). We provide two examples in Fig. 1
and Fig. 2, respectively, which show developers’ concerns on
implementing ATs in terms of certain QAs. SO is one of the most
famous and popular online Q&A forums. It contains millions of
posts contributed by tens of thousands of developers (Mirakhorli
et al., 2013). SO provides functions such as resurrecting and
editing posts that can be inactive for long periods. It supports
up voting competing answers and users can earn reputation
points by posting interesting questions and answers (Vasilescu
et al., 2013). Recent studies show that developers and architects
use social media to discuss architecture-relevant information
(e.g., features and domain concepts) (Soliman et al., 2016; Pagano
and Maalej, 2013). In this work, we only considered the SO posts
that have both questions and answers because through analysing
the questions and answers of the posts, we can explore what de-
sign problems developers had and what potential solutions they
proposed. However, with a large volume of posts in SO, manually
mining QA–AT knowledge is time-consuming and requires a lot of
efforts. As such, applying semi-automatic approaches for mining
QA–AT posts can significantly facilitate the tasks of finding the
desired QA–AT knowledge, and doing that repeatedly. To this end,
we decided to apply a semi-automatic approach to mine QA–AT
knowledge in SO.

2 https://community.rstudio.com/.

https://community.rstudio.com/

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

3

i
b
p

3

t
c
a

f

t
f
p
r
l
o
h
Q
i
t

i
i
c
a
2
t
t
u
m
d
o

t
c

Fig. 2. A QA–AT post from an issue tracking system.
A
e
P
i
w
Q

v
o
6
W
f
i

p
t
d
t
d
o
Q
r

w

. Knowledge mining approach

In this section, we describe our knowledge mining approach,
ncluding training data (i.e., relevant posts) collection and la-
elling, dictionary-based QA–AT post classifier training, and the
rocess of empirical data analysis.

.1. Overview of the knowledge mining approach

We proposed a knowledge mining approach, which comprises
wo stages: (a) Semi-automatic dictionary-based QA–AT post
lassifier training and (b) QA–AT posts mining and empirical
nalysis. An overview of our approach is provided in Fig. 3.

Stage 1: Semi-automatic dictionary-based QA–AT post classi-
ier training

ATs come in many different forms and can facilitate the bet-
erment of QAs. For example, reliability tactics provide solutions
or fault mitigation, detection, and recovery; performance tactics
rovide solutions for resource contention in order to optimize
esponse time and throughput; and security tactics provide so-
utions for authorization, authentication, non-repudiation, and
ther such concerns. Finding a representative sample of ATs and
ow they impact QAs is far from trivial. In this stage, we trained
A–AT post classifiers, which can be used for mining QA–AT posts
n SO. The execution process of Stage 1 is composed of six steps
hat are described in Section 3.2.

Stage 2: QA–AT posts mining and empirical analysis
ATs are measures taken to address software architecture qual-

ty attributes, or QAs, of a system. Using ATs, some QAs might
mprove whilst other QAs might be adversely affected. Bass and
olleagues (Bass et al., 2012) discuss how the selection of tactics
nd design patterns relate to QAs. In our previous work (Bi et al.,
018), we analysed the relationships between architecture pat-
erns, QAs, and design contexts. In this work, we further explored
he interactions between QAs and ATs which can help developers
nderstand QA–AT relationships. The purpose of this stage is to
ine more QA–AT discussions (i.e., posts) and investigate how
evelopers discuss and apply ATs in terms of QAs. The execution
f Stage 2 is empirical analysis of the mined QA–AT posts that are

described in Section 3.3.

3.2. Stage 1: Semi-automatic dictionary-based QA–AT post classifier
training

3.2.1. Step 1: Data preparation
Data preparation is divided into two parts:
1. QA–AT posts collection for training classifiers: we applied

he following criteria to select the QA –AT posts for training

lassifiers: (a) posts need to be concerned with at least one 7

3

of ATs; (b) posts are related to at least one QA. We manually
identified QA –AT posts and non QA –AT posts in SO, and our
approach takes these posts as the training data for a QA –AT
post classifier. We manually selected QA –AT posts using the
tactic names of commonly used ATs and their relevant terms
collected from Mirakhorli and Cleland-Huang (2016), Bass et al.
(2012), Harrison and Avgeriou (2010b), Mirakhorli et al. (2012a)
and Mirakhorli et al. (2013) (see Table 1), and we list the collected
ATs as below:

Heartbeat, Audit trail, Resource pooling, Authentication, Schedul-
ing, FIFO, Checkpoint, Rollback, Spare, Redundancy replication,
Voting, Shadow operation, Secure session, Time out, Time stamp,
Sanity checking, Functional redundancy, Analytical redundancy,
Resisting attacks, Maintain data confidentiality, Recovering from
attacks.

bout the QAs, we adopted the ISO 25010 standard that defines
ight high-level QAs: Usability, Security, Reliability, Portability,
erformance, Maintainability, Functional Suitability, and Compat-
bility (ISO ISO/IEC 25010, 2011). We also referred to a wordlist,3
hich is specified in the software engineering field for identifying
As (see Table 2).
We (the first author and a master student) searched for rele-

ant posts in their titles, tags, questions, comments, and answers
f the posts that include QA and AT related terms. We retrieved
489 posts that contained relevant terms (see Tables 1 and 2).
e then manually checked if the posts are QA–AT related, and

inally we selected 1165 QA–AT posts that include 1203 QA–AT
nstances (see Table 3(a)).

2. Posts collection for training a dictionary: we collected the
osts tagged with ‘‘software architecture’’ or ‘‘software design’’4
o train the dictionary. One or multiple tags can be chosen by
evelopers when they post a question in SO, and the tags indicate
he topics of the posts. An example post tagged with ‘‘software
esign’’ used for training the dictionary is shown in Fig. 4. The
utput of dictionary training is a network of related words of
A and AT (Li et al., 2003) together with the strength of the
elationships between terms. For example, the terms ‘‘through-
put ’’ and ‘‘scalability’’ have a stronger semantic relationship than
the terms ‘‘throughput ’’ and ‘‘agreement ’’. The trained dictionary
extracts and makes use of the related terms for further improving
QA–AT posts mining from SO. The process of dictionary training
is detailed in Section 3.2.4. We excluded the posts that contain
blocks of source code in the question part because most of such

3 http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-name-
ordlists.tar.gz.
4 The data for training dictionary can be found in Anon (0000) (i.e., data item
).

http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-name-wordlists.tar.gz
http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-name-wordlists.tar.gz

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005
Fig. 3. An overview of the approach for QA–AT posts mining and analysis.
Table 1
Selected architecture tactics with their related terms.
AT name Related terms

AT1 Heartbeat heartbeat, ping, ping/echo, beat, decorator, piggybacking,
outbound, period

AT2 Audit trail audit, trail, wizard, log, string, category, thread

AT3 Resource pooling pooling, pool, thread, connect, sparrow, processor, worker,
time-wait, prototype, singleton, strategy, chain of
responsibility, lazy load, static scheduling, dynamic priority
scheduling

AT4 Authentication authentic, credential, challenge, login

AT5 Checkpoint checkpoint, checkpoints, barrier, weak point

AT6 Rollback layoff, restraint, austerity, abridgement, deliver

AT7 Spare spare, unoccupied, option, unused, logging, minutes

AT8 Redundancy replication redundancy replication, redundancy storage, zone-redundant,
geo-redundant, replication

AT9 Voting voting, vote, balloting, choosing, voter, processor, preferred

AT10 Shadow operation shadow operation, shadow mode

AT11 Secure session secure session, security, removal

AT12 Time out time out, run out, constraint, action, monitor, timer, runtime

AT13 Time stamp time stamp, timestamp, time strap

AT14 Sanity checking sanity checking, sanity check

AT15 Functional redundancy functional redundancy, function requirement allocation

AT16 Scheduling schedule, dynamic priority scheduling, task, priority, adaptor,
bridge, composite, flyweight, memento, observer, proxy,
strategy

AT17 FIFO FIFO, first in first out

AT18 Analytical redundancy parallel, separate, warm restart, dual redundancy

AT19 Resisting attacks resisting attacks, detecting, detect, recovering, recover, sensor,
authenticate, confidentiality, exposure, limit access, passwords,
one-time, passwords, digital certificates

AT20 Maintain data confidentiality maintain data confidentiality, handle, protecting, routine,
storage, mandatory

AT21 Recovery from attacks recovering from attacks, state, maintain, maintaining,
redundant, access control, profile
4

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
F

t
p
a

able 2
requently discussed QAs and their related terms from mined QA–AT posts.
QA name Related terms Example

QA1 Performance
(Efficiency)

performance, processing time, response time,
resource consumption, throughput, efficiency,
carrying into action, carrying out, operation,
achievement, interaction, accomplishment,
action

‘‘We propose the adaptive heartbeat between RM and
NM to achieve a balance between updating NM’s info
promptly and minimizing the response time of extra
heartbeats.’’

QA2 Maintainability maintainability, update, modify, modular,
decentralized, encapsulation, dependency,
readability, interdependent, understandability,
modifiability, modularity, maintain,
analyzability, changeability, testability,
encapsulation

‘‘How to adopt pooling to an existing object that has
inline-field-initialization without sacrificing
code-maintainability and readability.’’

QA3 Compatibility compatibility, co-existence, interoperability,
exchange, sharing

‘‘I would like to be able to know about the
compatibility of web service subscriptions to avoid
duplicate request from distinct clients . . . I needed built
in browser . . . and automatic heartbeat function
offered by Stomp.js.’’

QA4 Usability usability, flexibility, interface, user-friendly,
default, configure, serviceability, convention,
accessibility, gui, serviceableness, useableness,
utility, useable, learnability, understandability,
operability, function, use

‘‘The aim of the heartbeats is to quickly find any
nodes that go down, or if nodes can’t communicate
with the central server. Usability on the client nodes is
an issue, so I don’t want to use java (because that
would require installing a jvm).’’

QA5 Reliability reliability, failure, bug, resilience, crash,
stability, dependable, dependability,
irresponsibleness, recover, recoverability,
tolerance, error, fails, redundancy, integrity,
irresponsibleness, dependable, maturity,
recoverability, accountability, answerableness

‘‘I’m looking for a way in Python (2.7) to do HTTP
requests with 3 requirements: timeout (for reliability)
. . . but none of them meet my requirements.’’

QA6 Functional
suitability

functional, function, accuracy, completeness,
suitability, compliance, performing,
employable, functionality, complexity,
functioning

‘‘Adding a formal interface for additional node
heartbeat processing would allow admins to configure
new functionality that is scheduler-independent
without needing to replace the entire scheduler.’’

QA7 Security security, safe, vulnerability, trustworthy,
firewall, login, password, pin, auth,
verification, protection, certificate, security
system, law

‘‘To ensure security, the timeout of the cookie is also
set to 5 min, and my jquery performs a heartbeat
back to the server to ensure the cookie doesn’t expire.’’

QA8 Portability portability, portable, cross platform, transfer,
transformability, documentation, standardized,
migration, specification, movability,
moveableness, replaceability, adaptability

‘‘Essentially I have a portable suite of windows 7 apps
that are managed by a single backbone application.
This backbone application handles monitoring the other
apps for status and heartbeat .’’
posts discuss programming problems (Nasehi et al., 2012). Finally,
we collected 2301 posts tagged with ‘‘software architecture’’ and
‘‘software design’’ to train the dictionary. Note that, these 2301
posts are different from the training data used in classifier train-
ing. Fig. 7 presents the experimental results with and without
using the trained dictionary.

In addition, to ensure the quality of the collected posts (i.e., two
parts of training data collection), we only include the posts with
at least one answer and positive scores.

3.2.2. Step 2: Data labelling
The manual labelling of QA–AT posts can be described as a

multi-label binary classification process. A QA–AT post can be
labelled under multiple labels if it is related to more than one
QAs or ATs. Similar to the process of data collection, we first
performed a pilot data labelling by three authors with 50 QA–AT
posts in order to mitigate any personal bias in data labelling. In
the formal data labelling, the QA–AT posts were manually labelled
by two human annotators (i.e., the first author and one master
student). After that, any disagreements on the labelled posts were
discussed and confirmed with the second and third authors. To
facilitate the manual labelling, we used MAXQDA5, which is a
ool for qualitative data analysis, to label the sentences of QA–AT
osts. By the end of our labelling of the QA–AT posts, we made
final reliability test, and calculated Cohen’s kappa reliability

5 https://www.maxqda.com.
 (

5

coefficient (Cohen, 1960) for the categorization between the two
annotators, which is 0.81. Note that this Cohen’s kappa value was
achieved after two rounds of data labelling within the formal data
labelling, and the data labelling results have also been provided
in our replication package (Anon, 0000).

After around three months of training data collection and
labelling by the two annotators, we finally labelled 1165 QA–
AT posts for classifier training.6 We retrieved AT posts by the
keywords (see AT1–AT21 in Table 3(a)), and each AT post re-
turned is called retrieved AT instance (see the fourth column of
Table 3(a)). We then checked if the retrieved AT instances discuss
any QAs, and we included and labelled QA–AT instances (see the
fifth column of Table 3(a)). This set of posts are used for classifier
training and testing.

A QA–AT post may discuss more than one ATs or QAs (e.g., par-
ticipants discussed AT1 Heartbeat and AT13 Time out in one SO
post). As such, a QA–AT post may contain one or more QA–AT
instances. The number of labelled QA–AT instances found is 1203
(see Table 3(b)) out of the 1165 posts.

For the training and testing dataset, we collected non
QA–AT posts from SO manually. With two classes of posts (QA–
AT and non QA–AT posts) in the dataset, the class imbalance
problem has been known to hinder the learning performance
of classification algorithms, and the standard machine learning

6 The data for training and testing classifiers can be found in Anon (0000)
i.e., data item 1).

https://www.maxqda.com

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

c
f
a
0

t
c
a

Fig. 4. An example of software architecture post for dictionary training.
Table 3(a)
Information of labelled QA–AT instances for classifier training and testing (from 2012.01.01 to 2019.06.30).

Architecture tactic No. of retrieved
AT instances

No. of labelled
QA–AT instances

QA–AT posts

AT1 Heartbeat 521 128
AT2 Audit trail 501 98
AT3 Resource pooling 478 93
AT4 Authentication 453 79
AT5 Checkpoint 403 75
AT6 Rollback 398 63
AT7 Spare 387 61
AT8 Voting 381 59
AT9 Redundancy replication 354 57
AT10 Shadow operation 289 54
AT11 Secure session 281 50
AT12 Time out 274 49
AT13 Time stamp 270 47
AT14 Sanity checking 261 46
AT15 Functional redundancy 252 46
AT16 Scheduling 221 27
AT17 FIFO 200 38
AT18 Analytical redundancy 197 42
AT19 Resisting attacks 154 40
AT20 Maintain data confidentiality 139 35
AT21 Recovering from attacks 75 50

Sum of labelled QA–AT instances 1200
Table 3(b)
Information of labelled QA–AT posts and non QA–AT posts for classifier training
and testing (from 2012.01.01 to 2019.06.30).
Amount

No. of labelled QA–AT posts 1165
No. of labelled non QA–AT posts 1200

algorithms yield better prediction performance with balanced
datasets (Kotsiantis et al., 2006). This work is an attempt to
mine QA–AT posts with various machine learning algorithms, and
consequently this is a balanced dataset in which the number of
samples from the two classes are about the same (i.e., QA–AT and
non QA–AT posts, see Table 3(b)). To enhance this dataset, 1200
non QA–AT posts were collected by browsing the posts under
the SO category ‘‘software’’ and labelled them as ‘‘non QA–AT’’
ategory. These 1200 non QA–AT posts are additional data used
or dictionary training in Step 4 (see Section 3.2.4). All the data
nd results of this study have been made available online (Anon,
000).
With the 1165 QA–AT posts as the training data, it is possible

hat some false positives are within the data (i.e., posts that
ontain some key terms regarding AT and QA but they are not
ctually QA–AT relevant). In order to check the validity of the
6

data, we conducted another round of manual analysis of the 1165
QA–AT posts to ensure that the data is correctly labelled.

3.2.3. Step 3: Data preprocessing
We take a number of steps to preprocess the posts: (1) Re-

moving code snippets is to delete source code snippets that
sometimes exist in the posts. (2) Tokenization is the process that
breaks a stream of text up into words, phrases, symbols, or other
meaningful elements called tokens. In our experiment, we only
keep tokens that contain English letters. (3) Stop words removal:
stop words are used often but carry little meaning to distinguish
different categories of posts. We referred to a list of stop words,
which contains a set of words (e.g., ‘‘the’’, ‘‘to’’, ‘‘of’’, ‘‘is’’). Words
that have a length of no more than two are also treated as stop
words. (4) Stemming: the goal of stemming is to reduce inflected
words to their word stem, base or root form.

3.2.4. Step 4: Dictionary training
In natural language processing, pre-trained word embeddings

are used to alleviate the need for a large amount of task spe-
cific training data (Godbole et al., 2010). For example, QAs can
be classified by applying word embeddings (i.e., terms match-
ing) (Cleland-Huang et al., 2006) on a set of keywords (i.e., related
terms) to train a dictionary, and the trained dictionary can then be

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

u
t

a
t
a
p
n
i
a
r
a

p

t
a
w
o
l
T
F
i
(
t
r
G
r
p
t

Fig. 5. The process of dictionary training.
sed to mine more QA–AT discussions. The process of dictionary
raining is shown in Fig. 5.

Initially, some QA and AT terms were manually identified
nd added into the dictionary, and then some unseen related
erms (also significantly contribute to QA–AT posts mining) were
utomatically extracted by Word2vec. We adopted an iterative
rocess for extracting the keywords. In each iteration, two an-
otators went through each QA–AT post of training data for
dentifying related terms, and these terms were extracted and
dded to the dictionary. This process was repeated until no more
elated terms could be identified, and the manually identified QA
nd AT related terms are listed in Tables 1 and 2, respectively.
To cover unseen terms that can be used to mine more QA–AT

osts, we used the posts tagged with ‘‘software architecture’’ or
‘‘software design’’ (collected in Step 1 as described in Section 3.2.1)
to train a dictionary through constructing the semantic relation-
ships between identified QA and AT words and unseen terms. We
then applied the dictionary to train classifiers, which can mine
more QA–AT posts from SO. In this work, we only used nouns
to construct the semantic network of words, ignoring verbs, ad-
jective, and adverbs. We employed the Word2vec tool, which
provides a vector-based representation of words to get terms
similarity by multiplying the vector of terms. A recent study
shows that Word2vec provides a state-of-the-art performance for
measuring words semantic similarity (Mikolov et al., 2013). The
semantic similarity between post pk and term tj is calculated
based on the definition in Li et al. (2012), which is shown in
Formula (1), in which pk denotes the QA–AT post k expressed by a
vector pk = (tk,1, tk,i, . . . , tk,n), tk,i denotes term i in pk, n denotes
he number of terms in pk, wk,i denotes the weight of term tk,i,
nd sim = (tk,i, tj) denotes the similarity between term tk,i and tj,
hich is calculated by Word2vec. We included terms with values
f sim > 0.35. For each post (for training the dictionary), we calcu-
ated all unique terms to get the similarity values between terms.
he value of i depends on the length of posts and is calculated by
ormula (2). θ is a threshold increasing from 0 with an increment
nterval of 0.1. With the increase of θ , the classification results
i.e., F-measure) have no obvious tendency, making it challenging
o choose the value of θ which achieves the best classification
esult in F-measure (Li et al., 2012). Then we used Information
ain Ratio algorithm provided by the data mining tool Weka to
e-sort the terms, which can be used for distinguishing QA–AT
osts more effectively (Dai and Xu, 2013). Gain Ratio measures

he performance of a term to split the population of posts into (

7

two types of posts (i.e., QA–AT posts and non QA–AT posts). After
comparing the values of Information Gain Ratio of words, we tried
a set of values of Gain Ratio of words. To be specific, the values
were selected from an intensity range from 0.100 to 0.800, and
we empirically found that if the values of Information Gain Ratio
of words are higher than 0.300, these words can achieve the best
performance for QA–AT posts classification in terms of F-measure.
Consequently, we added the unseen terms with an Information
Gain Ratio value (>0.300) into the dictionary (Karegowda et al.,
2010).

sim
(
pk, tj

)
=

n∑
i=1

(wk,i × sim
(
tk,i, tj

)
) (1)

N = θ × post_length (2)

3.2.5. Step 5: Classifier training
In this step, we used the manually labelled QA–AT posts to

train the dictionary-based classifiers. We used a feature selection
algorithms Word2vec and TF–IDF to select textual features and
calculate the weight of features, and used these textual features
to train a classifier (Forman, 2003). We then used Information
Gain Ratio to measure the ability of each word (i.e., the weight of
features) of classifying the posts correctly into two types (i.e., this
word is more unique or common for one particular type of posts).
The range of Information Gain Ratio is between 0 and 1 and
expresses the generative probability of each word with respect
to the type of post (i.e., QA–AT and non QA–AT post) (Quinlan,
1993). We applied six machine learning algorithms, Support Vec-
tor Machine (SVM), Bayes, Decision Tree (DT), Logistic Regression
(LR), Random Forest (RF), and Bagging to train the classifiers.

To train the classifiers, 70% of the data (i.e., 1165 QA–AT posts
and 1200 non QA–AT posts) is randomly selected as training set
and the remaining 30% of the data as testing set (see Table 3(a)).
The benefit of this technique is that it uses all the data for building
the model, and the results often exhibit significantly less variance
than those of simpler techniques such as holdout method. We
used a library (i.e., scikit-learn) in Python V3.7. for training the
classifiers, and we used default settings for each classifier7 (Prana
et al., 2019; Treude and Robillard, 2016).

7 The machine learning source code can be found in Anon (0000)
i.e., experiments.py).

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

3

r
a
m
t
e

i
a
c
t
r
d
w

3

d
S
m
a

t
s
A
m
(
f
c
t
i
i
Q

i
l
(
‘
o
u
a
0
t
t
0
t
e
a
s
d
F
w

i
W
i
c
n
c
F
d
o

R
c
o
t
a
f

(

.2.6. Step 6: Trained classifiers evaluation
We evaluated our approach that uses machine learning algo-

ithms (i.e., SVM, Bayes, LR, DT, RF, and Bagging) with or without
trained dictionary on QA–AT posts mining. Precision is used to
easure the exactness of prediction set, while recall evaluates

he completeness. Precision and recall can be expressed math-
matically, and in Formula (3) and (4), TP denotes the number

of posts classified as type QA–AT that are actually QA–AT; FP
denotes the number of posts classified as type QA–AT that are
actually non QA–AT; FN denotes the number of posts classified
as type non QA–AT that are actually QA–AT; TN denotes the
number of posts classified as type non QA–AT that are actually
non QA–AT. Please not that, as the training and testing sets
are randomly selected, the results (i.e., precision, recall, and F-
measure) of the classification by running the algorithms might
be slightly different each time. We present the best results of our
approaches in Section 4.2.1.

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

Based on precision and recall, we can calculate F-measure
as below, which denotes the balance and discrepancy between
precision and recall:

F-measure = 2 ×
precision × recall
precision + recall

(5)

As mentioned in Section 3.1, after getting the classifiers, we
applied the trained classifiers to mine more QA–AT posts in
SO, and we manually checked the mined posts whether they
are really QA–AT related. We defined a metric to evaluated the
classifiers (i.e., Performance):

Performance(%) =
correctly_classified_QA − −AT_posts

total_mined_posts
×100% (6)

n which total_mined_posts denotes the number of posts which
re mined by the trained dictionary-based classifiers from SO, and
orrectly_classified_QA − −AT_posts indicates the number of the
rue QA–AT posts, which were checked and confirmed by two
esearchers (i.e., the first author and a master student), and any
isagreements on the QA–AT posts were discussed and resolved
ith the second author.

.3. Stage 2: QA–AT posts mining and analysis

As shown in Fig. 3, in Stage 2, we trained and evaluated six
ictionary-based classifiers (in Stage 1) to mine QA–AT posts in
O. Based on the most promising results through the highest F-
easure out of the six algorithms (see Section 4.1), we selected
nd applied the dictionary-based classifier SVM.
To answer RQ2, we analysed the mined QA–AT posts to iden-

ify the presence of QAs and ATs, and examined their relation-
hips. We aimed to learn about developers’ perception of QA–
T from their discussions. We employed constant comparison
ethod (Glaser and Strauss, 2009) to analyse qualitative data

i.e., the mined QA–AT posts) for the purposes of: (1) identi-
ying how developers discuss QAs and ATs (i.e., their presence,
haracteristic and nature); (2) comparing the relationships be-
ween the QAs and ATs that we have identified to the ones
n the literature; and (3) identifying and classifying other top-
cs (i.e., considerations) that are discussed by developers in the
A–AT posts.
8

4. Results

4.1. Effectiveness of knowledge mining (Results of RQ1)

With RQ1, we investigated the effectiveness of our semi-
automatic approach on QA–AT posts mining from two aspects:
the results of trained dictionary and QA–AT posts mining from
SO.

The results of trained dictionary: To investigate the effective-
ness of using the trained dictionary for improving QA–AT posts
mining, we first evaluated the ability of the trained dictionary
in accurately identification of QA and AT related words. The
output of the dictionary is a network (i.e., semantic relation-
ships) between the words manually identified by the authors
and a set of other QA–AT related words extracted from the SO
posts tagged with ‘‘software architecture’’ or ‘‘software design’’.
Developers might use different words to describe QAs and ATs
(i.e., not initially identified by the authors). In this work, we
call those words ‘‘unseen terms’’. Including more relevant QA
and AT words would be helpful to cover and mine more QA–
AT posts in SO. In Section 3.2.4, we describe how we collect QA
and AT related words for constructing the dictionary. The process
of dictionary training starts with a set of seed words (i.e., QA
and AT related words manually identified by the authors), and
then unseen terms are added into the dictionary-based on the
semantic relationships calculated by the values of similarity and
Information Gain Ratio.

We provided an initial set of words which contain QA and
AT related words, for example, Time out is an AT related word
dentified by the authors, and we calculated the values of simi-
arities between Time out and unseen terms in the specific dataset
i.e., the collected posts tagged with ‘‘software architecture’’ or
‘software design’’), and if the values of similarities between Time
ut and unseen terms are larger than 0.350, we include these
nseen terms for further evaluation whether they should be
dded to the dictionary (e.g., the similarity value of ‘‘Loadtime’’ is
.450). We then calculated the values of Information Gain Ratio of
he unseen terms, if the values of Information Gain Ratio is larger
han 0.300 (e.g., the Information Gain Ratio value of Loadtime is
.427), the unseen terms (e.g., Loadtime) can be added to extend
he dictionary, and a semantic relationship is created between,
.g., Time out and Loadtime (see Fig. 6). The dictionary training is
n iteration process, and we then calculate the semantic relation-
hip between the unseen terms which has been added into the
ictionary and other unseen terms (e.g., Loadtime and Modular in
ig. 6) we calculate the semantic relationships between identified
ords (i.e., red nodes in Fig. 6).
An example of the output result of the dictionary is shown

n Fig. 6, which is calculated and visualized by the Gephi tool.
e used the red and grey circles to denote the words manually

dentified and the unseen terms extracted, respectively, and the
alculated values of Similarities refer to the lines between the
otes (i.e., semantic relationships between words) and the cal-
ulated values of Information Gain Ratio illustrate the notes in
ig. 6, we have not illustrated the complete dictionary in Fig. 6
ue to the space limitation, and we made the completed results
f the trained dictionary online (Anon, 0000).
With the semantic relationships, we use Information Gain

atio to calculate the values of unseen terms for QA–AT posts
lassification. We listed the top fifty unseen terms in Table 4. We
bserve that a set of unseen terms (not identified manually by
he authors in the 1165 QA–AT posts, i.e., not in Tables 1 and 2)
re also related to QA and AT, and those unseen terms are helpful
or improving QA–AT posts mining.

QA–AT posts mining from SO: We added the unseen terms
i.e., not identified by authors but related to QAs and ATs) into

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
G

t
b
i
w
R
B
m
p
i
s

d
Q
p
S
A
f
T

i

Fig. 6. Sematic relationships between terms of the trained dictionary.
able 4
ain ratio of top fifty unseen terms of the dictionary.8

Gain ratio of unseen terms

failure 0.612 throughput 0.610 monitor 0.607 evolution 0.601
penalty 0.597 scaling 0.594 congestion 0.590 selftest 0.587
buffer 0.583 response 0.581 component 0.577 protection 0.571
balancing 0.569 recovery 0.564 clone 0.562 update 0.584
integrity 0.580 replaceability 0.579 tolerate 0.541 restart 0.512
framework 0.503 prevention 0.495 sensor 0.487 transaction 0.475
operation 0.471 brokers 0.469 illegal 0.467 binding 0.451
model 0.436 prioritize 0.429 priori 0.418 loadtime 0.427
client 0.423 delay 0.415 tradeoff 0.409 interoperability 0.403
movability 0.401 optimize 0.391 useableness 0.393 collaborative 0.391
coupling 0.386 rest 0.382 microservices 0.380 mechanism 0.375
occur 0.371 timewait 0.369 modular 0.365 functionality 0.361
rollback 0.360 maptask 0.358 session 0.351 request 0.348
audit 0.341 wizard 0.330 simplify 0.328 query 0.319
wizard 0.315 periodic 0.314 loadbalancing 0.312 audit 0.302
v
s
c
p
c
b

4

s
b
g
d

the training data for improving QA–AT posts mining. Fig. 7 shows
a comparison of the experimental results with and without the
trained dictionary on the testing dataset.

The results show that using the trained dictionary can consis-
ently improve the six machine learning algorithms in terms of
etter weighted average F-measure for QA–AT posts mining. The
mprovements of average F-measures are: 19.9% with SVM, 21.7%
ith Bayes, 4.2% with Decision Tree (DT), 20.3% with Logistic
egression (LR), 8.8% with Random Forest (RF), and 12.8% with
agging. In addition, the comparison of Recall, Precision, and F-
easure values of the six machine learning algorithms for QA–AT
osts mining is shown in Table 5. The highest F-measure (0.865)
s achieved by SVM with the trained dictionary to exploit term
emantics for QA–AT posts and non QA–AT posts mining.
As we described in Section 3.1, we applied the trained

ictionary-based classifier (i.e., SVM algorithm) to mine more
A–AT posts in SO. We firstly limited the scope of crawled
osts, and the process is similar to QA–AT posts collection (see
ection 3.2.2). The crawled posts are tagged with at least one of
T terms (see Table 1). Note that the crawled posts are different
rom the training posts and we retrieved 12,761 crawled posts.
hen we applied the trained dictionary-based classifier (using the

8 The output of the training dictionary can be found in Anon (0000) (i.e., data
tem 4).
9

SVM algorithm) to mine potential QA–AT posts from the set of
crawled posts, and we found 5103 posts. For the mined QA–AT
posts from SO, two annotators (i.e., the first author and a master
student) checked independently whether the mined posts are
really QA–AT relevant, and any uncertain posts were discussed by
three authors. Finally, 4195 posts (out of the 5103 mined posts)
were manually checked and verified that are QA–AT relevant, and
the value of Performance is 82.2%.

RQ1 Summarization: We used a set of metrics to evaluate
the effectiveness of our approach: (1) The trained dictionary were
used to identify the related terms and unseen terms of QA and AT
in developers’ discussions (see Tables 1 and 4). The F-measure
alues in Fig. 7 show that the trained dictionary can improve
ix algorithms on QA–AT posts mining. Some improvements are
onsiderably more significant (Bagging and RF) and some im-
rovements are marginal (SVM, Bayes, and DT). (2) Our approach
an reduce the manual efforts of mining QA–AT posts collection
y human experts.

.2. Applications of mined knowledge (Results of RQ2)

As mentioned in Section 2, the knowledge of ATs can provide
olutions for addressing QA concerns. However, the relationships
etween ATs and QAs have not been explored systematically. To
ather QA–AT knowledge and to help architects make informed
esign decisions when they apply ATs to address QAs in practice,

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
R

Fig. 7. Comparison of QA–AT posts mining results with and without using trained dictionary.
Fig. 8. Interactions between QAs and ATs in the mined QA–AT posts.
able 5
esults of QA–AT posts mining (with the trained dictionary).

QA–AT post classification

True +ve (posts) False +ve (posts) True −ve (posts) False −ve (posts) Precision Recall F-measure

SVM 903 20 1400 259 0.976 0.778 0.865
Bayes 831 163 1128 163 0.836 0.760 0.796
DT 829 242 959 335 0.774 0.712 0.742
LR 852 184 1016 313 0.822 0.731 0.845
Bagging 860 134 1178 193 0.865 0.816 0.774
RF 940 191 1025 209 0.831 0.818 0.824
we trained semi-automated dictionary-based classifiers (see Sec-
tion 3.2), which can be used for mining QA–AT discussions from
SO efficiently (see Section 4.1). The mined QA–AT knowledge was
further empirically analysed from two aspects to answer RQ2:
(1) relationships between QAs and ATs (in Section 4.2.1), and
(2) other key architectural design considerations discussed by
developers when they apply ATs to address QAs (Section 4.2.2).
10
4.2.1. Results of RQ2.1: architectural design relationships between
QAs and ATs

To systematically understand the QA–AT relationships, we
present the results from the following three perspectives:

• Interactions between various QAs and ATs. We identified
the presence of AT and QA instances and the interactions
between various ATs and QAs in the mined 4195 QA–AT

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

a

posts (see Fig. 8). We also identified the terms develop-
ers used to discuss QAs and ATs. We found that most of
discussed QAs (i.e., about 45% QA–AT posts) describe QA
behavioural properties of a system (Eckhardt et al., 2016).
For example, a developer mentioned that ‘‘Most unreleased
resource issues result in general software reliability problems,
but if an attacker can intentionally trigger a resource leak, it
may be possible to launch a denial of service attack by depleting
the resource pool9’’, and in around 85% the mined QA–AT
posts, developers discuss AT and QA issues using a variety
of terms (see Tables 1 and 2), for example, developers used
the words ‘‘workload’’, ‘‘memory consumption’’, ‘‘application
crash’’, and ‘‘low speed’’ to describe Performance issues in
the QA–AT posts. We counted the numbers of each QA
and AT, and showed the interactions between various QAs
and ATs in Fig. 8. The most frequently discussed QA and
AT topics are Performance (1725 instances) and Time out
(470 instances), respectively. In addition, the discussions
on the interaction between Performance and several ATs
(e.g., Time out and Checkpoint) are significantly higher than
other QAs and ATs. We then investigated the architectural
design relationships between various QAs and ATs. One
or more ATs can be used to address the architectural de-
sign concerns of one or more QAs (Harrison and Avgeriou,
2010a). Such tactics have different levels of impacts on QAs.
For example, developers mentioned that ‘‘This scheduling is
commonly adopted to improve system performance. For ex-
ample, Scheduling services are used to execute jobs, including
optimizing response time and latency’’, and ‘‘Fault detection
tactic (heartbeat, Ping/Echo) is concerned with detecting a fault
and notifying . . . (availability).’’ Using the relationships that
we have identified; architects and developers can select and
calibrate the appropriate tactics to satisfy QAs.

• Relationships between ATs and QAs in the mined QA–
AT posts. The objective of Stage 2 is to understand how
ATs impact QAs in practice. We classified the influence as
positive or negative (see Table 6, in which positive or ‘‘+’’
denotes that the AT benefits a specific QA, while negative
or ‘‘-’’ shows that the AT hinders a specific QA (Harrison
and Avgeriou, 2007). If employing ATs is beneficial to certain
QAs, we label the architectural design relationships between
the ATs and QAs as ‘‘positive’’ (see the example of ‘‘positive’’
relationship between ‘‘Pooling’’ and ‘‘Performance’’ in Fig. 1).
On the contrary, if applying ATs is a hindrance to certain
QAs, the architectural design relationships between the ATs
and QAs are labelled as ‘‘negative’’. Two annotators (i.e., the
first author and a master student) read the mined QA–
AT posts and labelled the relationships between QAs and
ATs independently. Any controversial labels were further
discussed with the second author. We tallied the numbers
of relationships as ‘‘positive’’ or ‘‘negative’’. If developers
did not make a point explicitly whether a specific QA is
benefited or hindered by the ATs, we used ‘‘N/A’’ to denote
the relationships. Please note that not all the interactions be-
tween ATs and QAs (see Fig. 8) are with an explicit negative
or positive relationship. For example, developers do not ex-
plicitly discuss whether ‘‘Shadow operation’’ influences any
QAs negatively or positively. Such QA–AT relationships are
not shown in Table 6. The degree of positivity or negativity
is the count of incidents we found in our samples.

• Comparison on QA–AT relationships between the liter-
ature and SO. To further investigate RQ2.1, we compared
the QA–AT relationships in the mined QA–AT posts from SO

9 https://stackoverflow.com/questions/3673558/how-to-release-resource-
fter-delete-a-file-by-java.
11
(see Table 6) with the relationships from literature (i.e., the
first author and a master student referred to software ar-
chitecture books and literature) (Bass et al., 2012; Harrison
and Avgeriou, 2010b; Mirakhorli et al., 2012a; Sabry, 2015;
Kim et al., 2009; Harrison and Avgeriou, 2008; Mirakhorli
et al., 2012b; Harrison and Avgeriou, 2010a). We explored
which design relationships are documented in the literature
and which design relationships are additional to the liter-
ature from the posts. We provide a comparison of the QAs
with their related ATs from literature and additional design
relationships that was mined from SO in Table 7.

The architectural design relationships between ATs and QAs
from mined posts are shown in Table 6. The comparison results
between literature and SO are in Table 7, which reveal that: (1)
Around 21% of the relationships between QAs and ATs extracted
from SO are little-known relationships, for example, to our best
knowledge, Time stamp can hinder Performance which has not
been investigated in literature (Bass et al., 2012; Harrison and
Avgeriou, 2010b; Mirakhorli et al., 2012a; Sabry, 2015; Kim et al.,
2009; Harrison and Avgeriou, 2008; Mirakhorli et al., 2012b;
Bachmann et al., 2007; Harrison and Avgeriou, 2010a). These
little-known relationships can be added to literature to help
developers consider potential impacts of using time-stamp when
making trade-off decisions when they apply this AT; (2) An AT can
affect multiples QAs simultaneously (see Table 7), for example,
Time out can have an impact on five types of QAs (i.e., Functional
Suitability, Performance, Usability, Portability, and Reliability).
We further discuss these gaps between academia and industry
on employing ATs to address QAs in Section 5.

4.2.2. Results of RQ2.2: architectural design considerations
discussed in QA–AT posts

We analysed the mined QA–AT posts to understand architec-
tural design considerations between ATs and QAs. Whilst apply-
ing ATs to address QAs is well explored in existing works, e.g.,
Mirakhorli et al. (2013) and Sabry (2015), there is no guidelines
for architects, who look for information on what considerations
(e.g., design contexts) they need to consider when applying ATs
to address QA concerns. As such, we analysed the mined QA–
AT posts using constant comparison method (Glaser and Strauss,
2009), which is a systematic approach to generate concepts and
categories from the collected qualitative data, constantly compare
incidents applicable to each category, and integrate categories
and their properties, to explore and identify what design consid-
erations developers discuss in the QA–AT posts. The first author
coded and summarized a set of design considerations (i.e., archi-
tecture topics) from the mined QA–AT posts, and the results of
coding were checked by the second author, finally any contro-
versial results of coding and summarized topics of QA–AT posts
were further discussed and resolved by the first three authors. For
example, developers provided a brief background of the projects,
what the design problems they had, and the design solutions they
proposed in terms of the design problems.

The first author identified and coded the topics of the design
discussions in the mined QA–AT posts, and after a discussion
between the first two authors during selective coding, four main
discussion topics were coded (i.e., Architecture pattern, Design
context, Evaluation of design decision, and Tool support for mon-
itoring QAs) in the collected QA–AT posts. We counted the per-
centages of QA–AT posts for each topic, for example, in around
47% posts (i.e., 1975 out of the 4195 QA–AT posts collected as the
results of RQ1), developers discussed architecture patterns when
they applied ATs to address QAs. An example of manual data
coding using MAXQDA is shown in Fig. 9. The results of coding,
examples of each topic, and percentages of related posts are listed

https://stackoverflow.com/questions/3673558/how-to-release-resource-after-delete-a-file-by-java
https://stackoverflow.com/questions/3673558/how-to-release-resource-after-delete-a-file-by-java

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
A

i
b

Q
o
a
d
A
(
f
c
d
w
s
t
t

c
m
d
t

able 6
rchitectural design relationships between ATs and QAs in the mined QA–AT posts.

Functional
suitability

Maintainability Usability Reliability Performance Compatibility Security Portability

Time out +(10) N/A +(5) +(17) +(15) N/A N/A +(4)
Heartbeat +(15) +(1) −(2) +(10) −(47) +(1) +(28) +(17)
Time stamp N/A +(6) N/A N/A −(2) N/A N/A +(7)
Sanity checking N/A +(6) N/A N/A −(1) N/A N/A +(3)
Redundancy replication +(7) N/A N/A +(8) +(12) N/A N/A N/A
Functional redundancy +(9) +(9) N/A +(4) +(12) N/A −(3) N/A
Analytical redundancy +(11) N/A N/A N/A +(4) +(3) +(4) −(1)
Recovery from attacks N/A +(10) −(5) N/A −(2) +(4) +(15) N/A
Rollback +(2) + (13) N/A +(6) +(5) N/A N/A N/A
Scheduling N/A +(1) N/A N/A +(34) N/A N/A N/A
Checkpoint N/A N/A N/A N/A +(6) N/A N/A N/A
FIFO N/A N/A + (25) +(3) +(10) N/A N/A +(5)
Resource pooling N/A +(6) N/A +(5) +(2) N/A N/A +(1)
Secure session N/A N/A N/A N/A N/A N/A +(4) N/A
Resisting attacks +(13) −(9) +(13) N/A N/A N/A +(1) +(8)
Maintain data confidentiality +(21) N/A N/A +(5) N/A +(4) N/A N/A
Authentication −(6) N/A +(3) +(1) N/A N/A +(14) N/A
Voting +(2) N/A +(1) +(2) +(7) N/A N/A N/A
Fig. 9. An example of manual data coding using MAXQDA.
n Table 8, and architects can use this architectural knowledge
etween QAs and ATs when designing.
Over half of the posts relate QAs to ATs (i.e., how ATs impact

As). These discussions represent a set of design considerations
f QA–AT. We group these considerations by discussion topics
nd sub-topics in Table 8. We first summarized the architecture
esign relationships between QAs and ATs in Table 6 (i.e., QA–
T architecture design relationships mined from SO) and Table 7
i.e., little-known QA–AT architecture design relationships mined
rom SO compared with literature). Architects make trade-off de-
isions: whether to implement an AT that optimizes one QA to the
etriment of another. Through these QA–AT related discussions,
e explored trade-offs, design contexts and other issues that
hape design decisions. The use of architecture patterns is one of
he major discussion topics with 47% of QA–AT posts discussing
his topic

About 28% of QA–AT posts discuss design contexts. Design
ontexts comprise the knowledge spanning the whole develop-
ent lifecycle, which can be related to requirements, design
ecisions, and risks. In the posts, developers discuss design con-

exts when they make design decisions. The knowledge of the

12
design context of specific scenarios influences the design deci-
sions of applying ATs and architecture patterns to address certain
QAs. The topics that they touched on include software, hardware,
application and stakeholders. We have mined examples of them,
as shown in Table 8. More examples can be found in Anon (0000).

Around 15% of QA–AT posts discuss design decision evaluation
(e.g., developers compared alternatives of ATs to address specific
QA concerns). Developers discuss reasons for achieving QAs and
to predict system behaviour. Discussions on design alternatives
also help select suitable ATs to achieve the desired QAs.

Finally, about 11% of QA–AT posts discuss how ATs can be ap-
plied in existing systems. In order to satisfy given QAs, architects
want to apply and implement ATs in certain ways (e.g., Kafka as
a message broker that implements heartbeat and time out). This
design consideration is an important factor for developers when
choosing and adopting the existing systems for applying ATs to
address QAs in practice.

There are many and varied architectural design considerations
that are useful to an architect. Our mining and research approach

has allowed us to systematically identify and group some of these

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

Q
r
c

Table 7
Comparison on the relationships between QAs and ATs documented in literature and additional relationships extracted from SO.

Relationships between QAs and
ATs from literature

Little-known relationships between QAs
and ATs mined from SO

Performance

Benefit to Performance (Bass
et al., 2012; Mirakhorli et al.,
2012a; Sabry, 2015; Kim et al.,
2009; Mirakhorli et al., 2012b)

FIFO,
Manage sampling rate,
Limit event response,
Reduce overhead,
Bound execution times,
Increase resource efficiency

Redundancy, Functional redundancy,
Analytical redundancy, Rollback,
Time out, Checkpoint, Resource pooling,
Voting, scheduling

Hinder to Performance
(Bass et al., 2012)

Heartbeat Time stamp, Sanity check, Recovery
from attacks

Security

Benefit to Security
(Bass et al., 2012; Harrison and
Avgeriou, 2010b; Sabry, 2015;
Kim et al., 2009; Mirakhorli
et al., 2012b)

Detect service denial,
Detect message delay,
Authentication,
Limit exposure, Heartbeat

Analytical redundancy, Resisting attacks,
Recovery from attacks, Secure session

Hinder to
Security

N/A Functional redundancy

Usability

Benefit to Usability
(Bass et al., 2012; Sabry, 2015)

Maintain task model,
Maintain user model,
Maintain system model

Time out, FIFO, Resisting attacks,
Authentication, Voting

Hinder to Usability
(Bass et al., 2012; Kim et al.,
2009)

Heartbeat Recovery from the attacks

Portability

Benefit to portability
(Bass et al., 2012)

Maintain task model,
Maintain user model,
Maintain system model

Time out, FIFO, Resisting attacks,
Heartbeat, Time stamp, Sanity checking,
Redundancy replication, Resource
pooling,
Recovery from attacks

Hinder to portability N/A Analytical redundancy

Reliability

Benefit to Reliability
(Bass et al., 2012; Sabry, 2015;
Harrison and Avgeriou, 2008;
Mirakhorli et al., 2012b;
Harrison and Avgeriou, 2010a)

Heartbeat,
Rollback,
Voting,
Exception,
Redundancy Replication,
Rollback

Time out, Functional redundancy,
Resisting attacks, Recovery from attacks,
Authentication, FIFO, Resource pooling,
Maintain data confidentiality

Functional suitability

Benefit to
Functional suitability

N/A Time out, Heartbeat, Redundancy,
Replication, Functional redundancy,
Analytical redundancy, Rollback,
Resisting attacks, Voting,
Maintain data confidentiality

Hinder to Functional suitability N/A Authentication

Maintainability

Benefit to Maintainability N/A Heartbeat, Time stamp, Sanity checking,
Functional redundancy, Rollback,
Resource pooling, Recovery from attacks

Hinder to Maintainability N/A Resisting attacks

Compatibility

Benefit to Compatibility N/A Heartbeat, Analytical redundancy,
Recovery from attacks,
Maintain data confidentiality
considerations by discussion topics. This identification process
has allowed us to highlight architectural design patterns, design
contexts, decision evaluation and AT applications are some of the
main concerns of architects. Using this approach, knowledge can
be continued to be mined and built-up to help architects use
relevant architectural design knowledge.

RQ2 Summarization: We extracted the relationships between
As and ATs from SO and they are shown in Table 6. These
elationships could help architects make decisions when they
onsider applying ATs to address QA concerns. Furthermore, we
13
compared the extracted QA–AT relationships with the literature
(Table 7) to analyse which QA–AT relationships were not reported
in current literature. Through the comparison, we summarize the
little-known QA–AT relationships (see Table 7) that can be used
as a supplement to the literature.

In addition, the analysis performed in Section 4.2.2 shows that
applying ATs to address QA concerns cannot be considered in
isolation and the key considerations of architecture knowledge
(see Table 8) would help architects to make design decisions
when they apply ATs to address QAs. Such considerations could

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
A

m
e
t
t
T
p
a
t
(
m
P
m
a
b
t
A

able 8
rchitectural design considerations grouped by topics from the mined QA–AT posts.
Discussion topic Subtopic Example Number of posts

as a percentage to
discussion topic

Architecture pattern N/A ‘‘There is the second approach of implementing a Heartbeat
function to periodically check if the client responds. I do think
this is the best approach for me / my scenario, but I am actually
struggling with the implementation with ASP.NET MVC . How
would I approach this in ASP.NET MVC? ’’

47%

Design context

Software
context

‘‘This is a classic problem with Internet games and contests.
The simplest possible attack against your system is to run the
HTTP traffic for the game through a proxy, catch the high-score
save, and replay it with a higher score.’’

28%

Hardware
context

‘‘The connection pooling service closes connections when they
are not used; connections are closed every 3 min. The Decr Pool
Size attribute of the ConnectionString property provides
connection pooling service for the maximum number of
connections that can be closed every 3 minutes.’’

Application
domain

‘‘For business information systems, Security and Functionality
are important , and it’s used by financial service companies for
their high performance requirements.’’

Stakeholders ‘‘All that said, an Access app with Jet/ACE back end can still
perform well with more than 15/20 users if those users are not
in heavy data entry/editing mode. If there are mostly read-only
user it’s pretty easy to support up to 50 users.’’

Financial issues ‘‘The correct financing is a process that requires the utmost
attention to avoid the risks in software development.’’

Evaluation of
design decision

Improving
certain QAs

‘‘Thread Pool management : the ActorSystem is response for
dispatching work from Actor instances to an underlying thread
pool. If the ActorSystem has a more complete understanding of
work distribution amongst your Actor set then it would be more
efficient at allocating the thread pool’s resources. However, the
OS is pretty good resource allocation too so the performance
improvement should be negligible.’’ 15%

Alternative ‘‘I’m writing a method to check if there is new data in a FIFO
opened in RDONLY mode. Until now I was using the poll()
function but I realized that the kernel on which the code will run
doesn’t have this function and it implements a subset of the
functionality and a subset of the POSIX functionality. There are
alternatives to the poll function?’’

Application of ATs
with existing systems

N/A ‘‘I’m sure a few folks here have a similar use case of dealing with
large processing time . . . Particularly, the recommended
configuration setting around heartbeat , request timeout , max
poll records, auto commit interval, poll interval, etc. if kafka is
not the right tool for my use case, please let me know as well’’

11%
w
o
H
i
w

help developers better understand two common design elements
(i.e., AT and QA) and their interactions in practice. In addition,
the popularity of the discussion topics and the considerations (in
percentages) (see Table 8) suggest where attention can be placed.

5. Discussion

Although AT and QA are common architecture design ele-
ents (Bass et al., 2012; Harrison and Avgeriou, 2010b; Harrison
t al., 2010), there is little-knowledge on how ATs are used while
rading off QAs in practice. QA–AT knowledge is typically unstruc-
ured and scattered in various resources (e.g., developer forums).
hrough mining and analysing QA–AT knowledge from SO, a
opular Q&A website for professional developers, we provide
guideline on the use of ATs with respect to QAs in prac-

ice. The main contributions of this work are: (1) Our approach
i.e., semi-automatic dictionary-based classifiers) can effectively
ine QA–AT knowledge with an F-measure of 0.865 and the
erformance is 82.2%, and 4195 QA–AT posts (discussions) were
ined from SO for empirical analysis; (2) Based on the empirical
nalysis of the mined QA–AT posts, we provided the relationships
etween QAs and ATs and a set of architectural design considera-
ions that developers may consider when they address QAs using
Ts in practice. The analysed knowledge can help developers to
14
understand the nature of QAs and ATs and apply ATs to address
QAs. In this section, we further discuss and interpret the study
results of each RQ.

Semantic network of architectural knowledge (domain
knowledge): The results of QA–AT post mining show that the
trained dictionary is effective for making use of prior knowl-
edge to construct semantic relationships between words and
concepts (see Fig. 6 and Table 4). The trained dictionary results
in better collection and representation of association on domain
knowledge (i.e., architectural knowledge). We conclude that the
semantic network of the words (i.e., domain knowledge) is effec-
tive for improving and facilitating QA–AT knowledge mining (see
Fig. 7 and Table 5). However, as this work is an attempt for mining
QA–AT knowledge, we only used 2365 architecture related posts
(i.e., tagged with ‘‘software architecture’’ and ‘‘software design’’
to build the semantic network of architectural knowledge. We
suggest that researchers and practitioners can employ more data
on constructing the semantic network of architectural knowledge.

Difficulties in AT and QA discussions extraction: In this
ork, we mined QA–AT posts (i.e., discussions) for the purpose
f understanding how developers apply ATs in terms of QAs.
owever, it is difficult to retrieve all QA–AT discussions by us-
ng words identification because developers may use different
ords (i.e. synonyms) from the trained dictionary to describe

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

t
c
d
(
s
a

t
i
t
A
i
i
a
h
w
f
F
2
I
a
m
s
M

o
o
A
d
A
t
r
t
r
c

6

t
W
a
t

6

a
f
M
s
t
u
s
B
q
l
t
m
t
e
t
c
A
M
t

he same QA. Similarly, the words we used to extract AT dis-
ussions (see Table 1) may be insufficient for retrieving all AT
iscussions. Therefore, we need to employ multiple methods
e.g., deep learning techniques) for extracting more comprehen-
ive QA–AT knowledge at different granularities (e.g., sentences
nd paragraphs) (Witte and Li, 2008).
The gap between academia and industry on employing ATs

o address QAs: ATs are fine grained reusable architectural build-
ng blocks and are widely used in practice. However, we found
hat there exists a gap between academia and industry applying
Ts to address QAs. Very few researches introduce the negative
mpact of ATs on QAs. However, in SO, there are many cases
n which certain types of ATs were mentioned with the char-
cteristics of hindering specific QAs, such as Security could be
indered by Functional redundancy (see Table 7). Beyond that,
e also found that there are few researches that investigate ATs

or addressing certain QAs (i.e., Maintainability, Reusability, and
unctional Suitability). We can only compare five QAs from ISO
5010 and their related ATs from literature and SO (see Table 7).
n addition, around 21% little-known relationships between QAs
nd ATs are identified in SA. As such, this study can supple-
ent what is currently lacking in the literature. For example, a
et of ATs are extracted from SO that can be used to address
aintainability (see Table 7).
Architectural design considerations in practice: The analysis

f the mined QA–AT posts (i.e., RQ2.2) have highlighted a number
f architectural topics (see Table 8). Design considerations in QA–
T encompass the use of design patterns, design contexts, design
ecision evaluation and ATs in existing systems. Similar to QA–
T posts that have been mined, design discussions can reveal
he trade-offs in decisions (Alebrahim and Heisel, 2017). The
esult to RQ2.2 provides a glimpse on how developers deal with
he interactions between QAs and ATs. Further research on the
elationships between QAs and ATs in different design contexts
an be useful.

. Related work

There have been several attempts to provide methods and
ools to assist architects to deal with QAs in architectural design.
e report the literature in two areas: (a) using ATs to address QAs

nd (b) automatic architectural knowledge mining. We compare
hese works with our work in Table 9.

.1. Applying architecture tactics to address quality attributes

Kim and colleagues proposed a quality-driven approach to
ddress QAs using ATs. In their approach, ATs are represented as
eature models, and their semantics are defined using Role-based
etamodeling Language (RBML) which is a UML-based pattern
pecification notation. Given a set of quality attribute, architec-
ure tactics are selected and composed. There is a set of benefits of
sing this approach, for example, the variations captured in tactic
pecifications allow various tactic instantiations (Kim et al., 2009).
ogner and colleagues investigated design decisions related to
uality attributes for a Service-Based system. They proposed a
ightweight manual design method called Service-Oriented Archi-
ecture Design Method (SOADM) that takes functional require-
ents and quality attributes as input and produces an architec-

ure model of the necessary services and their interactions. To
nsure that quality attributes goals are achieved, architectural
actics are used to enrich business services with system-related
omponents that should realize the tactics (Bogner et al., 2019).
lashqar and colleagues introduced a new Multi Criteria Decision
aking (MCDM) method for analysing the preferences and in-
eractions of quality attributes based on Choquet integral fuzzy

15
measure. The analysis process is based on understanding the
impact of implementing architecture tactics on quality attributes
when developing an industrial system. These works are similar to
our work that focuses on the relationships between ATs and QAs,
while we mined and analysed the knowledge of QA and AT from
developers’ discussions (Alashqar et al., 2016).

6.2. (Semi-) Automatic techniques in mining architectural knowl-
edge

Mirakhorli and colleagues evaluated and compared the ef-
ficacy of six classification algorithms (i.e., SVM, C45, Bagging,
SLIPPER, Bayesian logistic regression, and AdaBoost) for iden-
tifying ATs from source code (Mirakhorli and Cleland-Huang,
2016). Mirakhorli and colleagues, in another piece of work, used
classification techniques and information retrieval to identify ar-
chitecture tactic-related classes in source code. This approach
can be used to automatically construct traceability links between
source code and architectural tactics. This approach also mini-
mizes the human effort required to establish traceability that can
be used to support maintenance activities and prevent architec-
tural erosion (Mirakhorli et al., 2012b). Velasco-Elizondo and col-
leagues proposed an approach based on an information extraction
technique (i.e., entities extraction) and knowledge representation
(i.e., ontology) to automatically analyse architecture patterns con-
sidering specific quality attributes (e.g., Performance) (Velasco-
Elizondo et al., 2016). To be specific, an ontology contains two
sub-types of ontologies. One is English grammar-based ontology.
The other is performance ontology that defines performance-
specific concepts (e.g., security and throughput). Information ex-
traction techniques (i.e., entity extraction) and the ontology were
used to identify the relationships between architecture patterns
and quality attributes in architecture pattern descriptions. The
experiment results show that their approach is helpful for in-
experienced architects to select architecture patterns through
knowing whether specific quality attributes are promoted or
inhibited. Casamayor and colleagues applied NLP techniques and
K-means algorithm to semantically categorize candidate respon-
sibilities into groups (Casamayor et al., 2012). This approach
firstly processes requirements documents by POS tagging tech-
nique to detect the actions and tasks that the system needs,
then K-means is used to group similar responsibilities into ar-
chitectural components. The experiments show that the results
obtained by this approach correspond to the expected architec-
tural components made by experts. These works motivate us to
develop a semi-automatic approach to extract and mine QA–AT
knowledge from textual information (i.e., SO).

6.3. Comparison between our work and related work

The works presented in Section 6.1 applied different
approaches to mine AT knowledge and investigate the inter-
actions between ATs and QAs, however, those works focus on
specific ATs and they do not explore the relationships between
ATs and QAs in practice. Furthermore, the work presented in
Section 6.2 motived us to use a semi-automated approach to
mine architectural knowledge at a larger scale and involving
developers’ opinions (i.e., from Stack Overflow).

We compare the characteristics of related work with our work
in Table 9. Our work used SO for understanding how develop-
ers apply ATs to address QAs. We proposed a semi-automatic
approach, which uses Neural Language Model for training the
dictionary and machine learning techniques for training the QA–
AT post classifiers. We then employed the trained QA–AT post
classifiers to mine more QA–AT posts in SO, and further em-
pirically analysed the mined QA–AT posts for revealing their
occurrences and the strengths of their relationships.

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

T
C

o
a
v
c

s
s
p
s
a
v
t
a
d
p
a
r
r
i
t
t
Q
d
w
t
t

able 9
omparison of the characteristics of related work with our work.
Related Works Data extraction approach Data analysis

approach
Focus Artefacts Used

Our work A semi-automatic
dictionary-based QA–AT
posts extraction
approach from SO

Descriptive statistics and
constant comparison

Focus on relationships
analysis between ATs
and QAs.

4,195 relevant posts
form SO

Mirakhorli and
colleagues (Mi-
rakhorli et al.,
2013)

Automatic source code
extraction from OSS

Topic analysis Focus on the
relationships between
topical domain concepts
and the use of ATs.

Source code in 1,000
OSS projects

Mirakhorli and
colleagues (Mi-
rakhorli et al.,
2012a)

Automatic source code
extraction from OSS

Semi-automatic data
classification (i.e.,
machine learning)

Focus on how design
patterns were used to
implement various ATs.

Source code in 500 OSS
projects

Mirakhorli and
colleagues (Mi-
rakhorli and
Cleland-Huang,
2016)

Automatic source code
extraction from OSS

Manual analysis on
classification results of
machine learning and
information retrieval
(i.e., customized
classifiers)

Focus on discovering and
visualizing architectural
code, and mapping these
code segments to ATs.

Source code in 50 OSS
projects

Harrison and col-
leagues (Harrison
et al., 2010)

Controlled experiment
(i.e., two groups)

Analysing and comparing
experiment results from
two groups manually

Focus on understanding
the information of fault
tolerance tactics that
affect the architecture
patterns of a system.

Information collected
from two groups of
participants

Gopalakrishnan
and col-
leagues (Gopalakr-
ishnan et al.,
2017)

Automatic source code
extraction from OSS

Topic analysis Recommend ATs based
on latent topics
discovered in the source
code.

Source code in 11,600
OSS projects

Sabry and
colleagues (Sabry,
2015)

Survey and questionnaire Quantitative analysis Focus on analysing the
relationships between
QAs and ATs.

Data collected from a
survey of 29 developers

Bi and
colleagues (Bi
et al., 2018)

Manual data extraction
(i.e., relevant
discussions)

Descriptive statistics and
constant comparison

Focus on relationships
extracting between
architecture patterns,
quality attributes, and
design contexts.

748 relevant posts (i.e.,
discussions) collected
from SO
7. Threats to validity

There are several threats that can potentially affect the validity
f our research results. We discuss three threats to the validity
ccording to the categorization in Höst et al. (2012). Internal
alidity is not considered since this study does not address any
ausal relationships between variables and results.
Construct validity focuses on whether the theoretical con-

tructs are interpreted and measured correctly. A threat to con-
truct validity in this study involves whether the training QA–AT
osts used for experiments were labelled correctly by the re-
earchers. To achieve a common understanding of various QAs
nd ATs, we reviewed literatures related to ATs and checked
arious terms that are synonyms with ATs. In addition, we used
he definitions of QA types in the ISO 25010 standard. But using
standard cannot guarantee that the researchers understand the
efinitions of various QAs. To mitigate this threat, a pilot QA–AT
osts extraction was conducted by three authors, and any dis-
greements on the extraction results were further discussed and
esolved by the three authors, in order to get a consensus among
esearchers on the extraction of QA–AT posts. Another threat lies
n the manual analysis of the mined QA–AT posts. To overcome
his threat, we employed constant comparison method to analyse
he mined QA–AT posts. The first author empirically analysed the
A–AT posts, and the second author checked the results. Any
isagreements on the coding results and analysis of QA–AT posts
ere discussed and resolved by three authors. Moreover, before
he formal data analysis, we conducted a pilot data analysis by
he first three authors, and any conflicting results were discussed
16
and resolved to eliminate personal biases. Lastly, semi-automatic
mining cannot retrieve all QA–AT posts. Our intention is to mine
commonly used ATs and to understand the QA–AT knowledge
discussed in SO. As such, missing ATs can be captured and added
for training data collection in order to get more comprehensive
results on QA–AT posts mining.

External validity refers to the extent of the generalizability
of the study results. We only collected the data from SO. This
may be a risk to the external validity of the results and findings,
for example the extracted relationships between QAs and ATs
(see Tables 6 and 7). However, since SO is the largest and most
popular Q&A community widely used by software professionals
worldwide (Meldrum et al., 2017), the risk of missing out rep-
resentative data is mitigated. Moreover, QA–AT knowledge from
other sources, like the development platform GitHub and social
media Twitter are also needed critical to supplement our study
results, which is considered as our future work to enhance exter-
nal validity. Although we used constant comparison method to
identify architecture design topics that architects are concerned
with, the grouping of the data studied in RQ2.2 can be subjected
to researchers’ interpretations. Additionally, the data we used
is limited to SO posts. Whilst every measure is taken by the
researchers to remain objective and thorough, our claim on the
knowledge generalizability is still limited.

Reliability concerns with the repeatability of a study pro-
ducing the same results. To mitigate the threats to reliability,
we specified the process of our approach in a research protocol
which can be repeated to produce similar results. The manual
interpretations of the terms can be different for researchers with

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

d
b
d
t

8

t
a
d
A
a
a
r
m
d

a
k
a
‘
f
s

Q
t
s
a

g
s
e

p
m
v
G
c
b

C

W
a
S
T
i

D

c
t

A

P
l
S

ifferent architecture working experience. We mitigated this risk
y working with these terms carefully. A pilot study was con-
ucted by two authors and the analysis results were checked by
hree authors to eliminate the misinterpretation of the results.

. Conclusions and future work

In this work, we proposed a semi-automatic approach to mine
he knowledge of QAs and ATs from SO. This approach achieved
n F-measure of 0.865 and Performance of 82.2% by using the
ictionary-based machine learning techniques for mining the QA–
T posts in SO (see Section 4.2.1). Whilst the knowledge mining
pproach we employed is not new, its application to mine AT
nd QA knowledge is novel. In order to investigate how QAs are
elated to ATs and other architectural design considerations, we
anually analysed the mined QA–AT discussions. We used that
ata to see how ATs impact QAs in design.
We have several findings:
(1) we have developed and tested mechanisms to mine QA

nd AT knowledge effectively from unstructured architectural
nowledge source SO. The mined data allow us to discover new
rchitecture design terminologies. For example, developers used
‘outbound’’ or ‘‘decorator ’’ to describe Heartbeat, which cannot be
ound from the literature. The synonyms or related concepts are
hown in Tables 1 and 2;
(2) we have applied an empirical analysis method to relate

As to ATs from the mined discussions. We have been able to see
hat different ATs have different impacts on QAs. Such relation-
hips between QAs and ATs are new and useful. They could help
rchitects consider quality requirements when selecting ATs;
(3) through the mining process and empirical analysis, we

rouped the mined QA–AT posts by four architectural discus-
ion topics (see Table 8) in which architects can consider when
mploying ATs.
With the findings, we conjecture that similar mining ap-

roaches can be further explored to extract software develop-
ent knowledge from a variety of rich and unstructured de-
eloper discussion forums such as Stack Exchange, Bytes, and
itHub. It may be possible to use a similar mining approach to
onvert unstructured discussions into empirical- and evidence-
ased software engineering knowledge.

RediT authorship contribution statement

Tingting Bi: Conceptualization, Investigation, Data curation,
riting - original draft, Visualization. Peng Liang: Conceptu-

lization, Investigation, Resources, Writing - review & editing,
upervision, Project administration, Funding acquisition. Antony
ang: Conceptualization, Investigation, Writing - review & edit-
ng, Supervision. Xin Xia: Review, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work is partially sponsored by the National Key R&D
rogram of China with Grant No. 2018YFB1402800. We would
ike to thank Tianlu Wang, who helped to collect and label the

O posts in this work.

17
References

Abdalkareem, R., Shihab, E., Rilling, J., 2017. What do developers use the crowd
for? a study using stack overflow. IEEE Softw. 34 (2), 53–60.

Alashqar, A.M., Elfetouh, A.A., El-Bakry, H.M., 2016. Analyzing preferences and
interactions of software quality attributes using choquet integral approach.
In: Proceedings of the 10th International Conference on Informatics and
Systems (ICIS), Giza, Egypt, pp. 298-303.

Alebrahim, A., Heisel, M., 2017. Bridging the Gap Between Requirements Engi-
neering and Software Architecture: A Problem-Orieneted and Quality-Driven
Method. Springer.

Anon, 0000. Mining Architecture Tactics and Quality Attributes Knowledge in
Stack Overflow: Replication Package: https://github.com/QA-AT/Mining-QA-
AT-Knowledge-in-SO.

Bachmann, F., Bass, L., Nord. Modifiability Tactics, R., 2007. Software Engineering
Institute. Technical report, Carnegie Mellon University, Pittsburgh.

Bass, L., Clements, P., Kazman, R., 2012. Software Architecture in Practice, third
ed. Addison-Wesley Professional.

Bi, T., Liang, P., Tang, A., 2018. Architecture patterns, quality attributes, and
design contexts: how developers design with them?. In: Proceedings of the
25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, pp.
49-58.

Bi, T., Liang, P., Tang, A., Yang, C., 2018b. A systematic mapping study on text
analysis techniques in software architecture. J. Syst. Softw. 144, 533–558.

Bogner, J., Wagner, S., Zimmermann, A., 2019. Using architectural modifiability
tactics to examine evolution qualities of service-and microservice-based
systems. SICS Softw. Intensive Cyber-Physic. Syst. 34 (2–3), 141–149.

Casamayor, A., Godoy, D., Campo, M., 2012. Functional grouping of natu-
ral language requirements for assistance in architectural software design.
Knowl.-Based Syst. 30 (6), 78–86.

Cleland-Huang, J., Settimi, R., Zou, X., Solc, P., 2006. The detection and classi-
fication of non-functional requirements with application to early aspects.
In: Processings of the 14th IEEE International Requirements Engineering
Conference (RE), pp. 36-45.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol.
Meas. 20 (1), 37.

Dai, J., Xu, Q., 2013. Attribute selection based on information gain ratio in fuzzy
rough set theory with application to tumor classification. Appl. Soft Comput.
13 (1), 211–221.

Ding, W., Liang, P., Tang, A., van Vliet, H., 2014. Knowledge-based approaches in
software documentation: A systematic literature review. Inf. Softw. Technol.
56 (6), 545–567.

Eckhardt, J., Vogelsang, A., Fernández, D.M., 2016. Are non-functional require-
ments really non-functional? an investigation of non-functional require-
ments in practice. In: Proceedings of the 38th International Conference on
Software Engineering (ICSE), Austin, TX, USA, pp. 14-22.

Falessi, D., Cantone, G., Kazman, R., 2011. Decision-making techniques for
software architecture design: A comparative survey. ACM Comput. Surv. 43
(4), 1–28.

Forman, G., 2003. An extensive empirical study of feature selection metrics for
text classification. J. Mach. Learn. Res. 3 (3), 1289–1305.

Glaser, B.G., Strauss, A.L., 2009. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Transaction Publishers.

Godbole, S., Bhattacharya, I., Gupta, A., 2010. Building re-usable dictionary
repositories for real-world text mining. In: Proceedings of the 19th ACM in-
ternational conference on Information and knowledge management (CIKM),
Toronto, Ontario, Canada, pp. 1189-1198.

Gopalakrishnan, R., Sharma, P., Mirakhorli, M., Galster, M., 2017. Can latent topics
in source code predict missing architectural tactics? In: Proceedings of the
39th International Conference on Software Engineering (ICSE), Buenos Aires,
Argentina, pp. 15-26.

Harrison, N.B., Avgeriou, P., 2007. Leveraging architecture patterns to satisfy
quality attributes. In: Proceedings of the 1st European Conference on
Software Architecture (ECSA), Aranjuez, Spain, pp. 263-270.

Harrison, N.B., Avgeriou, P., 2008. Incorporating fault tolerance tactics in software
architecture patterns. In: Proceedings of the 2008 RISE/EFTS Joint Interna-
tional Workshop on Software Engineering for Resilient Systems (SERENE),
Newcastle Upon Tyne, UK, pp. 9-18.

Harrison, N.B., Avgeriou, P., 2010a. Implementing Reliability: The Interaction of
Requirements, Tactics and Architecture Patterns, Architecting Dependable
Systems VII. Springer, Berlin, Heidelberg, pp. 97–122.

Harrison, N.B., Avgeriou, P., 2010b. How do architecture patterns and tactics
interact? A model and annotation. J. Syst. Softw. 83 (10), 1735–1758.

Harrison, N.B., Avgeriou, P., Zdun, U., 2010. On the impact of fault tolerance
tactics on architecture patterns. In: Proceedings of the 2nd International
Workshop on Software Engineering for Resilient Systems (SERENE), London,
United Kingdom, pp. 12-21.

Höst, M., Runeson, P., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer.

http://refhub.elsevier.com/S0164-1212(21)00102-3/sb1
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb1
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb1
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb3
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb3
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb3
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb3
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb3
https://github.com/QA-AT/Mining-QA-AT-Knowledge-in-SO
https://github.com/QA-AT/Mining-QA-AT-Knowledge-in-SO
https://github.com/QA-AT/Mining-QA-AT-Knowledge-in-SO
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb5
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb5
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb5
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb6
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb6
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb6
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb8
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb8
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb8
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb9
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb9
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb9
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb9
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb9
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb10
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb10
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb10
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb10
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb10
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb12
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb12
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb12
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb13
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb13
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb13
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb13
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb13
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb14
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb14
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb14
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb14
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb14
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb16
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb16
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb16
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb16
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb16
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb17
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb17
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb17
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb18
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb18
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb18
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb23
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb23
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb23
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb23
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb23
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb24
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb24
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb24
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb26
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb26
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb26

T. Bi, P. Liang, A. Tang et al. The Journal of Systems & Software 180 (2021) 111005

I

K

K

K

L

L

M

M

M

M

M

M

N

P

P

Q

S

SO, ISO/IEC 25010, 2011. Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models. pp. 1–34.

aregowda, A.G., Manjunath, A.S., Jayaram, M.A., 2010. Comparative study of
attribute selection using gain ratio and correlation based feature selection.
Int. J. Inf. Technol. Knowl. Manag. 2 (2), 271–277.

im, S., Kim, D., Lu, L., Park, S., 2009. Quality-driven architecture development
using architecture tactics. J. Syst. Softw. 82 (8), 1211–1231.

otsiantis, S., Kanellopoulos, D., Pintelas, P., 2006. Handling imbalanced datasets:
A review. GESTS Int. Trans. Comput. Sci. Eng. 30 (1), 25–36.

i, Y., Bandar, Z.A., McLean, D., 2003. An approach for measuring semantic
similarity between words using multiple information sources. IEEE Trans.
Knowl. Data Eng. 15 (4), 871–882.

i, C.H., Yang, J.C., Park, S.C., 2012. Text categorization algorithms using semantic
approaches corpus-based thesaurus and wordnet. Expert Syst. Appl. 39 (1),
765–772.

eldrum, S., Licorish, S.A., Savarimuthu, B.T.R., 2017. Crowdsourced knowledge
on stack overflow: a systematic mapping study. In: Proceedings of the
21st International Conference on Evaluation and Assessment in Software
Engineering (EASE), Karlskrona, Sweden, pp. 180-185.

ikolov, T., Chen, K., Gorrado, G., Dean, J., 2013. Efficient estimation of word
representations in vector space. In: Proceedings of the 1st International
Conference on Learning Representations (ICIL), Scottsdale, Arizona, USA, pp.
1128-1135.

irakhorli, M., Carvalho, J., Cleland-Huang, J., Mäder, P., 2013. A domain-centric
approach for recommending architectural tactics to satisfy quality concerns.
In: Proceedings of the 3rd International Workshop on the Twin Peaks of
Requirements and Architecture (TwinPeaks). Rio de Janeiro, Brazil, pp. 1–8.

irakhorli, M., Cleland-Huang, J., 2016. Detecting, tracing,and monitoring
architectural tactics in code. IEEE Trans. Softw. Eng. 42 (3), 205–220.

irakhorli, M., Mäder, P., Cleland-Huang, J., 2012. Variability points and design
pattern usage in architectural tactics. In: Proceedings of the 20th Interna-
tional Symposium on the Foundations of Software Engineering (FSE), Vol. 52,
pp. 1-11.

irakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M., 2012. A tactic-centric
approach for automating traceability of quality concerns. In: Proceedings of
the 34th International Conference on Software Engineering (ICSE), Zurich,
Switzerland, pp. 639-649.

asehi, S., Sillito, J., Maurer, F., Burns, C., 2012. What makes a good code
example?: A study of programming Q & A in stack overflow. In: Proceedings
of the 28th IEEE International Conference on Software Maintenance (ICSM)
Trento, Italy, pp. 25-34.

agano, D., Maalej, W., 2013. How do open source communities blog?. Empir.
Softw. Eng. 18 (6), 1090–1124.

rana, G.A.A., Treude, C., Thung, F., Atapattu, T., Lo, D., 2019. Categorizing the
content of github README files. Empir. Softw. Eng. 24 (3), 1296–1327.

uinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

abry, A.E., 2015. Decision model for software architectural tactics selection
based on quality attributes requirements. Procedia Comput. Sci. 65, 422–431.
18
Soliman, M., Galster, M., Salama, A.R., Riebisch, M., 2016. Architectural knowl-
edge for technology decisions in developer communities: An exploratory
study with stackoverflow. In: Proceedings of the 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Venice, Italy, pp. 128-133.

Treude, C., Robillard, M.P., 2016. Augementing API documentation with in-
sights from Stack Overflow. In: Proceeding of the 38th IEEE International
Conference on Software Engineering (ICSE), Austin, TX, USA, pp. 392-403.

Vasilescu, B., Capiluppi, A., Serebrenik, A., 2013. Gender, representation and
online participation: A quantitative study of stackoverflow. Interact. Comput.
6 (5), 488–511.

Vassileva, J., 2008. Toward social learning environments. IEEE Trans. Learn.
Technol. 1 (4), 199–214.

Velasco-Elizondo, P., Marín-Piña, R., Vazquez-Reyes, S., Mora-Soto, A., Mejia, J.,
2016. Knowledge representation and information extraction for analyzing
architectural patterns. Sci. Comput. Program. 121, 176–189.

Witte, R., Li, Q., 2008. Text mining and software engineering: an integrated
source code and document analysis approach. IET Softw. 2 (1), 3–16.

Tingting Bi is a Ph.D. candidate in the School of Computer Science, Wuhan
University, China and the Faculty of Information and Technology, Monash
University, Australia. She was a visiting Ph.D. candidate at the Faculty of Science,
Engineering and Technology, Swinburne University of Technology, Australia. Her
current research interests include software architecture, empirical software en-
gineering, natural language processing, and machine learning. She has published
several articles in peer-reviewed international journals and conferences.

Peng Liang is Professor of Software Engineering in the School of Computer
Science, Wuhan University, China. His research interests concern the areas of
software architecture and requirements engineering. He is a Young Associate
Editor of Frontiers of Computer Science, Springer. He has published more than
100 articles in peer-reviewed international journals, conference and workshop
proceedings, and books.

Antony Tang, is Adjunct Professor in Swinburne University of Technology,
Australia and VU University Amsterdam, The Netherlands. He received a Ph.D.
degree in Information Technology from Swinburne in 2007. Prior to being a
researcher, he had spent many years designing and developing software systems.
His main research interests are software architecture design reasoning, software
development processes, and software architecture knowledge management.

Xin Xia is an ARC DECRA Fellow and a lecturer at the Faculty of Information
Technology, Monash University, Australia. Prior to joining Monash University,
he was a post-doctoral research fellow in the software practices lab at the
University of British Columbia in Canada, and a research assistant professor
at Zhejiang University in China. To help developers and testers improve their
productivity, his current research focuses on mining and analysing rich data in
software repositories to uncover interesting and actionable information.

http://refhub.elsevier.com/S0164-1212(21)00102-3/sb27
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb27
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb27
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb27
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb27
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb28
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb28
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb28
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb28
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb28
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb29
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb29
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb29
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb30
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb30
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb30
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb31
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb31
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb31
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb31
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb31
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb32
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb32
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb32
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb32
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb32
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb35
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb36
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb36
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb36
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb40
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb40
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb40
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb41
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb41
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb41
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb42
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb42
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb42
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb43
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb43
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb43
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb46
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb46
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb46
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb46
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb46
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb47
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb47
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb47
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb48
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb48
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb48
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb48
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb48
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb49
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb49
http://refhub.elsevier.com/S0164-1212(21)00102-3/sb49

	Mining Architecture Tactics and Quality Attributes knowledge in Stack Overflow
	Introduction
	Motivation
	Knowledge mining approach
	Overview of the knowledge mining approach
	Stage 1: Semi-automatic dictionary-based QA-ATQA–ATpost classifier training
	Step 1: Data preparation
	Step 2: Data labelling
	Step 3: Data preprocessing
	Step 4: Dictionary training
	Step 5: Classifier training
	Step 6: Trained classifiers evaluation

	Stage 2: QA-ATQA–ATposts mining and analysis

	Results
	Effectiveness of knowledge mining (Results of RQ1)
	Applications of mined knowledge (Results of RQ2)
	Results of RQ2.1: architectural design relationships between QAs and ATs
	Results of RQ2.2: architectural design considerations discussed in QA-ATQA–ATposts

	Discussion
	Related work
	Applying architecture tactics to address quality attributes
	(Semi-) Automatic techniques in mining architectural knowledge
	Comparison between our work and related work

	Threats to validity
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

