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a b s t r a c t 

Given a software issue request, one important activity is to recommend suitable developers to resolve 

it. A number of approaches have been proposed on developer recommendation. These developer recom- 

mendation techniques tend to recommend experienced developers, i.e., the more experienced a developer 

is, the more possible he/she is recommended. However, if the experienced developers are hectic, the ju- 

nior developers may be employed to finish the incoming issue. But they may have difficulty in these 

tasks for lack of development experience. In this article, we propose an approach, EDR_SI , to enhance de- 

veloper recommendation by considering their expertise and developing habits. Furthermore, EDR_SI also 

provides the personalized supplementary information for developers to use, such as personalized source 

code files, developer network and source-code change history. An empirical study on five open source 

subjects is conducted to evaluate the effectiveness of EDR_SI . In our study, EDR_SI is also compared with 

the state-of-art developer recommendation techniques, iMacPro, Location and ABA-Time-tf-idf , to evaluate 

the effectiveness of developer recommendation, and the results show that EDR_SI can not only improve 

the accuracy of developer recommendation, but also effectively provide useful supplementary information 

for them to use when they implement the incoming issue requests. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Bugs and issues continuously emerge during software mainte-

ance and evolution ( Rajlich, 2014; Canfora et al., 2014 ). Given a

ew issue request, software managers must assign the issue re-

uest to suitable developers to implement it ( Xia et al., 2015; Ser-

ant and Jones, 2012 ). To accomplish this, managers or developers

eed to analyze the information available in the software reposito-

ies, e.g., bug or issue repositories, communication archives, and/or

ource-code change repositories ( Zanjani et al., 2014; Wang and Lo,

014; Kagdi et al., 2007 ), to recommend developers. 

A large number of approaches focusing on developer recom-

endation have been developed ( Hossen et al., 2014; Kagdi et al.,

012; Anvik and Murphy, 2011; Zhang et al., 2015; Shokripour

t al., 2015 ). These techniques mainly focused on optimising the

ccuracy of developer recommendation. The basic thought behind
� Fully documented templates are available in the elsarticle package on CTAN . 
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hese approaches is that a developer who has more development

xperience relevant to an incoming issue request is more suitable

o implement this issue request. Based on this thought, a ranked

ist of developers is recommended in an order by their suitability

 Hossen et al., 2014; Shokripour et al., 2013; Xia et al., 2013; Zhang

t al., 2014a; Zhang and Lee, 2013 ). However, these techniques tend

o recommend developers who have luxuriant development expe-

ience, which prejudices someone who just joined the team (i.e.,

ewcomers). In our previous studies on developer recommenda-

ion based on commit repositories ( Sun et al., 2017 ), we found that

ost developers are the junior ones since they only submitted a

mall number of commits ( Yang et al., 2016 ). For example, Fig. 1

hows the number of submitted commits of each developer for

-3D , 1 jEdit , 2 FreeMat 3 and SpringFramework 4 subjects. We notice

hat, on average, most developers submitted fewer than 50 com-

its, considering that we analyzed 45,704 commits of four sub-
1 http://sourceforge.net/projects/k3d/?source=directory 
2 http://sourceforge.net/projects/jedit/ 
3 http://sourceforge.net/projects/jedit/ 
4 http://sourceforge.net/projects/springframework/?source=directory 
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Fig. 1. The number of submitted commits of every developer for K-3D, jEdit, 

FreeMat and SpringFramework subjects. 
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jects in total. Thus, the proposed issues are not always resolved by

senior developers with rich maintaining experience. In practice, the

developer with rich development experience may be arranged for

more important tasks, and they usually have heavy tasks and may

be not available for some trivial tasks. On the other hand, the ju-

nior developers are not acquainted with the system, and they have

difficulty in finishing the incoming issue request. 

Hence, recommending developers who have ample relevant ex-

perience for the incoming issue request is not always effective to

promote the entire process of software evolution ( Zhang et al.,

2015 ). Developers’ habits are also important during an issue res-

olution ( Sun et al., 2017 ). For example, in the practical software

maintenance, developers tend to modify the source files that they

have changed before. The more times they have modified, the more

possibility they will change again. The more recent they have mod-

ified the files, the more possibly they will change again. In this ar-

ticle, we consider developers’ expertise and developing habits to

recommend developers, which could avoid only recommending se-

nior developers for the software issue requests. Besides, for the ju-

nior developers, they may have difficulties in resolving the issue

requests. So personalized supplementary information are also rec-

ommended to them and help them get relevant knowledge of the

system, which can effectively assist them in finishing the assigned

issue requests ( Yang et al., 2016 ). 

In this article, we propose an approach named EDR_SI (Enhanc-

ing Developer Recommendation with Supplementary Information),

which enhances developer recommendation by taking their devel-

opment habits and experience into consideration as well as rec-

ommending the personalized supplementary information (for the

candidate developers) relevant to the issue request, such as per-

sonalized source code files, developer network and source-code

change history. EDR_SI uses the collaborative topic modeling ( CTM )

technique to analyze the historical commit repositories. CTM com-

bines the merits of traditional collaborative filtering and proba-

bilistic topic modeling to provide an interpretable latent structure

for users and items ( Wang and Blei, 2011 ). That is, CTM could gen-

erate more diverse and novel supplementary information for each

recommended developer. In our approach, we mainly apply CTM to

automatically analyze developer expertise and recommend the rel-

evant source code files to them. All the recommended files are per-

sonalized for each developer, and these files are potentially needed

to be modified for finishing the issue at hand. Then, other sup-

plementary information, such as developer network and source-

code change history, are recommended based on the personalized

source code files. 

To evaluate the effectiveness of our approach, we conduct an

empirical study on five open source systems/repositorise ( jEdit,

JDT-Debug, Hadoop, Elastic and Libgdx ). The results show that

EDR_SI can not only effectively recommend developers, as well as
he personalized supplementary information, but can also improve

he accuracy of the developer recommendation compared to the

tate-of-art developer recommendation techniques, iMacPro, Loca-

ion and ABA-Time-tf-idf . 

Developer recommendation is more concerned by bug triagers

hile supplementation information would be finally used by de-

elopers. In our approach, we think that when our approach

ecommends developers with supplementary information, bug

riagers can better understand the bug assigning procedure based

n the supplementary information why the incoming bugs are as-

igned to some developers rather than directly used the recom-

endation results generated by a developer recommendation ap-

roach. This article extends a preliminary study published as a re-

earch paper in a conference ( Yang et al., 2016 ). It extends the pre-

iminary study in various ways: (1) EDR_SI provides more personal-

zed supplementary information for each developer, such as devel-

per network and source-code change history. The empirical study

hows the effectiveness of these supplementary information. (2)

e evaluate the developer recommendation of EDR_SI to show that

ur approach can recommend junior developers well. That is, if the

xperience of junior developers can be efficiently extended, they

junior developers) can be recommended effectively. (3) A wider

xperiment with more subjects and metrics, is performed to fully

valuate the proposed EDR_SI . 

The main contributions of this article are as follows: 

1. EDR_SI enhances developer recommendation by considering de-

velopers’ expertise and developing habits, which can avoid only

recommending senior developers for the software issue re-

quests. To help developers implement the issues, EDR_SI pro-

vides a series of personalized supplementary information for

them to use, such as personalized source code files, developer

network and source-code change history. 

2. An empirical study on a broad range of datasets containing a

total of 45,704 commits to demonstrate the effectiveness of

EDR_SI is conducted. The results show that EDR_SI improves

the accuracy of developer recommendation over the state-of-art

techniques, i.e., iMacPro, Location and ABA-Time-tf-idf . 

The rest of this article is organized as follows. The prelim-

naries are introduced in Section 2 . Section 3 presents our ap-

roach. Section 4 shows an example of using EDR_SI and illus-

rates implementation of EDR_SI . Section 5 shows our empirical

tudy. Section 6 discusses threats to validity in our empirical study.

ection 7 discusses the related work. Finally, Section 8 concludes

his article and shows the future work. 

. Preliminaries 

In this article, EDR_SI employs the Collaborative Topic Model-

ng (CTM) technique to recommend developers by exploring com-

it repository. This section introduces preliminaries from three as-

ects: commit repository, CTM, and developer recommendation. 

.1. Commit repository 

In commit repository, a commit message includes the commit

ate, committer’s name, commit description, modified files, and a

nique ID, as shown in Fig. 2 . These information can well reflect

evelopers’ historical developing expertise and habits, which is an

mportant data source for developer recommendation. 

The commit description (shown with the red underline in

ig. 2 ) reflects developers’ expertise. For example, the key words in

he commit #220 0 0, such as fix, NPE, remove, plugin , indicate that

pouer has the experience to fix the NPE problem (Null Pointer Ex-

eption) when removing a plugin. So we can train the key words in
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Fig. 2. An example of commit #220 0 0 in the commit repository of the jEdit subject. 
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Fig. 3. Historical developing experience of arobert and vanza in jEdit subject. 
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o  
he commit repository to analyze developers’ personalized exper-

ise. Furthermore, the modified files’ pathes may reflect the devel-

ping habits for some specific issues. For example, for the issue of

PE, kpouer mainly changed the source code file of PluginJAR.java .

ome other source files related to the plugin may exist, such as

luginManager.java, PluginUpdate.java, PluginOptions.java, Plugin.java 

nd so on. But kpouer never modified them. On the other hand, the

ommit date also records the changing time of these files, which

an reflect the familiarity of developers for the changed files. The

ore recent these files have been changed, the more probable that

evelopers are familiar to them. So EDR_SI applies the data in the

ommit repository to analyze developers’ personalized expertise

nd developing habits, and then utilized these information for de-

eloper recommendation. 

.2. Collaborative topic modeling 

EDR_SI uses collaborative topic modeling technique ( CTM )

 Wang and Blei, 2011; Wang et al., 2013; Chen et al., 2014; Pu-

ushotham and Liu, 2012; Kang and Lerman, 2013 ) to recommend

he personalized files for candidate developers. Compared with the

raditional collaborative filtering, CTM combines ideas from collab-

rative filtering based on latent factor models and content analysis

ased on probabilistic topic modeling, e.g., the latent Dirichlet al-

ocation ( LDA ) ( Blei et al., 2003 ), which is widely used in dealing

ith software engineering data ( Sun et al., 2015a; Hu et al., 2015;

un et al., 2015b; 2016 ). 

The two elements in CTM are users and items. In our problem,

tems are relevant source files and users are developers. We as-

ume that there are I users and J items. The rating variable r ij ε
 −1,1] denotes whether user i changes file j for the issue request

mplementation ( Hu et al., 2008 ). If the value of r ij is positive, user

 will change file j . This means that the file j is relevant to the issue

equest and this file is also in line with the developer’s develop-

ent habits. The more greater the value of r ij is, the more possibly

ser i will change file j . Note that r ij < 0 can be interpreted from

wo aspects. One is that user i is unfamiliar with file j , and the

ther is that file j is unrelated to the issue request. 

CTM recommends items for users based on the topic word unit

 Wang and Blei, 2011 ). That is, CTM first analyzes topics of all the

tems, and then gathers all the similar topic items for users. For

xample, if the relevant source file j was changed by the devel-

per d, CTM can collect other files whose topic(s) is/are similar to

he file j , and recommend these files for developer d . Moreover,

ll the changed files are different for different developers in the

ommit repository. So the recommended files are personalized for

ach developer. Hence, we apply CTM to recommend personalized

les for each developer. Fig. 5 shows the schematic diagram for

ecommending personalized files by CTM . As Fig. 5 demonstrates,

elevant developers and files they changed before are set as the

TM ’s input data. After the iteration calculation by CTM , it gener-

tes the relevant developers associated with a list of source files.
ll these files are personalized for each developer and sorted with

he ranking weight, which ranges from −1 to +1. When the value

s positive, CTM will recommend the file for the developer. 

In summary, CTM recommends personalized files for each de-

eloper from two perspectives. One is the files that developers

hanged before, which are recommended based on their histori-

al developing habits. And these files can improve the developers’

fficiency of issue resolution. The other is the files that the devel-

pers did not change before, but these files are useful for the issue

esolution as the topic of these files is similar or relevant to the

elevant files that the developers have changed before. So these

les can help developers get more knowledge about the incoming

ssue and generate more diverse and novel suggestions for each de-

eloper, which can assist them in comprehending more about the

ystem. 

.3. Developer recommendation 

Existing developer recommendation techniques mainly focused 

n optimising the accuracy of recommendation results ( Hossen

t al., 2014; Kagdi et al., 2012; Anvik and Murphy, 2011; Zhang

t al., 2015; Shokripour et al., 2015 ). The basic thought is that a

eveloper with more development experience relevant to an issue

equest is more suitable to implement the incoming issue. In this

ay, senior developers with more development experience are al-

ays recommended. 

In practice, the developing experience of the junior develop-

rs is generally simple, in other words, they may be more suitable

o resolve some special issues. For example, Fig. 3 shows a word-

loud diagram which reflects the historical developing experience

extracted from commit repository) of two developers ( arobert and

anza ) in the jEdit subject. The left part of Fig. 3 represents the de-

eloping experience of arobert , and he/she submitted 12 commits

efore Nov. 12, 2014 (seems to be a junior developer). From the

eft wordcloud diagram, some key words, such as button, panel, tab,

elected, color... , indicate that arobert may be skilled at resolving the

ystem interface issues. Perhaps we can recommend the issues re-

ated to the system interface to him/her, although arobert is not

amiliar to the whole system. 

For senior developers, their experience in the system may be

ore general, which is reflected by the key words, such as action,

le, project, version, plugin, import... in the right wordcloud of Fig. 3 .

he right wordcloud diagram shows the developing experience of

anza , and he/she submitted more than 10 0 0 commits before Nov.

2, 2014. That is, some more complex issues can be assigned to

im/her. 

Hence, if developers are recommended by considering their per-

onalized developing experience, which can be reflected by the

ubmitted commits and the changed source code files, the junior

evelopers can also be recommended for some issues, which avoid

ending to always recommend the senior developers. 

. Approach 

In practical software maintenance, on the one hand, the devel-

pers with rich work experience (as senior developers) are usually
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Fig. 4. Process of EDR_SI . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The schematic diagram for personalized source files recommended by CTM . 
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assigned with more important or complicated tasks. In this case,

the senior developers usually have heavy tasks and may be not

available for some trivial tasks. On the other hand, the junior de-

velopers who have less relevant expertise should also be arranged

to implement some simple change tasks. But the junior developers

are not acquainted with the system, and they may have difficulty

in finishing the issues. 

So faced with a bug, there may be an embarrassing situation,

i.e., the senior developers who have ample relevant experience

may be unwilling to modify the recommended files as they are un-

familiar with them, while the junior developers may need to com-

prehend other relevant files except the recommended files because

they are not acquainted with the system enough. So recommend-

ing the personalized supplementary information fit for developers’

expertise can improve the effectiveness of the resolution of an in-

coming issue. 

Hence, EDR_SI recommends the relevant source code files by

considering developers’ expertise. These personalized files can help

developer(s) comprehend software bugs and the system. Moreover,

EDR_SI also constructs developer network and analyzes source-

code change history based on personalized source code files, which

can help the junior developers comprehend the system and soft-

ware bugs more easily and conveniently find other developers for

communication and guidance. 

The process of our approach is shown in Fig. 4 . First, the

new issue request and historical commits are preprocessed. Then,

we analyze and extract the commits relevant to the issue re-

quest. The authorship information is extracted from these rele-

vant commits. These authors will be recommended as potential

candidate developers for resolution of the current issue request.

Meanwhile, we also extract the changed source code files corre-

sponding to these relevant commits. Finally, we take the author-

ship information and relevant source code files as input data, and

use CTM to recommend the relevant source code files for each

candidate developer to facilitate the issue request implementa-

tion. The recommended candidate developers are ranked in a list

based on their personalized relevant source code files, and the per-

sonalized files are ranked based on their historical development
habits. 
 

.1. Analyzing historical commits 

While analyzing the historical commits, we need to first prepro-

ess them. Natural language processing (NLP) techniques are usu-

lly used to perform one or more preprocessing operations to re-

ove the noisy data ( Sun et al., 2014 ). There are several typical

reprocessing operations for the unstructured commit messages,

hich include tokenization, unrelated and unimportant words re-

oving, stemming, etc. In our approach, the preprocessing opera-

ions are shown as follows: 

• Splitting the words such as camel case (“TestCase ”) and under-

scores (“test_case ”). 
• Removing common English stop words (“the, by, on, and, no ... ”)

to reduce noise. 
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• Stemming the remaining words (e.g., “testing ” becomes “test ”)

to reduce the vocabulary size. The stemming algorithm is re-

ferred from Porter stemmer ( Porter, 2006 ). 
• Searching synonyms of the verbs and nouns via WordNet 5 as

extended words, e.g., “evaluate” is a synonym for “test”. But

some extended words will be removed if these words do not

appear in the source code, which can reduce much noise data

for EDR_SI . 

Then, the similarity between the commits and the new issue

equest is computed based on the cosine function, which is shown

s follows: 

imilar ity = 

| Histor ical Commit ∩ Issue Request| 
| Histor ical Commit| (1) 

In Formula (1) , Historical Commit represents the words in the

reprocessed commit description. Issue Request represents the

ords in the preprocessed issue request (the new issue descrip-

ion). 

Finally, a list of historical commits is ranked by the similarity

alues, and we extract the relevant historical commits which have

he similarity value over a threshold ( �) for the following recom-

endation. 

In summary, this step preprocesses the historical commits and

ssue request, and identifies the relevant commits with similarity

alue over a threshold ( �). 

.2. Recommending developers and personalized source code 

In the above step, we have obtained relevant historical com-

its. Developers are then recommended based on the relevant his-

orical commits. These recommended developers are considered to

ave conducted the relevant software maintenance tasks (to the

ew issue request) in previous maintenance activities. Hence, they

re recommended as the appropriate developers (candidate devel-

pers) to implement the new issue request. 

When obtaining relevant commits and their corresponding de-

elopers, we can also extract the changed source code files cor-

esponding to the relevant commits. We define Author_Files commit i 
o record the authorship information and the changed source code

les for each commit commit i in the form of 

uthor _ F iles commit i = < Authors, F iles > (2)

In Formula (2) , Authors are the developers who submitted this

ommit ( commit i ) and Files are the changed source code files in

he commit. In our approach, the changed source code files are

lso recommended to each developer to help them resolve the

ew issue request. However, a new issue request is usually differ-

nt from the historical commits. Using only the existing changed

ource code files is not enough to implement the issue request. In

ddition, sometimes a new issue request may be relevant to quite

 few of historical commits. Simply merging these changed source

ode files of different historical commits together can make the de-

elopers even more difficult to determine how they should imple-

ent the new issue request. Here we set Author _ F iles commit i 
as the

nput data and use CTM to recommend personalized source code

les for each developer. 

CTM combines traditional collaborative filtering with topic

odeling ( Wang and Blei, 2011; Wang et al., 2013; Chen et al.,

014; Purushotham and Liu, 2012; Kang and Lerman, 2013 ).

ig. 5 shows the schematic diagram for recommending personal-

zed files by CTM . As Fig. 5 shows, the relevant developers and

les they changed before are set as the CTM ’s input. After the it-

rative calculation by CTM , the output data is the relevant devel-

pers associated with a list of source code files. All these files are
5 http://wordnet.princeton.edu/ 

i

o

ersonalized for each developer and sorted by the ranking weight,

hich ranges from −1 to +1. When the value is positive, CTM will

ecommend the file for the developer. In summary, CTM recom-

ends personalized files for each developer from two perspectives.

ne is the files that the developer changed before, which are rec-

mmended based on his historical developing habits. And these

les can improve the developer’s efficiency for issue resolution.

he other is the files that the developer did not change before, but

hese files are useful for the issue resolution as the topic of these

les is similar or relevant to the files that the developer changed

efore. So these files can help the developer get more knowledge

bout the incoming issue and generate more diverse suggestions

or each developer, which can assist them in comprehending more

bout the system. 

The other advantage of using CTM is that it can help EDR_SI

ecommend junior developers. That is, the experience of junior de-

elopers are usually less, and the number of their changed source

ode files is small. So the junior developers cannot be recom-

ended well only according to their existing historical work data,

hich is the reason for traditional techniques only recommending

enior developers ( Hossen et al., 2014; Kagdi et al., 2012; Anvik

nd Murphy, 2011; Zhang et al., 2015; Shokripour et al., 2015 ). So

e apply CTM to extend junior developers’ personalized files to

esolve this problem. In this way, EDR_SI will rank all the candi-

ate developers based on their personalized files (as discussed in

ection 3.4 ), which can recommend junior developers as well. 

.3. Ranking developers 

After recommending the developers, we need a ranked list of

hem to show their suitability for an issue request. An easy way

o rank the recommended developers is to rank them by the sim-

larity of their commits to the new issue request. However, the

ommits in software repositories are often short and cannot fully

onform to the current maintenance task. Instead, we mainly ap-

ly developers’ personalized files to rank them, because the source

ode text is more comprehensive and useful to show their rele-

ance to a commit. Moreover, all the developers’ personalized files

ave been extended by CTM , which can alleviate the cold start

roblem 

6 for the junior developers. So ranking developers based

n their personalized files can avoid only recommending senior de-

elopers. 

We compute the frequency of words in the new issue request

ccurred in the recommended source code files, defined as follows:

 requecy = 

| Issue Request ∩ Rele v ant Source code | 
| Rele v ant Source code | (3) 

In Formula (3) , issue request represents the words in the prepro-

essed issue request (issue description) based on the preprocessing

teps in Section 3.1 . Relevant Source code represents the words in

he relevant source code files (the identifiers in the code and the

ords in the comments). Finally, a list of recommended developers

s ranked based on the Frequency metric. 

.4. Ranking personalized source code files 

After recommending the personalized source code files by CTM ,

e need to rank these files according to developers’ historical

eveloping habits. An easy way to rank the personalized source

ode files is to rank them by the CTM results. In addition, some

ore useful information recorded in the commit messages can be
6 The cold start problem is that the existing historical data of junior developers 

s less than that of senior developers, so the junior developers cannot be well rec- 

mmended. 

http://wordnet.princeton.edu/
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Table 1 

Subject systems and their characteristics. 

Subject Commit Author File Time Interval 

jEdit 23,724 133 113,224 From 2006.07.01 to 2014.11.12 

Hadoop 10,394 82 7592 From 2001.05.18 to 2015.03.31 

JDT-debug 9104 47 1860 From 2009.09.04 to 2015.03.26 

Elastic 22,191 661 4722 From 2010.02.08 to 2016.05.26 

Libgdx 12,414 345 1860 From 2010.03.07 to 2016.05.26 
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7 http://sourceforge.net/projects/jedit/ 
8 https://hadoop.apache.org/ 
9 https://projects.eclipse.org/projects/eclipse.jdt.debug 

10 https://www.elastic.co/ 
11 https://libgdx.badlogicgames.com/ 
used to rank these personalized files, e.g., the commit date, the

committer’s name, the commit description, and the modified files’

paths. Many other approaches also ranked relevant files with com-

mit messages ( Kagdi and Poshyvanyk, 2009; Hossen et al., 2014;

Shokripour et al., 2013 ). The premise is that the files that the de-

veloper changed with more times and most recently should be

ranked higher. We combine these measures together to identify

the probability that a developer that is likely to change a file, i.e.,

developer-file map . The developer-file map is represented via the

developer-file vector DF for the candidate developer d and file f : 

DF = < CT M f , T ime s f , Rdat e f , Similarit y f > (4)

where: 

• CTM f is the CTM value generated by the CTM computation. 
• Times f is the number of commits submitted by the developer d

including file f . 
• Rdate f is the negative distance value between the submitting

workday of the issue request and the most recent workday the

developer d submitting a commit that includes the file f . 
• Frequency f is the similarity value between the issue request and

the file f changed by the developer d , which is calculated by

Formula (3) . 

Then, we calculate the sum of each element in the vector DF as

the weight < d, f > value, which represents the tendency that the de-

veloper d will change the file f to implement the issue request. The

bigger is the weight < d, f > value, the more possible the developer d

will change the file f . 

3.5. Constructing developer network 

Senior developers sometimes are not available to implement

the incoming issues as they have more complex or emergent

change tasks. To help junior developers quickly comprehend and

resolve software issues, EDR_SI constructs a developer network,

which can help find other developers for communication. Each rec-

ommended developer has his/her own personalized files, and these

files can well reflect the individual developer’s relevant expertise

related to the incoming issue request. The larger number of the

same personalized files is, the more similar of relevant expertise

between the two developers is. Hence, we can construct the net-

work of recommended developers based on the number of their

shared personalized files. 

3.6. Analyzing files’ change history 

During the process of issue resolution, developers may en-

counter problems. At this time, they may seek some relevant ex-

perienced developers to communicate. So we analyze the chang-

ing history of each personalized file for the recommended develop-

ers, i.e., we analyze the developers who have changed these files,

the changing counts of each developer, and their recent chang-

ing time. These information can assist developers in quickly find-

ing other experienced developers to communicate with when they

have problems during the issue resolution. 

4. Implementation 

In this section, we describe an example of using EDR_SI and il-

lustrate its implementation. We developed EDR_SI with Java lan-

guage. Fig. 6 outlines a screenshot of EDR_SI . 

Given a new issue request, EDR_SI recommends a ranked list of

suitable developers in Interface (1) in Fig. 6 , where the top one of

List A is the most suitable developer. Meanwhile, EDR_SI also rec-

ommends some personalized files for the recommended developer
o refer, as shown in List B . Moreover, if the recommended devel-

per has few knowledge about the incoming issue request, they

an refer to the extended description of the issue request in Box C .

he description includes some topic words which directly reflect

he content of a change task. On the other hand, if the most suit-

ble developer is not available for the issue implementation, the

unior developers can be recommended from the Network D . Net-

ork D in Interface (2) reflects the relevant expertise of other rec-

mmended developers to the most suitable one (e.g., Jingzhao ). In

he network, nodes represent developers, and edges represent the

ersonalized files of other developers which are similar to Jingzhao .

o if the junior developer has difficulties in understanding the

ssue request, he/she can conveniently find the most suitable or

ther experienced developers to communicate with. Furthermore,

ist E shows the same personalized files among the recommended

evelopers. Developers can also refer to the source code (shown in

nterface (4)) to see whether this source-code file is related to the

ssue request. 

In addition, if developers encounter some problems when they

hange a source code file to implement the issue request, they

an seek other experienced developers to communicate or col-

aborate. To do this, EDR_SI analyzes the changing history of the

ersonalized files. The analyzed results mainly include the devel-

pers who changed the files, the changing count, and the recent

hanging time. All the information of source-code change history

s shown in Table F of Interface (3). Developers can refer to this

able and quickly find relevant experienced developers to commu-

icate and/or consult. 

. Empirical study 

.1. Study subject 

To evaluate the effectiveness of EDR_SI , we conducted an em-

irical study on five open source systems, e.g., jEdit, hadoop, JDT-

ebug, Elastic and Libgdx . The characteristics of each subject sys-

em are shown in Table 1 . The “Subject” column shows the se-

ected subject system; the “Commit” column shows the number of

istorical commits used in our empirical study; the “Author” col-

mn shows the number of developers in our study; the “File” col-

mn shows the average number of files for each system; and the

Time Interval” column shows the time interval of selected histor-

cal commit messages for each subject. jEdit 7 is a programmer’s

ext editor written in Java. Hadoop 8 is an open-source software

or reliable, scalable, and distributed computing. JDT-debug 9 imple-

ents Java debugging support and works with any JDPA-compliant

arget Java VM. Elastic 10 is a distributed, open source search and

nalytics engine, designed for horizontal scalability, reliability, and

asy management. Libgdx 11 is a Java game development framework

http://sourceforge.net/projects/jedit/
https://hadoop.apache.org/
https://projects.eclipse.org/projects/eclipse.jdt.debug
https://www.elastic.co/
https://libgdx.badlogicgames.com/
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Fig. 6. Screenshot of EDR_SI . 
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hich provides a unified API that works across all supported plat-

orms. 

.2. Empirical setup 

The purpose of EDR_SI is to recommend developers, which can

void tending to recommend senior developers for a new issue re-

uest. Moreover, for each recommended developer, EDR_SI aims to

ecommend personalized supplementary information to help them

mplement the issue request. The following research questions are

tudied to show the effectiveness of EDR_SI . 

RQ1 : Can EDR_SI improve the accuracy of recommending de-

elopers compared to previous developer recommendation ap-

roaches, i.e., iMacPro, Location and ABA-Time-tf-idf ? 

RQ2 : Does EDR_SI tend to recommend senior developers when

valuated on open-source systems? 

RQ3 : Is the effectiveness of EDR_SI to recommend personalized

les improved compared to a typical bug localization technique,

.e., BRTracer ? 

RQ4 : Can the developer network effectively assist junior devel-

pers in comprehending and resolving software issues by identify-

ng other developers? 

RQ5 : Can the source-code change history effectively identify

ther developers to communicate with if some difficulties occur

hile changing a specific source file? 

Traditional developer recommendation approaches mostly rec-

mmended developers without considering their development ex-

erience and habits. EDR_SI combines developers’ development ex-

erience and habits to recommend developers, so RQ1 is to evalu-
te how well the accuracy of EDR_SI recommending developers is

ompared to the state-of-art approaches, i.e., iMacPro, Location and

BA-Time-tf-idf . 

There are also junior developers in a development team, who

eed to perform some development tasks. EDR_SI cannot only rec-

mmend the senior developers, but also the junior developers. So

Q2 is to evaluate whether EDR_SI can identify correct junior de-

elopers to implement the issue requests. 

There have been a large number of bug location techniques,

hich aimed at optimizing the accuracy of predicting faulty files.

DR_SI can also help locate the faulty files considering developers’

evelopment experience and habits. So RQ3 is to evaluate how well

he accuracy of EDR_SI locating the personalized source code files

s and how well the recommended developers are familiar with

hese files compared to those by the bug location techniques, such

s BRTracer . 

Sometimes the junior developers may have difficulties in under-

tanding and resolving software issues. EDR_SI also constructs the

eveloper network, which can recommend senior developers for

unior developers to communicate with. RQ4 is to evaluate the ef-

ectiveness of developer network in recommending the senior de-

elopers. 

Developers usually encounter difficulties while changing the

ource code. Communicating with other experienced developers

ho are familiar with the source code is a good way to com-

rehend the source code at hand. EDR_SI also analyzes the code

hange history. RQ5 is to evaluate the effectiveness of the code

hange history in finding the experienced developers related to a

pecific source code file. 
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Table 2 

Four groups of issue requests classified by the actual develop- 

ers’ developing experience. 

Group G1 G2 G3 G4 

Commit < = 200 200 ∼ 500 500 ∼ 1000 > 10 0 0 
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12 For BRTracer in our comparative study, STNF is the percentage of bug reports 

(resolved bugs) whose actual developers are familiar with the top N (N = 1,5,10) rec- 

ommended files. Because BRTracer only recommends faulty files without developer 

recommendation. Given a bug report, if the top N query results contain at least 

one file that the actual developer changed in the historical maintenance activity, 

we consider that the bug report is located. 
5.3. Study method 

To perform our study, we randomly chose 200 commits from

each subject as the training issue requests, and other commits as

the test issue requests for study. 

5.3.1. For developer recommendation 

To answer RQ1 , we first evaluate the accuracy of developer

recommendation using the recall metrics as in the previous work

( Hossen et al., 2014 ). For r number of issue requests in the bench-

mark of a system and k number of recommended developers, re-

call@k is defined as follows: 

recal l @ k = 

1 

r 

∑ r 
i =1 | RD ( r i ) ∩ AD ( r i ) | 

| AD ( r i ) | (5)

where RD ( r i ) and AD ( r i ) are the number of the recommended de-

velopers by EDR_SI and the actual developers who resolved the is-

sue request r i , respectively. The metric is computed for the lists

of recommending developers with different sizes, i.e., k = 1, k =
5, and k = 10. The reason for not using the other popular metric

precision is that an issue request typically has one developer im-

plementing it, i.e., | AD ( r i )| = 1. Therefore, for k = 1 to 10, there is

typically only one correct answer and others are incorrect. 

Then, we use three previous developer recommendation tech-

niques for the comparative study. Hossen et al. proposed the

iMacPro approach, a typical text-based approach, which integrates

authors and maintainers of relevant source-code files, which are

change prone, to a given issue request ( Hossen et al., 2014 ).

Shokripour et al. proposed an approach to recommend develop-

ers that is based on location of potential faulty files ( Location )

( Shokripour et al., 2013 ). Location utilizes a noun extraction pro-

cess on four information sources to determine bug location in-

formation and a simple term weighting scheme to recommend

candidate developers. Later, they further proposed the Time-Text-

Based approach, called ABA-Time-tf-idf , which applies the time-

metadata in tf-idf (Time-tf-idf) technique. The recency of using the

term by the developer is considered to determine the develop-

ers’ expertise ( Shokripour et al., 2015 ). More details for iMacPro,

Location and ABA-Time-tf-idf can refer to Hossen et al. (2014) ,

Shokripour et al. (2013) and Shokripour et al. (2015) , respectively.

iMacPro, Location and ABA-Time-tf-idf represent three types of de-

veloper recommendation techniques, respectively. iMacPro repre-

sents the approach for the developer recommendation based on

the content analysis; Location represents the approach for the de-

veloper recommendation based on the location analysis; and ABA-

ime-tf-idf represents the approach which recommends the devel-

opers considering the time factor. So those three approaches can

represent the state-of-the-art techniques. 

We calculate the developers’ accuracy ( recall@k ) of EDR_SI,

iMacPro, Location and ABA-Time-tf-idf , as well as the recall gain of

EDR_SI over iMacPro , the recall gain of EDR_SI over Location , and

the recall gain of EDR_SI over ABA-Time-tf-idf , as shown in Formula

(6), (7) and (8) , respectively: 

gain @ k EDR _ SI −iMac = 

recal l @ k EDR_SI −recal l @ k iMac 

recal l @ k iMac 

× 100% (6)

gain @ k EDR _ SI −Location = 

recal l @ k EDR _ SI −recal l @ k Location 

recal l @ k Location 

× 100% (7)

gain @ k EDR _ SI −ABA = 

recal l @ k EDR _ SI −recal l @ k ABA 

recal l @ k ABA 

× 100% (8)

where recal l @ k EDR_SI , recall @ k iMac , recal l @ k Location , and recall @ k ABA

represent the recall values of developer recommendation calcu-

lated by EDR_SI, iMacPro, Location , and ABA-Time-tf-idf for different

k values, i.e., k = 1, k = 5, and k = 10, respectively. 
To answer RQ2 , the selected 200 issue requests are averagely

rouped into four groups by developers’ development experience,

nd the specific characteristics of each group are illustrated in

able 2 . The “Group” row represents four groups of issue requests,

nd the “Commit” row shows the number of commits submitted

y the actual developers. The number of submitted commits re-

ects developers’ historical development experience, i.e., the more

he commits were submitted, the more experienced the developer

s. For each group, we calculate the accuracy recall@k of developer

ecommendation. We compare the value of recall@k between dif-

erent groups. If the difference of recall@k is not big, we consider

DR_SI could not tend to recommend senior developers. 

.3.2. For personalized supplementary information recommendation 

For RQ3 , we evaluate the effectiveness of these files from two

spects: (1) whether EDR_SI can identify correct files for develop-

rs to use; (2) whether the recommended developers are skilled to

hese personalized files. These metrics are defined as follows: 

• ATNF (accuracy of top N files) ( Wong et al., 2014 ) represents

the percentage of issues whose associated files are ranked in

the top N (N = 1,5,10) returned results. Given an issue request,

if the top N query results contain at least one file in which

the bug should be fixed, we consider that the issue request is

correctly located. The higher the metric value is, the better the

faulty files are identified. 
• STNF (skillful for top N files) 12 represents the percentage of is-

sues whose recommended developers (the most suitable devel-

opers) are familiar with the top N (N = 1,5,10) personalized files.

Given an issue, if the top N query results contain at least one

file that the recommended developer changed in the practical

maintenance activity (for a commit), we consider that the is-

sue was located. The higher the metric value is, the better the

source-code files are identified. 

Then, we compared EDR_SI with a typical bug location tech-

ique, i.e. BRTracer ( Wong et al., 2014 ), based on the measures

efined above. BRTracer divides the corpus extracted from source-

ode files into several segments to match the bug report for the

aulty files, as well as applying stack-trace information, which fo-

uses on optimizing the accuracy of locating the faulty files for the

elevant developer(s) to use. More details about BRTracer can refer

o Wong et al. (2014) . 

For RQ4 , we calculate the ratio of effective networks which con-

ain the senior developer(s) to help junior developers resolve the

ssue requests. The calculation is defined as follows: 

at io = 

e f f ect i v e net work 

net works 
(9)

here effective network represents the number of issues for which

he actual developer is a junior developer (who submitted fewer

han 100 commits), but more than one senior developer(s) (who

ubmitted more than 10 0 0 commits) are in the recommended net-

ork. And networks represent all the issues in the evaluation, in
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Table 3 

Recall@1,5,10 of developer recommendation of EDR_SI, iMacPro, Location and ABA-Time-tf-idf for five subjects. 

Subject Top k EDR_SI iMacPro Location ABA-Time-tf-idf Gain over Gain over Gain over % 

iMacPro % Location % ABA-Time-tf-idf % 

jEdit 1 0.280 0.150 0.264 0.279 87.0% 6.1% 0.4% 

5 0.601 0.461 0.570 0.559 30.4% 5.4% 7.5% 

10 0.798 0.545 0.732 0.718 46.4% 9.0% 11.1% 

Hadoop 1 0.085 0.072 0.068 0.079 23.2% 18.1% 7.6% 

5 0.301 0.227 0.242 0.250 32.6% 24.3% 20.4% 

10 0.503 0.417 0.448 0.462 20.6% 12.2% 8.9% 

JDT-debug 1 0.144 0.127 0. 129 0.137 13.4% 11.6% 5.1% 

5 0.466 0.437 0.457 0.451 6.6% 2.0% 3.3% 

10 0.664 0.536 0.603 0.585 23.9% 10.1% 13.5% 

Elastic 1 0.136 0.130 0.131 0.128 4.7% 3.8% 6.3% 

5 0.436 0.363 0.387 0.417 20.1% 12.7% 4.6% 

10 0.752 0.706 0.712 0.718 6.5% 5.6% 4.7% 

Libgdx 1 0.220 0.216 0.215 0.217 1.9% 2.3% 1.4% 

5 0.513 0.448 0.453 0.456 14.5% 13.2% 12.5% 

10 0.696 0.578 0.618 0.612 20.4% 12.6% 13.7% 

Average 1 0.174 0.138 0.152 0.168 26.1% 15.5% 3.6% 

5 0.463 0.387 0.433 0.427 19.6% 6.9% 8.4% 

10 0.683 0.556 0.604 0.619 22.8% 13.1% 10.3% 
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hich the actual developer is a junior developer. The value of ra-

io represents the probability of EDR_SI to recommend an effective

etwork. If most recommended networks contain the senior devel-

per(s), we consider EDR_SI can help these junior developers find

enior developer(s) more easily and conveniently. Then the junior

evelopers can communicate with senior developer(s) to compre-

end and resolve software issues. 

For RQ5 , we selected ten students to evaluate the source-code

hange history for each subject. Each of them randomly read one

ource code file of each subject in our empirical study. Most of

hem cannot directly understand the code as they are not the de-

elopers of these subjects. EDR_SI recommends source-code change

istory for them to use, and they can choose the experienced de-

elopers who changed the file recently and/or changed with the

ost times. Then, they can communicate with the experienced de-

eloper(s), or read relevant commits submitted by the experienced

eveloper(s). If the recommended source-code change history can

elp them understand the selected code file, 1 score is recorded; if

ot, 0. Finally, we summarize the scores of each subject. 

.4. Empirical results 

.4.1. RQ1 (effectiveness of EDR_SI ) 

Our study evaluates the accuracy of developer recommendation

sing the recall metric. The EDR_SI column in Table 3 shows the re-

all@k values of EDR_SI for developer recommendation on the jEdit,

adoop, JDT-Debug, Elastic and Libgdx subjects. As expected, the re-

all values generally increase with the increasing of the k value.

he Average column shows the results of average recall values of

he five subjects. From Table 3 , we notice that the average values

f recall@1, recall@5 , and recall@10 are 0.174, 0.463, and 0.683, re-

pectively. That is, on average, EDR_SI is able to recommend the

orrect developer for 17.4%, 46.3%, and 68.3% of issue requests by

ecommending one, five, and ten developers, respectively. 

In addition, the iMacPro, Location and ABA-Time-tf-idf columns

llustrate the recall values of developer recommendation calculated

y iMacPro, Location and ABA-Time-tf-idf , respectively. To compare

he results between EDR_SI and these three approaches, we can

ee the columns of “Gain over iMacPro %”, “Gain over Location %”

nd “Gain over ABA-Time-tf-idf %” in Table 3 , respectively. From the

esults in Table 3 , we notice that most of EDR_SI results are bet-

er than iMacPro, Location and ABA-Time-tf-idf , which ranges from

.6% to 87.0%, 2.0% to 24.3%, and 0.4% to 20.4%, respectively. Hence,

ased on the results, we can conclude that the accuracy of EDR_SI
ecommending developers is improved over the state-of-art ap-

roaches, i.e., iMacPro, Location and ABA-Time-tf-idf . 

.4.2. RQ2 (senior vs. junior) 

We classified 200 issues into four groups according to the ac-

ual developers’ experience. The more number is the commits sub-

itted by a developer, the more experienced is with the devel-

per. Then we calculate the values of recall@k of each group, and

ompare the values of different groups. Fig. 7 illustrates the re-

all values of developer recommendation of the four groups. For

ach line chart in Fig. 7 , the x -axis represents the number of com-

its that each developer submitted. The y-axis represents the re-

all values of each group. From each chart, we notice that the recall

alue does not increase as the number of commits becomes larger.

hat is, whether recommending senor developers with more expe-

ience or recommending junior developers with less experiences,

ur approach is both effective. On the other hand, recall values of

ost groups even decrease while the number of commits becomes

arger, which represents that the junior developers are more easily

nd accurately recommended. 

In conclusion, EDR_SI can accurately recommend junior devel-

pers, which shows that our approach could avoid tending to rec-

mmend the senior developers. 

.4.3. RQ3 ( EDR_SI vs. bug localization technique) 

Our study first evaluates the effectiveness of the recommended

les with the ATNF and STNF metrics. Table 4 reports the ATNF and

TNF results of EDR_SI and BRTracer to recommend 1, 5, and 10

f personalized files. The results show that in most of the cases,

TNF and STNF values of EDR_SI are better than that of BRTracer .

he “Average” columns show their average values, i.e., the aver-

ge values of ATNF @1,5,10 are 0.28, 0.40, and 0.54, respectively;

nd the average values of STNF @1,5,10 are 0.34, 0.50, and 0.60, re-

pectively. In addition, when we investigate the ATNF and STNF re-

ults respectively, we notice that improvement of STNF for EDR_SI

s large while improvement of ATNF is small. As the “Gain over BR-

racer ” column shows, the average gain values of ATNF @1,5,10 over

RTracer are 17%, 8%, and 8%, respectively; and the average values

f STNF @1,5,10 are 36%, 108%, and 62%, respectively. That is, EDR_SI

an recommend more personalized faulty files that are potentially

eeded to be revised while not decreasing the accuracy of recom-

ended faulty files. The reason for this improvement is that our

pproach recommends source code files not only considering the

ccuracy of the buggy files, but also devoting to search files which

onform to their development habits (changing times and recent
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Fig. 7. Recall values of developer recommendation of each group for five subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The ATNF and STNF results of EDR_SI and BRTracer to recommend 1,5,10 of per- 

sonalized files. 

System Top N EDR_SI BRTracer Gain over BRTracer 

ATNF STNF ATNF STNF ATNF STNF 

jEdit 1 0.24 0.42 0.21 0.29 14% 45% 

5 0.41 0.63 0.35 0.37 17% 70% 

10 0.55 0.69 0.53 0.45 4% 53% 

Hadoop 1 0.25 0.27 0.22 0.20 14% 35% 

5 0.37 0.51 0.36 0.22 3% 132% 

10 0.50 0.56 0.49 0.29 2% 93% 

JDT-debug 1 0.32 0.30 0.25 0.23 28% 30% 

5 0.44 0.52 0.38 0.24 5% 117% 

10 0.58 0.56 0.52 0.36 12% 56% 

Elastic 1 0.24 0.40 0.25 0.27 -4% 48% 

5 0.31 0.35 0.30 0.18 3% 94% 

10 0.54 0.56 0.47 0.41 15% 37% 

Libgdx 1 0.33 0.31 0.27 0.25 22% 24% 

5 0.46 0.50 0.45 0.19 2% 163% 

10 0.55 0.61 0.52 0.32 6% 91% 

Average 1 0.28 0.34 0.24 0.25 17% 36% 

5 0.40 0.50 0.37 0.24 8% 108% 

10 0.54 0.60 0.50 0.37 8% 62% 

Fig. 8. The ratio of the effective networks that contain the senior developer(s). 

Fig. 9. Scores evaluated by students who have resolved their misunderstandings 

with the messages of source code change history. 
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e
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s  
workday). So the accuracy of the recommended source code files

is improved. 

In conclusion, EDR_SI can recommend more useful and person-

alized files over the traditional bug location technique, i.e., BR-

Tracer . 

5.4.4. RQ4 (benefits of developer network) 

Our study evaluates how well the effectiveness of EDR_SI rec-

ommending the network for junior developers is. We calculate the

ratio of the effective networks that contain senior developer(s) for

the issues whose actual developers are the juniors. Fig. 8 shows

the results of the ratio of the effective networks for five subjects,

and the values of ratio range from 76% to 82% for the five sub-

jects. The “Average” column shows that the average ratio of the

five subjects is 74%. That is, EDR_SI is able to recommend an ef-

fective developer network for 74% of issue requests on average. In

this way, junior developers can easily find the senior developers for

consultation to help fix the issues based on the recommended de-

veloper network. In conclusion, EDR_SI can effectively recommend
he developer network for junior developers to use. That is, the de-

eloper network can be effectively used to assist junior developers

n comprehending and resolving software issues by finding other

xperienced developers. 

.4.5. RQ5 (benefits of source-code change history) 

We selected 10 students to evaluate the source-code change

istory. They randomly read one source code file of each sub-

ect and find some misunderstandings of the files. So EDR_SI rec-

mmends source-code change history for them to use, and they

an communicate with the relevant experienced developers of the

ource code file. They can also read some relevant commits to re-

olve the problems. Fig. 9 shows the scores evaluated by students
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or the five subjects in our empirical study. From Fig. 9 , the aver-

ge score is 6 for the five subjects. That is, 60% students considered

hat source-code change history can effectively help them to un-

erstand a specific source code file. In conclusion, the source-code

hange history can effectively help find other developers to com-

unicate with if some difficulties occur in a specific source file. 

. Threats to validity 

In this section, we discuss threats to validity that could influ-

nce the results of our empirical study. 

The main threat to validity comes from the project selection.

n our study, we selected five open-source projects to conduct

he study. In addition, the open source software development and

aintenance process may be different from that in the industrial

rocess. Thus we cannot guarantee that the results from our em-

irical study can be generalized to other projects or industrial

ractice. However, our subjects are selected from different appli-

ations, such as the text editing, distributed computing and Java

ebugging. Moreover, the size of the five open-source projects is

elative large. 

A second threat is that when we crawled commit repository

ata with spider programs, the network is not so good that a small

umber of commit data were not crawled. These missing data may

e important to our empirical study. So the empirical study results

ay be inaccurate with these missing commits. 

A third threat is the process of preprocessing the commit con-

ent in our study. We used four preprocessing operations to pre-

rocess the textual content. There are still some other preprocess-

ng operations, for example, pruning ( Madsen et al., 2004 ). Dif-

erent preprocessing operations would generate different similarity

esults. In addition, in our study, we only implemented the prepro-

essing techniques based on some typical approaches. For example,

or the stemming algorithm, we used Porter stemming algorithm.

he accuracy of different preprocessing algorithms is different for

ifferent data source. After manually checking the results of the

temming algorithm used in our study, we found that some words

temmed are wrong, for example, the word “updates ” is stemmed

o be “updat ”. If the stemmed words are wrong, the following pre-

rocessing operations will also be wrong. For the above “updat ”

ord, we cannot find its synonyms via Wordnet. So some other

LP techniques may be more suitable for commit data preprocess-

ng ( Corazza et al., 2012; Guerrouj et al., 2013 ). 

A fourth threat is that we evaluate the effectiveness of devel-

per network by checking whether senior developer(s) is/are in

he network. But some junior developers may be also skilled to

he incoming software issue, as they may resolve the relevant is-

ues recently. On the other hand, the senior developers couldn’t be

killed in all the software issues. However, the senior developers

re generally more skilled than the juniors. So if a network con-

ains the senior(s), it should be an effective developer network in

ost of the time. For the source-code change history evaluation,

0 bachelor students participated in our studies, but they are not

he developers of the five subjects. So it may be more difficult for

hem to comprehend the source code. But if these supplementary

nformation are effective to them, we believe that it will be better

o assist the developer(s) in comprehending and resolving software

ssues in practice. 

A fifth threat is the quality of commit messages which are used

o extract developers’ experiences for developer recommendation.

n practice, developers just put the bug id in the bug fixing com-

it message, i.e., there is no meaningful text in the commit mes-

age. Then, these commit messages may become noise to repre-

ent developers’ experiences, which can affect the effectiveness of

ur approach. We also conducted an empirical study to show the

ffectiveness of applying commit message to recommend develop-
rs. The results show that the meaningful words in the commit

essages affect the recommendation accuracy ( Sun et al., 2017 ). 

The final threat is from the comparative study with the state-

f-art techniques. For the developer recommendation comparison,

e just selected three typical approaches, i.e., iMacPro, Location

nd ABA-Time-tf-idf . We also selected a representative buggy file

ocation approach BRTracer for the personalized files recommenda-

ion comparison. Moreover, these approaches were studied mainly

ased on the bug repository. But in our experiment, all of these

tudies are mainly based on the commit repository. So for each

ubject, the quality of the data repositories (bug repository and

ommit repository) may be different, which may influence the

valuating results. 

. Related work 

.1. For developer recommendation 

Many approaches have focused on recommending appropriate

evelopers for a particular issue request ( Zhang et al., 2016; Yan

t al., 2016; Hossen et al., 2014; Kagdi et al., 2012; Anvik and

urphy, 2011; Anvik et al., 2006; Zhang et al., 2014b; 2014a;

ang et al., 2014 ). Zhang et al. developed an approach, called

SAP , to improve automatic developer recommendation by using

istorical bug reports and heterogeneous network of bug repos-

tory ( Zhang et al., 2016 ). Hossen et al. proposed the iMacPro

pproach, which integrates authors and maintainers of relevant

ource code files, which are change prone, to a given issue re-

uest ( Hossen et al., 2014 ). McDonald et al. developed a tool, Ex-

ertise Recommender ( ER ), to recommend developers with the de-

ired expertise, which uses a heuristic that considers the most re-

ent modification date when developers modified a specific mod-

le ( McDonald and Ackerman, 20 0 0 ). Yan et al. presented a com-

onent recommender by using a latent semantic analysis DPLSA

odel. The proposed DPLSA model provides a novel method to ini-

ialize the word distributions of different topics for developer rec-

mmendation ( Yan et al., 2016 ). Minto et al. designed a tool, Emer-

ent Expertise Locator ( EEL ), which mines the history to deter-

ine how files were changed together and who committed those

hanges ( Minto and Murphy, 2007 ). Tamrawi et al. proposed an

pproach for developer recommendation, which uses fuzzy-sets to

odel bug-fixing expertise of developers based on the hypothesis

hat developers who recently fixed bugs are likely to fix them in

he near future ( Tamrawi et al., 2011 ). Xia et al. proposed a tool,

evRec , which is a composite approach by performing bug report

ased analysis and developer based analysis for developer recom-

endation ( Xia et al., 2013 ). Zhang et al. developed a new ap-

roach, BUTTER , which applies social network analysis to charac-

erize the collaboration between developers ( Zhang et al., 2014b ).

hang et al. recommend the most suitable developer for bug res-

lution, which combines topic model and developer relations (e.g.,

ug reporter and assignee) to capture developers’ interest and ex-

erience on specific bug reports ( Zhang et al., 2014a ). Wang et al.

roposes an approach, FixerCache , which recommends developers

or new bugs based on developers’ activeness in components of

roducts with high prediction accuracy and diversity ( Wang et al.,

014 ). Shokripour et al. proposed an approach to recommend de-

elopers that uses four information resources ( Shokripour et al.,

013 ), which includes two phases. First, the source code files that

ill be changed to resolve a new bug report are predicted. Then,

he developers for the new report based on information about who

as previously fixed faults in the predicted source code files are

ecommended as candidate developers. 

Most of the above approaches tend to recommend experienced

evelopers to accomplish an issue request, i.e., the more expe-

ienced is of the developer, the more possible they are recom-
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mended. In this article, we focus on enhancing developer recom-

mendation from the perspective of personalized development ex-

pertise, which cannot only improve the accuracy of developer rec-

ommendation, but also tend to recommend some junior developers

if they are suitable to implement the issue request. 

7.2. For personalized supplementary information recommendation 

Some studies concentrate on locating the faulty files as ap-

pendixes for developers to use during the bug analysis process

( Rao et al., 2015; Wong et al., 2014; Saha et al., 2013; Xin Ye,

2014; Zhou et al., 2012 ). Zhou et al. proposed the BugLocator ap-

proach ( Zhou et al., 2012 ), which ranks all files based on the tex-

tual similarity between the initial bug report and the source code.

BugLocator uses a revised Vector Space Model ( rVSM ), and consid-

ers the information about similar bugs that have been fixed before.

Saha et al. developed a tool BLUiR , which builds on an open source

IR toolkit ( Saha et al., 2013 ). BLUiR requires the source code and

bug reports, as well as taking advantage of bug similarity data if

they are available for locating the faulty files. Wong et al. proposed

an approach named BRTracer , which divides each source code files

into a series of segments ( Wong et al., 2014 ). And the divided seg-

ments can represent this file to match the similarity with the issue

request. Then, BRTracer analyzes the bug report to identify pos-

sible faulty files. Ye et al. designed a learning-to-rank approach,

which applies API descriptions to bridge the lexical gap between

bug reports and source code ( Xin Ye, 2014 ). They mined useful re-

lationships between a bug report and source code files to locate

the faulty files. 

Most of the above faulty file recommendation approaches focus

on accurately locating the buggy files, which negatively take devel-

opers’ development experience and habits, moreover, all the faulty

files are the same to all the developers who will implement the

incoming issue request. So the faulty files are not personalized for

each developer. In this article, EDR_SI recommends a series of per-

sonalized supplementary information considering developers’ de-

velopment experience and habits as appendixes for them to use,

and these supplementary information are not only relevant to the

issue request, but also associated with developers’ expertise. 

8. Conclusions and future work 

This article proposed a novel approach, EDR_SI , which enhances

developer recommendation by considering developers’ personal-

ized expertise and developing habits. Moreover, EDR_SI also pro-

vides a series of supplementary information (such as personalized

source code files, developer network and source-code change his-

tory) for each developer to use, which can help them (especially

for the junior developers) improve the quality and efficiency of

software issue implementation. We evaluated our approach on five

open source systems ( jEdit, JDT-Debug, Hadoop, Elastic and Libgdx ).

The results show that EDR_SI can improve the accuracy of de-

veloper recommendation compared to the state-of-art approaches

( iMacPro, Location and ABA-Time-tf-idf ). Furthermore, for each rec-

ommended developer, EDR_SI can recommend useful personalized

source code files, developer network and source-code change his-

tory by analyzing developers’ personalized expertise. 

In our work, EDR_SI recommends developers as well as sup-

plementary information mainly based on the commit repository.

In future work, we will combine other software repositories, i.e.,

bug repository, stack overflow and communication archives, to fur-

ther optimize the effectiveness of developer recommendation and

provide more supplementary information for developers to use. In

addition, EDR_SI recommends buggy files considering the develop-

ers’ experience. However, its accuracy needs further improvement

compared to the state-of-art bug location techniques. So we will
ttempt to further improve the accuracy of recommendation of

uggy files, and conduct more comparative studies to show its ef-

ectiveness in our future work. In our approach, EDR_SI can help

ecommend junior developers, however, in the maintenance cycle,

unior developers may become senior developers, but they will be

ble to more quickly fix a task similar to the one previously com-

leted. So we will consider more factors to recommend developers,

or example, modeling the evolution of their historical develop-

ent topics based on the technique proposed by Hu et al. (2015) . 

cknowledgments 

This work is supported partially by Natural Science Foundation

f China under Grant No. 61402396 and No. 61472344 , partially by

he Open Funds of State Key Laboratory for Novel Software Tech-

ology of Nanjing University under Grant no. KFKT2016B21 , par-

ially by the Jiangsu Qin Lan Project, partially by the China Post-

octoral Science Foundation under Grant No. 2015M571489 , and

artially by the Natural Science Foundation of Yangzhou City. 

eferences 

nvik, J. , Hiew, L. , Murphy, G.C. , 2006. Who should fix this bug? In: 28th Interna-
tional Conference on Software Engineering (ICSE 2006), Shanghai, China, May

20–28, 2006, pp. 361–370 . 
nvik, J. , Murphy, G.C. , 2011. Reducing the effort of bug report triage: recommenders

for development-oriented decisions. ACM Trans. Softw. Eng. Methodol. 20 (3),
10 . 

lei, D.M. , Ng, A.Y. , Jordan, M.I. , 2003. Latent dirichlet allocation. J. Mach. Learn. Res.
3, 993–1022 . 

anfora, G. , Cerulo, L. , Cimitile, M. , Di Penta, M. , 2014. How changes affect software

entropy: an empirical study. Empir. Softw. Eng. 19 (1), 1–38 . 
hen, C. , Zheng, X. , Wang, Y. , Hong, F. , Lin, Z. , 2014. Context-aware collaborative

topic regression with social matrix factorization for recommender systems. In:
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,

July 27, -31, 2014, Québec City, Québec, Canada., pp. 9–15 . 
orazza, A. , Martino, S.D. , Maggio, V. , 2012. Linsen: an efficient approach to split

identifiers and expand abbreviations. In: 28th IEEE International Conference on

Software Maintenance, pp. 233–242 . 
Guerrouj, L. , Penta, M.D. , Antoniol, G. , Guéhéneuc, Y.-G. , 2013. Tidier: an identi-

fier splitting approach using speech recognition techniques. J. Softw. 25 (6),
575–599 . 

ossen, K. , Kagdi, H.H. , Poshyvanyk, D. , 2014. Amalgamating source code authors,
maintainers, and change proneness to triage change requests. In: 22nd Inter-

national Conference on Program Comprehension, ICPC 2014, Hyderabad, India,

June 2–3, 2014, pp. 130–141 . 
u, J., Sun, X., Lo, D., Li, B., 2015. Modeling the evolution of development topics

using dynamic topic models. In: 22nd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada,

March 2–6, 2015, pp. 3–12. doi: 10.1109/SANER.2015.7081810 . 
u, Y. , Koren, Y. , Volinsky, C. , 2008. Collaborative filtering for implicit feedback

datasets. In: In IEEE International Conference on Data Mining (ICDM) 2008,

pp. 263–272 . 
agdi, H.H. , Collard, M.L. , Maletic, J.I. , 2007. A survey and taxonomy of approaches

for mining software repositories in the context of software evolution. J. Softw.
Maint. 19 (2), 77–131 . 

agdi, H.H. , Gethers, M. , Poshyvanyk, D. , Hammad, M. , 2012. Assigning change re-
quests to software developers. J. Softw. Maint. 24 (1), 3–33 . 

agdi, H.H., Poshyvanyk, D., 2009. Who can help me with this change request?

In: The 17th IEEE International Conference on Program Comprehension, ICPC
2009, Vancouver, British Columbia, Canada, May 17–19, 2009, pp. 273–277.

doi: 10.1109/ICPC.20 09.5090 056 . 
ang, J., Lerman, K., 2013. LA-CTR: a limited attention collaborative topic regression

for social media. CoRR . abs/1311.1247. http://arxiv.org/abs/1311.1247 . 
adsen, R.E. , Sigurdsson, S. , Hansen, L.K. , Larsen, J. , 2004. Pruning the vocabulary

for better context recognition.. In: International Conference on Pattern Recogni-

tion, pp. 4 83–4 88 . 
McDonald, D.W. , Ackerman, M.S. , 20 0 0. Expertise recommender: a flexible recom-

mendation system and architecture.. In: Proceedings of the 20 0 0 ACM Confer-
ence on Computer Supported Cooperative Work, pp. 231–240 . 

into, S. , Murphy, G.C. , 2007. Recommending emergent teams. In: Fourth Interna-
tional Workshop on Mining Software Repositories, MSR 2007 (ICSE Workshop),

Minneapolis, MN, USA, May 19–20, 2007, Proceedings, p. 5 . 
Porter, M. , 2006. An algorithm for suffix stripping, pp. 211–218 . 

urushotham, S. , Liu, Y. , 2012. Collaborative topic regression with social matrix fac-

torization for recommendation systems. In: Proceedings of the 29th Interna-
tional Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK,

June 26 - July 1, 2012 . 
Rajlich, V. , 2014. Software evolution and maintenance. In: Proceedings of the on

Future of Software Engineering, pp. 133–144 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100008256
https://doi.org/10.13039/501100002858
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0008
https://doi.org/10.1109/SANER.2015.7081810
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0012
https://doi.org/10.1109/ICPC.2009.5090056
arxiv:/http://arxiv.org/abs/1311.1247
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0020


X. Sun et al. / The Journal of Systems and Software 134 (2017) 355–368 367 

R  

 

S  

 

 

S  

 

S  

 

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

 

 

S  

 

T  

 

 

 

W  

 

 

W  

 

 

W  

 

 

W  

 

 

W  

 

 

X  

 

X  

X  

Y  

 

Y  

 

 

Y  

Y  

 

Z  

 

 

Z  

Z  

 

Z  

 

 

 

Z  

 

 

Z  

Z  

 

 

ao, S. , Medeiros, H. , Kak, A. , 2015. Comparing incremental latent semantic analy-
sis algorithms for efficient retrieval from software libraries for bug localization.

ACM SIGSOFT Softw. Eng. Notes 40 (1), 1–8 . 
aha, R., Lease, M., Khurshid, S., Perry, D., 2013. Improving bug localization using

structured information retrieval. In: 2013 IEEE/ACM 28th International Confer-
ence on Automated Software Engineering (ASE), pp. 345–355. doi: 10.1109/ASE.

2013.6693093 . 
ervant, F. , Jones, J.A. , 2012. Whosefault: automatic developer-to-fault assignment

through fault localization. In: Proceedings - International Conference on Soft-

ware Engineering, pp. 36–46 . 
hokripour, R. , Anvik, J. , Kasirun, Z.M. , Zamani, S. , 2013. Why so complicated? Sim-

ple term filtering and weighting for location-based bug report assignment rec-
ommendation. In: Proceedings of the 10th Working Conference on Mining Soft-

ware Repositories, MSR ’13, San Francisco, CA , USA , May 18–19, 2013, pp. 2–11 . 
hokripour, R., Anvik, J., Kasirun, Z.M., Zamani, S., 2015. A time-based approach to

automatic bug report assignment. J. Syst. Softw. 102, 109–122. doi: 10.1016/j.jss.

2014.12.049 . 
un, X., Li, B., Leung, H.K.N., Li, B., Li, Y., 2015. MSR4SM: using topic models to effec-

tively mining software repositories for software maintenance tasks. Inf. Softw.
Technol. 66, 1–12. doi: 10.1016/j.infsof.2015.05.003 . 

un, X., Li, B., Li, Y., Chen, Y., 2015. What information in software historical reposi-
tories do we need to support software maintenance tasks? An approach based

on topic model. In: Computer and Information Science, pp. 27–37. doi: 10.1007/

978- 3- 319- 10509- 3 _ 3 . 
un, X. , Liu, X. , Hu, J. , Zhu, J. , 2014. Empirical studies on the nlp techniques for

source code data preprocessing. In: Proceedings of the 2014 3rd International
Workshop on Evidential Assessment of Software Technologies, pp. 32–39 . 

un, X., Liu, X., Li, B., Duan, Y., Yang, H., Hu, J., 2016. Exploring topic models in soft-
ware engineering data analysis: a survey. In: 17th IEEE/ACIS International Con-

ference on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing, SNPD 2016, Shanghai, China, May 30, - June 1, 2016,
pp. 357–362. doi: 10.1109/SNPD.2016.7515925 . 

un, X., Yang, H., LEUNG, H., Li, B., LI, H.J., 2017. On the effectiveness of exploring
historical commits for developer recommendation: an empirical study. Front.

Comput. Sci. doi: 10.1007/s11704- 016- 6023- 3 . 
amrawi, A. , Nguyen, T.T. , Al-Kofahi, J.M. , Nguyen, T.N. , 2011. Fuzzy set and

cache-based approach for bug triaging. In: SIGSOFT/FSE’11 19th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13rd European Software Engineering Conference (ESEC-13), Szeged, Hungary,

September 5–9, 2011, pp. 365–375 . 
ang, C. , Blei, D.M. , 2011. Collaborative topic modeling for recommending scientific

articles. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA , USA , August 21–24, 2011,

pp. 448–456 . 

ang, H. , Chen, B. , Li, W. , 2013. Collaborative topic regression with social regular-
ization for tag recommendation. In: IJCAI 2013, Proceedings of the 23rd Inter-

national Joint Conference on Artificial Intelligence, Beijing, China, August 3–9,
2013 . 

ang, S. , Lo, D. , 2014. Version history, similar report, and structure: putting
them together for improved bug localization. In: 22nd International Confer-

ence on Program Comprehension, ICPC 2014, Hyderabad, India, June 2–3, 2014,
pp. 53–63 . 
ang, S., Zhang, W., Wang, Q., 2014. Fixercache: unsupervised caching active devel-
opers for diverse bug triage. In: Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement. ACM, New
York, NY, USA, pp. 25:1–25:10. doi: 10.1145/2652524.2652536 . 

ong, C.-P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H., 2014. Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis. In:

2014 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pp. 181–190. doi: 10.1109/ICSME.2014.40 . 

ia, X. , Lo, D. , Wang, X. , Zhou, B. , 2013. Accurate developer recommendation for bug

resolution. In: 20th Working Conference on Reverse Engineering, WCRE 2013,
Koblenz, Germany, October 14–17, 2013, pp. 72–81 . 

ia, X., Lo, D., Wang, X., Zhou, B., 2015. Dual analysis for recommending developers
to resolve bugs. J. Softw. 27 (3), 195–220. doi: 10.1002/smr.1706 . 

in Ye, R. B.,. Learning to rank relevant files for bug reports using domain knowl-
edge, 201410.1145/2635868.2635874. 

an, M. , Zhang, X. , Yang, D. , Xu, L. , Kymer, J.D. , 2016. A component recommender for

bug reports using discriminative probability latent semantic analysis. Inf. Softw.
Technol. 73, 37–51 . 

ang, H. , Sun, X. , Bin Li and, Y.D. , 2016. DR_PSF: enhancing developer recommen-
dation by leveraging personalized source-code files. In: The 40th IEEE Com-

puter Society International Conference on Computers, Software and Applica-
tions, pp. 239–244 . 

ang, H. , Sun, X. , Duan, Y. , Li, B. , 2016. On the effects of exploring historical commit

messages for developer recommendation. Chin. J. Electron. 25 (4) . 
ang, H. , Sun, X. , Li, B. , Hu, J. , 2016. Recommending developers with supplementary

information for issue request resolution. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion. ACM, pp. 707–709 . 

anjani, M.B. , Swartzendruber, G. , Kagdi, H. , 2014. Impact analysis of change re-
quests on source code based on interaction and commit histories. In: Pro-

ceedings of the 11th Working Conference on Mining Software Repositories,

pp. 162–171 . 
hang, J., Wang, X., Hao, D., Xie, B., Zhang, L., Mei, H., 2015. A survey on bug-report

analysis. Sci. Chin. Inf. Sci. 58 (2), 1–24. doi: 10.1007/s11432-014-5241-2 . 
hang, T. , Lee, B. , 2013. A hybrid bug triage algorithm for developer recommenda-

tion. In: Proceedings of the 28th Annual ACM Symposium on Applied Comput-
ing, pp. 1088–1094 . 

hang, T., Yang, G., Lee, B., Lua, E.K., 2014. A novel developer ranking algorithm for

automatic bug triage using topic model and developer relations. In: Proceedings
of the 2014 21st Asia-Pacific Software Engineering Conference - Volume 01. IEEE

Computer Society, Washington, DC, USA, pp. 223–230. doi: 10.1109/APSEC.2014.
43 . 

hang, W., Han, G., Wang, Q., 2014. Butter: An approach to bug triage with topic
modeling and heterogeneous network analysis. In: Proceedings of the 2014 In-

ternational Conference on Cloud Computing and Big Data. IEEE Computer Soci-

ety, Washington, DC, USA, pp. 62–69. doi: 10.1109/CCBD.2014.14 . 
hang, W. , Wang, S. , Wang, Q. , 2016. Ksap: an approach to bug report assignment

using knn search and heterogeneous proximity. Inf. Softw. Technol. 70, 68–84 . 
hou, J. , Zhang, H. , Lo, D. , 2012. Where should the bugs be fixed? - More accurate

information retrieval-based bug localization based on bug reports. In: Proceed-
ings of the 34th International Conference on Software Engineering. IEEE Press,

Piscataway, NJ, USA, pp. 14–24 . 

http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0021
https://doi.org/10.1109/ASE.2013.6693093
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0025
https://doi.org/10.1016/j.jss.2014.12.049
https://doi.org/10.1016/j.infsof.2015.05.003
https://doi.org/10.1007/978-3-319-10509-3_3
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0029
https://doi.org/10.1109/SNPD.2016.7515925
https://doi.org/10.1007/s11704-016-6023-3
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0035
https://doi.org/10.1145/2652524.2652536
https://doi.org/10.1109/ICSME.2014.40
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0038
https://doi.org/10.1002/smr.1706
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0044
https://doi.org/10.1007/s11432-014-5241-2
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0046
https://doi.org/10.1109/APSEC.2014.43
https://doi.org/10.1109/CCBD.2014.14
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30209-1/sbref0050


368 X. Sun et al. / The Journal of Systems and Software 134 (2017) 355–368 

ou University. His current research interests include change comprehension, analysis and 

is current research interest is recommendation systems for software maintenance. 

iversity of British Columbia. His current research interests include software engineering, 

 current research interests include web service analysis, cloud computing. 
Sun Xiaobing is an associate professor in School of Information Engineering, Yangzh
testing, software data analytics. (Email: xbsun@yzu.edu.cn) 

Yang Hui is a student in School of Information Engineering, Yangzhou University. H

Xia Xin is a Postdoctoral Research Fellow in Department of Computer Science, Un
software data analytics. 

Li Bin is a professor in School of Information Engineering, Yangzhou University. His


	Enhancing developer recommendation with supplementary information via mining historical commits
	1 Introduction
	2 Preliminaries
	2.1 Commit repository
	2.2 Collaborative topic modeling
	2.3 Developer recommendation

	3 Approach
	3.1 Analyzing historical commits
	3.2 Recommending developers and personalized source code
	3.3 Ranking developers
	3.4 Ranking personalized source code files
	3.5 Constructing developer network
	3.6 Analyzing files’ change history

	4 Implementation
	5 Empirical study
	5.1 Study subject
	5.2 Empirical setup
	5.3 Study method
	5.3.1 For developer recommendation
	5.3.2 For personalized supplementary information recommendation

	5.4 Empirical results
	5.4.1 RQ1 (effectiveness of EDR_SI)
	5.4.2 RQ2 (senior vs. junior)
	5.4.3 RQ3 (EDR_SI vs. bug localization technique)
	5.4.4 RQ4 (benefits of developer network)
	5.4.5 RQ5 (benefits of source-code change history)


	6 Threats to validity
	7 Related work
	7.1 For developer recommendation
	7.2 For personalized supplementary information recommendation

	8 Conclusions and future work
	 Acknowledgments
	 References


