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Given a software issue request, one important activity is to recommend suitable developers to resolve
it. A number of approaches have been proposed on developer recommendation. These developer recom-
mendation techniques tend to recommend experienced developers, i.e., the more experienced a developer
is, the more possible he/she is recommended. However, if the experienced developers are hectic, the ju-
nior developers may be employed to finish the incoming issue. But they may have difficulty in these
tasks for lack of development experience. In this article, we propose an approach, EDR_SI, to enhance de-
veloper recommendation by considering their expertise and developing habits. Furthermore, EDR_SI also
provides the personalized supplementary information for developers to use, such as personalized source
code files, developer network and source-code change history. An empirical study on five open source
subjects is conducted to evaluate the effectiveness of EDR_SI. In our study, EDR_SI is also compared with
the state-of-art developer recommendation techniques, iMacPro, Location and ABA-Time-tf-idf, to evaluate
the effectiveness of developer recommendation, and the results show that EDR_SI can not only improve
the accuracy of developer recommendation, but also effectively provide useful supplementary information

for them to use when they implement the incoming issue requests.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bugs and issues continuously emerge during software mainte-
nance and evolution (Rajlich, 2014; Canfora et al., 2014). Given a
new issue request, software managers must assign the issue re-
quest to suitable developers to implement it (Xia et al., 2015; Ser-
vant and Jones, 2012). To accomplish this, managers or developers
need to analyze the information available in the software reposito-
ries, e.g., bug or issue repositories, communication archives, and/or
source-code change repositories (Zanjani et al., 2014; Wang and Lo,
2014; Kagdi et al., 2007), to recommend developers.

A large number of approaches focusing on developer recom-
mendation have been developed (Hossen et al., 2014; Kagdi et al.,
2012; Anvik and Murphy, 2011; Zhang et al., 2015; Shokripour
et al., 2015). These techniques mainly focused on optimising the
accuracy of developer recommendation. The basic thought behind
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these approaches is that a developer who has more development
experience relevant to an incoming issue request is more suitable
to implement this issue request. Based on this thought, a ranked
list of developers is recommended in an order by their suitability
(Hossen et al., 2014; Shokripour et al., 2013; Xia et al., 2013; Zhang
et al., 2014a; Zhang and Lee, 2013). However, these techniques tend
to recommend developers who have luxuriant development expe-
rience, which prejudices someone who just joined the team (i.e.,
newcomers). In our previous studies on developer recommenda-
tion based on commit repositories (Sun et al., 2017), we found that
most developers are the junior ones since they only submitted a
small number of commits (Yang et al., 2016). For example, Fig. 1
shows the number of submitted commits of each developer for
K-3D,! jEdit,* FreeMat> and SpringFramework* subjects. We notice
that, on average, most developers submitted fewer than 50 com-
mits, considering that we analyzed 45,704 commits of four sub-

projects/k3d/?source=directory
projects/jedit/

projects/jedit/
projects/springframework/?source=directory

SO urceforge.net
sourcefo rge.net,
sourceforge.net
sourceforge.net

T http:
2 http:
3 http:
4 http:


https://doi.org/10.1016/j.jss.2017.09.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.09.021&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:sundomore@163.com
mailto:xbsun@yzu.edu.cn
mailto:xxia02@cs.ubc.ca
http://sourceforge.net/projects/k3d/?source=directory
http://sourceforge.net/projects/jedit/
http://sourceforge.net/projects/jedit/
http://sourceforge.net/projects/springframework/?source=directory
https://doi.org/10.1016/j.jss.2017.09.021

356 X. Sun et al./The Journal of Systems and Software 134 (2017) 355-368

150
|
RS S

Commit count of each developer
50
!

—
i
1
|
l H
& 4
T T T

T T
JEdit SpringFramework  FreeMat K.3D

Average

Fig. 1. The number of submitted commits of every developer for K-3D, jEdit,
FreeMat and SpringFramework subjects.

jects in total. Thus, the proposed issues are not always resolved by
senior developers with rich maintaining experience. In practice, the
developer with rich development experience may be arranged for
more important tasks, and they usually have heavy tasks and may
be not available for some trivial tasks. On the other hand, the ju-
nior developers are not acquainted with the system, and they have
difficulty in finishing the incoming issue request.

Hence, recommending developers who have ample relevant ex-
perience for the incoming issue request is not always effective to
promote the entire process of software evolution (Zhang et al.,
2015). Developers’ habits are also important during an issue res-
olution (Sun et al., 2017). For example, in the practical software
maintenance, developers tend to modify the source files that they
have changed before. The more times they have modified, the more
possibility they will change again. The more recent they have mod-
ified the files, the more possibly they will change again. In this ar-
ticle, we consider developers’ expertise and developing habits to
recommend developers, which could avoid only recommending se-
nior developers for the software issue requests. Besides, for the ju-
nior developers, they may have difficulties in resolving the issue
requests. So personalized supplementary information are also rec-
ommended to them and help them get relevant knowledge of the
system, which can effectively assist them in finishing the assigned
issue requests (Yang et al., 2016).

In this article, we propose an approach named EDR_SI (Enhanc-
ing Developer Recommendation with Supplementary Information),
which enhances developer recommendation by taking their devel-
opment habits and experience into consideration as well as rec-
ommending the personalized supplementary information (for the
candidate developers) relevant to the issue request, such as per-
sonalized source code files, developer network and source-code
change history. EDR_SI uses the collaborative topic modeling (CTM)
technique to analyze the historical commit repositories. CTM com-
bines the merits of traditional collaborative filtering and proba-
bilistic topic modeling to provide an interpretable latent structure
for users and items (Wang and Blei, 2011). That is, CTM could gen-
erate more diverse and novel supplementary information for each
recommended developer. In our approach, we mainly apply CTM to
automatically analyze developer expertise and recommend the rel-
evant source code files to them. All the recommended files are per-
sonalized for each developer, and these files are potentially needed
to be modified for finishing the issue at hand. Then, other sup-
plementary information, such as developer network and source-
code change history, are recommended based on the personalized
source code files.

To evaluate the effectiveness of our approach, we conduct an
empirical study on five open source systems/repositorise (JEdit,
JDT-Debug, Hadoop, Elastic and Libgdx). The results show that
EDR_SI can not only effectively recommend developers, as well as

the personalized supplementary information, but can also improve
the accuracy of the developer recommendation compared to the
state-of-art developer recommendation techniques, iMacPro, Loca-
tion and ABA-Time-tf-idf.

Developer recommendation is more concerned by bug triagers
while supplementation information would be finally used by de-
velopers. In our approach, we think that when our approach
recommends developers with supplementary information, bug
triagers can better understand the bug assigning procedure based
on the supplementary information why the incoming bugs are as-
signed to some developers rather than directly used the recom-
mendation results generated by a developer recommendation ap-
proach. This article extends a preliminary study published as a re-
search paper in a conference (Yang et al., 2016). It extends the pre-
liminary study in various ways: (1) EDR_SI provides more personal-
ized supplementary information for each developer, such as devel-
oper network and source-code change history. The empirical study
shows the effectiveness of these supplementary information. (2)
We evaluate the developer recommendation of EDR_SI to show that
our approach can recommend junior developers well. That is, if the
experience of junior developers can be efficiently extended, they
(junior developers) can be recommended effectively. (3) A wider
experiment with more subjects and metrics, is performed to fully
evaluate the proposed EDR_SI.

The main contributions of this article are as follows:

1. EDR_SI enhances developer recommendation by considering de-
velopers’ expertise and developing habits, which can avoid only
recommending senior developers for the software issue re-
quests. To help developers implement the issues, EDR_SI pro-
vides a series of personalized supplementary information for
them to use, such as personalized source code files, developer
network and source-code change history.

2. An empirical study on a broad range of datasets containing a
total of 45,704 commits to demonstrate the effectiveness of
EDR_SI is conducted. The results show that EDR_SI improves
the accuracy of developer recommendation over the state-of-art
techniques, i.e., iMacPro, Location and ABA-Time-tf-idf.

The rest of this article is organized as follows. The prelim-
inaries are introduced in Section 2. Section 3 presents our ap-
proach. Section 4 shows an example of using EDR_SI and illus-
trates implementation of EDR_SI. Section 5 shows our empirical
study. Section 6 discusses threats to validity in our empirical study.
Section 7 discusses the related work. Finally, Section 8 concludes
this article and shows the future work.

2. Preliminaries

In this article, EDR_SI employs the Collaborative Topic Model-
ing (CTM) technique to recommend developers by exploring com-
mit repository. This section introduces preliminaries from three as-
pects: commit repository, CTM, and developer recommendation.

2.1. Commit repository

In commit repository, a commit message includes the commit
date, committer’s name, commit description, modified files, and a
unique ID, as shown in Fig. 2. These information can well reflect
developers’ historical developing expertise and habits, which is an
important data source for developer recommendation.

The commit description (shown with the red underline in
Fig. 2) reflects developers’ expertise. For example, the key words in
the commit #22000, such as fix, NPE, remove, plugin, indicate that
kpouer has the experience to fix the NPE problem (Null Pointer Ex-
ception) when removing a plugin. So we can train the key words in
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Fix a case where a NPE occurs when removing a plugin (£#3557441)

Authored by: kpouer 2012-08-14

Browse code at this revision

Parent (s): [r21999]

Child(ren): [r22001]

change /jEdit/trunk/org/gjt/sp/jedit/PluginJAR. java (diff)
change /jEdit/trunk/doc/CHANGES. txt (diff)

Fig. 2. An example of commit #22000 in the commit repository of the jEdit subject.

the commit repository to analyze developers’ personalized exper-
tise. Furthermore, the modified files’ pathes may reflect the devel-
oping habits for some specific issues. For example, for the issue of
NPE, kpouer mainly changed the source code file of PluginJAR java.
Some other source files related to the plugin may exist, such as
PluginManager.java, PluginUpdate.java, PluginOptions.java, Plugin.java
and so on. But kpouer never modified them. On the other hand, the
commit date also records the changing time of these files, which
can reflect the familiarity of developers for the changed files. The
more recent these files have been changed, the more probable that
developers are familiar to them. So EDR_SI applies the data in the
commit repository to analyze developers’ personalized expertise
and developing habits, and then utilized these information for de-
veloper recommendation.

2.2. Collaborative topic modeling

EDR_SI uses collaborative topic modeling technique (CTM)
(Wang and Blei, 2011; Wang et al., 2013; Chen et al., 2014; Pu-
rushotham and Liu, 2012; Kang and Lerman, 2013) to recommend
the personalized files for candidate developers. Compared with the
traditional collaborative filtering, CTM combines ideas from collab-
orative filtering based on latent factor models and content analysis
based on probabilistic topic modeling, e.g., the latent Dirichlet al-
location (LDA) (Blei et al., 2003), which is widely used in dealing
with software engineering data (Sun et al.,, 2015a; Hu et al., 2015;
Sun et al., 2015b; 2016).

The two elements in CTM are users and items. In our problem,
items are relevant source files and users are developers. We as-
sume that there are [ users and J items. The rating variable rj; €
[-1,1] denotes whether user i changes file j for the issue request
implementation (Hu et al,, 2008). If the value of ry; is positive, user
i will change file j. This means that the file j is relevant to the issue
request and this file is also in line with the developer’s develop-
ment habits. The more greater the value of r; is, the more possibly
user i will change file j. Note that r;j < 0 can be interpreted from
two aspects. One is that user i is unfamiliar with file j, and the
other is that file j is unrelated to the issue request.

CTM recommends items for users based on the topic word unit
(Wang and Blei, 2011). That is, CTM first analyzes topics of all the
items, and then gathers all the similar topic items for users. For
example, if the relevant source file j was changed by the devel-
oper d, CTM can collect other files whose topic(s) is/are similar to
the file j, and recommend these files for developer d. Moreover,
all the changed files are different for different developers in the
commit repository. So the recommended files are personalized for
each developer. Hence, we apply CTM to recommend personalized
files for each developer. Fig. 5 shows the schematic diagram for
recommending personalized files by CTM. As Fig. 5 demonstrates,
relevant developers and files they changed before are set as the
CTM’s input data. After the iteration calculation by CTM, it gener-
ates the relevant developers associated with a list of source files.
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Fig. 3. Historical developing experience of arobert and vanza in jEdit subject.

All these files are personalized for each developer and sorted with
the ranking weight, which ranges from —1 to +1. When the value
is positive, CTM will recommend the file for the developer.

In summary, CTM recommends personalized files for each de-
veloper from two perspectives. One is the files that developers
changed before, which are recommended based on their histori-
cal developing habits. And these files can improve the developers’
efficiency of issue resolution. The other is the files that the devel-
opers did not change before, but these files are useful for the issue
resolution as the topic of these files is similar or relevant to the
relevant files that the developers have changed before. So these
files can help developers get more knowledge about the incoming
issue and generate more diverse and novel suggestions for each de-
veloper, which can assist them in comprehending more about the
system.

2.3. Developer recommendation

Existing developer recommendation techniques mainly focused
on optimising the accuracy of recommendation results (Hossen
et al., 2014; Kagdi et al., 2012; Anvik and Murphy, 2011; Zhang
et al., 2015; Shokripour et al., 2015). The basic thought is that a
developer with more development experience relevant to an issue
request is more suitable to implement the incoming issue. In this
way, senior developers with more development experience are al-
ways recommended.

In practice, the developing experience of the junior develop-
ers is generally simple, in other words, they may be more suitable
to resolve some special issues. For example, Fig. 3 shows a word-
cloud diagram which reflects the historical developing experience
(extracted from commit repository) of two developers (arobert and
vanza) in the jEdit subject. The left part of Fig. 3 represents the de-
veloping experience of arobert, and he/she submitted 12 commits
before Nov. 12, 2014 (seems to be a junior developer). From the
left wordcloud diagram, some key words, such as button, panel, tab,
selected, color..., indicate that arobert may be skilled at resolving the
system interface issues. Perhaps we can recommend the issues re-
lated to the system interface to him/her, although arobert is not
familiar to the whole system.

For senior developers, their experience in the system may be
more general, which is reflected by the key words, such as action,
file, project, version, plugin, import... in the right wordcloud of Fig. 3.
The right wordcloud diagram shows the developing experience of
vanza, and he/she submitted more than 1000 commits before Nov.
12, 2014. That is, some more complex issues can be assigned to
him/her.

Hence, if developers are recommended by considering their per-
sonalized developing experience, which can be reflected by the
submitted commits and the changed source code files, the junior
developers can also be recommended for some issues, which avoid
tending to always recommend the senior developers.

3. Approach

In practical software maintenance, on the one hand, the devel-
opers with rich work experience (as senior developers) are usually
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assigned with more important or complicated tasks. In this case,
the senior developers usually have heavy tasks and may be not
available for some trivial tasks. On the other hand, the junior de-
velopers who have less relevant expertise should also be arranged
to implement some simple change tasks. But the junior developers
are not acquainted with the system, and they may have difficulty
in finishing the issues.

So faced with a bug, there may be an embarrassing situation,
i.e., the senior developers who have ample relevant experience
may be unwilling to modify the recommended files as they are un-
familiar with them, while the junior developers may need to com-
prehend other relevant files except the recommended files because
they are not acquainted with the system enough. So recommend-
ing the personalized supplementary information fit for developers’
expertise can improve the effectiveness of the resolution of an in-
coming issue.

Hence, EDR_SI recommends the relevant source code files by
considering developers’ expertise. These personalized files can help
developer(s) comprehend software bugs and the system. Moreover,
EDR_SI also constructs developer network and analyzes source-
code change history based on personalized source code files, which
can help the junior developers comprehend the system and soft-
ware bugs more easily and conveniently find other developers for
communication and guidance.

The process of our approach is shown in Fig. 4. First, the
new issue request and historical commits are preprocessed. Then,
we analyze and extract the commits relevant to the issue re-
quest. The authorship information is extracted from these rele-
vant commits. These authors will be recommended as potential
candidate developers for resolution of the current issue request.
Meanwhile, we also extract the changed source code files corre-
sponding to these relevant commits. Finally, we take the author-
ship information and relevant source code files as input data, and
use CTM to recommend the relevant source code files for each
candidate developer to facilitate the issue request implementa-
tion. The recommended candidate developers are ranked in a list
based on their personalized relevant source code files, and the per-
sonalized files are ranked based on their historical development
habits.
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Fig. 5. The schematic diagram for personalized source files recommended by CTM.

3.1. Analyzing historical commits

While analyzing the historical commits, we need to first prepro-
cess them. Natural language processing (NLP) techniques are usu-
ally used to perform one or more preprocessing operations to re-
move the noisy data (Sun et al.,, 2014). There are several typical
preprocessing operations for the unstructured commit messages,
which include tokenization, unrelated and unimportant words re-
moving, stemming, etc. In our approach, the preprocessing opera-
tions are shown as follows:

o Splitting the words such as camel case (“TestCase”) and under-
scores (“test_case”).

e Removing common English stop words (“the, by, on, and, no... ")
to reduce noise.
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e Stemming the remaining words (e.g., “testing” becomes “test”)
to reduce the vocabulary size. The stemming algorithm is re-
ferred from Porter stemmer (Porter, 2006).

« Searching synonyms of the verbs and nouns via WordNet® as
extended words, e.g., “evaluate” is a synonym for “test”. But
some extended words will be removed if these words do not
appear in the source code, which can reduce much noise data
for EDR_SI.

Then, the similarity between the commits and the new issue
request is computed based on the cosine function, which is shown
as follows:
|Historical Commit N Issue Request| (1)

|Historical Commit|

In Formula (1), Historical Commit represents the words in the
preprocessed commit description. Issue Request represents the
words in the preprocessed issue request (the new issue descrip-
tion).

Finally, a list of historical commits is ranked by the similarity
values, and we extract the relevant historical commits which have
the similarity value over a threshold (®) for the following recom-
mendation.

In summary, this step preprocesses the historical commits and
issue request, and identifies the relevant commits with similarity
value over a threshold (©).

Similarity =

3.2. Recommending developers and personalized source code

In the above step, we have obtained relevant historical com-
mits. Developers are then recommended based on the relevant his-
torical commits. These recommended developers are considered to
have conducted the relevant software maintenance tasks (to the
new issue request) in previous maintenance activities. Hence, they
are recommended as the appropriate developers (candidate devel-
opers) to implement the new issue request.

When obtaining relevant commits and their corresponding de-
velopers, we can also extract the changed source code files cor-
responding to the relevant commits. We define Author_Files.opmi,
to record the authorship information and the changed source code
files for each commit commit; in the form of

Author_Files ommi;; =< Authors, Files > (2)

In Formula (2), Authors are the developers who submitted this
commit (commit;) and Files are the changed source code files in
the commit. In our approach, the changed source code files are
also recommended to each developer to help them resolve the
new issue request. However, a new issue request is usually differ-
ent from the historical commits. Using only the existing changed
source code files is not enough to implement the issue request. In
addition, sometimes a new issue request may be relevant to quite
a few of historical commits. Simply merging these changed source
code files of different historical commits together can make the de-
velopers even more difficult to determine how they should imple-
ment the new issue request. Here we set Author_Files .oy, as the
input data and use CTM to recommend personalized source code
files for each developer.

CTM combines traditional collaborative filtering with topic
modeling (Wang and Blei, 2011; Wang et al,, 2013; Chen et al,,
2014; Purushotham and Liu, 2012; Kang and Lerman, 2013).
Fig. 5 shows the schematic diagram for recommending personal-
ized files by CTM. As Fig. 5 shows, the relevant developers and
files they changed before are set as the CTM’s input. After the it-
erative calculation by CTM, the output data is the relevant devel-
opers associated with a list of source code files. All these files are

5 http://wordnet.princeton.edu/

personalized for each developer and sorted by the ranking weight,
which ranges from —1 to +1. When the value is positive, CTM will
recommend the file for the developer. In summary, CTM recom-
mends personalized files for each developer from two perspectives.
One is the files that the developer changed before, which are rec-
ommended based on his historical developing habits. And these
files can improve the developer’s efficiency for issue resolution.
The other is the files that the developer did not change before, but
these files are useful for the issue resolution as the topic of these
files is similar or relevant to the files that the developer changed
before. So these files can help the developer get more knowledge
about the incoming issue and generate more diverse suggestions
for each developer, which can assist them in comprehending more
about the system.

The other advantage of using CTM is that it can help EDR_SI
recommend junior developers. That is, the experience of junior de-
velopers are usually less, and the number of their changed source
code files is small. So the junior developers cannot be recom-
mended well only according to their existing historical work data,
which is the reason for traditional techniques only recommending
senior developers (Hossen et al., 2014; Kagdi et al., 2012; Anvik
and Murphy, 2011; Zhang et al., 2015; Shokripour et al., 2015). So
we apply CTM to extend junior developers’ personalized files to
resolve this problem. In this way, EDR_SI will rank all the candi-
date developers based on their personalized files (as discussed in
Section 3.4), which can recommend junior developers as well.

3.3. Ranking developers

After recommending the developers, we need a ranked list of
them to show their suitability for an issue request. An easy way
to rank the recommended developers is to rank them by the sim-
ilarity of their commits to the new issue request. However, the
commits in software repositories are often short and cannot fully
conform to the current maintenance task. Instead, we mainly ap-
ply developers’ personalized files to rank them, because the source
code text is more comprehensive and useful to show their rele-
vance to a commit. Moreover, all the developers’ personalized files
have been extended by CTM, which can alleviate the cold start
problem® for the junior developers. So ranking developers based
on their personalized files can avoid only recommending senior de-
velopers.

We compute the frequency of words in the new issue request
occurred in the recommended source code files, defined as follows:

|Issue Request N Relevant Source code|

F =
requecy |Relevant Source code|

3)

In Formula (3), issue request represents the words in the prepro-
cessed issue request (issue description) based on the preprocessing
steps in Section 3.1. Relevant Source code represents the words in
the relevant source code files (the identifiers in the code and the
words in the comments). Finally, a list of recommended developers
is ranked based on the Frequency metric.

3.4. Ranking personalized source code files

After recommending the personalized source code files by CTM,
we need to rank these files according to developers’ historical
developing habits. An easy way to rank the personalized source
code files is to rank them by the CTM results. In addition, some
more useful information recorded in the commit messages can be

6 The cold start problem is that the existing historical data of junior developers
is less than that of senior developers, so the junior developers cannot be well rec-
ommended.
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used to rank these personalized files, e.g., the commit date, the
committer’s name, the commit description, and the modified files’
paths. Many other approaches also ranked relevant files with com-
mit messages (Kagdi and Poshyvanyk, 2009; Hossen et al., 2014;
Shokripour et al., 2013). The premise is that the files that the de-
veloper changed with more times and most recently should be
ranked higher. We combine these measures together to identify
the probability that a developer that is likely to change a file, i.e.,
developer-file map. The developer-file map is represented via the
developer-file vector DF for the candidate developer d and file f:

DF =< CTMy, Timesy, Rdatey, Similarity; > (4)
where:

 CTMy is the CTM value generated by the CTM computation.

* Times; is the number of commits submitted by the developer d
including file f.

* Rdate; is the negative distance value between the submitting
workday of the issue request and the most recent workday the
developer d submitting a commit that includes the file f.

* Frequencyy is the similarity value between the issue request and
the file f changed by the developer d, which is calculated by
Formula (3).

Then, we calculate the sum of each element in the vector DF as
the weight _4 ;. value, which represents the tendency that the de-
veloper d will change the file f to implement the issue request. The
bigger is the weight _4 ;. value, the more possible the developer d
will change the file f.

3.5. Constructing developer network

Senior developers sometimes are not available to implement
the incoming issues as they have more complex or emergent
change tasks. To help junior developers quickly comprehend and
resolve software issues, EDR_SI constructs a developer network,
which can help find other developers for communication. Each rec-
ommended developer has his/her own personalized files, and these
files can well reflect the individual developer’s relevant expertise
related to the incoming issue request. The larger number of the
same personalized files is, the more similar of relevant expertise
between the two developers is. Hence, we can construct the net-
work of recommended developers based on the number of their
shared personalized files.

3.6. Analyzing files’ change history

During the process of issue resolution, developers may en-
counter problems. At this time, they may seek some relevant ex-
perienced developers to communicate. So we analyze the chang-
ing history of each personalized file for the recommended develop-
ers, i.e.,, we analyze the developers who have changed these files,
the changing counts of each developer, and their recent chang-
ing time. These information can assist developers in quickly find-
ing other experienced developers to communicate with when they
have problems during the issue resolution.

4. Implementation

In this section, we describe an example of using EDR_SI and il-
lustrate its implementation. We developed EDR_SI with Java lan-
guage. Fig. 6 outlines a screenshot of EDR_SI.

Given a new issue request, EDR_SI recommends a ranked list of
suitable developers in Interface (1) in Fig. 6, where the top one of
List A is the most suitable developer. Meanwhile, EDR_SI also rec-
ommends some personalized files for the recommended developer

Table 1

Subject systems and their characteristics.
Subject Commit  Author  File Time Interval
jEdit 23,724 133 113,224  From 2006.07.01 to 2014.11.12
Hadoop 10,394 82 7592 From 2001.05.18 to 2015.03.31
JDT-debug 9104 47 1860 From 2009.09.04 to 2015.03.26
Elastic 22,191 661 4722 From 2010.02.08 to 2016.05.26
Libgdx 12,414 345 1860 From 2010.03.07 to 2016.05.26

to refer, as shown in List B. Moreover, if the recommended devel-
oper has few knowledge about the incoming issue request, they
can refer to the extended description of the issue request in Box C.
The description includes some topic words which directly reflect
the content of a change task. On the other hand, if the most suit-
able developer is not available for the issue implementation, the
junior developers can be recommended from the Network D. Net-
work D in Interface (2) reflects the relevant expertise of other rec-
ommended developers to the most suitable one (e.g., Jingzhao). In
the network, nodes represent developers, and edges represent the
personalized files of other developers which are similar to Jingzhao.
So if the junior developer has difficulties in understanding the
issue request, he/she can conveniently find the most suitable or
other experienced developers to communicate with. Furthermore,
List E shows the same personalized files among the recommended
developers. Developers can also refer to the source code (shown in
Interface (4)) to see whether this source-code file is related to the
issue request.

In addition, if developers encounter some problems when they
change a source code file to implement the issue request, they
can seek other experienced developers to communicate or col-
laborate. To do this, EDR_SI analyzes the changing history of the
personalized files. The analyzed results mainly include the devel-
opers who changed the files, the changing count, and the recent
changing time. All the information of source-code change history
is shown in Table F of Interface (3). Developers can refer to this
table and quickly find relevant experienced developers to commu-
nicate and/or consult.

5. Empirical study
5.1. Study subject

To evaluate the effectiveness of EDR_SI, we conducted an em-
pirical study on five open source systems, e.g., jEdit, hadoop, JDT-
Debug, Elastic and Libgdx. The characteristics of each subject sys-
tem are shown in Table 1. The “Subject” column shows the se-
lected subject system; the “Commit” column shows the number of
historical commits used in our empirical study; the “Author” col-
umn shows the number of developers in our study; the “File” col-
umn shows the average number of files for each system; and the
“Time Interval” column shows the time interval of selected histor-
ical commit messages for each subject. jEdit” is a programmer’s
text editor written in Java. Hadoop® is an open-source software
for reliable, scalable, and distributed computing. JDT-debug® imple-
ments Java debugging support and works with any JDPA-compliant
target Java VM. Elastic'° is a distributed, open source search and
analytics engine, designed for horizontal scalability, reliability, and
easy management. Libgdx !! is a Java game development framework

7 http://sourceforge.net/projects/jedit/

8 https://hadoop.apache.org/

9 https://projects.eclipse.org/projects/eclipse.jdt.debug
10 https://www.elastic.co/

1 https://libgdx.badlogicgames.com/
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Fig. 6. Screenshot of EDR_SI.

which provides a unified API that works across all supported plat-
forms.

5.2. Empirical setup

The purpose of EDR_SI is to recommend developers, which can
avoid tending to recommend senior developers for a new issue re-
quest. Moreover, for each recommended developer, EDR_SI aims to
recommend personalized supplementary information to help them
implement the issue request. The following research questions are
studied to show the effectiveness of EDR_SI.

RQ1: Can EDR_SI improve the accuracy of recommending de-
velopers compared to previous developer recommendation ap-
proaches, i.e., iMacPro, Location and ABA-Time-tf-idf?

RQ2: Does EDR_SI tend to recommend senior developers when
evaluated on open-source systems?

RQ3: Is the effectiveness of EDR_SI to recommend personalized
files improved compared to a typical bug localization technique,
i.e., BRTracer?

RQ4: Can the developer network effectively assist junior devel-
opers in comprehending and resolving software issues by identify-
ing other developers?

RQ5: Can the source-code change history effectively identify
other developers to communicate with if some difficulties occur
while changing a specific source file?

Traditional developer recommendation approaches mostly rec-
ommended developers without considering their development ex-
perience and habits. EDR_SI combines developers’ development ex-
perience and habits to recommend developers, so RQ1 is to evalu-

ate how well the accuracy of EDR_SI recommending developers is
compared to the state-of-art approaches, i.e., iMacPro, Location and
ABA-Time-tf-idf.

There are also junior developers in a development team, who
need to perform some development tasks. EDR_SI cannot only rec-
ommend the senior developers, but also the junior developers. So
RQ2 is to evaluate whether EDR_SI can identify correct junior de-
velopers to implement the issue requests.

There have been a large number of bug location techniques,
which aimed at optimizing the accuracy of predicting faulty files.
EDR_SI can also help locate the faulty files considering developers’
development experience and habits. So RQ3 is to evaluate how well
the accuracy of EDR_SI locating the personalized source code files
is and how well the recommended developers are familiar with
these files compared to those by the bug location techniques, such
as BRTracer.

Sometimes the junior developers may have difficulties in under-
standing and resolving software issues. EDR_SI also constructs the
developer network, which can recommend senior developers for
junior developers to communicate with. RQ4 is to evaluate the ef-
fectiveness of developer network in recommending the senior de-
velopers.

Developers usually encounter difficulties while changing the
source code. Communicating with other experienced developers
who are familiar with the source code is a good way to com-
prehend the source code at hand. EDR_SI also analyzes the code
change history. RQ5 is to evaluate the effectiveness of the code
change history in finding the experienced developers related to a
specific source code file.
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5.3. Study method

To perform our study, we randomly chose 200 commits from
each subject as the training issue requests, and other commits as
the test issue requests for study.

5.3.1. For developer recommendation

To answer RQ1, we first evaluate the accuracy of developer
recommendation using the recall metrics as in the previous work
(Hossen et al., 2014). For r number of issue requests in the bench-
mark of a system and k number of recommended developers, re-
call@k is defined as follows:

1 Yi;IRD(ry) n AD(ry)|
recall@k = — ==1
r | AD(ry) |

where RD(r;) and AD(r;) are the number of the recommended de-
velopers by EDR_SI and the actual developers who resolved the is-
sue request r;, respectively. The metric is computed for the lists
of recommending developers with different sizes, i.e, k = 1, k =
5, and k = 10. The reason for not using the other popular metric
precision is that an issue request typically has one developer im-
plementing it, i.e., |AD(r;)| = 1. Therefore, for k = 1 to 10, there is
typically only one correct answer and others are incorrect.

Then, we use three previous developer recommendation tech-
niques for the comparative study. Hossen et al. proposed the
iMacPro approach, a typical text-based approach, which integrates
authors and maintainers of relevant source-code files, which are
change prone, to a given issue request (Hossen et al, 2014).
Shokripour et al. proposed an approach to recommend develop-
ers that is based on location of potential faulty files (Location)
(Shokripour et al., 2013). Location utilizes a noun extraction pro-
cess on four information sources to determine bug location in-
formation and a simple term weighting scheme to recommend
candidate developers. Later, they further proposed the Time-Text-
Based approach, called ABA-Time-tf-idf, which applies the time-
metadata in tf-idf (Time-tf-idf) technique. The recency of using the
term by the developer is considered to determine the develop-
ers’ expertise (Shokripour et al., 2015). More details for iMacPro,
Location and ABA-Time-tf-idf can refer to Hossen et al. (2014),
Shokripour et al. (2013) and Shokripour et al. (2015), respectively.
iMacPro, Location and ABA-Time-tf-idf represent three types of de-
veloper recommendation techniques, respectively. iMacPro repre-
sents the approach for the developer recommendation based on
the content analysis; Location represents the approach for the de-
veloper recommendation based on the location analysis; and ABA-
Time-tf-idf represents the approach which recommends the devel-
opers considering the time factor. So those three approaches can
represent the state-of-the-art techniques.

We calculate the developers’ accuracy (recall@k) of EDR_SI,
iMacPro, Location and ABA-Time-tf-idf, as well as the recall gain of
EDR_SI over iMacPro, the recall gain of EDR_SI over Location, and
the recall gain of EDR_SI over ABA-Time-tf-idf, as shown in Formula
(6), (7) and (8), respectively:

(5)

recall@kgpg s—recall@kipyac
recall@kyyac

8ain@KkgpR si—iMac= x 100% (6)
recall@kgpg_si—recall@ky o cation

recall@k; ocation x100%  (7)

8ain@KgpR si-Location=

recall@kgpg s;—recall@kuapa

recall@kABA x 100% (8)

8ain@kgpg_si_ppa=

where recall@kgpg 1, recall@kiyac, recall@k;geqrion, and recall@kppa
represent the recall values of developer recommendation calcu-
lated by EDR_SI, iMacPro, Location, and ABA-Time-tf-idf for different
k values, i.e.,, k = 1, k = 5, and k = 10, respectively.

Table 2
Four groups of issue requests classified by the actual develop-
ers’ developing experience.

Group G1 G2 G3 G4

Commit <=200 200~500 500~ 1000 > 1000

To answer RQ2, the selected 200 issue requests are averagely
grouped into four groups by developers’ development experience,
and the specific characteristics of each group are illustrated in
Table 2. The “Group” row represents four groups of issue requests,
and the “Commit” row shows the number of commits submitted
by the actual developers. The number of submitted commits re-
flects developers’ historical development experience, i.e., the more
the commits were submitted, the more experienced the developer
is. For each group, we calculate the accuracy recall@k of developer
recommendation. We compare the value of recall@k between dif-
ferent groups. If the difference of recall@k is not big, we consider
EDR_SI could not tend to recommend senior developers.

5.3.2. For personalized supplementary information recommendation
For RQ3, we evaluate the effectiveness of these files from two
aspects: (1) whether EDR_SI can identify correct files for develop-
ers to use; (2) whether the recommended developers are skilled to
these personalized files. These metrics are defined as follows:

o ATNF (accuracy of top N files) (Wong et al., 2014) represents
the percentage of issues whose associated files are ranked in
the top N (N=1,5,10) returned results. Given an issue request,
if the top N query results contain at least one file in which
the bug should be fixed, we consider that the issue request is
correctly located. The higher the metric value is, the better the
faulty files are identified.

STNF (skillful for top N files)!? represents the percentage of is-
sues whose recommended developers (the most suitable devel-
opers) are familiar with the top N (N=1,5,10) personalized files.
Given an issue, if the top N query results contain at least one
file that the recommended developer changed in the practical
maintenance activity (for a commit), we consider that the is-
sue was located. The higher the metric value is, the better the
source-code files are identified.

Then, we compared EDR_SI with a typical bug location tech-
nique, i.e. BRTracer (Wong et al., 2014), based on the measures
defined above. BRTracer divides the corpus extracted from source-
code files into several segments to match the bug report for the
faulty files, as well as applying stack-trace information, which fo-
cuses on optimizing the accuracy of locating the faulty files for the
relevant developer(s) to use. More details about BRTracer can refer
to Wong et al. (2014).

For RQ4, we calculate the ratio of effective networks which con-
tain the senior developer(s) to help junior developers resolve the
issue requests. The calculation is defined as follows:

ef fective network 9

networks (9
where effective network represents the number of issues for which
the actual developer is a junior developer (who submitted fewer
than 100 commits), but more than one senior developer(s) (who
submitted more than 1000 commits) are in the recommended net-
work. And networks represent all the issues in the evaluation, in

ratio =

12 For BRTracer in our comparative study, STNF is the percentage of bug reports
(resolved bugs) whose actual developers are familiar with the top N (N=1,5,10) rec-
ommended files. Because BRTracer only recommends faulty files without developer
recommendation. Given a bug report, if the top N query results contain at least
one file that the actual developer changed in the historical maintenance activity,
we consider that the bug report is located.
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Table 3

363

Recall@1,5,10 of developer recommendation of EDR_SI, iMacPro, Location and ABA-Time-tf-idf for five subjects.

Subject Top k  EDR_SI  iMacPro  Location  ABA-Time-tf-idf = Gain over  Gain over  Gain over %
iMacPro% Location% ABA-Time-tf-idf %

JjEdit 1 0.280 0.150 0.264 0.279 87.0% 6.1% 0.4%

5 0.601 0.461 0.570 0.559 30.4% 5.4% 7.5%

10 0.798 0.545 0.732 0.718 46.4% 9.0% 11.1%
Hadoop 1 0.085 0.072 0.068 0.079 23.2% 18.1% 7.6%

5 0.301 0.227 0.242 0.250 32.6% 24.3% 20.4%

10 0.503 0.417 0.448 0.462 20.6% 12.2% 8.9%
JDT-debug 1 0.144 0.127 0. 129 0.137 13.4% 11.6% 5.1%

5 0.466 0.437 0.457 0.451 6.6% 2.0% 3.3%

10 0.664 0.536 0.603 0.585 23.9% 10.1% 13.5%
Elastic 1 0.136 0.130 0.131 0.128 4.7% 3.8% 6.3%

5 0.436 0.363 0.387 0.417 20.1% 12.7% 4.6%

10 0.752 0.706 0.712 0.718 6.5% 5.6% 4.7%
Libgdx 1 0.220 0.216 0.215 0.217 1.9% 2.3% 1.4%

5 0.513 0.448 0.453 0.456 14.5% 13.2% 12.5%

10 0.696 0.578 0.618 0.612 20.4% 12.6% 13.7%
Average 1 0.174 0.138 0.152 0.168 26.1% 15.5% 3.6%

5 0.463 0.387 0.433 0.427 19.6% 6.9% 8.4%

10 0.683 0.556 0.604 0.619 22.8% 13.1% 10.3%

which the actual developer is a junior developer. The value of ra-
tio represents the probability of EDR_SI to recommend an effective
network. If most recommended networks contain the senior devel-
oper(s), we consider EDR_SI can help these junior developers find
senior developer(s) more easily and conveniently. Then the junior
developers can communicate with senior developer(s) to compre-
hend and resolve software issues.

For RQ5, we selected ten students to evaluate the source-code
change history for each subject. Each of them randomly read one
source code file of each subject in our empirical study. Most of
them cannot directly understand the code as they are not the de-
velopers of these subjects. EDR_SI recommends source-code change
history for them to use, and they can choose the experienced de-
velopers who changed the file recently and/or changed with the
most times. Then, they can communicate with the experienced de-
veloper(s), or read relevant commits submitted by the experienced
developer(s). If the recommended source-code change history can
help them understand the selected code file, 1 score is recorded; if
not, 0. Finally, we summarize the scores of each subject.

5.4. Empirical results

5.4.1. RQ1 (effectiveness of EDR_SI)

Our study evaluates the accuracy of developer recommendation
using the recall metric. The EDR_SI column in Table 3 shows the re-
call@k values of EDR_SI for developer recommendation on the jEdit,
hadoop, JDT-Debug, Elastic and Libgdx subjects. As expected, the re-
call values generally increase with the increasing of the k value.
The Average column shows the results of average recall values of
the five subjects. From Table 3, we notice that the average values
of recall@1, recall@5, and recall@10 are 0.174, 0.463, and 0.683, re-
spectively. That is, on average, EDR_SI is able to recommend the
correct developer for 17.4%, 46.3%, and 68.3% of issue requests by
recommending one, five, and ten developers, respectively.

In addition, the iMacPro, Location and ABA-Time-tf-idf columns
illustrate the recall values of developer recommendation calculated
by iMacPro, Location and ABA-Time-tf-idf, respectively. To compare
the results between EDR_SI and these three approaches, we can
see the columns of “Gain over iMacPro%”, “Gain over Location%”
and “Gain over ABA-Time-tf-idf %" in Table 3, respectively. From the
results in Table 3, we notice that most of EDR_SI results are bet-
ter than iMacPro, Location and ABA-Time-tf-idf, which ranges from
6.6% to 87.0%, 2.0% to 24.3%, and 0.4% to 20.4%, respectively. Hence,
based on the results, we can conclude that the accuracy of EDR_SI

recommending developers is improved over the state-of-art ap-
proaches, i.e., iMacPro, Location and ABA-Time-tf-idf.

5.4.2. RQ2 (senior vs. junior)

We classified 200 issues into four groups according to the ac-
tual developers’ experience. The more number is the commits sub-
mitted by a developer, the more experienced is with the devel-
oper. Then we calculate the values of recall@k of each group, and
compare the values of different groups. Fig. 7 illustrates the re-
call values of developer recommendation of the four groups. For
each line chart in Fig. 7, the x-axis represents the number of com-
mits that each developer submitted. The y-axis represents the re-
call values of each group. From each chart, we notice that the recall
value does not increase as the number of commits becomes larger.
That is, whether recommending senor developers with more expe-
rience or recommending junior developers with less experiences,
our approach is both effective. On the other hand, recall values of
most groups even decrease while the number of commits becomes
larger, which represents that the junior developers are more easily
and accurately recommended.

In conclusion, EDR_SI can accurately recommend junior devel-
opers, which shows that our approach could avoid tending to rec-
ommend the senior developers.

5.4.3. RQ3 (EDR_SI vs. bug localization technique)

Our study first evaluates the effectiveness of the recommended
files with the ATNF and STNF metrics. Table 4 reports the ATNF and
STNF results of EDR_SI and BRTracer to recommend 1, 5, and 10
of personalized files. The results show that in most of the cases,
ATNF and STNF values of EDR_SI are better than that of BRTracer.
The “Average” columns show their average values, i.e., the aver-
age values of ATNF@1,5,10 are 0.28, 0.40, and 0.54, respectively;
and the average values of STNF@1,5,10 are 0.34, 0.50, and 0.60, re-
spectively. In addition, when we investigate the ATNF and STNF re-
sults respectively, we notice that improvement of STNF for EDR_SI
is large while improvement of ATNF is small. As the “Gain over BR-
Tracer” column shows, the average gain values of ATNF@1,5,10 over
BRTracer are 17%, 8%, and 8%, respectively; and the average values
of STNF@1,5,10 are 36%, 108%, and 62%, respectively. That is, EDR_SI
can recommend more personalized faulty files that are potentially
needed to be revised while not decreasing the accuracy of recom-
mended faulty files. The reason for this improvement is that our
approach recommends source code files not only considering the
accuracy of the buggy files, but also devoting to search files which
conform to their development habits (changing times and recent
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Fig. 7. Recall values of developer recommendation of each group for five subjects.

workday). So the accuracy of the recommended source code files
is improved.

In conclusion, EDR_SI can recommend more useful and person-
alized files over the traditional bug location technique, i.e., BR-
Tracer.

5.4.4. RQ4 (benefits of developer network)

Our study evaluates how well the effectiveness of EDR_SI rec-
ommending the network for junior developers is. We calculate the
ratio of the effective networks that contain senior developer(s) for
the issues whose actual developers are the juniors. Fig. 8 shows
the results of the ratio of the effective networks for five subjects,
and the values of ratio range from 76% to 82% for the five sub-
jects. The “Average” column shows that the average ratio of the
five subjects is 74%. That is, EDR_SI is able to recommend an ef-
fective developer network for 74% of issue requests on average. In
this way, junior developers can easily find the senior developers for
consultation to help fix the issues based on the recommended de-
veloper network. In conclusion, EDR_SI can effectively recommend

Table 4
The ATNF and STNF results of EDR_SI and BRTracer to recommend 1,5,10 of per-
sonalized files.

System Top N EDR_SI BRTracer Gain over BRTracer
ATNF ~ SINF ~ ATNF  SINF  AINF  SINF
JEdit 1 0.24 0.42 0.21 0.29 14% 45%
0.41 0.63 0.35 0.37 17% 70%
10 0.55 0.69 0.53 0.45 4% 53%
Hadoop 1 0.25 0.27 0.22 0.20 14% 35%
0.37 0.51 0.36 0.22 3% 132%
10 0.50 0.56 0.49 0.29 2% 93%
JDT-debug 1 0.32 0.30 0.25 0.23 28% 30%
0.44 0.52 0.38 0.24 5% 117%
10 0.58 0.56 0.52 0.36 12% 56%
Elastic 1 0.24 0.40 0.25 0.27 -4% 48%
0.31 0.35 0.30 0.18 3% 94%
10 0.54 0.56 0.47 0.41 15% 37%
Libgdx 1 0.33 0.31 0.27 0.25 22% 24%
0.46 0.50 0.45 0.19 2% 163%
10 0.55 0.61 0.52 0.32 6% 91%
Average 1 0.28 0.34 0.24 0.25 17% 36%
0.40 0.50 0.37 0.24 8% 108%
10 0.54 0.60 0.50 0.37 8% 62%
Average
Libgdx
Elastic
JDT-debug
Hadoop
jEdit
0.0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9

Fig. 8. The ratio of the effective networks that contain the senior developer(s).
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Fig. 9. Scores evaluated by students who have resolved their misunderstandings
with the messages of source code change history.

the developer network for junior developers to use. That is, the de-
veloper network can be effectively used to assist junior developers
in comprehending and resolving software issues by finding other
experienced developers.

5.4.5. RQ5 (benefits of source-code change history)

We selected 10 students to evaluate the source-code change
history. They randomly read one source code file of each sub-
ject and find some misunderstandings of the files. So EDR_SI rec-
ommends source-code change history for them to use, and they
can communicate with the relevant experienced developers of the
source code file. They can also read some relevant commits to re-
solve the problems. Fig. 9 shows the scores evaluated by students
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for the five subjects in our empirical study. From Fig. 9, the aver-
age score is 6 for the five subjects. That is, 60% students considered
that source-code change history can effectively help them to un-
derstand a specific source code file. In conclusion, the source-code
change history can effectively help find other developers to com-
municate with if some difficulties occur in a specific source file.

6. Threats to validity

In this section, we discuss threats to validity that could influ-
ence the results of our empirical study.

The main threat to validity comes from the project selection.
In our study, we selected five open-source projects to conduct
the study. In addition, the open source software development and
maintenance process may be different from that in the industrial
process. Thus we cannot guarantee that the results from our em-
pirical study can be generalized to other projects or industrial
practice. However, our subjects are selected from different appli-
cations, such as the text editing, distributed computing and Java
debugging. Moreover, the size of the five open-source projects is
relative large.

A second threat is that when we crawled commit repository
data with spider programs, the network is not so good that a small
number of commit data were not crawled. These missing data may
be important to our empirical study. So the empirical study results
may be inaccurate with these missing commits.

A third threat is the process of preprocessing the commit con-
tent in our study. We used four preprocessing operations to pre-
process the textual content. There are still some other preprocess-
ing operations, for example, pruning (Madsen et al., 2004). Dif-
ferent preprocessing operations would generate different similarity
results. In addition, in our study, we only implemented the prepro-
cessing techniques based on some typical approaches. For example,
for the stemming algorithm, we used Porter stemming algorithm.
The accuracy of different preprocessing algorithms is different for
different data source. After manually checking the results of the
stemming algorithm used in our study, we found that some words
stemmed are wrong, for example, the word “updates” is stemmed
to be “updat”. If the stemmed words are wrong, the following pre-
processing operations will also be wrong. For the above “updat”
word, we cannot find its synonyms via Wordnet. So some other
NLP techniques may be more suitable for commit data preprocess-
ing (Corazza et al., 2012; Guerrouj et al., 2013).

A fourth threat is that we evaluate the effectiveness of devel-
oper network by checking whether senior developer(s) is/are in
the network. But some junior developers may be also skilled to
the incoming software issue, as they may resolve the relevant is-
sues recently. On the other hand, the senior developers couldn’t be
skilled in all the software issues. However, the senior developers
are generally more skilled than the juniors. So if a network con-
tains the senior(s), it should be an effective developer network in
most of the time. For the source-code change history evaluation,
10 bachelor students participated in our studies, but they are not
the developers of the five subjects. So it may be more difficult for
them to comprehend the source code. But if these supplementary
information are effective to them, we believe that it will be better
to assist the developer(s) in comprehending and resolving software
issues in practice.

A fifth threat is the quality of commit messages which are used
to extract developers’ experiences for developer recommendation.
In practice, developers just put the bug id in the bug fixing com-
mit message, i.e., there is no meaningful text in the commit mes-
sage. Then, these commit messages may become noise to repre-
sent developers’ experiences, which can affect the effectiveness of
our approach. We also conducted an empirical study to show the
effectiveness of applying commit message to recommend develop-

ers. The results show that the meaningful words in the commit
messages affect the recommendation accuracy (Sun et al., 2017).

The final threat is from the comparative study with the state-
of-art techniques. For the developer recommendation comparison,
we just selected three typical approaches, i.e., iMacPro, Location
and ABA-Time-tf-idf. We also selected a representative buggy file
location approach BRTracer for the personalized files recommenda-
tion comparison. Moreover, these approaches were studied mainly
based on the bug repository. But in our experiment, all of these
studies are mainly based on the commit repository. So for each
subject, the quality of the data repositories (bug repository and
commit repository) may be different, which may influence the
evaluating results.

7. Related work
7.1. For developer recommendation

Many approaches have focused on recommending appropriate
developers for a particular issue request (Zhang et al., 2016; Yan
et al, 2016; Hossen et al.,, 2014; Kagdi et al., 2012; Anvik and
Murphy, 2011; Anvik et al, 2006; Zhang et al., 2014b; 2014a;
Wang et al, 2014). Zhang et al. developed an approach, called
KSAP, to improve automatic developer recommendation by using
historical bug reports and heterogeneous network of bug repos-
itory (Zhang et al, 2016). Hossen et al. proposed the iMacPro
approach, which integrates authors and maintainers of relevant
source code files, which are change prone, to a given issue re-
quest (Hossen et al., 2014). McDonald et al. developed a tool, Ex-
pertise Recommender (ER), to recommend developers with the de-
sired expertise, which uses a heuristic that considers the most re-
cent modification date when developers modified a specific mod-
ule (McDonald and Ackerman, 2000). Yan et al. presented a com-
ponent recommender by using a latent semantic analysis DPLSA
model. The proposed DPLSA model provides a novel method to ini-
tialize the word distributions of different topics for developer rec-
ommendation (Yan et al., 2016). Minto et al. designed a tool, Emer-
gent Expertise Locator (EEL), which mines the history to deter-
mine how files were changed together and who committed those
changes (Minto and Murphy, 2007). Tamrawi et al. proposed an
approach for developer recommendation, which uses fuzzy-sets to
model bug-fixing expertise of developers based on the hypothesis
that developers who recently fixed bugs are likely to fix them in
the near future (Tamrawi et al.,, 2011). Xia et al. proposed a tool,
DevRec, which is a composite approach by performing bug report
based analysis and developer based analysis for developer recom-
mendation (Xia et al., 2013). Zhang et al. developed a new ap-
proach, BUTTER, which applies social network analysis to charac-
terize the collaboration between developers (Zhang et al., 2014b).
Zhang et al. recommend the most suitable developer for bug res-
olution, which combines topic model and developer relations (e.g.,
bug reporter and assignee) to capture developers’ interest and ex-
perience on specific bug reports (Zhang et al., 2014a). Wang et al.
proposes an approach, FixerCache, which recommends developers
for new bugs based on developers’ activeness in components of
products with high prediction accuracy and diversity (Wang et al.,
2014). Shokripour et al. proposed an approach to recommend de-
velopers that uses four information resources (Shokripour et al.,
2013), which includes two phases. First, the source code files that
will be changed to resolve a new bug report are predicted. Then,
the developers for the new report based on information about who
has previously fixed faults in the predicted source code files are
recommended as candidate developers.

Most of the above approaches tend to recommend experienced
developers to accomplish an issue request, i.e., the more expe-
rienced is of the developer, the more possible they are recom-
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mended. In this article, we focus on enhancing developer recom-
mendation from the perspective of personalized development ex-
pertise, which cannot only improve the accuracy of developer rec-
ommendation, but also tend to recommend some junior developers
if they are suitable to implement the issue request.

7.2. For personalized supplementary information recommendation

Some studies concentrate on locating the faulty files as ap-
pendixes for developers to use during the bug analysis process
(Rao et al., 2015; Wong et al.,, 2014; Saha et al,, 2013; Xin Ye,
2014; Zhou et al., 2012). Zhou et al. proposed the BugLocator ap-
proach (Zhou et al.,, 2012), which ranks all files based on the tex-
tual similarity between the initial bug report and the source code.
BugLocator uses a revised Vector Space Model (rVSM), and consid-
ers the information about similar bugs that have been fixed before.
Saha et al. developed a tool BLUiR, which builds on an open source
IR toolkit (Saha et al., 2013). BLUIR requires the source code and
bug reports, as well as taking advantage of bug similarity data if
they are available for locating the faulty files. Wong et al. proposed
an approach named BRTracer, which divides each source code files
into a series of segments (Wong et al., 2014). And the divided seg-
ments can represent this file to match the similarity with the issue
request. Then, BRTracer analyzes the bug report to identify pos-
sible faulty files. Ye et al. designed a learning-to-rank approach,
which applies API descriptions to bridge the lexical gap between
bug reports and source code (Xin Ye, 2014). They mined useful re-
lationships between a bug report and source code files to locate
the faulty files.

Most of the above faulty file recommendation approaches focus
on accurately locating the buggy files, which negatively take devel-
opers’ development experience and habits, moreover, all the faulty
files are the same to all the developers who will implement the
incoming issue request. So the faulty files are not personalized for
each developer. In this article, EDR_SI recommends a series of per-
sonalized supplementary information considering developers’ de-
velopment experience and habits as appendixes for them to use,
and these supplementary information are not only relevant to the
issue request, but also associated with developers’ expertise.

8. Conclusions and future work

This article proposed a novel approach, EDR_SI, which enhances
developer recommendation by considering developers’ personal-
ized expertise and developing habits. Moreover, EDR_SI also pro-
vides a series of supplementary information (such as personalized
source code files, developer network and source-code change his-
tory) for each developer to use, which can help them (especially
for the junior developers) improve the quality and efficiency of
software issue implementation. We evaluated our approach on five
open source systems (jEdit, JDT-Debug, Hadoop, Elastic and Libgdx).
The results show that EDR_SI can improve the accuracy of de-
veloper recommendation compared to the state-of-art approaches
(iMacPro, Location and ABA-Time-tf-idf). Furthermore, for each rec-
ommended developer, EDR_SI can recommend useful personalized
source code files, developer network and source-code change his-
tory by analyzing developers’ personalized expertise.

In our work, EDR_SI recommends developers as well as sup-
plementary information mainly based on the commit repository.
In future work, we will combine other software repositories, i.e.,
bug repository, stack overflow and communication archives, to fur-
ther optimize the effectiveness of developer recommendation and
provide more supplementary information for developers to use. In
addition, EDR_SI recommends buggy files considering the develop-
ers’ experience. However, its accuracy needs further improvement
compared to the state-of-art bug location techniques. So we will

attempt to further improve the accuracy of recommendation of
buggy files, and conduct more comparative studies to show its ef-
fectiveness in our future work. In our approach, EDR_SI can help
recommend junior developers, however, in the maintenance cycle,
junior developers may become senior developers, but they will be
able to more quickly fix a task similar to the one previously com-
pleted. So we will consider more factors to recommend developers,
for example, modeling the evolution of their historical develop-
ment topics based on the technique proposed by Hu et al. (2015).
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