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A B S T R A C T   

Context: In GitHub, contributors make code changes, then create and submit pull requests to projects. Tags are a 
simple and effective way to attach additional information to pull requests and facilitate their organization. 
However, little effort has been devoted to study pull requests’ tags in GitHub. 
Objective: Our objective in this paper is to propose an approach which automatically recommends tags for pull 
requests in GitHub. 
Method: We make a survey on the usage of tags in pull requests. Survey results show that tags are useful for 
developers to track, search or classify pull requests. But some respondents think that it is difficult to choose right 
tags and keep consistency of tags. 60.61% of respondents think that a tag recommendation tool is useful. In order 
to help developers choose tags, we propose a method FNNRec which uses feed-forward neural network to analyze 
titles, description, file paths and contributors. 
Results: We evaluate the effectiveness of FNNRec on 10 projects containing 68,497 tagged pull requests. The 
experimental results show that on average, FNNRec outperforms approach TagDeepRec and TagMulRec by 
62.985% and 24.953% in terms of F1 − score@3, respectively. 
Conclusion: FNNRec is useful to find appropriate tags and improve tag setting process in GitHub.   

1. Introduction 

Various open-source software hosting sites, notably Github, provide 
support for pull-based development and allow developers to make 
contributions flexibly and efficiently [1]. In GitHub, contributors make 
code changes, then create and submit pull requests to projects [2]. Then 
members of the project’s core team (from here on, integrators) inspect 
pull requests, and decide whether to accept pull requests and merge 
modified code [1]. A common way to facilitate the organization of pull 
requests in projects is based on the use of tags1. According to pull re-
quests’ information, integrators assign tags to some pull requests from 
tag library. Tags are a simple and effective way to attach additional 
information (e.g., metadata) to pull requests [3]. However, tags are 
sometimes neglected by integrators. For example, in our dataset which 
contains 112,705 pull requests, 39.22% of pull requests do not have any 
tags. 

In this paper, we conduct a survey to understand usage of tags in 
GitHub. Survey results show that tags are used to describe functions, 

priorities, statuses and components, which helps developers to track, 
search or classify pull requests. However, some respondents think that it 
is difficult to choose right tags and keep consistency of tags. Meanwhile, 
it is time-consuming to select tags from the tag library. In order to solve 
these problems, we further ask respondents’ attitude towards a tag 
recommendation tool. 60.61% of respondents think that a tag recom-
mendation tool is useful. In previous work [4], developers also sug-
gested desired features of bots, such as automatically labeling issues. 
Therefore, an automatic tag recommendation approach is required to 
assign tags to pull requests. 

There have been several studies [5–10] about tag recommendation in 
software information sites, such as StackOverflow and Freecode. Zhou 
et al. proposed a new software object multi-classification method Tag-
MulRec which recommended tags for large-scale evolving software in-
formation sites [8]. However, previous works are mainly designed for 
software information sites, and it remains unknown whether these ap-
proaches are effective to recommend tags in GitHub. Pull requests are 
used to submit code, and have special information such as code file 
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paths. 
Respondents in our survey also mention that a recommendation tool 

should consider text, code and history information. According to these 
suggestions, we mainly consider attributes, including titles, description, 
file paths and contributors. Each tag can be considered as a category, 
and thus tag recommendation is mapped to a multi-label classification 
problem, which classify pull requests to appropriate categories. The 
feed-forward neural network is widely used in classification task, and it 
does not rely on human-engineered features to make classification [11]. 
We propose a method FNNRec which uses Feed-forward Neural Network 
to recommend tags for pull requests in GitHub projects. 

In an effort to demonstrate the effectiveness of our approach, we 
collected datasets from GitHub. In total, we analyze 10 projects and 
68,497 tagged pull requests. TagDeepRec [10] and TagMulRec [8] are 
originally designed to recommended tags for large-scale evolving soft-
ware information sites. In comparison, we adopt TagDeepRec and Tag-
MulRec to analyze pull requests’ titles and descriptions, and recommend 
tags for pull requests. We measure the performance of approaches in 
terms of precisions, recalls and F1-scores. The experimental results show 
that on average across 10 projects, FNNRec outperforms approaches 
TagDeepRec [10] and TagMulRec [8] by 62.985% and 24.953% in terms 
of F1 − score@3, respectively. 

The main contributions of this paper are as follows:  

• We make a survey on the usage of tags in pull requests. Survey results 
show that tags are useful for developers to track, search or classify 
pull requests. However, it is difficult to choose right tags and keep 
consistency of tags. 60.61% of respondents think that a tag recom-
mendation tool is useful.  

• In order to recommend tags, we propose a method FNNRec which 
uses feed-forward neural network to analyze titles, description, file 
paths and contributors.  

• We evaluate FNNRec based on a broad range of datasets. Results 
show that FNNRec outperforms approaches TagDeepRec [10] and 
TagMulRec [8] by substantial margins. 

The reminder of the paper is organized as follow. Section 2 presents 
the process of setting tags, data collection and statistics. Section 3 pre-
sents our survey about the usage of tags in pull requests. Section 4 
presents our tag recommendation approach FNNRec. Section 5 presents 
an empirical evaluation of the approach. Section 6 discusses threats to 
validity, and Section 7 discusses related works. Finally, Section 8 con-
cludes this paper. 

2. Background and data collection 

In this section, we begin by providing background information about 
the process of setting tags in GitHub. Then, we introduce how our 
datasets are collected, and report statistics of our datasets. 

2.1. The process of setting tags 

GitHub is a web-based hosting service for software development 
repositories [12]. In GitHub, contributors make their code changes in-
dependent of one another. When a set of changes is ready, contributors 
create and submit pull requests to projects. Titles and description are 
written to introduce pull requests, and modified file paths are also 
shown in pull requests [13]. According to pull requests’ information, 
some integrators assign tags to some pull requests from tag library. In 
GitHub, only integrators with write access can assign tags to pull re-
quests. If developers do not have write access, they cannot assign tags to 
their own pull requests. However, tags are sometimes neglected by in-
tegrators. For example, in our dataset which contains 112,705 pull 

requests, 39.22% of pull requests do not have any tags. 
To illustrate the contribution process, Fig. 1 shows an example of a 

pull request with number 21,481 in project ceph2. We only show part of 
characters in developers’ names, so as to protect developers’ privacy. A 
contributor ba*** modified code and submitted a pull request. The pull 
request’s title was “common: silence compiler warning”, and its body 
was “Fixes: http://tracker.ceph.com/issues/23774 Signed-off-by: Pa*** 
Do*** pd***@redhat.com”. Then tags ``bugfix′′, ``common′′, and ‘‘
needs − review′′ were chosen from tag library, and assigned to this pull 
request. 

2.2. Data collection and statistics 

GitHub provides access to its internal data through an API. It allows 
us to access rich collection of open-source software projects, and pro-
vides valuable opportunities for research. We gather information 
through GitHub API and create datasets of projects. 

In data collection, we choose popular projects, because they receive 
many pull requests and provide enough information for experiments. We 
obtain a list of projects from previous work [14], which made their 
research projects public3. We sort their projects by the number of pull 
requests, and obtain 100 projects with the highest number of pull 
requests. 

We collected pull requests of these 100 projects through GitHub API 
in June 2017. We sent queries to GitHub API, received its replies, and 
extracted data from project creation time to June, 2017. We collected 
pull requests’ identifiers, tags, contributors, the creation time, the close 
time and paths of modified files. Contributors wrote titles and descrip-
tion to summarize the modification of a pull request, which were also 
gathered. 

Some pull requests have tags, while others do not have tags. We 
select projects with more than 3000 tagged pull requests, which provide 
enough datasets for experiments. Next, we choose projects with greater 
than or equal to 30 tags in their tag libraries. If projects have few 
candidate tags, it is easy to manually assign tags to pull requests. Finally, 
we obtain 10 projects which satisfy above requirements. Table 1 pre-
sents statistics of 10 projects. The columns correspond to project owner 
(Owner) and name (Project), the number of pull requests (# Pull re-
quests), the number of tags in the tag library (# Tags in the tag library), 
the number of pull requests with tags (# Tagged Pull requests), and the 
average number of tags per pull request (Average # tags per pull 
request). In total, our datasets include 68,497 tagged pull requests and 
902 tags. 4 projects have more than 2 tags per pull request, while the 
average number of tags is between 1 and 2 in 6 projects. Our datasets 
and code are publicly available, and they can be downloaded from the 
project homepage4. 

3. Survey on tags 

Previous work [3] quantitatively analyzed the use of tags in issues. 
They found that using labels favored the resolution of issues. In GitHub, 
developers write issue reports to identify bugs and document feature 
requests, while developers submit pull requests when they want to 
merge code changes into main repositories [15]. In this section, we 
conduct a survey to understand tags in pull requests. More specifically, 
we design a survey to includes 6 questions.  

1. What is the usage of tags? Would you please list some categories of tags?  
2. What are benefits of setting tags for the pull requests?  
3. What are difficulties in setting tags for pull requests? 

2 https://github.com/ceph/ceph/pull/21481  
3 https://github.com/Yuyue/pullreq_ci/blob/master/all_projects.csv  
4 https://github.com/wqdbuaa/Label-recommendation 
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4. Will it be useful or useless if there is a tool to recommend tags for pull 
requests?  

5. If you choose useful in question 4, what features should be considered in 
recommendation tool?  

6. 6. If you choose useless in question 4, why is a label recommendation tool 
useless? 

Questions 1,2,3,5 and 6 are open-ended. We provide three choices 
for question 4, including ’Useful’, ’Useless’ and ’Unsure’. If respondents 
choose ’Useful’, we ask them question 5, and if respondents choose 
’Useless’, we ask them question 6. 

According to Table 1, we randomly select 200 integrators who ever 
set tags in these 10 projects and provide email addresses. We send them 
emails with title ’Survey about tags for pull requests’, and ask the above 
questions. We receive responses from 33 developers. 

Tag Usage. The first question is about the usage of tags in pull re-
quests. Cabot et al. performed a clustering analysis to aggregate tags in 
issues and identified 4 categories of issues, including ’priority’, 
’version’, ’workflow’ and ’architecture’ [3]. In GitHub, some issues may 
discuss questions, which are solved by modified code submitted in pull 
requests. Pull requests’ tags may be similar to issues’ tags. According to 
categories in previous work [3], the first author reads all replies and 
builds categories for the usage of tags. The second author also refers to 
categories in previous work [3], independently reads all 33 responses, 
and sets up corresponding categories. Finally, two authors discuss their 
results and agree on the final set of categories. As shown in Table 2, we 
define 5 categories of usage of tags. Categories ’Give priority’, ’Define 

status’ and ’Describe component’ correspond to categories ’priority’, 
’workflow’ and ’architecture’ in previous work [3]. 

Some respondents mention several usages, and they are classified 
into multiple categories. After completing the manual labeling process, 
the two authors discuss their disagreements to reach a common decision. 
Cohen’s kappa coefficient is a measure of the agreement between two 
raters who determine the categories of subjects [16]. Cohen’s kappa 
coefficient is between 0 and 1. 0 means agreement equivalent to chance, 
and 1 means perfect agreement. We used Cohen’s kappa coefficient to 
measure the agreement between two authors. Cohen’s kappa coefficient 
is 0.92, which shows near-perfect agreement. Some responses are 
initially classified as ’other’ by an author, but they are finally classified 
as ’Mark function’ or ’Give priority’ after discussion. Table 2 shows the 
usage of tags. From the table, we notice that:  

1) The most common answer about usage of tags is that integrators use 
them to mark functions of pull requests. For example, a respondent 
mentions that “Categorize if something is a bug or feature; related to 
documentation;”  

2) 33.33% of respondents reply that tags can give the priority of pull 
requests (e.g., high-priority, important or urgent). For example, 
some respondents mention “Giving priority” or ‘severity/ 
importance”.  

3) 8 respondents think that tags are used to define current status of pull 
requests. For example, a respondent says that: ”not ready” - a pull 
request is not ready for review. ”on hold” - a pull request is blocked 
due to other priorities. ”manual merge” - caution or manual steps are 
needed to merge this PR.  

4) 21.21% of respondents mention the architectural components 
affected by pull requests. For example, a respondent mention that 
“Since Ruby on Rails is divided into components, there is a label for 
each of these components”  

5) 7 respondents mention other reasons. For example, a response is 
“Labels are used to group PR, so related contributor developer can 
review his/her related tagged PR.” 

Fig. 1. An example of tags in a pull request.  

Table 1 
Basic Statistics of projects.  

Owner Project # Pull 
requests 

# Tags 
in 

# Tagged Average # 
tags    

tag 
library 

pull 
requests 

per pull 
request 

ceph ceph 14,549 47 11,363 2.208 
tgstation tgstation 17,313 42 10,772 1.395 
elasticsearch elasticsearch 11,076 331 9,135 3.566 
owncloud core 11,701 107 7,863 1.891 
symfony symfony 14,022 67 6,355 1.841 
rails rails 18,168 32 6,088 1.208 
angular angular.js 7,284 96 4,963 2.556 
RIOT-OS RIOT 5,324 51 4,702 2.958 
pydata pandas 6,259 94 4,028 1.927 
bitcoin bitcoin 7,009 35 3,248 1.217 
Total  112,705 902 68,497   

Table 2 
What is the usage of tags?.  

Tag usage Respondents 

Mark function 13 / 39.39% 
Give priority 11 / 33.33% 
Define status 8 / 24.24% 
Describe component 7 / 21.21% 
Other 7 / 21.21%  
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Benefits of Tags. The second question is about benefits of setting tags for 
the pull requests. We follow the same process that we describe in 
question 1. Table 3 displays benefits of setting tags for pull requests. 
From results, we can note  

1) 12 respondents mention that setting tags is convenient for developers 
to track pull requests. For instance, a respondent writes that “keeping 
track of state”.  

2) 12 respondents think that setting tags help developers search pull 
requests. For example, a respondent mentions that “They mostly help 
to let users find the pull requests they are most interested in.”  

3) 5 respondents point out that the benefit of setting tags is to classify 
pull requests. For instance, a respondent writes that “Helps with 
categorizing PRs”  

4) 6 respondents mention other benefits. For example, a respondent 
says that “Helps developers effectively manage hundreds of issues 
and pull requests”. 

Difficulties on Tag Usage. Third, we want to explore difficulties in 
setting tags for pull requests. Table 4 shows difficulties in setting tags. 
From results, we can note  

1) 8 respondents find it difficult to choose appropriate tags. For 
instance, a response is “Sometimes it is unclear what labels are 
appropriate for a particular pull request.” An automatic tag recom-
mendation approach can help developers to find appropriate tags.  

2) 5 respondents says that they cannot create new tags when all current 
tags are inappropriate for pull requests. For example, a respondent 
says that “Our main problem with labels are that developers without 
push rights can not add labels. This is quite a problem.”  

3) 4 respondents says that the consistency of tags is hard to maintain. 
For instance, a respondent says that “The people that add labels must 
be consistent with eash other and up-to-date with the current 
labelling policy.”  

4) 3 respondents mention that selecting tags from tag library is time- 
consuming. A respondent mentions that “Volume of issues can be 
time consuming to tag correctly.” Therefore, a tag recommendation 
approach is required to save developers’ time of selecting tags.  

5) 2 respondents says that it is difficult to update tags according to pull 
requests’ status changes.  

6) 4 respondents mentioning other difficulties. For example, a response 
is “Need to remember all labels.”  

7) 8 respondents do not fill in any information about difficulties. 

Usefulness of Tag Recommendation. In the fourth question, we ask 
developers whether it is useful or useless if there is a tool to recommend 
tags for pull requests, and plot their responses in Table 5. 60.61% of 
respondents consider a recommendation tool as useful, while 27.27% of 
respondents consider a recommendation tool as useless. 12.12% of re-
spondents are unsure. The majority of respondents think that a tag 
recommendation tool is useful. 

We take a further step and ask detailed reasons of their choices. More 
specifically, we ask developers two questions: If the recommendation 
tool is useful, what features should be considered in recommendation 
tool? If the recommendation tool is useless, why? 4 respondents explain 
reasons why the recommendation tool is useless. They think that it is 
difficult to recommend tags, and the logic to apply labels is too hard to 

figure out. A recommendation tool is appreciated by 20 respondents. 
Table 6 shows suggestions for implementing a recommendation tool. 
From results, we can note that:  

1) 5 respondents agree that a recommendation tool should consider pull 
requests’ code. For instance, a respondent writes that “Identifying 
the components affected by the issue/PR”. Another respondent 
writes that “Have the tool look at what parts of the program were 
changed and what kind of changes and act accordingly, at least for 
subsystem specific labels. ”  

2) 3 respondents believe that text information should be considered in a 
recommendation tool. For instance, a respondent mentions that ‘Go 
through title/description to suggestion of possible tags”. Another 
respondent suggests that “Keyword detection in pr description”.  

3) 3 respondents point out that the recommendation tool needs to use 
the history information. For example, a respondent mentions that 
“Being able to learn on its own based on corrected labels applied by 
the project maintainers.” 

4) 3 respondents agree that this recommendation tool should be auto-
matic. For example, a respondent says that “Should be as automated 
as possible.”  

5) 6 respondents mention other features. For example, a respondent 
says that “It needs to be well-integrated into the GitHub user 
interface.” 

Survey results show that tags are used to describe functions, prior-
ities, statuses and components, which helps developers to track, search 
or classify pull requests. However, some respondents think that it is 
difficult to choose right tags and keep consistency of tags. Meanwhile, it 
is time-consuming to select tags from the tag library. In order to solve 
these problems, we further ask respondents’ attitude towards a tag 
recommendation tool. The majority of respondents think that a tag 
recommendation tool is useful, and this recommendation tool should 
consider code, text and history information. According to survey results, 
we design a tag recommendation method in Section 4. 

Table 3 
What are benefits of setting tags for the pull requests?.  

the benefits of tags Respondents 

Track pull requests 12 / 36.36% 
Search pull requests 12 / 36.36% 
Classify pull requests 5 / 15.15% 
Other 6 / 18.18%  

Table 4 
What are difficulties in setting tags for pull requests?.  

Difficulty Respondents 

Choose appropriate tags 8 / 24.24% 
Create new labels 5 / 15.15% 
Set tags consistently 4 / 12.12% 
Time-consuming 3 / 9.09% 
Update tags 2 / 6.06% 
Other 4 / 12.12% 
No responses 8 / 24.24%  

Table 5 
Will it be useful or useless if there is a tool to 
recommend tags for pull requests?.  

Choice Respondents 

Useful 20 / 60.61% 
Useless 9 / 27.27% 
Unsure 4 / 12.12%  

Table 6 
What features should be considered in recommen-
dation tool?.  

Feature Respondents 

Code 5 / 25% 
Text 3 / 15% 
History 3 / 15% 
Automatic 3 / 15% 
other 6 / 30%  
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4. Tag recommendation approach 

In this section, we describe our tag recommendation method FNNRec 
which uses feed-forward neural network to analyze titles, description, 
file paths and contributors. As shown in Fig. 2, the entire framework 
contains two phases: a training phase and a recommendation phase. In 
training phase, our goal is to build a feed-forward neural network from 
historical information. In recommendation phase, the network is used to 
recommend tags for pull requests. 

In training phase, FNNRec first collects various information from a 
set of training pull requests with known tags. We extract titles and 
description (Step 1), file paths (Step 2) and contributors (Step 3) of pull 
requests from crawled information. We describe detailed definitions and 
why we choose these elements in Section 4.1, 4.2 and 4.3. Since we 
recommend tags for pull requests immediately after their submission, 
we do not consider any information which are generated in code review 
process, such as reviewers or commenters. According to pull requests’ 
information and their tags, we build feed-forward neural network (Step 
4). We do not consider pull requests’ creation time, and pull requests are 
treated as a set without consideration of the order in which they were 
created. 

In recommendation phase, we use FNNRec to predict whether a tag is 
likely to be assigned to a specific pull request. FNNRec first extracts titles 
and description (Step 5), file paths (Step 6) and contributors (Step 7). 
Then, it processes above information into feed-forward neural network 
built in the training phase (Step 8). This network will output probabil-
ities of tags, and tags with the highest probabilities are recommended 
(Step 9). 

We use the feed-forward neural network in tag recommendation 
because it is widely used in classification tasks [17]. The feed-forward 
neural network has an input layer, hidden layers and an output layer. 
The advantage of feed forward model is that it is a simple form of the 
neural network, and information is only processed in one direction from 
the input layer to the output layer, without going backward or entering 
any loops. The feed-forward neural network can classify nonlinear 
separable patterns by nonlinear activation functions and approximates 
an arbitrary continuous function. We compare the feed-forward neural 
network with other machine learning algorithms or deep learning al-
gorithms in Section 5.7, and results show that feed-forward neural 

network achieves the best performance. 

4.1. Title and description (step 1) 

The text information is often used in the developer recommendation 
for bug resolution [18–20]. When contributors submit pull requests, 
they write titles and description to briefly introduce code changes they 
make. As described in Section 3, a respondent mentions that “Go 
through title/description to suggestion of possible tags”. The intuition is 
that similar pull requests are often described in a similar way, and they 
may have similar tags. Therefore, we consider titles and description to 
recommend tags. We extract words from titles and description. More 
specifically, we make tokenization, remove stop words and stem words, 
then convert words into lowercase by natural language toolkit NLTK. 

4.2. File path (step 2) 

According to Table 6, 5 respondents think that a recommendation 
tool should consider pull requests’ code. For instance, a respondent 
writes that “Identifying the components affected by the issue/PR”. File 
paths may show components of modified code. Pull requests with code 
in similar file paths may modify the same components, and they may be 
assigned with the same tags. Therefore, file paths are analyzed to 
recommend tags for pull requests. Previous works [21,22] also use file 
paths to measure code’s locations for reviewer recommendation. This is 
because files in similar locations may have related functions, and need 
code review from the same reviewers. 

Following previous work [21], we use the separator ’/’, and extract 
words from file paths. We also take the pull request with number 21,481 
in Fig. 1 as an example. This pull request has one modified file path, 
namely “src/common/Preforker.h”. For this file path, we extract three 
words from the path, including “src”, “common” and “Preforker.h”. 
Some pull request has several file paths, and we extract words from all 
modified file paths. 

4.3. Contributor (step 3) 

In our survey, some respondents think that recommendation tool 
needs to use the history information, and contributors are important 

Fig. 2. Overall framework of FNNRec.  
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history information of pull requests. Some open source projects have 
much code, and contributors may be familiar with some parts of pro-
jects. Furthermore, contributors are not experts in all fields, and they 
may have some interests in some specific fields. Contributors may sub-
mit several similar pull requests, which may be assigned with the same 
tags. Contributors are extracted as words and used in tag 
recommendation. 

4.4. Feed-forward neural network (step 4) 

The next step is to build feed-forward neural network in training 
phase. We first extract words from pull requests’ titles, description, file 
paths and contributors. We use words of all pull requests in training 
datasets to construct a vocabulary. Then we build a word vector for each 
pull request. The length of word vector is the number of words in the 
vocabulary. Each element in word vector stands for the number of times 
that the word appears in a pull request’s title, description, file paths and 
contributor. We remove words which appear less than 5 times in all pull 
requests, so as to decrease the length of word vector and save the 
training time. 

Next, we build a tag vector for each pull request. The length of tag 
vector is the number of tags in project’s tag library. This tag library 
includes all tags which are used in training datasets, and excludes new 
tags which are never used in current training datasets. Each element in 
tag vector is the probability that the tag is used in the pull request. If this 
tag is assigned to the pull request, the probability is set as 1; otherwise, 
the probability is set as 0. 

Then we analyze training datasets, and build feed-forward neural 
network. As shown in Fig. 2, pull requests’ word vectors construct input 
layers, and their tag vectors construct output layers. ah in Fig. 2 stands 
for the number of times that the word appears in a pull request’s title, 
description, file paths and contributor. D is the length of word vector, 
namely the number of words in the vocabulary. cj in Fig. 2 stands for 
probability that the tag is used in the pull request. Q is the length of tag 
vector, namely the number of tags in tag library. Pull requests in training 
datasets are input to determine the best weights and build feed-forward 
neural network. The number of hidden units M is set as D by default. We 
discuss the setting of M in Section 5.6. 

According to previous work [23], detailed training steps of 
feed-forward neural network are described as follows:  

(1) Training datasets are used to compute the value of a unit ah in 
input layer, namely the number of times that corresponding word 
appears in a pull request’s title, description, file paths and 
contributor. Then units in input layer are converted to units in 
hidden layer by activation function conversion [24]. We use bs to 
represent value of hidden unit s. The value of hidden unit is 
calculated as follow: 

bs = fH

(
∑D

h=1
whsah + γs

)

(1)  

where whs is the conversion weight from input unit h to hidden unit s, 
and γs is bias of the hidden unit s. fH is the activation function of 
hidden layer [24].  
(2) Units in hidden layer are converted to units in output layer by 

another activation function conversion. We use bs to represent 
value of hidden unit s, and use cj to represent predicted value of 
output unit j, namely the predicted probability that the tag is used 
in the pull request. The predicted value of output unit is calcu-
lated as follow: 

cj = fO

(
∑M

s=1
vsjbs + θj

)

(2)  

Where vsj is the conversion weight from hidden unit s to output unit j, 

and θj is bias of output unit j. fO is another activation function of 
output layer [24].  
(3) Output layer generates predicted values of output units. Training 

datasets are used to determine actual values of output units. For 
example, if a tag is actually used in a pull request, the actual value 
of corresponding output unit is 1; otherwise, the actual value of 
corresponding output unit is 0. The goal of training phase is to 
reduce errors between predicted values and actual values of units 
in output layer. We use Y(Y = (c1, c2, …, cQ)) to represent the 
predicted values, and use Ŷ(Ŷ = (ĉ1, ĉ2,…, ĉQ)) to the represent 
actual values. Then we define loss function of the difference as 
follows: 

loss
(

Ŷ , Y
)
= −

∑Q

i=1

[

ĉilog
eci

1 + eci
+

(

1 − ĉi

)

log
1

1 + eci

]

(3)  

We use N to represent the scale of training datasets. Total loss for 
training datasets is computed by fitness function as follows: 

Loss(W,V,Γ,Θ) =
∑N

l=1
loss
(

Ŷl ,Yl

)
(4)  

W is the conversion weight from input layer to hidden layer, and Γ is 
the bias matrix. V is the conversion weight from hidden layer to 
output layer, and Θ is the bias matrix.  
(4) The goal of training phase is to reduce errors between predicted 

values and actual values of units in output layer. In order to 
achieve this goal, the task is to find the best W, V, Γ and Θ which 
minimizes fitness function in Eq. (4). The most popular approach 
to minimize fitness function is the back propagation algorithm. 
Gradient descent is used to update weights W, V and biases Γ, Θ 
by propagating errors of output layer successively back to hidden 
layers. Details are described in previous work [11]. The best W, V, 
Γ and Θ are used to determine feed-forward neural network, 
which is used in recommendation phase. 

4.5. Recommendation phase (step 5 to step 9) 

Given a new pull request, we build its word vector based on its title 
and description (Step 5), file paths (Step 6) and contributors (Step 7). 
Then we use feed-forward neural network built in the training phase to 
compute its tag vector, which describes probabilities that tags are 
assigned to new pull request (Step 8). Tags with the highest probabilities 
are recommended to the new pull request (Step 9). 

5. Evaluation 

In this section, we present results of our evaluation for proposed 
approach. The aim of this study is to investigate the effectiveness of 
FNNRec approach in providing tag recommendation solutions. We first 
present evaluation procedure, research questions and evaluation met-
rics. We then present our experiment results that answer these research 
questions. 

5.1. Evaluation procedure 

In order to simulate the usage of methods in practice, we sort all 
tagged pull requests in chronological order of their creation time. Since 
feed-forward neural network [11] needs a certain amount of training 
datesets, we collect the first 2000 tagged pull requests as the first 
training set, and the 2,000-th pull request’s creation time is set as T1. 
Interval time M is used to measure the time length in a testing set. Then 
we build training sets and testing sets. For the Nth round, pull requests 
created before (T1+ (N − 1)*M) months are used to build a training 
dataset, and pull requests created between (T1 + (N − 1)*M) months and 
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(T1 + N*M) months are used to build a testing dataset. Interval time M is 
set as 1 by default, and we discuss the setting of M in Section 5.6. For 
example in the first round, the training set is built by pull requests 
created created before T1, and the testing set is built by pull requests 
created between T1 and T1 + 1 month. We use the similar way to build 
other training sets and testing sets. We use the training set and the 
testing set to compute the performance of FNNRec in each round, and 
then compute average values of tagged pull requests. This setup ensures 
that only past pull requests are used to make the recommendation, and 
all pull requests in a training set are created before pull requests in a 
testing dataset. In each round, we build a training dataset and a testing 
dataset. Table 7 shows the number of rounds in projects, when we 
consider the interval time as 1 month. 9 projects have at least 20 rounds. 

5.2. Research questions 

We are interested to answer following research questions: 
RQ1: How effective is FNNRec in recommending tags? How does FNNRec 

compare with TagDeepRec [10] and TagMulRec [8]? 
In order to evaluate the efficiency of our approach FNNRec, we 

compare it with approaches TagDeepRec [10] and TagMulRec [8]. 
TagDeepRec [10] and TagMulRec [8] are designed to recommend tags 
in question and answer websites, and their original inputs are the 
description of questions. In order to recommend tags in GitHub, Tag-
DeepRec [10] and TagMulRec [8] use pull requests’ titles and de-
scriptions to replace the questions’ description. More specifically, 
TagDeepRec uses the word2vec model to vectorize pull requests’ titles 
and descriptions and then builds a dictionary with words and their 
corresponding vectors [10]. Then the corresponding vectors are fed into 
the attention-based Bi-LSTM model to build the recommendation model. 
TagMulRec [8] first creates an index for pull requests’ titles and de-
scriptions and then constructs target candidate sets that include software 
objects semantically similar to the given software object. Finally, Tag-
MulRec utilizes multi-classification algorithms to rank tags in the target 
candidate set. The training and testing process of TagDeepRec [10] and 
TagMulRec [8] are the same as FNNRec, which is described in Section 
5.1. 

RQ2: What are benefits of attribute combination in tag recommendation? 
FNNRec combines titles, description, file paths and contributors to 

recommend tags for pull requests. We wonder whether all these attri-
butes are necessary in tag recommendations. We compare FNNRec with 
approaches based on parts of attributes. 

RQ3: What are appropriate parameter settings? 
FNNRec is a tag recommendation method based on feed-forward 

neural network. The number of epochs describe the number of itera-
tions for weight computation. By default, we set the number of epochs as 
40. We would like to investigate precisions, recalls and F1-scores for 
various values of the number of epochs. 

In Fig. 2, units in hidden layer are mainly used to connect units in 
input layer and output layer. The number of hidden units is set as the 
number input units by default. We would like to investigate how the 
number of hidden units affect the performance of our approach. 

As described in Section 5.1, we collect the first 2000 tagged pull 
requests as the first training set. We wonder how this setting affects 
approach performance. Furthermore, we add new pull requests to the 
training set in each round, which provide dynamic training sets. We 
wonder whether new pull requests in training set improves the perfor-
mance of tag recommendation. 

In experiments, pull requests created before (T1+ (N − 1)*M) months 
are used to build a training dataset in the Nth round, and pull requests 
created between (T1 + (N − 1)*M) months and (T1 + N*M) months are 
used to build a testing dataset. Interval time M is used to measure the 
time length in a testing set. When interval time M becomes larger, up-
date frequencies of additional training data becomes lower. Interval 
time M is set as 1 by default. We wonder how the setting of interval time 
affects tag recommendation. 

RQ4: What is the benefit of the feed-forward neural network in tag 
recommendation? 

FNNRec uses the feed-forward neural network to recommend tags. 
We would like to investigate whether the feed-forward neural network 
achieves better performance than some other machine learning algo-
rithms or deep learning algorithms. We recommend tags based on Extra 
Tree, KNN, Random Forest, RNN and LSTM, respectively. Then we 
compare the performance of different algorithms in recommending tags. 

Extra Tree aggregates the results of multiple de-correlated decision 
trees collected in a ’forest’ to output the classification result. KNN (K- 
Nearest-Neighbors) categorizes an input by using its k nearest neigh-
bors. Random Forest is a machine-learning algorithm that aggregates the 
predictions from many decision trees on different subsets of data. RNN 
(Recurrent Neural Network) is a class of artificial neural networks where 
connections between units form a directed graph along a sequence. 
LSTM (Long short-term memory) is capable of learning long term de-
pendencies in data. 

5.3. Evaluation metrics 

In order to evaluate FNNRec, we use metrics precision, recall and F1- 
score. These metrics are commonly used in evaluation of tag recom-
mendation [5,8]. 

For a pull request pr, Tpr includes actual tags which are assigned to 
this pull request. TLpr,K include top K tags which are recommended for 
pull request pr. we define Recall@Kpr as the percentage of actual tags 
who are actually recommended. 

Recall@Kpr =
|TLpr,K

⋂
Tpr|

|Tpr|
(5) 

PR is testing set of pull requests and |PR| is the number of pull re-
quests in testing set. Recall@K is the average value of recalls of pull 
requests in the testing dataset: 

Recall@K =

∑
pr∈PRRecall@Kpr

|PR|
(6) 

We define Precision@Kpr as the percentage of recommended tags 
which are actually assigned to the pull request. Given a pull request pr, 
the top K precision Precision@Kpr is defined as: 

Precision@Kpr =
|TLpr,K

⋂
Tpr|

|TLpr,K |
(7) 

Precision@K is the average value of precisions of pull requests in the 
testing dataset: 

Precision@K =

∑|PR|
pr∈PRPrecision@Kpr

|PR|
(8) 

F1 − score@K is a summary metric that combines both precision and 
recall to measure the performance of the recommendation approach. 
This metric can evaluate if an increase in precision (recall) outweighs a 
reduction in recall (precision). It is calculated as the harmonic mean of 

Table 7 
Number of rounds with the interval time as 1 month.  

Project Number of rounds 

ceph 25 
tgstation 20 
elasticsearch 27 
core 27 
symfony 21 
rails 36 
angular.js 33 
RIOT 22 
pandas 20 
bitcoin 11  
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precision and recall: 

F1-score@K = 2⋅
Precision@K*Recall@K

Precision@K + Recall@K
(9) 

In order to compare two methods, we define the gain to compare how 
the method 1 outperforms the method 2. As described in initial study 
[20], recall gain, precision gain and F1-score gain are defined as follows: 

GainRecall@K =
(Recall@K(1) − Recall@K(2))

Recall@K(2)
(10)  

GainPrecision@K =
(Precision@K(1) − Precision@K(2))

Precision@K(2)
(11)  

GainF1-score@K =
(F-score@K(1) − F1-score@K(2))

F1-score@K(2)
(12)  

where Recall@K(1), Precision@K(1) and F1 − score@K(1) evaluates the 
performance of method 1, and Recall@K(2), Precision@K(2) and F1 −
score@K(2) evaluates the performance of method 2. If the gain value is 
above 0, it means method 1 has better accuracy than method 2, other-
wise method 2 has better recommendation results. 

Further, we define the following null hypotheses to assess the sta-
tistical validity of results. The alternative hypotheses can be easily 
derived from the respective null hypotheses. 

H-1: There is no statistically significant difference between 
Recall@K, Precision@K and F1 − score@K values of FNNRec, TagDee-
pRec and TagMulRec. 

We apply ANOVA test to assess whether the performance of all 
groups (FNNRec, TagDeepRec and TagMulRec) is significantly different, 
and apply Holm-Bonferroni method to control for type I errors. In order 
to analyze effect size, we also compute partial eta η2 is defined as the 
ratio of variance accounted for by an effect and that effect plus its 
associated error variance within an ANOVA study. According to previ-
ous work [25], we applied One Way ANOVA test to assess statistically 
significant difference with α = 0.05 between approaches in terms of 
recalls, precisions and F1-scores. Test purpose is to assess whether the 
distribution of one of samples is stochastically greater than the other. 

5.4. RQ1: Approach comparison 

In order to answer RQ1, we consult Tables 8 and 9 to show the 
performance of FNNRec. On average, FNNRec achieves Precision@3, 
Recall@3, F1 − score@3, Precision@5, Recall@5 and F1 − score@5 of 
0.447, 0.726, 0.514, 0.317, 0.816 and 0.427. As shown in Table 1, the 
average number of tags per pull request is less than 2 in 6 projects. The 

average number of tags per pull request is between 2 and 3 in 3 projects. 
Only project elasticsearch has 3.566 tags per pull request. In top-5 
recommendation, FNNRec recommends 5 tags, and at most 2 tags are 
correct in pull requests which have actually 1 or 2 tags. A few numbers of 
actual tags causes that the recommendation cannot have high 
precisions. 

In order to compare FNNRec with TagDeepRec [10] and TagMulRec 
[8], we compute precision gains, recall gains and F1-score gains, assess 
the statistically significant difference between approaches, and describe 
results in Table 8–11. On average across 10 projects, FNNRec out-
performs TagDeepRec by 59.446%, 66.083%, 62.985%, 44.73%, 
48.104% and 46.414% in terms of Precision@3, Recall@3, F1 − score@3,

Precision@5, Recall@5 and F1 − score@5, respectively. Furthermore, 
FNNRec outperforms TagMulRec by 26.903%, 22.185%, 24.953%, 
21.672%, 17.793% and 20.65% in terms of Precision@3, Recall@3, F1 −

score@3, Precision@5, Recall@5 and F1 − score@5, respectively. Clearly, 
FNNRec outperforms TagDeepRec and TagMulRec across precisions, 
recalls and F1-scores in all projects. 

In Table 12, We apply the ANOVA test to assess whether the per-
formance of FNNRec, TagDeepRec and TagMulRec is significantly 
different, and apply Holm-Bonferroni correction for multiple compari-
sons. Results show that most of p-values are smaller than 0.05, and the 
family-wise error rates are controlled at low-level alpha. In order to 
analyze effect size, we also compute partial eta η2 which is defined as the 
ratio of variance accounted for by an effect and that effect plus its 
associated error variance within an ANOVA study. If partial eta is be-
tween 0.01 and 0.06, the effect size is small; If partial eta is between 0.06 
and 0.14, the effect size is median; If partial eta is larger than 0.14, the 
effect size is big. Table 13 shows that 64.167% of cases belong to the big 
effect size, and 17.5% of cases belong to the median effect size. 
Furthermore, Tables 10 and 11 shows that FNNRec records positive 
gains with statistical significance (with p-values  < 0.05) in most of 
cases. Therefore, we find support to reject Hypothesis H-1 in favor of 
FNNRec. 

In Tables 8 and 9, TagMulRec [8] performs better than TagDeepRec 
[10]. TagDeepRec uses the word2vec model to vectorize pull requests’ 
titles and descriptions. Word2vec model needs large training datasets, 
but our datasets in Table 1 maybe not enough for the word2vec model. 
TagMulRec [8] also performs better than TagDeepRec [10] in the site 
Freecode which provides the smallest dataset in the previous work [10]. 

We take a further step and see some examples of tag recommenda-
tion. First, in a pull request with number 9200 in project angular.js5, the 
actual tags include “cla: no” and “type: docs”. Our approach FNNRec 
recommends tags “cla: no”, “type: docs” and “cla: yes”. Though tag “cla: 
no” and tag “cla: yes” are mutually exclusive, FNNRec cannot identify 
deep semantic relationships between tags, and recommends contradic-
tory tags. TagDeepRec [10] recommends tags “type: docs”, “cla: yes” 
and “type: bug”, and the only correct tag is “type: docs”. TagMulRec [8] 
recommends tags “cla: yes”, “type: bug” and “frequency: moderate”, and 
all of these tags are incorrect. Second, in a pull request with number 
9419 in project angular.js6, the actual tags include “cla: yes”, “needs: 
review” and “type: bug”. Our approach FNNRec recommends tags “cla: 
yes”, “needs: review” and “component: forms”, and the incorrect tag is 
“component: forms”. TagDeepRec [10] recommends the same tags as 
actual tags and achieves the best performance. TagMulRec [8] recom-
mends tags “cla: yes”, “cla: no” and “type: docs”, and only the tag “cla: 
yes” is correct.  

5.5. RQ2: Benefits of attribute combination 

In order to answer RQ2, we use feed-forward neural network to 
separately analyze titles and description, file paths and contributors for 
tag recommendation. We compare performance based on different at-
tributes, and plot results in Table 14. Results show that tag 

RQ1: FNNRec achieves statistically significant higher precisions, recalls and F1-scores than TagDeepRec and TagMulRec.  

5 https://github.com/angular/angular.js/pull/9200  
6 https://github.com/angular/angular.js/pull/9419 
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recommendation based on titles and description achieves better per-
formance than tag recommendation based on file paths or contributors. 
Titles and description are the most important attributes in tag recom-
mendation, because titles and description introduce what changes are 

made in pull requests and/or why they are needed [26]. Contributor is 
the least important attribute, because the same developers may still 
submit pull requests with different tags. 

In Table 14, tag recommendation based on all attributes achieve F1 
− score@3 as 0.514, which is higher than a single attribute. The best 
precisions, recalls and F1-scores are achieved when all attributes are 

analyzed. Attribute combination is useful for tag recommendation. 
Therefore, FNNRec combines titles and description, file paths and con-
tributors to recommend tags for pull requests.  

5.6. RQ3: Parameter settings 

FNNRec is a tag recommendation method based on the feed-forward 
neural network. The number of epochs describes the number of itera-
tions for weight computation. We increase the number of training 
epochs from 10 to 70 with an interval of 10, and evaluate the 

Table 8 
Precision@3 and recall@3 and F1-score@3 of Approaches TagDeepRec, TagMulRec and FNNRec.  

Project Precision@3 Recall@3 F1-score@3  

TagDe- TagMu- FNN- TagDe- TagMu- FNN- TagDe- TagMu- FNN-  
epRec lRec Rec epRec lRec Rec epRec lRec Rec 

ceph 0.302 0.442 0.529 0.359 0.616 0.753 0.316 0.495 0.597 
tgstation 0.265 0.3 0.332 0.567 0.693 0.754 0.345 0.404 0.444 
elasticsearch 0.236 0.328 0.473 0.166 0.315 0.446 0.185 0.303 0.434 
core 0.315 0.342 0.374 0.639 0.689 0.726 0.398 0.431 0.465 
symfony 0.388 0.385 0.496 0.61 0.615 0.727 0.447 0.447 0.558 
rails 0.231 0.279 0.375 0.574 0.7 0.929 0.322 0.391 0.522 
angular.js 0.39 0.386 0.48 0.648 0.68 0.725 0.434 0.443 0.51 
RIOT 0.457 0.551 0.653 0.422 0.516 0.609 0.429 0.521 0.617 
pandas 0.18 0.268 0.425 0.339 0.498 0.74 0.225 0.333 0.519 
bitcoin 0.184 0.279 0.336 0.472 0.711 0.851 0.259 0.392 0.471 
Average 0.295 0.356 0.447 0.48 0.603 0.726 0.336 0.416 0.514  

Table 9 
Precision@5 and recall@5 and F1-score@5 of Approaches TagDeepRec, TagMulRec and FNNRec.  

Project Precision@5 Recall@5 F1-score@5  

TagDe- TagMu- FNN- TagDe- TagMu- FNN- TagDe- TagMu- FNN-  
epRec lRec Rec epRec lRec Rec epRec lRec Rec 

ceph 0.237 0.33 0.373 0.47 0.756 0.853 0.304 0.443 0.5 
tgstation 0.18 0.211 0.225 0.647 0.795 0.835 0.273 0.323 0.343 
elasticsearch 0.208 0.269 0.365 0.249 0.415 0.557 0.216 0.311 0.421 
core 0.214 0.234 0.262 0.7 0.753 0.814 0.311 0.338 0.376 
symfony 0.273 0.265 0.362 0.69 0.679 0.862 0.372 0.363 0.487 
rails 0.186 0.201 0.232 0.781 0.839 0.953 0.296 0.319 0.367 
angular.js 0.28 0.288 0.339 0.732 0.743 0.788 0.362 0.371 0.421 
RIOT 0.36 0.433 0.502 0.544 0.668 0.77 0.425 0.514 0.596 
pandas 0.143 0.197 0.292 0.435 0.589 0.827 0.207 0.285 0.417 
bitcoin 0.149 0.187 0.216 0.626 0.782 0.903 0.236 0.296 0.343 
Average 0.223 0.261 0.317 0.587 0.702 0.816 0.3 0.356 0.427  

Table 10 
Gains and Statistical Results for top-3 recommendation (%).  

Project GainPrecision@3 % GainRecall@3 % GainF1− score@3 %   

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-  
epRec lRec epRec lRec epRec lRec 

ceph 75.166 *** 19.683 *** 109.749 *** 22.24 *** 88.924 *** 20.606 *** 
tgstation 25.283 *** 10.667 32.981 *** 8.802 28.696 *** 9.901 
elasticsearch 100.424 *** 44.207 *** 168.675 *** 41.587 *** 134.595 *** 43.234 *** 
core 18.73 *** 9.357 13.615 ** 5.37 16.834 *** 7.889 
symfony 27.835 *** 28.831 *** 19.18 *** 18.211 *** 24.832 *** 24.832 *** 
rails 62.338 *** 34.409 *** 61.847 *** 32.714 *** 62.112 *** 33.504 *** 
angular.js 23.077 *** 24.352 *** 11.883 *** 6.618 17.512 *** 15.124 *** 
RIOT 42.888 *** 18.512 *** 44.313 *** 18.023 *** 43.823 *** 18.426 *** 
pandas 136.111 *** 58.582 *** 118.289 *** 48.594 *** 130.667 *** 55.856 *** 
bitcoin 82.609 *** 20.43 *** 80.297 *** 19.691 *** 81.853 *** 20.153 *** 
Average 59.446 26.903 66.083 22.185 62.985 24.953 

***p < .001, **p < .01, *p < .05 

RQ2:The combination of titles and description, file paths and contributors is effective for tag recommendation.  
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performance of FNNRec. We describe precisions, recalls and F1-scores in 
Table 15, respectively. Results show that FNNRec achieves the best F1- 
scores with the number of epochs as 40 or 50. Since 40 epochs are 
enough to achieve the best performance, we set the number of epochs as 
40 by default. 

Units in hidden layer are mainly used to connect units in input layer 
and output layer. The number of hidden units can be set as a specific 
percentage of the number of input units. In order to study impacts of the 

number of hidden units, we increase the number of hidden units from 
50% to 200% of the number of input units with an interval of 50%, and 
evaluate performance of FNNRec. Table 16 show precisions, recalls and 
F1-scores with different number of hidden units. Results show that there 
is little variation among different numbers of hidden units. When the 
number of hidden units is set as 100% of the number of input units, F1 −

score@3 and F1 − score@5 are slightly better than those of other 
numbers of hidden units. Therefore, we set the number of hidden units 

Table 11 
Gains and Statistical Results for top-5 recommendation (%).  

Project GainPrecision@5 % GainRecall@5 % GainF1− score@5 %   

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-  
epRec lRec epRec lRec epRec lRec 

ceph 57.384 *** 13.03 *** 81.489 *** 12.831 *** 64.474*** 12.867 *** 
tgstation 25*** 6.635 29.057 *** 5.031 *** 25.641 *** 6.192 
elasticsearch 75.481 *** 35.688 *** 123.695 *** 34.217 *** 94.907 *** 35.37 *** 
core 22.430 *** 11.966 16.286 *** 8.101 20.900 *** 11.243 
symfony 32.601 *** 36.604 *** 24.928 *** 26.951 *** 30.914 *** 34.16 *** 
rails 24.731 *** 15.423 *** 22.023 *** 13.588 *** 23.986 *** 15.047 *** 
angular.js 21.071 *** 17.708 *** 7.650 6.057 16.298 *** 13.477 *** 
RIOT 39.444 *** 15.935 *** 41.544 *** 15.269 *** 40.235 *** 15.953 *** 
pandas 104.196 *** 48.223 *** 90.115 *** 40.407 *** 101.449 *** 46.316 *** 
bitcoin 44.966 *** 15.508 ** 44.249 *** 15.473 *** 45.339 *** 15.878 ** 
Average 44.73 21.672 48.104 17.793 46.414 20.65 

***p < 0.001, **p < 0.01, *p < 0.05 

Table 12 
P-values of variance analysis for FNNRec, TagDeepRec and TagMulRec.  

Project Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

ceph <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

tgstation <0.05 <0.05 <0.05 <0.05 <0.05b <0.05 
elasticsearch <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

core <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
symfony <0.05 <0.05 <0.05 <0.05b <0.05b <0.05b 

rails <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

angular.js <0.05 <0.05 <0.05b <0.05b 0.34 <0.05b 

RIOT <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

pandas <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

bitcoin <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b 

b Significant (corrected α < 0.05) with Holm-Bonferroni correction. 

Table 13 
Partial eta for top-3 and top-5 recommendation.  

Project Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5  

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-  
epRec lRec epRec lRec epRec lRec epRec lRec epRec lRec epRec lRec 

ceph 0.632 0.024 0.711 0.039 0.677 0.03 0.461 0.001 0.645 0.001 0.539 0.001 
tgstation 0.1 0.006 0.201 0.001 0.156 0.004 0.141 0 0.203 0.004 0.163 0 
elasticsearch 0.347 0.109 0.47 0.092 0.391 0.096 0.343 0.114 0.51 0.095 0.412 0.107 
core 0.119 0.019 0.046 0.003 0.128 0.02 0.211 0.019 0.136 0.016 0.356 0.039 
symfony 0.078 0.078 0.085 0.062 0.1 0.094 0.115 0.145 0.226 0.249 0.148 0.184 
rails 0.674 0.438 0.74 0.435 0.725 0.481 0.39 0.148 0.457 0.142 0.451 0.18 
angular.js 0.355 0.339 0.084 0.008 0.307 0.22 0.15 0.074 0.005 0 0.2 0.09 
RIOT 0.577 0.216 0.526 0.128 0.567 0.181 0.624 0.257 0.666 0.215 0.665 0.282 
pandas 0.803 0.65 0.538 0.284 0.732 0.546 0.855 0.658 0.597 0.323 0.825 0.637 
bitcoin 0.929 0.342 0.917 0.354 0.931 0.376 0.85 0.246 0.89 0.448 0.874 0.316  

Table 14 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) with different attributes.  

Attribute Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

Title & description 0.4 0.658 0.462 0.287 0.75 0.388 
File path 0.371 0.613 0.429 0.27 0.706 0.366 
Contributor 0.29 0.474 0.333 0.216 0.572 0.293 
All 0.447 0.726 0.514 0.317 0.816 0.427  
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as 100% of input units by default. 
Since feed-forward neural network [11] needs a certain amount of 

training datesets, we collect the first 2000 tagged pull requests as the 
first training set. We want to explore the impact of minimal number of 
tagged pull requests in the training set. We increase the value from 1000 
to 3000 with an interval of 1000, and evaluate performance of FNNRec. 
Table 17 shows precisions, recalls and F1-scores with different data 
amount. Results show that as the minimal number of tagged pull re-
quests increases, precisions, recalls and F1-scores all increases. How-
ever, it costs longer time for projects to accumulate enough pull requests 
for the first training set. In practice, project owners consider their 
requirement and decide minimal number of tagged pull requests. 

As described in Section 5.1, we collect the first 2000 tagged pull 
requests as the first training set, and add new pull requests to the 
training set in each round, which provide dynamic training sets. We 
wonder whether the addition of new pull requests in training set im-
proves the performance of tag recommendation. We study the perfor-
mance of tag recommendation based on the fixed training set, namely 

the first 2000 tagged pull requests in the first training set. The tag 
recommendation based on fixed or dynamic training set has the same 
testing dataset in each round. Table 18 shows the average performance 
values across all rounds based on different training datasets. The tag 
recommendation based on fixed training set achieves 0.428 and 0.359 in 
terms of F1 − score@3 and F1 − score@5, which are worse than the tag 

recommendation based on the dynamic training set. Therefore, the 
addition of new pull requests to the training set improves tag 
recommendation. 

Interval time M is used to measure the time length in a testing set and 
pull requests created before the testing set are used as training data. New 
training data is added for updating the feed-forward neural network 
every M months. Larger interval time M means lower update frequencies 
of additional training data. Here, we investigate how the setting of in-
terval time affects tag recommendation. Table 19 shows the perfor-
mance of tag recommendation with different interval time M. When M is 
set as 1, results show that FNNRec achieves the best performance. 
Additional training data is added every 1 month, which may build a 
better feed-forward neural network. As interval time M increases, the 
performance of tag recommendation becomes worse. In this paper, in-
terval time M is set as 1 by default. In practice, project owners can 
choose the suitable setting of interval time M for open source projects.  

5.7. RQ4: Benefits of the feed-forward neural network 

FNNRec uses the feed-forward neural network to recommend tags. In 
this subsection, we investigate the performance of different machine 
learning algorithms or deep learning algorithms. We use different al-
gorithms to build a recommendation model, including Extra Tree, KNN, 

Table 15 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of epochs.  

Epoch Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

10 0.342 0.579 0.4 0.237 0.648 0.326 
20 0.406 0.677 0.472 0.289 0.76 0.392 
30 0.436 0.712 0.502 0.31 0.803 0.418 
40 0.447 0.726 0.514 0.317 0.816 0.427 
50 0.448 0.724 0.514 0.318 0.814 0.427 
60 0.401 0.655 0.462 0.288 0.749 0.389 
70 0.399 0.651 0.459 0.286 0.744 0.387  

Table 16 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of hidden units.  

Hidden Unit Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

50% 0.443 0.721 0.509 0.314 0.81 0.423 
100% 0.447 0.726 0.514 0.317 0.816 0.427 
150% 0.447 0.724 0.513 0.317 0.814 0.426 
200% 0.448 0.724 0.514 0.316 0.813 0.426  

Table 17 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of tagged pull requests in the first training set.  

Pull requests Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

1000 0.434 0.722 0.503 0.306 0.81 0.416 
2000 0.447 0.726 0.514 0.317 0.816 0.427 
3000 0.452 0.732 0.519 0.321 0.822 0.432  

Table 18 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different training datasets.  

Training set Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

Fixed training set 0.369 0.621 0.428 0.263 0.713 0.359 
Dynamic training set 0.447 0.726 0.514 0.317 0.816 0.427  

RQ3: FNNRec achieves the best precisions, recalls and F1-scores when the number of epochs is set as 40 or 50, and the number of hidden units is 
set as 100% of the number of input units.  
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Random Forest, RNN and LSTM. Table 20 shows precisions, recalls and 
F1-scores of different machine learning algorithms or deep learning al-
gorithms. We notice that FNNRec based on FNN performs better than 
approaches based on other algorithms. Therefore, we choose the feed- 
forward neural network to recommend tags.  

6. Threats to validity 

Threats to external validity relate to generalizability of our study. 
First, our experimental results are limited to 10 popular projects. We 
find that FNNRec achieves higher precision, Recall and F1 − score values 
than TagDeepRec and TagMulRec, which are based on 10 projects in our 
datasets. We cannot claim that the same results would be achieved in 
other projects. Our future work will focus on evaluation in other projects 
to better generalize results of our method. We will conduct broader 
experiments to validate whether FNNRec performs well in tag recom-
mendation. Second, our empirical findings are based on open-source 
software projects in GitHub, and it is unknown whether our results 
can be generalized to other open-source software platforms. In the 
future, we plan to study a similar set of research questions in other 
platforms, and compare their results with our findings in GitHub. 

Construct validity threats are related to the degree to which the 
construct being studied is affected by experiment settings. First, we use 
precision, recall and F1-score, which are also used by previous works to 
evaluate effectiveness of tag recommendation approaches [5,8]. 
Therefore, we believe there is little threat to construct validity. Second, 
we define some factors to quantitatively measure potential features 
mentioned by respondents. There may be other measures. For example, 
some respondents think that a recommendation tool should consider 
pull requests’ code. In this work, we mainly analyze file paths of 
modified code but do not analyze functions or classes in modified code. 
In future work, we will try more factors to recommend tags for pull 
requests, such as source code representation generated by AST-based 
Neural Network [27]. Third, we send the survey to integrators 
whoever set tags. This selection of integrators may favor developers with 
a positive review toward tag recommendation, and may not reflect as 
well those who find it useless. Furthermore, we provide three choices for 
developers’ attitudes, including ’Useful’, ’Useless’ and ’Unsure’. A 
choice on a Likert scale is better to get more of the range on attitudes. 

Threats to conclusion validity is concerned with issues that affect the 
ability to draw the correct conclusion. We conduct a survey to under-
stand tags in pull requests. Two authors manually read replies, build 
categories, and classify responses into corresponding categories. The 
category ’other’ may include unclear responses. For example, a response 
about the usage of tags is “Labels are used to group PR, so related 

contributor developer can review his/her related tagged PR.” Since this 
response does not describe groups of pull requests, we do not know 
specific usages of tags in detail. In future work, we may try to send 
emails to some respondents and ask for more details about their 
responses. 

7. Related work 

Related work to this study could be divided into three main cate-
gories, including issue tag, tag recommendation, and reviewer 
recommendation. 

Issue tag. Some researchers studied tags used in issues of GitHub [3, 
28,29]. Cabot et al. explored the use of labels to categorize issues in 
GitHub [3]. Their results revealed using labels favored the resolution of 
issues. Bissyande et al. found that two most common tags in issues were 
bug and feature [28]. Izquierdo et al. presented a visualization tool to 
help managers and developers to better understand how issue labels 
were employed in their open-source software projects [29]. 

In GitHub, developers write issue reports to identify bugs and 
document feature requests [28]. Developers submit pull requests when 
they want to merge code changes into main repositories [2]. In this 
paper, we mainly study tags in pull requests, rather than issue. 

Tag recommendation. Initial studies [5,6,8–10,30–32] designed 
approaches to recommend tags in software information sites, such as 
StackOverflow and Freecode. Xia et al. proposed a method called 
TAGCOMBINE to automatically recommend tags for software objects [5, 
33]. Wang et al. proposed a tag recommendation method called EnTa-
gRec which was based on historical tag assignments to software objects 
[6]. Results showed that EnTagRec made better tag recommendation 
than TAGCOMBINE [5,33]. Zhou et al. proposed a new software object 
multi-classification method TagMulRec which recommended tags for 
large-scale evolving software information sites [8]. Liu et al. proposed 
an automated scalable tag recommendation method FastTagRec using 

Table 19 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different interval time.  

Interval time Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

1 0.447 0.726 0.514 0.317 0.816 0.427 
5 0.431 0.701 0.495 0.306 0.791 0.412 
10 0.417 0.679 0.48 0.297 0.771 0.402 
15 0.403 0.663 0.466 0.287 0.753 0.390  

Table 20 
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of different algorithms.  

Algorithm Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5 

Extra Tree 0.402 0.659 0.464 0.289 0.752 0.391 
KNN 0.317 0.533 0.369 0.228 0.614 0.311 
Random Forest 0.401 0.659 0.463 0.288 0.751 0.389 
RNN 0.389 0.360 0.366 0.284 0.434 0.336 
LSTM 0.301 0.492 0.346 0.228 0.604 0.309 
FNN 0.447 0.726 0.514 0.317 0.816 0.427  

RQ4: The tag recommendation achieves the best performance based on feed-forward neural network.  
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neural network-based classification [9]. Li et al. designed a new tag 
recommendation approach TagDeepRec using attention-based Bi-LSTM 
[10]. Experiment analysis showed that TagMulRec outperformed 
EnTagRec [6], and TagDeepRec outperformed FastTagRec [10]. Exper-
iment results show that in the recommendation of pull requests’ tags, 
our approach FNNRec achieves higher precisions, recalls and F1-scores 
than TagDeepRec and TagMulRec. 

Previous work [34] proposed a graph-based approach to assign tags 
for repositories in GitHub. This work recommended tags to annotate 
repositories, and helped developers to efficiently search repositories. 
Different from this work, our approach FNNRec recommends tags for 
pull requests in a project. 

Reviewer recommendation. There have been a number of studies 
on reviewer recommendation for pull requests in GitHub [21,35–37]. 
Jiang et al. used support vector machines to analyze integrators’ pre-
vious decisions, and designed an approach CoreDevRec to recommend 
integrators for pull requests [21]. Yu et al. built comment networks to 
predict appropriate reviewers of incoming pull requests in GitHub [36, 
37]. 

Different from these works, we solve a different problem and design 
an automatic approach to recommend tags, rather than reviewers. 

8. Conclusion 

In this paper, we first make a survey on the usage of pull requests in 
GitHub. Survey results show that tags are useful for developers to track, 
search or classify pull requests. However, it is difficult to choose right 
tags and keep consistency of tags. 60.61% of respondents think that a tag 
recommendation tool is useful. In order to help developers choose tags, 
we propose an approach FNNRec. Based on titles, description, file paths 
and contributors, FNNRec uses feed-forward neural networks to 
compute probabilities and recommends tags. We evaluate effectiveness 
of FNNRec on 10 projects containing 68,497 pull requests. We compare 
it to approaches TagDeepRec [10] and TagMulRec [8]. The experi-
mental results show that on average across 10 projects, FNNRec out-
performs approaches TagDeepRec [10] and TagMulRec [8] by 62.985% 
and 24.953% in terms of F1 − score@3, respectively. FNNRec achieves 
better recommendation performance than TagDeepRec and TagMulRec. 
Therefore, we believe that FNNRec is useful to find appropriate tags and 
improve tag setting process in GitHub. 
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