
Information and Software Technology 129 (2021) 106394

Available online 7 September 2020
0950-5849/© 2020 Published by Elsevier B.V.

Recommending tags for pull requests in GitHub

Jing Jiang a, Qiudi Wu a, Jin Cao a, Xin Xia b, Li Zhang *,a

a State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
b Information Technology, Monash University, Melbourne, VIC, Australia

A R T I C L E I N F O

Keywords:
Tag recommendation
Pull request
Open-source project
Github

A B S T R A C T

Context: In GitHub, contributors make code changes, then create and submit pull requests to projects. Tags are a
simple and effective way to attach additional information to pull requests and facilitate their organization.
However, little effort has been devoted to study pull requests’ tags in GitHub.
Objective: Our objective in this paper is to propose an approach which automatically recommends tags for pull
requests in GitHub.
Method: We make a survey on the usage of tags in pull requests. Survey results show that tags are useful for
developers to track, search or classify pull requests. But some respondents think that it is difficult to choose right
tags and keep consistency of tags. 60.61% of respondents think that a tag recommendation tool is useful. In order
to help developers choose tags, we propose a method FNNRec which uses feed-forward neural network to analyze
titles, description, file paths and contributors.
Results: We evaluate the effectiveness of FNNRec on 10 projects containing 68,497 tagged pull requests. The
experimental results show that on average, FNNRec outperforms approach TagDeepRec and TagMulRec by
62.985% and 24.953% in terms of F1 − score@3, respectively.
Conclusion: FNNRec is useful to find appropriate tags and improve tag setting process in GitHub.

1. Introduction

Various open-source software hosting sites, notably Github, provide
support for pull-based development and allow developers to make
contributions flexibly and efficiently [1]. In GitHub, contributors make
code changes, then create and submit pull requests to projects [2]. Then
members of the project’s core team (from here on, integrators) inspect
pull requests, and decide whether to accept pull requests and merge
modified code [1]. A common way to facilitate the organization of pull
requests in projects is based on the use of tags1. According to pull re-
quests’ information, integrators assign tags to some pull requests from
tag library. Tags are a simple and effective way to attach additional
information (e.g., metadata) to pull requests [3]. However, tags are
sometimes neglected by integrators. For example, in our dataset which
contains 112,705 pull requests, 39.22% of pull requests do not have any
tags.

In this paper, we conduct a survey to understand usage of tags in
GitHub. Survey results show that tags are used to describe functions,

priorities, statuses and components, which helps developers to track,
search or classify pull requests. However, some respondents think that it
is difficult to choose right tags and keep consistency of tags. Meanwhile,
it is time-consuming to select tags from the tag library. In order to solve
these problems, we further ask respondents’ attitude towards a tag
recommendation tool. 60.61% of respondents think that a tag recom-
mendation tool is useful. In previous work [4], developers also sug-
gested desired features of bots, such as automatically labeling issues.
Therefore, an automatic tag recommendation approach is required to
assign tags to pull requests.

There have been several studies [5–10] about tag recommendation in
software information sites, such as StackOverflow and Freecode. Zhou
et al. proposed a new software object multi-classification method Tag-
MulRec which recommended tags for large-scale evolving software in-
formation sites [8]. However, previous works are mainly designed for
software information sites, and it remains unknown whether these ap-
proaches are effective to recommend tags in GitHub. Pull requests are
used to submit code, and have special information such as code file

* Corresponding author.
E-mail addresses: jiangjing@buaa.edu.cn (J. Jiang), 1040814720@qq.com (Q. Wu), 13277061183@163.com (J. Cao), xin.xia@monash.edu (X. Xia), lily@buaa.

edu.cn (L. Zhang).
1 https://help.github.com/articles/labeling-issues-and-pull-requests/

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106394
Received 9 September 2019; Received in revised form 14 July 2020; Accepted 17 August 2020

mailto:jiangjing@buaa.edu.cn
mailto:1040814720@qq.com
mailto:13277061183@163.com
mailto:xin.xia@monash.edu
mailto:lily@buaa.edu.cn
mailto:lily@buaa.edu.cn
https://help.github.com/articles/labeling-issues-and-pull-requests/
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106394
https://doi.org/10.1016/j.infsof.2020.106394
https://doi.org/10.1016/j.infsof.2020.106394
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106394&domain=pdf

Information and Software Technology 129 (2021) 106394

2

paths.
Respondents in our survey also mention that a recommendation tool

should consider text, code and history information. According to these
suggestions, we mainly consider attributes, including titles, description,
file paths and contributors. Each tag can be considered as a category,
and thus tag recommendation is mapped to a multi-label classification
problem, which classify pull requests to appropriate categories. The
feed-forward neural network is widely used in classification task, and it
does not rely on human-engineered features to make classification [11].
We propose a method FNNRec which uses Feed-forward Neural Network
to recommend tags for pull requests in GitHub projects.

In an effort to demonstrate the effectiveness of our approach, we
collected datasets from GitHub. In total, we analyze 10 projects and
68,497 tagged pull requests. TagDeepRec [10] and TagMulRec [8] are
originally designed to recommended tags for large-scale evolving soft-
ware information sites. In comparison, we adopt TagDeepRec and Tag-
MulRec to analyze pull requests’ titles and descriptions, and recommend
tags for pull requests. We measure the performance of approaches in
terms of precisions, recalls and F1-scores. The experimental results show
that on average across 10 projects, FNNRec outperforms approaches
TagDeepRec [10] and TagMulRec [8] by 62.985% and 24.953% in terms
of F1 − score@3, respectively.

The main contributions of this paper are as follows:

• We make a survey on the usage of tags in pull requests. Survey results
show that tags are useful for developers to track, search or classify
pull requests. However, it is difficult to choose right tags and keep
consistency of tags. 60.61% of respondents think that a tag recom-
mendation tool is useful.

• In order to recommend tags, we propose a method FNNRec which
uses feed-forward neural network to analyze titles, description, file
paths and contributors.

• We evaluate FNNRec based on a broad range of datasets. Results
show that FNNRec outperforms approaches TagDeepRec [10] and
TagMulRec [8] by substantial margins.

The reminder of the paper is organized as follow. Section 2 presents
the process of setting tags, data collection and statistics. Section 3 pre-
sents our survey about the usage of tags in pull requests. Section 4
presents our tag recommendation approach FNNRec. Section 5 presents
an empirical evaluation of the approach. Section 6 discusses threats to
validity, and Section 7 discusses related works. Finally, Section 8 con-
cludes this paper.

2. Background and data collection

In this section, we begin by providing background information about
the process of setting tags in GitHub. Then, we introduce how our
datasets are collected, and report statistics of our datasets.

2.1. The process of setting tags

GitHub is a web-based hosting service for software development
repositories [12]. In GitHub, contributors make their code changes in-
dependent of one another. When a set of changes is ready, contributors
create and submit pull requests to projects. Titles and description are
written to introduce pull requests, and modified file paths are also
shown in pull requests [13]. According to pull requests’ information,
some integrators assign tags to some pull requests from tag library. In
GitHub, only integrators with write access can assign tags to pull re-
quests. If developers do not have write access, they cannot assign tags to
their own pull requests. However, tags are sometimes neglected by in-
tegrators. For example, in our dataset which contains 112,705 pull

requests, 39.22% of pull requests do not have any tags.
To illustrate the contribution process, Fig. 1 shows an example of a

pull request with number 21,481 in project ceph2. We only show part of
characters in developers’ names, so as to protect developers’ privacy. A
contributor ba*** modified code and submitted a pull request. The pull
request’s title was “common: silence compiler warning”, and its body
was “Fixes: http://tracker.ceph.com/issues/23774 Signed-off-by: Pa***
Do*** pd***@redhat.com”. Then tags ``bugfix′′, ``common′′, and ‘‘
needs − review′′ were chosen from tag library, and assigned to this pull
request.

2.2. Data collection and statistics

GitHub provides access to its internal data through an API. It allows
us to access rich collection of open-source software projects, and pro-
vides valuable opportunities for research. We gather information
through GitHub API and create datasets of projects.

In data collection, we choose popular projects, because they receive
many pull requests and provide enough information for experiments. We
obtain a list of projects from previous work [14], which made their
research projects public3. We sort their projects by the number of pull
requests, and obtain 100 projects with the highest number of pull
requests.

We collected pull requests of these 100 projects through GitHub API
in June 2017. We sent queries to GitHub API, received its replies, and
extracted data from project creation time to June, 2017. We collected
pull requests’ identifiers, tags, contributors, the creation time, the close
time and paths of modified files. Contributors wrote titles and descrip-
tion to summarize the modification of a pull request, which were also
gathered.

Some pull requests have tags, while others do not have tags. We
select projects with more than 3000 tagged pull requests, which provide
enough datasets for experiments. Next, we choose projects with greater
than or equal to 30 tags in their tag libraries. If projects have few
candidate tags, it is easy to manually assign tags to pull requests. Finally,
we obtain 10 projects which satisfy above requirements. Table 1 pre-
sents statistics of 10 projects. The columns correspond to project owner
(Owner) and name (Project), the number of pull requests (# Pull re-
quests), the number of tags in the tag library (# Tags in the tag library),
the number of pull requests with tags (# Tagged Pull requests), and the
average number of tags per pull request (Average # tags per pull
request). In total, our datasets include 68,497 tagged pull requests and
902 tags. 4 projects have more than 2 tags per pull request, while the
average number of tags is between 1 and 2 in 6 projects. Our datasets
and code are publicly available, and they can be downloaded from the
project homepage4.

3. Survey on tags

Previous work [3] quantitatively analyzed the use of tags in issues.
They found that using labels favored the resolution of issues. In GitHub,
developers write issue reports to identify bugs and document feature
requests, while developers submit pull requests when they want to
merge code changes into main repositories [15]. In this section, we
conduct a survey to understand tags in pull requests. More specifically,
we design a survey to includes 6 questions.

1. What is the usage of tags? Would you please list some categories of tags?
2. What are benefits of setting tags for the pull requests?
3. What are difficulties in setting tags for pull requests?

2 https://github.com/ceph/ceph/pull/21481
3 https://github.com/Yuyue/pullreq_ci/blob/master/all_projects.csv
4 https://github.com/wqdbuaa/Label-recommendation

J. Jiang et al.

http://tracker.ceph.com/issues/23774
https://github.com/ceph/ceph/pull/21481
https://github.com/Yuyue/pullreq_ci/blob/master/all_projects.csv
https://github.com/wqdbuaa/Label-recommendation

Information and Software Technology 129 (2021) 106394

3

4. Will it be useful or useless if there is a tool to recommend tags for pull
requests?

5. If you choose useful in question 4, what features should be considered in
recommendation tool?

6. 6. If you choose useless in question 4, why is a label recommendation tool
useless?

Questions 1,2,3,5 and 6 are open-ended. We provide three choices
for question 4, including ’Useful’, ’Useless’ and ’Unsure’. If respondents
choose ’Useful’, we ask them question 5, and if respondents choose
’Useless’, we ask them question 6.

According to Table 1, we randomly select 200 integrators who ever
set tags in these 10 projects and provide email addresses. We send them
emails with title ’Survey about tags for pull requests’, and ask the above
questions. We receive responses from 33 developers.

Tag Usage. The first question is about the usage of tags in pull re-
quests. Cabot et al. performed a clustering analysis to aggregate tags in
issues and identified 4 categories of issues, including ’priority’,
’version’, ’workflow’ and ’architecture’ [3]. In GitHub, some issues may
discuss questions, which are solved by modified code submitted in pull
requests. Pull requests’ tags may be similar to issues’ tags. According to
categories in previous work [3], the first author reads all replies and
builds categories for the usage of tags. The second author also refers to
categories in previous work [3], independently reads all 33 responses,
and sets up corresponding categories. Finally, two authors discuss their
results and agree on the final set of categories. As shown in Table 2, we
define 5 categories of usage of tags. Categories ’Give priority’, ’Define

status’ and ’Describe component’ correspond to categories ’priority’,
’workflow’ and ’architecture’ in previous work [3].

Some respondents mention several usages, and they are classified
into multiple categories. After completing the manual labeling process,
the two authors discuss their disagreements to reach a common decision.
Cohen’s kappa coefficient is a measure of the agreement between two
raters who determine the categories of subjects [16]. Cohen’s kappa
coefficient is between 0 and 1. 0 means agreement equivalent to chance,
and 1 means perfect agreement. We used Cohen’s kappa coefficient to
measure the agreement between two authors. Cohen’s kappa coefficient
is 0.92, which shows near-perfect agreement. Some responses are
initially classified as ’other’ by an author, but they are finally classified
as ’Mark function’ or ’Give priority’ after discussion. Table 2 shows the
usage of tags. From the table, we notice that:

1) The most common answer about usage of tags is that integrators use
them to mark functions of pull requests. For example, a respondent
mentions that “Categorize if something is a bug or feature; related to
documentation;”

2) 33.33% of respondents reply that tags can give the priority of pull
requests (e.g., high-priority, important or urgent). For example,
some respondents mention “Giving priority” or ‘severity/
importance”.

3) 8 respondents think that tags are used to define current status of pull
requests. For example, a respondent says that: ”not ready” - a pull
request is not ready for review. ”on hold” - a pull request is blocked
due to other priorities. ”manual merge” - caution or manual steps are
needed to merge this PR.

4) 21.21% of respondents mention the architectural components
affected by pull requests. For example, a respondent mention that
“Since Ruby on Rails is divided into components, there is a label for
each of these components”

5) 7 respondents mention other reasons. For example, a response is
“Labels are used to group PR, so related contributor developer can
review his/her related tagged PR.”

Fig. 1. An example of tags in a pull request.

Table 1
Basic Statistics of projects.

Owner Project # Pull
requests

Tags
in

Tagged Average #
tags

tag
library

pull
requests

per pull
request

ceph ceph 14,549 47 11,363 2.208
tgstation tgstation 17,313 42 10,772 1.395
elasticsearch elasticsearch 11,076 331 9,135 3.566
owncloud core 11,701 107 7,863 1.891
symfony symfony 14,022 67 6,355 1.841
rails rails 18,168 32 6,088 1.208
angular angular.js 7,284 96 4,963 2.556
RIOT-OS RIOT 5,324 51 4,702 2.958
pydata pandas 6,259 94 4,028 1.927
bitcoin bitcoin 7,009 35 3,248 1.217
Total 112,705 902 68,497

Table 2
What is the usage of tags?.

Tag usage Respondents

Mark function 13 / 39.39%
Give priority 11 / 33.33%
Define status 8 / 24.24%
Describe component 7 / 21.21%
Other 7 / 21.21%

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

4

Benefits of Tags. The second question is about benefits of setting tags for
the pull requests. We follow the same process that we describe in
question 1. Table 3 displays benefits of setting tags for pull requests.
From results, we can note

1) 12 respondents mention that setting tags is convenient for developers
to track pull requests. For instance, a respondent writes that “keeping
track of state”.

2) 12 respondents think that setting tags help developers search pull
requests. For example, a respondent mentions that “They mostly help
to let users find the pull requests they are most interested in.”

3) 5 respondents point out that the benefit of setting tags is to classify
pull requests. For instance, a respondent writes that “Helps with
categorizing PRs”

4) 6 respondents mention other benefits. For example, a respondent
says that “Helps developers effectively manage hundreds of issues
and pull requests”.

Difficulties on Tag Usage. Third, we want to explore difficulties in
setting tags for pull requests. Table 4 shows difficulties in setting tags.
From results, we can note

1) 8 respondents find it difficult to choose appropriate tags. For
instance, a response is “Sometimes it is unclear what labels are
appropriate for a particular pull request.” An automatic tag recom-
mendation approach can help developers to find appropriate tags.

2) 5 respondents says that they cannot create new tags when all current
tags are inappropriate for pull requests. For example, a respondent
says that “Our main problem with labels are that developers without
push rights can not add labels. This is quite a problem.”

3) 4 respondents says that the consistency of tags is hard to maintain.
For instance, a respondent says that “The people that add labels must
be consistent with eash other and up-to-date with the current
labelling policy.”

4) 3 respondents mention that selecting tags from tag library is time-
consuming. A respondent mentions that “Volume of issues can be
time consuming to tag correctly.” Therefore, a tag recommendation
approach is required to save developers’ time of selecting tags.

5) 2 respondents says that it is difficult to update tags according to pull
requests’ status changes.

6) 4 respondents mentioning other difficulties. For example, a response
is “Need to remember all labels.”

7) 8 respondents do not fill in any information about difficulties.

Usefulness of Tag Recommendation. In the fourth question, we ask
developers whether it is useful or useless if there is a tool to recommend
tags for pull requests, and plot their responses in Table 5. 60.61% of
respondents consider a recommendation tool as useful, while 27.27% of
respondents consider a recommendation tool as useless. 12.12% of re-
spondents are unsure. The majority of respondents think that a tag
recommendation tool is useful.

We take a further step and ask detailed reasons of their choices. More
specifically, we ask developers two questions: If the recommendation
tool is useful, what features should be considered in recommendation
tool? If the recommendation tool is useless, why? 4 respondents explain
reasons why the recommendation tool is useless. They think that it is
difficult to recommend tags, and the logic to apply labels is too hard to

figure out. A recommendation tool is appreciated by 20 respondents.
Table 6 shows suggestions for implementing a recommendation tool.
From results, we can note that:

1) 5 respondents agree that a recommendation tool should consider pull
requests’ code. For instance, a respondent writes that “Identifying
the components affected by the issue/PR”. Another respondent
writes that “Have the tool look at what parts of the program were
changed and what kind of changes and act accordingly, at least for
subsystem specific labels. ”

2) 3 respondents believe that text information should be considered in a
recommendation tool. For instance, a respondent mentions that ‘Go
through title/description to suggestion of possible tags”. Another
respondent suggests that “Keyword detection in pr description”.

3) 3 respondents point out that the recommendation tool needs to use
the history information. For example, a respondent mentions that
“Being able to learn on its own based on corrected labels applied by
the project maintainers.”

4) 3 respondents agree that this recommendation tool should be auto-
matic. For example, a respondent says that “Should be as automated
as possible.”

5) 6 respondents mention other features. For example, a respondent
says that “It needs to be well-integrated into the GitHub user
interface.”

Survey results show that tags are used to describe functions, prior-
ities, statuses and components, which helps developers to track, search
or classify pull requests. However, some respondents think that it is
difficult to choose right tags and keep consistency of tags. Meanwhile, it
is time-consuming to select tags from the tag library. In order to solve
these problems, we further ask respondents’ attitude towards a tag
recommendation tool. The majority of respondents think that a tag
recommendation tool is useful, and this recommendation tool should
consider code, text and history information. According to survey results,
we design a tag recommendation method in Section 4.

Table 3
What are benefits of setting tags for the pull requests?.

the benefits of tags Respondents

Track pull requests 12 / 36.36%
Search pull requests 12 / 36.36%
Classify pull requests 5 / 15.15%
Other 6 / 18.18%

Table 4
What are difficulties in setting tags for pull requests?.

Difficulty Respondents

Choose appropriate tags 8 / 24.24%
Create new labels 5 / 15.15%
Set tags consistently 4 / 12.12%
Time-consuming 3 / 9.09%
Update tags 2 / 6.06%
Other 4 / 12.12%
No responses 8 / 24.24%

Table 5
Will it be useful or useless if there is a tool to
recommend tags for pull requests?.

Choice Respondents

Useful 20 / 60.61%
Useless 9 / 27.27%
Unsure 4 / 12.12%

Table 6
What features should be considered in recommen-
dation tool?.

Feature Respondents

Code 5 / 25%
Text 3 / 15%
History 3 / 15%
Automatic 3 / 15%
other 6 / 30%

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

5

4. Tag recommendation approach

In this section, we describe our tag recommendation method FNNRec
which uses feed-forward neural network to analyze titles, description,
file paths and contributors. As shown in Fig. 2, the entire framework
contains two phases: a training phase and a recommendation phase. In
training phase, our goal is to build a feed-forward neural network from
historical information. In recommendation phase, the network is used to
recommend tags for pull requests.

In training phase, FNNRec first collects various information from a
set of training pull requests with known tags. We extract titles and
description (Step 1), file paths (Step 2) and contributors (Step 3) of pull
requests from crawled information. We describe detailed definitions and
why we choose these elements in Section 4.1, 4.2 and 4.3. Since we
recommend tags for pull requests immediately after their submission,
we do not consider any information which are generated in code review
process, such as reviewers or commenters. According to pull requests’
information and their tags, we build feed-forward neural network (Step
4). We do not consider pull requests’ creation time, and pull requests are
treated as a set without consideration of the order in which they were
created.

In recommendation phase, we use FNNRec to predict whether a tag is
likely to be assigned to a specific pull request. FNNRec first extracts titles
and description (Step 5), file paths (Step 6) and contributors (Step 7).
Then, it processes above information into feed-forward neural network
built in the training phase (Step 8). This network will output probabil-
ities of tags, and tags with the highest probabilities are recommended
(Step 9).

We use the feed-forward neural network in tag recommendation
because it is widely used in classification tasks [17]. The feed-forward
neural network has an input layer, hidden layers and an output layer.
The advantage of feed forward model is that it is a simple form of the
neural network, and information is only processed in one direction from
the input layer to the output layer, without going backward or entering
any loops. The feed-forward neural network can classify nonlinear
separable patterns by nonlinear activation functions and approximates
an arbitrary continuous function. We compare the feed-forward neural
network with other machine learning algorithms or deep learning al-
gorithms in Section 5.7, and results show that feed-forward neural

network achieves the best performance.

4.1. Title and description (step 1)

The text information is often used in the developer recommendation
for bug resolution [18–20]. When contributors submit pull requests,
they write titles and description to briefly introduce code changes they
make. As described in Section 3, a respondent mentions that “Go
through title/description to suggestion of possible tags”. The intuition is
that similar pull requests are often described in a similar way, and they
may have similar tags. Therefore, we consider titles and description to
recommend tags. We extract words from titles and description. More
specifically, we make tokenization, remove stop words and stem words,
then convert words into lowercase by natural language toolkit NLTK.

4.2. File path (step 2)

According to Table 6, 5 respondents think that a recommendation
tool should consider pull requests’ code. For instance, a respondent
writes that “Identifying the components affected by the issue/PR”. File
paths may show components of modified code. Pull requests with code
in similar file paths may modify the same components, and they may be
assigned with the same tags. Therefore, file paths are analyzed to
recommend tags for pull requests. Previous works [21,22] also use file
paths to measure code’s locations for reviewer recommendation. This is
because files in similar locations may have related functions, and need
code review from the same reviewers.

Following previous work [21], we use the separator ’/’, and extract
words from file paths. We also take the pull request with number 21,481
in Fig. 1 as an example. This pull request has one modified file path,
namely “src/common/Preforker.h”. For this file path, we extract three
words from the path, including “src”, “common” and “Preforker.h”.
Some pull request has several file paths, and we extract words from all
modified file paths.

4.3. Contributor (step 3)

In our survey, some respondents think that recommendation tool
needs to use the history information, and contributors are important

Fig. 2. Overall framework of FNNRec.

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

6

history information of pull requests. Some open source projects have
much code, and contributors may be familiar with some parts of pro-
jects. Furthermore, contributors are not experts in all fields, and they
may have some interests in some specific fields. Contributors may sub-
mit several similar pull requests, which may be assigned with the same
tags. Contributors are extracted as words and used in tag
recommendation.

4.4. Feed-forward neural network (step 4)

The next step is to build feed-forward neural network in training
phase. We first extract words from pull requests’ titles, description, file
paths and contributors. We use words of all pull requests in training
datasets to construct a vocabulary. Then we build a word vector for each
pull request. The length of word vector is the number of words in the
vocabulary. Each element in word vector stands for the number of times
that the word appears in a pull request’s title, description, file paths and
contributor. We remove words which appear less than 5 times in all pull
requests, so as to decrease the length of word vector and save the
training time.

Next, we build a tag vector for each pull request. The length of tag
vector is the number of tags in project’s tag library. This tag library
includes all tags which are used in training datasets, and excludes new
tags which are never used in current training datasets. Each element in
tag vector is the probability that the tag is used in the pull request. If this
tag is assigned to the pull request, the probability is set as 1; otherwise,
the probability is set as 0.

Then we analyze training datasets, and build feed-forward neural
network. As shown in Fig. 2, pull requests’ word vectors construct input
layers, and their tag vectors construct output layers. ah in Fig. 2 stands
for the number of times that the word appears in a pull request’s title,
description, file paths and contributor. D is the length of word vector,
namely the number of words in the vocabulary. cj in Fig. 2 stands for
probability that the tag is used in the pull request. Q is the length of tag
vector, namely the number of tags in tag library. Pull requests in training
datasets are input to determine the best weights and build feed-forward
neural network. The number of hidden units M is set as D by default. We
discuss the setting of M in Section 5.6.

According to previous work [23], detailed training steps of
feed-forward neural network are described as follows:

(1) Training datasets are used to compute the value of a unit ah in
input layer, namely the number of times that corresponding word
appears in a pull request’s title, description, file paths and
contributor. Then units in input layer are converted to units in
hidden layer by activation function conversion [24]. We use bs to
represent value of hidden unit s. The value of hidden unit is
calculated as follow:

bs = fH

(
∑D

h=1
whsah + γs

)

(1)

where whs is the conversion weight from input unit h to hidden unit s,
and γs is bias of the hidden unit s. fH is the activation function of
hidden layer [24].
(2) Units in hidden layer are converted to units in output layer by

another activation function conversion. We use bs to represent
value of hidden unit s, and use cj to represent predicted value of
output unit j, namely the predicted probability that the tag is used
in the pull request. The predicted value of output unit is calcu-
lated as follow:

cj = fO

(
∑M

s=1
vsjbs + θj

)

(2)

Where vsj is the conversion weight from hidden unit s to output unit j,

and θj is bias of output unit j. fO is another activation function of
output layer [24].
(3) Output layer generates predicted values of output units. Training

datasets are used to determine actual values of output units. For
example, if a tag is actually used in a pull request, the actual value
of corresponding output unit is 1; otherwise, the actual value of
corresponding output unit is 0. The goal of training phase is to
reduce errors between predicted values and actual values of units
in output layer. We use Y(Y = (c1, c2, …, cQ)) to represent the
predicted values, and use Ŷ(Ŷ = (ĉ1, ĉ2,…, ĉQ)) to the represent
actual values. Then we define loss function of the difference as
follows:

loss
(

Ŷ , Y
)
= −

∑Q

i=1

[

ĉilog
eci

1 + eci
+

(

1 − ĉi

)

log
1

1 + eci

]

(3)

We use N to represent the scale of training datasets. Total loss for
training datasets is computed by fitness function as follows:

Loss(W,V,Γ,Θ) =
∑N

l=1
loss
(

Ŷl ,Yl

)
(4)

W is the conversion weight from input layer to hidden layer, and Γ is
the bias matrix. V is the conversion weight from hidden layer to
output layer, and Θ is the bias matrix.
(4) The goal of training phase is to reduce errors between predicted

values and actual values of units in output layer. In order to
achieve this goal, the task is to find the best W, V, Γ and Θ which
minimizes fitness function in Eq. (4). The most popular approach
to minimize fitness function is the back propagation algorithm.
Gradient descent is used to update weights W, V and biases Γ, Θ
by propagating errors of output layer successively back to hidden
layers. Details are described in previous work [11]. The best W, V,
Γ and Θ are used to determine feed-forward neural network,
which is used in recommendation phase.

4.5. Recommendation phase (step 5 to step 9)

Given a new pull request, we build its word vector based on its title
and description (Step 5), file paths (Step 6) and contributors (Step 7).
Then we use feed-forward neural network built in the training phase to
compute its tag vector, which describes probabilities that tags are
assigned to new pull request (Step 8). Tags with the highest probabilities
are recommended to the new pull request (Step 9).

5. Evaluation

In this section, we present results of our evaluation for proposed
approach. The aim of this study is to investigate the effectiveness of
FNNRec approach in providing tag recommendation solutions. We first
present evaluation procedure, research questions and evaluation met-
rics. We then present our experiment results that answer these research
questions.

5.1. Evaluation procedure

In order to simulate the usage of methods in practice, we sort all
tagged pull requests in chronological order of their creation time. Since
feed-forward neural network [11] needs a certain amount of training
datesets, we collect the first 2000 tagged pull requests as the first
training set, and the 2,000-th pull request’s creation time is set as T1.
Interval time M is used to measure the time length in a testing set. Then
we build training sets and testing sets. For the Nth round, pull requests
created before (T1+ (N − 1)*M) months are used to build a training
dataset, and pull requests created between (T1 + (N − 1)*M) months and

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

7

(T1 + N*M) months are used to build a testing dataset. Interval time M is
set as 1 by default, and we discuss the setting of M in Section 5.6. For
example in the first round, the training set is built by pull requests
created created before T1, and the testing set is built by pull requests
created between T1 and T1 + 1 month. We use the similar way to build
other training sets and testing sets. We use the training set and the
testing set to compute the performance of FNNRec in each round, and
then compute average values of tagged pull requests. This setup ensures
that only past pull requests are used to make the recommendation, and
all pull requests in a training set are created before pull requests in a
testing dataset. In each round, we build a training dataset and a testing
dataset. Table 7 shows the number of rounds in projects, when we
consider the interval time as 1 month. 9 projects have at least 20 rounds.

5.2. Research questions

We are interested to answer following research questions:
RQ1: How effective is FNNRec in recommending tags? How does FNNRec

compare with TagDeepRec [10] and TagMulRec [8]?
In order to evaluate the efficiency of our approach FNNRec, we

compare it with approaches TagDeepRec [10] and TagMulRec [8].
TagDeepRec [10] and TagMulRec [8] are designed to recommend tags
in question and answer websites, and their original inputs are the
description of questions. In order to recommend tags in GitHub, Tag-
DeepRec [10] and TagMulRec [8] use pull requests’ titles and de-
scriptions to replace the questions’ description. More specifically,
TagDeepRec uses the word2vec model to vectorize pull requests’ titles
and descriptions and then builds a dictionary with words and their
corresponding vectors [10]. Then the corresponding vectors are fed into
the attention-based Bi-LSTM model to build the recommendation model.
TagMulRec [8] first creates an index for pull requests’ titles and de-
scriptions and then constructs target candidate sets that include software
objects semantically similar to the given software object. Finally, Tag-
MulRec utilizes multi-classification algorithms to rank tags in the target
candidate set. The training and testing process of TagDeepRec [10] and
TagMulRec [8] are the same as FNNRec, which is described in Section
5.1.

RQ2: What are benefits of attribute combination in tag recommendation?
FNNRec combines titles, description, file paths and contributors to

recommend tags for pull requests. We wonder whether all these attri-
butes are necessary in tag recommendations. We compare FNNRec with
approaches based on parts of attributes.

RQ3: What are appropriate parameter settings?
FNNRec is a tag recommendation method based on feed-forward

neural network. The number of epochs describe the number of itera-
tions for weight computation. By default, we set the number of epochs as
40. We would like to investigate precisions, recalls and F1-scores for
various values of the number of epochs.

In Fig. 2, units in hidden layer are mainly used to connect units in
input layer and output layer. The number of hidden units is set as the
number input units by default. We would like to investigate how the
number of hidden units affect the performance of our approach.

As described in Section 5.1, we collect the first 2000 tagged pull
requests as the first training set. We wonder how this setting affects
approach performance. Furthermore, we add new pull requests to the
training set in each round, which provide dynamic training sets. We
wonder whether new pull requests in training set improves the perfor-
mance of tag recommendation.

In experiments, pull requests created before (T1+ (N − 1)*M) months
are used to build a training dataset in the Nth round, and pull requests
created between (T1 + (N − 1)*M) months and (T1 + N*M) months are
used to build a testing dataset. Interval time M is used to measure the
time length in a testing set. When interval time M becomes larger, up-
date frequencies of additional training data becomes lower. Interval
time M is set as 1 by default. We wonder how the setting of interval time
affects tag recommendation.

RQ4: What is the benefit of the feed-forward neural network in tag
recommendation?

FNNRec uses the feed-forward neural network to recommend tags.
We would like to investigate whether the feed-forward neural network
achieves better performance than some other machine learning algo-
rithms or deep learning algorithms. We recommend tags based on Extra
Tree, KNN, Random Forest, RNN and LSTM, respectively. Then we
compare the performance of different algorithms in recommending tags.

Extra Tree aggregates the results of multiple de-correlated decision
trees collected in a ’forest’ to output the classification result. KNN (K-
Nearest-Neighbors) categorizes an input by using its k nearest neigh-
bors. Random Forest is a machine-learning algorithm that aggregates the
predictions from many decision trees on different subsets of data. RNN
(Recurrent Neural Network) is a class of artificial neural networks where
connections between units form a directed graph along a sequence.
LSTM (Long short-term memory) is capable of learning long term de-
pendencies in data.

5.3. Evaluation metrics

In order to evaluate FNNRec, we use metrics precision, recall and F1-
score. These metrics are commonly used in evaluation of tag recom-
mendation [5,8].

For a pull request pr, Tpr includes actual tags which are assigned to
this pull request. TLpr,K include top K tags which are recommended for
pull request pr. we define Recall@Kpr as the percentage of actual tags
who are actually recommended.

Recall@Kpr =
|TLpr,K

⋂
Tpr|

|Tpr|
(5)

PR is testing set of pull requests and |PR| is the number of pull re-
quests in testing set. Recall@K is the average value of recalls of pull
requests in the testing dataset:

Recall@K =

∑
pr∈PRRecall@Kpr

|PR|
(6)

We define Precision@Kpr as the percentage of recommended tags
which are actually assigned to the pull request. Given a pull request pr,
the top K precision Precision@Kpr is defined as:

Precision@Kpr =
|TLpr,K

⋂
Tpr|

|TLpr,K |
(7)

Precision@K is the average value of precisions of pull requests in the
testing dataset:

Precision@K =

∑|PR|
pr∈PRPrecision@Kpr

|PR|
(8)

F1 − score@K is a summary metric that combines both precision and
recall to measure the performance of the recommendation approach.
This metric can evaluate if an increase in precision (recall) outweighs a
reduction in recall (precision). It is calculated as the harmonic mean of

Table 7
Number of rounds with the interval time as 1 month.

Project Number of rounds

ceph 25
tgstation 20
elasticsearch 27
core 27
symfony 21
rails 36
angular.js 33
RIOT 22
pandas 20
bitcoin 11

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

8

precision and recall:

F1-score@K = 2⋅
Precision@K*Recall@K

Precision@K + Recall@K
(9)

In order to compare two methods, we define the gain to compare how
the method 1 outperforms the method 2. As described in initial study
[20], recall gain, precision gain and F1-score gain are defined as follows:

GainRecall@K =
(Recall@K(1) − Recall@K(2))

Recall@K(2)
(10)

GainPrecision@K =
(Precision@K(1) − Precision@K(2))

Precision@K(2)
(11)

GainF1-score@K =
(F-score@K(1) − F1-score@K(2))

F1-score@K(2)
(12)

where Recall@K(1), Precision@K(1) and F1 − score@K(1) evaluates the
performance of method 1, and Recall@K(2), Precision@K(2) and F1 −
score@K(2) evaluates the performance of method 2. If the gain value is
above 0, it means method 1 has better accuracy than method 2, other-
wise method 2 has better recommendation results.

Further, we define the following null hypotheses to assess the sta-
tistical validity of results. The alternative hypotheses can be easily
derived from the respective null hypotheses.

H-1: There is no statistically significant difference between
Recall@K, Precision@K and F1 − score@K values of FNNRec, TagDee-
pRec and TagMulRec.

We apply ANOVA test to assess whether the performance of all
groups (FNNRec, TagDeepRec and TagMulRec) is significantly different,
and apply Holm-Bonferroni method to control for type I errors. In order
to analyze effect size, we also compute partial eta η2 is defined as the
ratio of variance accounted for by an effect and that effect plus its
associated error variance within an ANOVA study. According to previ-
ous work [25], we applied One Way ANOVA test to assess statistically
significant difference with α = 0.05 between approaches in terms of
recalls, precisions and F1-scores. Test purpose is to assess whether the
distribution of one of samples is stochastically greater than the other.

5.4. RQ1: Approach comparison

In order to answer RQ1, we consult Tables 8 and 9 to show the
performance of FNNRec. On average, FNNRec achieves Precision@3,
Recall@3, F1 − score@3, Precision@5, Recall@5 and F1 − score@5 of
0.447, 0.726, 0.514, 0.317, 0.816 and 0.427. As shown in Table 1, the
average number of tags per pull request is less than 2 in 6 projects. The

average number of tags per pull request is between 2 and 3 in 3 projects.
Only project elasticsearch has 3.566 tags per pull request. In top-5
recommendation, FNNRec recommends 5 tags, and at most 2 tags are
correct in pull requests which have actually 1 or 2 tags. A few numbers of
actual tags causes that the recommendation cannot have high
precisions.

In order to compare FNNRec with TagDeepRec [10] and TagMulRec
[8], we compute precision gains, recall gains and F1-score gains, assess
the statistically significant difference between approaches, and describe
results in Table 8–11. On average across 10 projects, FNNRec out-
performs TagDeepRec by 59.446%, 66.083%, 62.985%, 44.73%,
48.104% and 46.414% in terms of Precision@3, Recall@3, F1 − score@3,

Precision@5, Recall@5 and F1 − score@5, respectively. Furthermore,
FNNRec outperforms TagMulRec by 26.903%, 22.185%, 24.953%,
21.672%, 17.793% and 20.65% in terms of Precision@3, Recall@3, F1 −

score@3, Precision@5, Recall@5 and F1 − score@5, respectively. Clearly,
FNNRec outperforms TagDeepRec and TagMulRec across precisions,
recalls and F1-scores in all projects.

In Table 12, We apply the ANOVA test to assess whether the per-
formance of FNNRec, TagDeepRec and TagMulRec is significantly
different, and apply Holm-Bonferroni correction for multiple compari-
sons. Results show that most of p-values are smaller than 0.05, and the
family-wise error rates are controlled at low-level alpha. In order to
analyze effect size, we also compute partial eta η2 which is defined as the
ratio of variance accounted for by an effect and that effect plus its
associated error variance within an ANOVA study. If partial eta is be-
tween 0.01 and 0.06, the effect size is small; If partial eta is between 0.06
and 0.14, the effect size is median; If partial eta is larger than 0.14, the
effect size is big. Table 13 shows that 64.167% of cases belong to the big
effect size, and 17.5% of cases belong to the median effect size.
Furthermore, Tables 10 and 11 shows that FNNRec records positive
gains with statistical significance (with p-values < 0.05) in most of
cases. Therefore, we find support to reject Hypothesis H-1 in favor of
FNNRec.

In Tables 8 and 9, TagMulRec [8] performs better than TagDeepRec
[10]. TagDeepRec uses the word2vec model to vectorize pull requests’
titles and descriptions. Word2vec model needs large training datasets,
but our datasets in Table 1 maybe not enough for the word2vec model.
TagMulRec [8] also performs better than TagDeepRec [10] in the site
Freecode which provides the smallest dataset in the previous work [10].

We take a further step and see some examples of tag recommenda-
tion. First, in a pull request with number 9200 in project angular.js5, the
actual tags include “cla: no” and “type: docs”. Our approach FNNRec
recommends tags “cla: no”, “type: docs” and “cla: yes”. Though tag “cla:
no” and tag “cla: yes” are mutually exclusive, FNNRec cannot identify
deep semantic relationships between tags, and recommends contradic-
tory tags. TagDeepRec [10] recommends tags “type: docs”, “cla: yes”
and “type: bug”, and the only correct tag is “type: docs”. TagMulRec [8]
recommends tags “cla: yes”, “type: bug” and “frequency: moderate”, and
all of these tags are incorrect. Second, in a pull request with number
9419 in project angular.js6, the actual tags include “cla: yes”, “needs:
review” and “type: bug”. Our approach FNNRec recommends tags “cla:
yes”, “needs: review” and “component: forms”, and the incorrect tag is
“component: forms”. TagDeepRec [10] recommends the same tags as
actual tags and achieves the best performance. TagMulRec [8] recom-
mends tags “cla: yes”, “cla: no” and “type: docs”, and only the tag “cla:
yes” is correct.

5.5. RQ2: Benefits of attribute combination

In order to answer RQ2, we use feed-forward neural network to
separately analyze titles and description, file paths and contributors for
tag recommendation. We compare performance based on different at-
tributes, and plot results in Table 14. Results show that tag

RQ1: FNNRec achieves statistically significant higher precisions, recalls and F1-scores than TagDeepRec and TagMulRec.

5 https://github.com/angular/angular.js/pull/9200
6 https://github.com/angular/angular.js/pull/9419

J. Jiang et al.

https://github.com/angular/angular.js/pull/9200
https://github.com/angular/angular.js/pull/9419

Information and Software Technology 129 (2021) 106394

9

recommendation based on titles and description achieves better per-
formance than tag recommendation based on file paths or contributors.
Titles and description are the most important attributes in tag recom-
mendation, because titles and description introduce what changes are

made in pull requests and/or why they are needed [26]. Contributor is
the least important attribute, because the same developers may still
submit pull requests with different tags.

In Table 14, tag recommendation based on all attributes achieve F1
− score@3 as 0.514, which is higher than a single attribute. The best
precisions, recalls and F1-scores are achieved when all attributes are

analyzed. Attribute combination is useful for tag recommendation.
Therefore, FNNRec combines titles and description, file paths and con-
tributors to recommend tags for pull requests.

5.6. RQ3: Parameter settings

FNNRec is a tag recommendation method based on the feed-forward
neural network. The number of epochs describes the number of itera-
tions for weight computation. We increase the number of training
epochs from 10 to 70 with an interval of 10, and evaluate the

Table 8
Precision@3 and recall@3 and F1-score@3 of Approaches TagDeepRec, TagMulRec and FNNRec.

Project Precision@3 Recall@3 F1-score@3

TagDe- TagMu- FNN- TagDe- TagMu- FNN- TagDe- TagMu- FNN-
epRec lRec Rec epRec lRec Rec epRec lRec Rec

ceph 0.302 0.442 0.529 0.359 0.616 0.753 0.316 0.495 0.597
tgstation 0.265 0.3 0.332 0.567 0.693 0.754 0.345 0.404 0.444
elasticsearch 0.236 0.328 0.473 0.166 0.315 0.446 0.185 0.303 0.434
core 0.315 0.342 0.374 0.639 0.689 0.726 0.398 0.431 0.465
symfony 0.388 0.385 0.496 0.61 0.615 0.727 0.447 0.447 0.558
rails 0.231 0.279 0.375 0.574 0.7 0.929 0.322 0.391 0.522
angular.js 0.39 0.386 0.48 0.648 0.68 0.725 0.434 0.443 0.51
RIOT 0.457 0.551 0.653 0.422 0.516 0.609 0.429 0.521 0.617
pandas 0.18 0.268 0.425 0.339 0.498 0.74 0.225 0.333 0.519
bitcoin 0.184 0.279 0.336 0.472 0.711 0.851 0.259 0.392 0.471
Average 0.295 0.356 0.447 0.48 0.603 0.726 0.336 0.416 0.514

Table 9
Precision@5 and recall@5 and F1-score@5 of Approaches TagDeepRec, TagMulRec and FNNRec.

Project Precision@5 Recall@5 F1-score@5

TagDe- TagMu- FNN- TagDe- TagMu- FNN- TagDe- TagMu- FNN-
epRec lRec Rec epRec lRec Rec epRec lRec Rec

ceph 0.237 0.33 0.373 0.47 0.756 0.853 0.304 0.443 0.5
tgstation 0.18 0.211 0.225 0.647 0.795 0.835 0.273 0.323 0.343
elasticsearch 0.208 0.269 0.365 0.249 0.415 0.557 0.216 0.311 0.421
core 0.214 0.234 0.262 0.7 0.753 0.814 0.311 0.338 0.376
symfony 0.273 0.265 0.362 0.69 0.679 0.862 0.372 0.363 0.487
rails 0.186 0.201 0.232 0.781 0.839 0.953 0.296 0.319 0.367
angular.js 0.28 0.288 0.339 0.732 0.743 0.788 0.362 0.371 0.421
RIOT 0.36 0.433 0.502 0.544 0.668 0.77 0.425 0.514 0.596
pandas 0.143 0.197 0.292 0.435 0.589 0.827 0.207 0.285 0.417
bitcoin 0.149 0.187 0.216 0.626 0.782 0.903 0.236 0.296 0.343
Average 0.223 0.261 0.317 0.587 0.702 0.816 0.3 0.356 0.427

Table 10
Gains and Statistical Results for top-3 recommendation (%).

Project GainPrecision@3 % GainRecall@3 % GainF1− score@3 %

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-
epRec lRec epRec lRec epRec lRec

ceph 75.166 *** 19.683 *** 109.749 *** 22.24 *** 88.924 *** 20.606 ***
tgstation 25.283 *** 10.667 32.981 *** 8.802 28.696 *** 9.901
elasticsearch 100.424 *** 44.207 *** 168.675 *** 41.587 *** 134.595 *** 43.234 ***
core 18.73 *** 9.357 13.615 ** 5.37 16.834 *** 7.889
symfony 27.835 *** 28.831 *** 19.18 *** 18.211 *** 24.832 *** 24.832 ***
rails 62.338 *** 34.409 *** 61.847 *** 32.714 *** 62.112 *** 33.504 ***
angular.js 23.077 *** 24.352 *** 11.883 *** 6.618 17.512 *** 15.124 ***
RIOT 42.888 *** 18.512 *** 44.313 *** 18.023 *** 43.823 *** 18.426 ***
pandas 136.111 *** 58.582 *** 118.289 *** 48.594 *** 130.667 *** 55.856 ***
bitcoin 82.609 *** 20.43 *** 80.297 *** 19.691 *** 81.853 *** 20.153 ***
Average 59.446 26.903 66.083 22.185 62.985 24.953

***p < .001, **p < .01, *p < .05

RQ2:The combination of titles and description, file paths and contributors is effective for tag recommendation.

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

10

performance of FNNRec. We describe precisions, recalls and F1-scores in
Table 15, respectively. Results show that FNNRec achieves the best F1-
scores with the number of epochs as 40 or 50. Since 40 epochs are
enough to achieve the best performance, we set the number of epochs as
40 by default.

Units in hidden layer are mainly used to connect units in input layer
and output layer. The number of hidden units can be set as a specific
percentage of the number of input units. In order to study impacts of the

number of hidden units, we increase the number of hidden units from
50% to 200% of the number of input units with an interval of 50%, and
evaluate performance of FNNRec. Table 16 show precisions, recalls and
F1-scores with different number of hidden units. Results show that there
is little variation among different numbers of hidden units. When the
number of hidden units is set as 100% of the number of input units, F1 −

score@3 and F1 − score@5 are slightly better than those of other
numbers of hidden units. Therefore, we set the number of hidden units

Table 11
Gains and Statistical Results for top-5 recommendation (%).

Project GainPrecision@5 % GainRecall@5 % GainF1− score@5 %

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-
epRec lRec epRec lRec epRec lRec

ceph 57.384 *** 13.03 *** 81.489 *** 12.831 *** 64.474*** 12.867 ***
tgstation 25*** 6.635 29.057 *** 5.031 *** 25.641 *** 6.192
elasticsearch 75.481 *** 35.688 *** 123.695 *** 34.217 *** 94.907 *** 35.37 ***
core 22.430 *** 11.966 16.286 *** 8.101 20.900 *** 11.243
symfony 32.601 *** 36.604 *** 24.928 *** 26.951 *** 30.914 *** 34.16 ***
rails 24.731 *** 15.423 *** 22.023 *** 13.588 *** 23.986 *** 15.047 ***
angular.js 21.071 *** 17.708 *** 7.650 6.057 16.298 *** 13.477 ***
RIOT 39.444 *** 15.935 *** 41.544 *** 15.269 *** 40.235 *** 15.953 ***
pandas 104.196 *** 48.223 *** 90.115 *** 40.407 *** 101.449 *** 46.316 ***
bitcoin 44.966 *** 15.508 ** 44.249 *** 15.473 *** 45.339 *** 15.878 **
Average 44.73 21.672 48.104 17.793 46.414 20.65

***p < 0.001, **p < 0.01, *p < 0.05

Table 12
P-values of variance analysis for FNNRec, TagDeepRec and TagMulRec.

Project Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

ceph <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

tgstation <0.05 <0.05 <0.05 <0.05 <0.05b <0.05
elasticsearch <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

core <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
symfony <0.05 <0.05 <0.05 <0.05b <0.05b <0.05b

rails <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

angular.js <0.05 <0.05 <0.05b <0.05b 0.34 <0.05b

RIOT <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

pandas <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

bitcoin <0.05b <0.05b <0.05b <0.05b <0.05b <0.05b

b Significant (corrected α < 0.05) with Holm-Bonferroni correction.

Table 13
Partial eta for top-3 and top-5 recommendation.

Project Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu- TagDe- TagMu-
epRec lRec epRec lRec epRec lRec epRec lRec epRec lRec epRec lRec

ceph 0.632 0.024 0.711 0.039 0.677 0.03 0.461 0.001 0.645 0.001 0.539 0.001
tgstation 0.1 0.006 0.201 0.001 0.156 0.004 0.141 0 0.203 0.004 0.163 0
elasticsearch 0.347 0.109 0.47 0.092 0.391 0.096 0.343 0.114 0.51 0.095 0.412 0.107
core 0.119 0.019 0.046 0.003 0.128 0.02 0.211 0.019 0.136 0.016 0.356 0.039
symfony 0.078 0.078 0.085 0.062 0.1 0.094 0.115 0.145 0.226 0.249 0.148 0.184
rails 0.674 0.438 0.74 0.435 0.725 0.481 0.39 0.148 0.457 0.142 0.451 0.18
angular.js 0.355 0.339 0.084 0.008 0.307 0.22 0.15 0.074 0.005 0 0.2 0.09
RIOT 0.577 0.216 0.526 0.128 0.567 0.181 0.624 0.257 0.666 0.215 0.665 0.282
pandas 0.803 0.65 0.538 0.284 0.732 0.546 0.855 0.658 0.597 0.323 0.825 0.637
bitcoin 0.929 0.342 0.917 0.354 0.931 0.376 0.85 0.246 0.89 0.448 0.874 0.316

Table 14
Precisions@K, Recalls@K and F1-scores@K (K=3,5) with different attributes.

Attribute Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

Title & description 0.4 0.658 0.462 0.287 0.75 0.388
File path 0.371 0.613 0.429 0.27 0.706 0.366
Contributor 0.29 0.474 0.333 0.216 0.572 0.293
All 0.447 0.726 0.514 0.317 0.816 0.427

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

11

as 100% of input units by default.
Since feed-forward neural network [11] needs a certain amount of

training datesets, we collect the first 2000 tagged pull requests as the
first training set. We want to explore the impact of minimal number of
tagged pull requests in the training set. We increase the value from 1000
to 3000 with an interval of 1000, and evaluate performance of FNNRec.
Table 17 shows precisions, recalls and F1-scores with different data
amount. Results show that as the minimal number of tagged pull re-
quests increases, precisions, recalls and F1-scores all increases. How-
ever, it costs longer time for projects to accumulate enough pull requests
for the first training set. In practice, project owners consider their
requirement and decide minimal number of tagged pull requests.

As described in Section 5.1, we collect the first 2000 tagged pull
requests as the first training set, and add new pull requests to the
training set in each round, which provide dynamic training sets. We
wonder whether the addition of new pull requests in training set im-
proves the performance of tag recommendation. We study the perfor-
mance of tag recommendation based on the fixed training set, namely

the first 2000 tagged pull requests in the first training set. The tag
recommendation based on fixed or dynamic training set has the same
testing dataset in each round. Table 18 shows the average performance
values across all rounds based on different training datasets. The tag
recommendation based on fixed training set achieves 0.428 and 0.359 in
terms of F1 − score@3 and F1 − score@5, which are worse than the tag

recommendation based on the dynamic training set. Therefore, the
addition of new pull requests to the training set improves tag
recommendation.

Interval time M is used to measure the time length in a testing set and
pull requests created before the testing set are used as training data. New
training data is added for updating the feed-forward neural network
every M months. Larger interval time M means lower update frequencies
of additional training data. Here, we investigate how the setting of in-
terval time affects tag recommendation. Table 19 shows the perfor-
mance of tag recommendation with different interval time M. When M is
set as 1, results show that FNNRec achieves the best performance.
Additional training data is added every 1 month, which may build a
better feed-forward neural network. As interval time M increases, the
performance of tag recommendation becomes worse. In this paper, in-
terval time M is set as 1 by default. In practice, project owners can
choose the suitable setting of interval time M for open source projects.

5.7. RQ4: Benefits of the feed-forward neural network

FNNRec uses the feed-forward neural network to recommend tags. In
this subsection, we investigate the performance of different machine
learning algorithms or deep learning algorithms. We use different al-
gorithms to build a recommendation model, including Extra Tree, KNN,

Table 15
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of epochs.

Epoch Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

10 0.342 0.579 0.4 0.237 0.648 0.326
20 0.406 0.677 0.472 0.289 0.76 0.392
30 0.436 0.712 0.502 0.31 0.803 0.418
40 0.447 0.726 0.514 0.317 0.816 0.427
50 0.448 0.724 0.514 0.318 0.814 0.427
60 0.401 0.655 0.462 0.288 0.749 0.389
70 0.399 0.651 0.459 0.286 0.744 0.387

Table 16
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of hidden units.

Hidden Unit Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

50% 0.443 0.721 0.509 0.314 0.81 0.423
100% 0.447 0.726 0.514 0.317 0.816 0.427
150% 0.447 0.724 0.513 0.317 0.814 0.426
200% 0.448 0.724 0.514 0.316 0.813 0.426

Table 17
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different number of tagged pull requests in the first training set.

Pull requests Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

1000 0.434 0.722 0.503 0.306 0.81 0.416
2000 0.447 0.726 0.514 0.317 0.816 0.427
3000 0.452 0.732 0.519 0.321 0.822 0.432

Table 18
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different training datasets.

Training set Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

Fixed training set 0.369 0.621 0.428 0.263 0.713 0.359
Dynamic training set 0.447 0.726 0.514 0.317 0.816 0.427

RQ3: FNNRec achieves the best precisions, recalls and F1-scores when the number of epochs is set as 40 or 50, and the number of hidden units is
set as 100% of the number of input units.

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

12

Random Forest, RNN and LSTM. Table 20 shows precisions, recalls and
F1-scores of different machine learning algorithms or deep learning al-
gorithms. We notice that FNNRec based on FNN performs better than
approaches based on other algorithms. Therefore, we choose the feed-
forward neural network to recommend tags.

6. Threats to validity

Threats to external validity relate to generalizability of our study.
First, our experimental results are limited to 10 popular projects. We
find that FNNRec achieves higher precision, Recall and F1 − score values
than TagDeepRec and TagMulRec, which are based on 10 projects in our
datasets. We cannot claim that the same results would be achieved in
other projects. Our future work will focus on evaluation in other projects
to better generalize results of our method. We will conduct broader
experiments to validate whether FNNRec performs well in tag recom-
mendation. Second, our empirical findings are based on open-source
software projects in GitHub, and it is unknown whether our results
can be generalized to other open-source software platforms. In the
future, we plan to study a similar set of research questions in other
platforms, and compare their results with our findings in GitHub.

Construct validity threats are related to the degree to which the
construct being studied is affected by experiment settings. First, we use
precision, recall and F1-score, which are also used by previous works to
evaluate effectiveness of tag recommendation approaches [5,8].
Therefore, we believe there is little threat to construct validity. Second,
we define some factors to quantitatively measure potential features
mentioned by respondents. There may be other measures. For example,
some respondents think that a recommendation tool should consider
pull requests’ code. In this work, we mainly analyze file paths of
modified code but do not analyze functions or classes in modified code.
In future work, we will try more factors to recommend tags for pull
requests, such as source code representation generated by AST-based
Neural Network [27]. Third, we send the survey to integrators
whoever set tags. This selection of integrators may favor developers with
a positive review toward tag recommendation, and may not reflect as
well those who find it useless. Furthermore, we provide three choices for
developers’ attitudes, including ’Useful’, ’Useless’ and ’Unsure’. A
choice on a Likert scale is better to get more of the range on attitudes.

Threats to conclusion validity is concerned with issues that affect the
ability to draw the correct conclusion. We conduct a survey to under-
stand tags in pull requests. Two authors manually read replies, build
categories, and classify responses into corresponding categories. The
category ’other’ may include unclear responses. For example, a response
about the usage of tags is “Labels are used to group PR, so related

contributor developer can review his/her related tagged PR.” Since this
response does not describe groups of pull requests, we do not know
specific usages of tags in detail. In future work, we may try to send
emails to some respondents and ask for more details about their
responses.

7. Related work

Related work to this study could be divided into three main cate-
gories, including issue tag, tag recommendation, and reviewer
recommendation.

Issue tag. Some researchers studied tags used in issues of GitHub [3,
28,29]. Cabot et al. explored the use of labels to categorize issues in
GitHub [3]. Their results revealed using labels favored the resolution of
issues. Bissyande et al. found that two most common tags in issues were
bug and feature [28]. Izquierdo et al. presented a visualization tool to
help managers and developers to better understand how issue labels
were employed in their open-source software projects [29].

In GitHub, developers write issue reports to identify bugs and
document feature requests [28]. Developers submit pull requests when
they want to merge code changes into main repositories [2]. In this
paper, we mainly study tags in pull requests, rather than issue.

Tag recommendation. Initial studies [5,6,8–10,30–32] designed
approaches to recommend tags in software information sites, such as
StackOverflow and Freecode. Xia et al. proposed a method called
TAGCOMBINE to automatically recommend tags for software objects [5,
33]. Wang et al. proposed a tag recommendation method called EnTa-
gRec which was based on historical tag assignments to software objects
[6]. Results showed that EnTagRec made better tag recommendation
than TAGCOMBINE [5,33]. Zhou et al. proposed a new software object
multi-classification method TagMulRec which recommended tags for
large-scale evolving software information sites [8]. Liu et al. proposed
an automated scalable tag recommendation method FastTagRec using

Table 19
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of FNNRec with different interval time.

Interval time Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

1 0.447 0.726 0.514 0.317 0.816 0.427
5 0.431 0.701 0.495 0.306 0.791 0.412
10 0.417 0.679 0.48 0.297 0.771 0.402
15 0.403 0.663 0.466 0.287 0.753 0.390

Table 20
Precisions@K, Recalls@K and F1-scores@K (K=3,5) of different algorithms.

Algorithm Precision@3 Recall@3 F1-score@3 Precision@5 Recall@5 F1-score@5

Extra Tree 0.402 0.659 0.464 0.289 0.752 0.391
KNN 0.317 0.533 0.369 0.228 0.614 0.311
Random Forest 0.401 0.659 0.463 0.288 0.751 0.389
RNN 0.389 0.360 0.366 0.284 0.434 0.336
LSTM 0.301 0.492 0.346 0.228 0.604 0.309
FNN 0.447 0.726 0.514 0.317 0.816 0.427

RQ4: The tag recommendation achieves the best performance based on feed-forward neural network.

J. Jiang et al.

Information and Software Technology 129 (2021) 106394

13

neural network-based classification [9]. Li et al. designed a new tag
recommendation approach TagDeepRec using attention-based Bi-LSTM
[10]. Experiment analysis showed that TagMulRec outperformed
EnTagRec [6], and TagDeepRec outperformed FastTagRec [10]. Exper-
iment results show that in the recommendation of pull requests’ tags,
our approach FNNRec achieves higher precisions, recalls and F1-scores
than TagDeepRec and TagMulRec.

Previous work [34] proposed a graph-based approach to assign tags
for repositories in GitHub. This work recommended tags to annotate
repositories, and helped developers to efficiently search repositories.
Different from this work, our approach FNNRec recommends tags for
pull requests in a project.

Reviewer recommendation. There have been a number of studies
on reviewer recommendation for pull requests in GitHub [21,35–37].
Jiang et al. used support vector machines to analyze integrators’ pre-
vious decisions, and designed an approach CoreDevRec to recommend
integrators for pull requests [21]. Yu et al. built comment networks to
predict appropriate reviewers of incoming pull requests in GitHub [36,
37].

Different from these works, we solve a different problem and design
an automatic approach to recommend tags, rather than reviewers.

8. Conclusion

In this paper, we first make a survey on the usage of pull requests in
GitHub. Survey results show that tags are useful for developers to track,
search or classify pull requests. However, it is difficult to choose right
tags and keep consistency of tags. 60.61% of respondents think that a tag
recommendation tool is useful. In order to help developers choose tags,
we propose an approach FNNRec. Based on titles, description, file paths
and contributors, FNNRec uses feed-forward neural networks to
compute probabilities and recommends tags. We evaluate effectiveness
of FNNRec on 10 projects containing 68,497 pull requests. We compare
it to approaches TagDeepRec [10] and TagMulRec [8]. The experi-
mental results show that on average across 10 projects, FNNRec out-
performs approaches TagDeepRec [10] and TagMulRec [8] by 62.985%
and 24.953% in terms of F1 − score@3, respectively. FNNRec achieves
better recommendation performance than TagDeepRec and TagMulRec.
Therefore, we believe that FNNRec is useful to find appropriate tags and
improve tag setting process in GitHub.

CRediT authorship contribution statement

Jing Jiang: Conceptualization, Methodology, Writing - original
draft, Writing - review & editing. Qiudi Wu: Software, Validation,
Investigation. Jin Cao: Software, Investigation. Xin Xia: Methodology,
Writing - review & editing. Li Zhang: Conceptualization, Writing - re-
view & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work is supported by the National Key Research and Develop-
ment Program of China No. 2018AAA0102304, the State Key Laboratory
of Software Development Environment under Grant No. SKLSDE-
2019ZX-05, Fundamental Research Funds for the Central Universities
under Grant No. YWF-20-BJ-J-1018 and the National Natural Science
Foundation of China under Grant No. 61732019.

References

[1] G. Gousios, A. Zaidman, M.-A. Storey, A. van Deursen, Work practices and
challenges in pull-based development: The integrator’s perspective. Proc. of ICSE,
2015, pp. 1–11.Florence, Italy

[2] G. Gousios, M.-A. Storey, A. Bacchelli, Work practices and challenges in pull-based
development: the contributor’s perspective. Proc. of ICSE, 2016, pp. 285–296.
Austin, USA

[3] J. Cabot, J.L.C. Izquierdo, V. Cosentino, B. Rolandi, Exploring the use of labels to
categorize issues in open-source software projects. Proc. of SANER, 2015,
pp. 550–554.

[4] I. Steinmache, I.S. Wiese, I. Polato, A.P. Chaves, M.A. Gerosa, M. Wessel, B.M. de
Souza, The power of bots: Understanding bots in oss projects. Proc. of CSCW, 2018,
pp. 1–19.New York, USA

[5] X. Xia, D. Lo, X. Wang, B. Zhou, Tag recommendation in software information sites.
Proc. of MSR, 2013, pp. 287–296.

[6] S. Wang, D. Lo, B. Vasilescu, A. Serebrenik, Entagrec: an enhanced tag
recommendation system for software information sites. Proc. of ICSME, 2014,
pp. 291–300.

[7] S. Wang, D. Lo, B. Vasilescu, A. Serebrenik, Entagrec++: an enhanced tag
recommendation system for software information sites, Empiric. Softw. Eng. 23
(2018) 800–832.

[8] P. Zhou, J. Liu, Z. Yang, G. Zhou, Scalable tag recommendation for software
information sites. Proc. of SANER, 2017, pp. 272–282.

[9] J. Liu, P. Zhou, Z. Yang, X. Liu, J. Grundy, Fasttagrec: fast tag recommendation for
software information sites, Automat. Softw. Eng. 25 (2018) 675–701.

[10] C. Li, L. Xu, M. Yan, J. He, Z. Zhang, Tagdeeprec: tag recommendation for software
information sites using attention-based bi-lstm. Proc. of KSEM, 2019, pp. 11–24.
Athens, Greece

[11] M.-L. Zhang, Z.-H. Zhou, Multi-label neural networks with applications to
functional genomics and text categorization, IEEE Trans. Knowl. Data Eng. 18 (10)
(2006) 1338–1351.

[12] J. Tsay, L. Dabbish, J. Herbsleb, Let’s talk about it: evaluating contributions
through discussion in github. Proc. of FSE, 2014, pp. 144–154.Hong Kong, China

[13] S. Yu, L. Xu, Y. Zhang, J. Wu, Nbsl: a supervised classification model of pull request
in github. Proc. of ICC, 2018, pp. 1–6.Kansas City, USA

[14] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and productivity
outcomes relating to continuous integration in github. Proc. of FSE, 2015.Bergamo,
Italy

[15] G. Gousios, M. Pinzger, A. van Deursen, An exploratory study of the pull-based
software development model. Proc. of ICSE, 2014, pp. 345–355.Hyderabad, India

[16] J. Cohen, Weighted chi square: an extension of the kappa method, Educ. Psychol.
Meas. 32 (1) (1972) 61–74.

[17] Y.A. Llave, T. Hagiwara, T. Sakiyama, Artificial neural network model for
prediction of cold spot temperature in retort sterilization of starch-based foods,
J. Food Eng. 109 (3) (2012) 553–560.

[18] J. Anvik, L. Hiew, G.C. Murphy, Who should fix this bug?. Proc. the 28th ICSE,
2006, pp. 361–370.Shanghai, China

[19] D. Matter, A. Kuhn, O. Nierstrasz, Assigning bug reports using a vocabulary-based
expertise model of developers. Proc. of MSR, Vancouver, Canada, 2009,
pp. 131–140.

[20] X. Xia, D. Lo, X. Wang, B. Zhou, Accurate developer recommendation for bug
resolution. Proc. of WCRE, Koblenz, Germany, 2013, pp. 72–81.

[21] J. Jiang, J.-H. He, X.-Y. Chen, Coredevrec: automatic core member
recommendation for contribution evaluation, J. Comput. Sci. Technol. 30 (5)
(2015) 998–1016.

[22] P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H. Iida, K. ichi
Matsumoto, Who should review my code? A file location-based code-reviewer
recommendation approach for modern code review. Proc. of SANER, Montreal,
Canada, 2015, pp. 141–150.

[23] Y. Zhang, S. Wang, G. Ji, P. Phillips, Fruit classification using computer vision and
feedforward neural network, J. Food Eng. 143 (2014) 167–177.

[24] S.F. Crone, N. Kourentzes, Feature selection for time series prediction–a combined
filter and wrapper approach for neural networks, Neurocomputing 73 (10–12)
(2010) 1923–1936.

[25] M.B. Zanjani, H. Kagdi, C. Bird, Automatically recommending peer reviewers in
modern code review, IEEE Trans. Softw. Eng. 42 (6) (2016) 530–543.

[26] Z. Liu, X. Xia, C. Treude, D. Lo, S. Li, Automatic generation of pull request
descriptions. Proc. of ASE, San Diego, USA, 2019, pp. 1–13.

[27] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, X. Liu, A novel neural source code
representation ased on abstract syntax tree. Proc. of ICSE, Montreal, Canada, 2019,
pp. 783–794.

[28] T.F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, Y.L. Traon, Got issues? who
cares about it? A large scale investigation of issue trackers from github. Proc. of
ISSRE, Washington DC, USA, 2013.

[29] J.L.C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, J. Cabot, Gila: Github label
analyzer. Proc. of SANER, 2015, pp. 479–483.

[30] T. Wang, H. Wang, G. Yin, C.X. Ling, X. Li, P. Zou, Tag recommendation for open
source software, Front. Comput. Sci. 8 (1) (2014) 69–82.

[31] J.M. Al-Kofahi, A. Tamrawi, T.T. Nguyen, H.A. Nguyen, T.N. Nguyen, Fuzzy set
approach for automatic tagging in evolving software. Proc. of ICSM, 2010,
pp. 1–10.

[32] F.M. Belem, J.M. Almeida, M.A. Goncalves, A survey on tag recommendation
methods, J. Assoc. Inf. Sci. Technol. 68 (4) (2017) 830–844.

[33] X.-Y. Wang, X. Xia, D. Lo, Tagcombine: recommending tags to contents in software
information sites, J. Comput. Sci. Technol. 30 (5) (2015) 1017–1035.

J. Jiang et al.

http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0033

Information and Software Technology 129 (2021) 106394

14

[34] X. Cai, J. Zhu, B. Shen, Y. Chen, Greta: graph-based tag assignment for github
repositories. Proc. of COMPSAC, 2016, pp. 63–72.Atlanta, USA

[35] J. Jiang, Y. Yang, J. He, X. Blanc, L. Zhang, Who should comment on this pull
request? Analyzing attributes for more accurate commenter recommendation in
pull-based development, Inf. Softw. Technol. 84 (2017) 48–62.

[36] Y. Yu, H. Wang, G. Yin, T. Wang, Reviewer recommendation for pull-requests in
github: what can we learn from code review and bug assignment? Inf. Softw.
Technol. 74 (2016) 204–218.

[37] Y. Yu, H. Wang, G. Yin, C. Ling, Reviewer recommender of pull-requests in github.
Proc. of ICSME, 2014, pp. 609–612.Victoria, Canada

J. Jiang et al.

http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30158-0/sbref0037

	Recommending tags for pull requests in GitHub
	1 Introduction
	2 Background and data collection
	2.1 The process of setting tags
	2.2 Data collection and statistics

	3 Survey on tags
	4 Tag recommendation approach
	4.1 Title and description (step 1)
	4.2 File path (step 2)
	4.3 Contributor (step 3)
	4.4 Feed-forward neural network (step 4)
	4.5 Recommendation phase (step 5 to step 9)

	5 Evaluation
	5.1 Evaluation procedure
	5.2 Research questions
	5.3 Evaluation metrics
	5.4 RQ1: Approach comparison
	5.5 RQ2: Benefits of attribute combination
	5.6 RQ3: Parameter settings
	5.7 RQ4: Benefits of the feed-forward neural network

	6 Threats to validity
	7 Related work
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

