
Information and Software Technology 114 (2019) 204–216 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Improving defect prediction with deep forest 

Tianchi Zhou 

a , Xiaobing Sun 

a , d , ∗ , Xin Xia 

b , Bin Li a , Xiang Chen 

c 

a School of Information Engineering, Yangzhou University, Yangzhou, China 
b Faculty of Information Technology, Monash University, Melbourne, Australia 
c School of Software, Northwestern Polytechnical University, Xi’an, China 
d State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China 

a r t i c l e i n f o 

Keywords: 

Software defect prediction 

Deep forest 

Cascade strategy 

Empirical evaluation 

a b s t r a c t 

Context: Software defect prediction is important to ensure the quality of software. Nowadays, many supervised 

learning techniques have been applied to identify defective instances ( e.g. , methods, classes, and modules). 

Objective: However, the performance of these supervised learning techniques are still far from satisfactory, and it 

will be important to design more advanced techniques to improve the performance of defect prediction models. 

Method: We propose a new deep forest model to build the defect prediction model ( DPDF ). This model can identify 

more important defect features by using a new cascade strategy, which transforms random forest classifiers into 

a layer-by-layer structure. This design takes full advantage of ensemble learning and deep learning. 

Results: We evaluate our approach on 25 open source projects from four public datasets ( i.e. , NASA, PROMISE, 

AEEEM and Relink). Experimental results show that our approach increases AUC value by 5% compared with the 

best traditional machine learning algorithms. 

Conclusion: The deep strategy in DPDF is effective for software defect prediction. 

1

 

a  

t  

l  

A  

a  

b  

c  

d  

d
 

d  

[  

t  

N  

(  

m
 

(  

h  

d  

i  

t  

d  

b  

a  

p  

p  

h  

o  

n
 

f  

a  

r  

t  

n  

i  

t  

p  

l  

s  

t  

c  

i  

t  

h

R

A

0

. Introduction 

Due to the complexity of modern software development, defects
re unavoidable. Software projects that contain defects will have unin-
ended consequences when they are deployed, which can result in huge
osses to enterprises or even threaten the safety of people’s lives [1–3] .
t present, more than 80% of the cost during software development
nd maintenance is used in fixing defects [4–7] . If these defects can
e detected in the software development cycle in the early phase, the
ost would be greatly reduced. Therefore, many studies try to build pre-
ictive models for defect prediction to help developers detect possible
efects in advance. 

Unfortunately, there are still some problems for existing defect pre-
iction models, such as the unsatisfactory performance of classifiers
8] . In order to solve these problems, a number of machine learning
echniques have been proposed to predict software defects [9–15] , e.g.,
aive Bayes (NB) [16] , Logistic Regression (LR) [17] , Random Forest

RF) [18] and Support Vector Machine (SVM) [19] . However, these
odels are still far from satisfactory [20,21] . 

Recently, as deep learning has achieved good results in other areas
 e.g. , image processing [22] , speech recognition [23] ), some prior work
as attempted to make use of deep learning algorithms on defect pre-
iction [24,25] and these algorithms have been proved to be promising
n identifying defects. However, some problems may limit the applica-
∗ Corresponding author. 

E-mail address: xbsun@yzu.edu.cn (X. Sun). 

ttps://doi.org/10.1016/j.infsof.2019.07.003 

eceived 16 July 2018; Received in revised form 5 June 2019; Accepted 5 July 2019

vailable online 5 July 2019 

950-5849/© 2019 Elsevier B.V. All rights reserved. 
ions of deep neural networks in software defect tasks. For example,
eep neural networks need a huge amount of data to train the model,
ut there are not sufficient defective data in many software systems
t present. Also, it is well known that the performance of these defect
rediction models largely depends on the precise tuning of the hyper-
arameters [26] , and deep learning models normally have a number of
yper-parameters which are hard to determine. Moreover, the structure
f deep neural networks has detached from human physiology and the
ear infinite combination makes it hard to recognize and explain. 

Considering the above difficulties, recently, a new deep learning
ramework — deep forest model, called gcForest, has been proposed
s an alternative of deep neural networks [26] . Similar to the deep neu-
al networks, gcForest has multi-layer structure, and each layer contains
wo random forests and two completely-random tree forests instead of
eurons in deep neural networks. What’s more, gcForest can achieve sat-
sfactory results in many tasks without too much tuning skills. However,
wo drawbacks of gcForest may limit its application on software defect
rediction. First, the number of features extracted for defect prediction is
imited (e.g., fewer than 40 in our datasets), but gcForest’s multi-grained
canning strategy will be prone to generate many high-dimensional fea-
ures which may not have special significance. The other is that the cas-
ade multi-layer ensemble of random forests encourages the diversity of
nput but does not take into account differences of input, especially in
he small-scale datasets, which makes gcForest sensitive and unrobust.
 

https://doi.org/10.1016/j.infsof.2019.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.07.003&domain=pdf
mailto:xbsun@yzu.edu.cn
https://doi.org/10.1016/j.infsof.2019.07.003


T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Fig. 1. The process of software defect prediction. 

T  

w
 

m  

e  

e  

c  

f  

m  

t  

fi  

b  

o  

i  

e
 

f  

P  

s  

p  

b  

a  

p  

c

 

 

 

 

 

 

 

 

 

 

I  

p  

o  

e  

r  

p

2

 

f  

d

2

 

fi  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

w  

t  

p

2

 

a  

w  

f  

f  

c  

d  

w  

m  

t  

t  

o  

m  

t  

e  

w  

f  

g

herefore, to take advantage of gcForest, it is important to modify it to
ork better for the software defect prediction task. 

In this paper, inspired by gcForest, we propose a new deep forest
odel by adopting a new cascade strategy, i.e., we adopt the idea of

nsemble learning and deep learning. In detail, we transform the for-
st classifiers into a layer-by-layer structure and combine random forest
lassifiers in each layer, namely the defect prediction based on deep
orest ( DPDF ), to perform the task of software defect classification. The
ain idea of our DPDF model is to use layer-by-layer training method to

ake the advantage of deep learning and combine random forest classi-
ers to encourage diversity and differences of input and increase the ro-
ustness of the model to identify more important defect features. More-
ver, during the prediction process, we use the z -score [27] to standard-
ze the feature value in the same magnitude that can be analyzed and
valuated synthetically. 

In order to evaluate the effectiveness of our approach, we use
our widely-used public software defect prediction datasets ( i.e. , NASA,
ROMISE, AEEEM and Relink) which include 25 projects to conduct our
tudy. We compare our approach with six baselines, i.e. , Deeper, the ap-
roach proposed by Yang et al. [24] ; gcForest, the approach proposed
y Zhou et al. [26] ; random forest, one of the basic structure of our
pproach and one of the state-of-the-art defect prediction approaches
roposed by Ghotra et al. [21] ; and three classic classifiers. Our major
ontributions are presented as follows: 

• To our best knowledge, we are the first to consider building a deep
forest model to predict software defects. Empirical results show that
our approach achieves the best results on most of the projects, com-
pared with the state-of-the-art supervised learning techniques. More-
over, our DPDF improves the AUC value by 8% on average compared
with a model with deep learning method (DBN). 

• We show that it is effective to apply a cascade strategy for defect
prediction. Empirical results show that our approach gets better per-
formance than the basic structure of our model on the NASA and
PROMISE projects, which improves the AUC value by 7% on aver-
age compared with the model without the cascade strategy. 

This paper is organized as follows: Section 2 shows the background.
n Section 3 , we describe details of using our DPDF model for defect
rediction. The empirical setup is shown in Section 4 . Section 5 discusses
ur empirical results. We discuss the parameters of the model, other
valuation measures and threats to validity in Section 6 . We present the
elated work in Section 7 . Finally, we conclude our study and discuss
ossible improvements for future work in Section 8 . 

. Background 

In this section, we mainly present the background of software de-
ect prediction techniques and the deep forest used in our approach for
efect prediction. 
205 
.1. Software defect prediction 

Software defect prediction is an important research problem in the
eld of software engineering. Fig. 1 shows the process of software defect
rediction, including four steps: 

1. Extract program modules/files/classes by mining software historical
repositories, and the program modules/files/classes are then labeled
as defect-proneness or not. 

2. Extract features that are related to software defects by analyzing soft-
ware code or the development process. Then, these features (e.g.,
Halstead features [28] , McCabe features [29] , and CK features [30] )
are used to measure the defect-proneness of each program mod-
ule/file/class. In Fig. 1 , we use gray to represent the non defect-
proneness (NFP) module while using red to represent the defect-
proneness (FP) module. 

3. Construct defect prediction model by training the instances with the
corresponding features. In this step, machine learning algorithms
(e.g., Naive Bayes [31] , Support vector machine [32] , Random forest
[33] , Logistic regression [17] ) are widely used. 

4. Use the defect prediction model to predict the unlabeled program
modules/files/classes, i.e., classify them as either defective or not. 

Software defect prediction can be used for within-project defect
rediction (WPDP) and cross-project defect prediction (CPDP). In our
ork, we focus on the within-project defect prediction, which means

hat the training datasets and testing datasets belong to the same
roject. 

.2. Deep forest 

Recently, a deep forest model called gcForest has been proposed as
n alternative to deep neural networks [26] . Similar to deep neural net-
orks, gcForest has multi-layer structure and each layer contains many

orests. The basic structure of a forest is shown in Fig. 2 . The input is a
eature vector X , and the output is the class vector of X based on the de-
ision tree judgment in the forest. In Fig. 2 , the red path represents the
ecision tree’s decision-making process. Inspired by the deep neural net-
ork, gcForest consists of two ensemble components. The first one is the
ulti-grained scanning operation, which adopts sliding window struc-

ure to scan local context from high-dimensionality to learn represen-
ations of input data according to different random forests. The second
ne is the cascade multi-layer ensemble of random forests, which learns
ore discriminated representations under supervisor of input represen-

ations at each layer, thus gives more accurate predictions according to
nsemble of random forests. Unlike traditional deep neural networks,
hich need a large amount of computational resources to train, deep

orest is much easier to train. Moreover, the deep forest can achieve
ood results in many tasks with the default parameters [26] . 



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Fig. 2. The basic structure of a forest. 

 

a

 

 

 

 

 

 

 

 

 

t  

i  

e  

a  

o  

d  

r  

i  

f

3

 

b  

F

 

 

 

 

 

 

 

3

 

t  

i  

(  

a  

u  

d  

i  

M  

a  

u  

c  

m
 

t  

z  

i  

b  

t

3

 

d  

o  

r
[  

z
 

a  

w  

o

𝑋

w  

X

3

 

f  

l  

f  

d  

i  

t
 

t  

p  

n  

t  

r  

m  

p  

d  

1 We also tried to use the min-max normalization for 25 data sets on the Naive 

Bayes method and find that the effect of AUC is consistent. 
Compared with the random forest, the main differences of gcForest
re as follows: 

• GcForest is a layer-by-layer structure and each layer is an ensemble
of decision tree forests, where each level of cascade receives fea-
ture information processed by its preceding level, and outputs its
processing result to the next level [26] . So gcForest is an ensemble
of ensembles. Meanwhile, random forest is an ensemble of decision
trees. 

• GcForest has a strong ability to handle features by using multi-
grained scanning [26] , which can generate some new features.
Meanwhile, random forest is only processed for the original input
features. 

For software defect prediction, there are some problems in construc-
ion of the gcForest. As we know, the source code is special and it
s a collection of abstract logical symbols. So it is usually difficult to
xtract the features of code and the features extracted from metrics
re usually with low dimension. However, gcForest produces a series
f high-dimensional features by multi-grained scanning. These high-
imensional features may not have a specific meaning, which is likely to
educe the classification performance. In our work, to address the lim-
tation of deep forest for defect prediction, we propose a new cascade
orest structure to fit for the software defect prediction task. 

. Proposed approach 

In this section, we elaborate our proposed DPDF , a tree network
ased software defect prediction using the cascade forest structure. As
ig. 3 shows, the whole process of DPDF is illustrated as follows: 

1. We use the z -score to standardize each feature in our defect datasets
by referring to the work of Zhang et al. [34] . 

2. We use the cascade strategy on random forest classifier. This means
that we use the cascade forest structure to perform representation
learning by processing the raw defect features through the layer-by-
layer structure, which makes our defect prediction model go deep.
Some studies suppose that traditional machine learning may exhibit
great potentials if being able to go deep [26] . At the last layer, our
DPDF outputs the results of defect prediction. 

.1. Process of defect prediction 

Fig. 3 shows the overall procedure about the DPDF for defect predic-
ion. For example, in one project, there are N defect features. So the orig-
nal input has N defect features. There are n instances and two classes
FP class and NFP class) in the training datasets. For a cascade forest,
 N -dimensional feature vector consisting of N defect features will be
sed to train the 1st-grade of the cascade forest. After that, each N -
imensional feature vector is converted to a 2-dimensional class vector
n each forest. Then, all of the 2-dimensional class vectors (there are
 forests in each layer) and the original N -dimensional feature vector
206 
re combined with a ( N + 2 M )-dimensional feature vector, which will be
sed to train the next layer of cascade forest and the propagation of
ascade is automatically terminated once there is no significant perfor-
ance improvement. 

Generally, given a defective instance, the first step is to measure
he defective instance by using the software metric. Next, we use the
 -score to standardize the metric. After that, the feature representation
s processed by the cascade forests, and the final prediction is obtained
y averaging the M 2-dimensional vectors, and the maximum value of
he final prediction is chosen as the prediction result. 

.2. Standardize defect prediction datasets 

For software defect prediction, standardizing the defect prediction
atasets is necessary because the software features often have different
rders of magnitude. In this paper, we also normalize the data, mainly
eferring to the work of Zhang et al., and adopting the z -score method 1 

34] . The z -score can normalize the feature to obtain a mean value of
ero and a variance of one. 

DPDF uses the z -score to standard each feature. We use X j to denote
 vector of values of the j th feature in a project. Then X j = [ a 1 j , ⋅⋅⋅, a nj ] 

T ,
here n means the number of instances in the project, and a ij is the value
f the j th feature of the i th instance. In z -score, the X j is processed as 

̃
 𝑗 = 

𝑋 𝑗 − �̄� 𝑗 

𝑆 𝑗 

here �̄� 𝑗 is the average value of X j and S j is the standard deviation of
 j . 

.3. The cascade structure 

Representation learning can help extract useful information from
eatures when building predictors, which mostly relies on the layer-by-
ayer processing of raw features [35] . Deep forest consists of the cascade
orest structure which is used to replace the representation learning in
eep neural networks [26] . In our work, the proposed cascade strategy
s used to combine random forest classifiers into a layer-by-layer struc-
ure. 

Our cascade forest structure uses the decision tree to learn defect fea-
ures instead of learning hidden variables based on the complex forward-
ropagation algorithm and back-propagation algorithm in deep neural
etwork. The layer-by-layer cascade forest structure enables the tradi-
ional forest to effectively go deep. Moreover, each layer contains four
andom forests, which can increase the diversity of polymerization and
odel robustness by taking full advantage of ensemble learning. The
arameters of these forests use default values except the number of
ecision trees. Users can find random forests’ default settings on the



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Fig. 3. The overall architecture of our proposed approach. 

s  

c  

p  

f  

n  

f  

i  

n  

r  

l  

f  

 

s  

c  

l  

i  

b  

i  

n

4

 

w  

d

4

 

f  

o  

d  

u
 

g  

c  

d  

u  

a  

i  

o  

o  

p  

f
 

c  

a  

p  

f  

C  
cikit-learn official website. 2 The only parameter the user needs to de-
ide is the number of decision trees in each forest. We will discuss this
arameter in the later section of this paper. In our model, each random
orest will randomly select 

√
𝑛 number of features as candidate ( n is the

umber of input features) and choose the one with the best gini value
or split. The estimated class distribution forms a class vector, which
s then concatenated with the original feature vector for input to the
ext level. For example, suppose there are two classes, then each of the
andom forest will produce a two-dimensional class vector. So, the next
evel will receive 8 ( = 2 × 4) augmented features. The new generated
eatures and the original features will feed to all forests in the next layer.

Fig. 3 shows the structure of our cascade forest model. Given an in-
tance, each forest can produce an estimation of class distribution by
ounting the percentage of different classes of training examples at the
eaf node. The performance of the whole cascade is estimated on the test-
ng set after expanding a new layer, and the propagation of cascade will
e automatically terminated once there is no significant performance
mprovement. Finally, the cascade forests can be used to predict the
ew defective instances. 

. Experiment setup 

In this section, we describe the details of setup in our empirical study,
hich is used to evaluate the effectiveness of our approach for software
efect prediction. 
2 http://scikit-learn.org/stable/ . 

207 
.1. Datasets 

In order to evaluate the effectiveness of our approach, we choose
our open datasets in NASA, PROMISE, AEEEM and Relink which are
ften used to evaluate defect prediction [21,36,37] . We obtain these
atasets in tera-PROMISE. 3 A brief description of these datasets and the
sed software metrics on each dataset are as follows: 

The NASA dataset was collected by the NASA Metrics Data Pro-
ram. In 2013, Shepperd et al. have cleaned up the repeated and in-
onsistent data in NASA defect prediction datasets [38] . This improved
atasets can be achieved in the PROMISE repository. So in our study, we
sed the cleaned NASA dataset. In the NASA datasets, they use Halstead
nd McCabe metrics for each instance. There are nearly 40 features,
ncluding the number of unique operators (MU1), number of unique
perands (MU2), total occurrences of operators (N1), total occurrences
f operands (N2), Lines of Code (LOC), etc. In the NASA project, each
roject uses different features. The specific number of features can be
ound in Table 1 . 

The PROMISE dataset was developed by Jureczko et al. [39] , which
ontains various open source Java projects. Like the NASA dataset, we
lso obtain the dataset from tera-PROMISE Home. In PROMISE, the
rojects have different metrics, including Lines of Code (LOC), Response
or a Class (RFC), Average McCabe, Average Method Complexity (AMC),
oupling Between Object classes (CBO), etc. In PROMISE project, all
3 http://openscience.us/repo/defect/ . 

http://scikit-learn.org/stable/
http://openscience.us/repo/defect/


T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 1 

Statistics of the datasets. 

Dataset Project Instances Defects % of Defects Features 

NASA JM1 7782 1672 21.5% 21 

MC1 1988 46 2.3% 38 

MC2 125 44 35.2% 39 

MW1 253 27 10.7% 37 

PC1 705 61 8.7% 37 

PC2 745 16 2.1% 36 

PC3 1077 134 12.4% 37 

PC4 1287 177 13.8% 37 

PC5 1711 471 27.5% 38 

PROMISE Xalan v2.6 885 411 46.4% 20 

Ant v1.7 745 166 22.3% 20 

Camel v1.6 965 188 19.5% 20 

Jedit v4.0 306 75 24.5% 20 

Log4j v1.0 135 34 25.2% 20 

Lucene v2.4 340 203 59.7% 20 

Poi v3.0 442 281 63.6% 20 

Tomcat v6.0 858 77 9.0% 20 

AEEEM LC 399 39 9.3% 61 

JDT 997 206 20.7% 61 

PDE 1492 209 14.0% 61 

EQ 325 129 39.6% 61 

ML 1862 245 13.2% 61 

Relink Apache 194 98 50.5% 26 

Safe 56 22 39.3% 26 

Zxing 399 118 29.6% 26 

p  

i
 

c  

d  

M  

L  

m
 

h  

d
 

b  

t  

w  

T  

t  

s  

i  

o  

i

4

 

l  

A  

t  

i  

t  

f  

y

 

s  

d  

m  

m  

p  

r  

s  

c  

c  

s  

t  

u  

d  

t  

t  

m  

d  

b  

U  

t  

o  

s  

d  

m  

t
 

a  

d  

m  

b  

i  

f  

l  

p  

p  

c

4

 

f  

i  

B  

S  

m  

H  

c  

c  

d  

b  

p  

t  

l  

[  

a  

n  

m

4

 

c  

o  

i  

t  

t  

f

 

RQ3 : How much time does it take for DPDF to run? 
rojects use the same features, and the number of features can be found
n Table 1 . 

The AEEEM dataset was collected by D’Ambros et al. [40] , which
omes from Eclipse and Apache. In AEEEM, each program has 61
ifferent metrics, which combines many classic metrics. Specifically,
OSER (file-level change metrics), CK, OO (object-oriented metrics),

OC, HCM(history of complexity metric), LDHH (source code entropy
etric) and other metrics are all in AEEEM. 

The Relink dataset was developed by Wu et al. [41] . Relink dataset
as 26 complexity metrics, which have been widely used in software
efect prediction. 

Finally, in order to ensure the diversity of the used data, the num-
er of project instances ranges from 56 to 7782. Moreover, in order to
est our model performance on unbalanced datasets, we choose projects
ith different proportions of defects, ranging from 2.1% to 63.6%.
able 1 shows the statistics about the datasets. The second column shows
hese 25 projects in the datasets. The instances and their defective in-
tances are shown in the third and fourth column, respectively, and an
nstance is a source code file. The fifth column represents the percentage
f defective instances. The number of features in each project is shown
n the last column. 

.2. Evaluation measure 

There are lots of evaluation measures used to evaluate machine
earning classifiers, such as precision, recall, accuracy, f -measure and
rea Under the receiver operating characteristic Curve (AUC). Among

hese measures, AUC is widely used in many software engineering stud-
es [20,42,43] . AUC is the area under the receiver operating charac-
eristic curve. This curve is plotted in a two-dimensional space with
alse positive rate as x -coordinate and the true positive rate (recall) as
 -coordinate. 

There are three reasons why we chose AUC as our performance mea-
ure. (1) Unlike other measures which need a cut-off value on the pre-
icted probability of defect proneness, AUC is a threshold independent
easure [44] . The threshold indicates a likelihood threshold for deter-
ining whether the instance is classified as positive or negative. Other
erformance measures ( e.g. , precision, recall, accuracy, and f -measure)
ely on the selected threshold and are usually set as 0.5. However, for
208 
ome cases ( e.g. , the class imbalance case), choosing a threshold is a
hallenging task, which may impact the performance evaluation. AUC
an effectively avoid the threshold setting problem because AUC mea-
ures the classification performance across all thresholds (i.e., from 0
o 1). In recent work, Tantithamthavorn and Hassan recommend to
se threshold-independent measures (e.g., AUC) to replace threshold-
ependent measures (e.g., f -measure) because f -measure is sensitive to
he selected threshold [45] . (2) AUC is more robust towards class dis-
ribution than other measures ( e.g. , precision, recall, accuracy, and f -
easure) [20] . Other performance measures are highly affected by class
istribution. This might make it difficult to fairly compare two models
y using precision, recall, accuracy and f -measure in these cases [42,46] .
nlike other measures, the AUC measure is less insensitive to class dis-

ribution. (3) What’s more, AUC has a statistical interpretation [20] . In
ur work, the AUC is equivalent to the probability that a randomly cho-
en defect-prone instance is ranked higher than a randomly chosen non
efect-prone instance. Since our motivation is to improve the perfor-
ance of software defect prediction, the AUC is an appropriate measure

o evaluate the performance of our approach and baseline methods. 
As mentioned above, the AUC is equivalent to the probability that

 randomly chosen defect-prone instance is ranked higher than a ran-
omly chosen non defect-prone instance [47] . A higher AUC value
eans that the performance of the machine learning classifier is much

etter. If the AUC value is equal to 0.5, this means that the classifier
s the same as random guess. In general, Gorunescu [48] suggests the
ollowing guideline to interpret the AUC value: 0.90 to 1.00 as an excel-
ent prediction, 0.80 to 0.90 as a good prediction, 0.70 to 0.80 as a fair
rediction, 0.60 to 0.70 as a poor prediction, and 0.50 to 0.60 as a failed
rediction. So when the AUC value is under 0.5, the performance of the
lassifier is worse than the random guess, which is a failed prediction. 

.3. Baseline methods 

To compare the effectiveness of our DPDF with other methods for de-
ect prediction, we compare our classifiers with six baseline classifiers,
.e. , gcForest, Deep belief networks(DBN), random forest(RF), naive
ayes (NB), logistic regression(LR) and Support Vector Machine(SVM).
ome of them have been commonly applied to build defect prediction
odels [21,24,31–33,49–51] . In a previous empirical study, Ghotra and
assan have proved that RF is a state-of-the-art defect classifiers ac-
ording to the double SCOTT-KNOTT test compared with 31 different
lassifiers on the clean NASA datasets [21] . Moreover, for defect pre-
iction, Yang et al. have proved that deep learning method named deep
elief networks(DBN) can achieve strong performance [24] . When im-
lementing DBN, we use the same network structure and parameter set-
ings as in [24] . About other classical classifiers, these classifiers are se-
ected from existing work, which were widely used for defect prediction
31–33,49–51] . In addition, the original deep forest called gcForest will
lso be used to compare with our method in order to test the effective-
ess of our method based on the gcForest. What’s more, all baseline
ethods use z -score to process the original data. 

.4. Research questions 

In software defect prediction, the proposed techniques mainly fo-
used on the performance and stability of the classifier. In this paper,
ur method uses the cascade strategy on random forest. Thus, we are
nterested in whether our prediction model is better than the basic struc-
ure of our model (Random Forest). What’s more, the training speed of
he model should also be used as a measure. Hence, we focus on the
ollowing three research questions: 

• RQ1 : How does our DPDF perform in within-project defect predic-
tion? 

• RQ2 : What are the benefits of cascade strategy? 
•



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

4

 

5  

i
 

e  

t  

o  

c  

d  

[  

t  

(  

a  

e  

s  

o  

t
 

i  

b  

r  

c
 

2  

r  

t  

v  

t
 

a  

r  

i  

t  

c  

p  

B  

S  

w  

l  

o  

“  

v
 

e  

e  

b  

d  

a  

m  

R  

l  

(  

w

5

 

p

5

5

 

m  

Fig. 4. The boxplots of AUC values of all classifiers. 

f  

d  

p
 

f  

O  

m  

f  

[
 

t  

t  

l  

D  

(
 

i  

p
 

e  

s
 

p  

t  

t  

m  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

n  

i

.5. Setup 

Inspired by gcForest, we set four forests ( 𝑀 = 4 ) in each layer and
00 decision trees in each forest. We will also discuss parameter settings
n Section 5 . 

In RQ1, we evaluate the performance of all defect prediction mod-
ls. It is necessary to divide the datasets into two parts. One part is used
o train a model and the other one is applied to test the correctness
f the model. To create the training and testing datasets, we apply a
ross-validation way called two-fold cross-validation (i.e., a 50:50 ran-
om split), which has been widely used in the defect prediction task
34,42,52] . In the process of a two-fold cross-validation, the first step is
o use the first half dataset ( A ) as training set and the other half dataset
 B ) as testing set. Then, the two sets are conversed, i.e. , the B dataset
s training set while the other half A dataset as testing set. In order to
nsure the reliability of our experimental results, we repeat the random
plits 100 times, which means that there are a total of 200 assessments
n each model. Finally, the average AUC value is calculated to evaluate
he performance of each model. 

In RQ2, we evaluate the effect of deep strategy on defect prediction
n NASA and PROMISE. Our DPDF is a layer-by-layer structure by com-
ining random forests. Hence, we only need to compare our DPDF with
andom forest classifier. In this experiment, we still use the 100 two-fold
ross-validation method as mentioned in RQ1. 

In RQ3, to obtain the running time, we use Intel Xeon CPU E5645 @
.40GHz to train our model, which contains 24 logical CPU cores. Each
unning time includes the time taken for data preprocessing, classifier
raining and testing. For each dataset, we use the 10 two-fold cross-
alidation method to collect the time and then average these time as
he running time. 

In our study, we conducted a non-parametric Mann–Whitney U test
t a confidence level of 95% to statistically analyze the defect prediction
esults. Mann–Whitney U test is a non-parametric statistical method that
t makes no assumptions about the distribution of the data. This statistic
est has been widely used in defect prediction researches [15,53,54] be-
ause Mann–Whitney U test does not demand that the two compared
opulations are of the same size and it can avoid the needs of the
onferroni-Dunn test to offset the results of multiple comparisons [55] .
o we also choose this test to evaluate all results. Then, we report the
in/tie/loss (w/t/l) results of our approach compared with each base-

ine. “Win ” means that the performance of our method is better than
ther method at a confidence level of 95%, meanwhile, “tie ” means
equal ”, and otherwise “lose ”. This report is also widely used in pre-
ious studies [3,56–61] . 

In addition, we also used Cliffs delta ( 𝛿) to check whether the differ-
nces between two methods are substantial, which is a nonparametric
ffect size test [62] . To measure the degree of differences in AUC results
etween our approach and baselines, it is necessary to calculate Cliffs
elta. The range of Cliffs delta is [ −1 , 1], where −1 or 1 means that
ll values in one method are smaller or larger than those of the other
ethod, and 0 means that the measure in the two methods is similar. As
omano et al. suggested [62] , the magnitude of the effect size is as fol-

ows: negligible (N, | 𝛿| < 0.147), small (S, 0.147 ≤ | 𝛿| < 0.33), medium

M, 0.33 ≤ | 𝛿| < 0.474) and large (L, | 𝛿| ≥ 0.474). This test has been
idely used in defect prediction studies [24,56,63–65] . 

. Result analysis 

In this section, we present the empirical results to answer the pro-
osed three research questions. 

.1. RQ1: effectiveness of the DPDF 

.1.1. Comparative 

To the best of our knowledge, we are the first to use the deep forest
odel to predict software defects. Therefore, we first examine the per-
209 
ormance of our DPDF for defect prediction. Since the four datasets use
ifferent metrics, we evaluate all defect prediction classifiers on each
roject individually, as shown in Fig. 4 . 

As shown in Table 2 , For NASA datasets , our defect prediction deep
orest model ( DPDF ) is better than other approaches in all projects.
ur DPDF improves the AUC value by 8% over the latest deep forest
odel(gcForest) on PC1 . What’s more, our DPDF obtains 9% better per-

ormance than the state-of-the-art classifier (RF) suggested by Ghotra
21] on the NASA dataset. 

For PORMISE datasets , as Table 2 shows, our model also achieves
he best prediction results in all projects. In detail, our method improves
he AUC value by 29% over the defect prediction model using deep
earning proposed by Yang [24] on the Xalan v2.4 project. What’s more,
PDF obtains 6% better performance than the best traditional classifier

RF) on the PROMISE dataset. 
For AEEEM datasets , our model also achieves the best prediction

n all projects. Specifically for ML projects, our model has improved
erformance by 18% compared to other deep learning methods (DBN). 

For Relink datasets , our model also performs well overall. How-
ver, in some projects with few defect instances ( e.g. , safe), our method
till has some shortcomings. 

On average, DPDF improves the AUC value by 5% on average com-
ared with the best traditional machine learning algorithms (RF) for all
he 25 projects from four datasets. Moreover, it is worth mentioning
hat our DPDF has achieved better results than the original deep forest
odel (gcForest) and deep learning model (DBN) in almost all experi-
ental projects. 

The reasons that DPDF achieves better results are as follows: 

1. Compared with traditional machine learning methods : As shown in
Fig. 4 and Table 2 , these traditional machine learning classifiers (i.e.,
Naive Bayes, Logistic Regression, Support Vector Machines and Ran-
dom Forest) have achieved similar prediction results in the selected
25 projects. This is because that traditional machine learning classi-
fiers use defect features directly. Different from these methods, our
DPDF can automatically learn more important defect features due to
the proposed cascade structure. 

2. Compared with original deep forest methods : From Fig. 4 and Table 2 ,
the performance of gcForest is better than traditional defect
prediction methods. However, software defect features are low-
dimensional, and gcForest’s multi-grained scanning generates many
irrelevant high-dimensional features that may interfere with subse-
quent training. Different from gcForest, our DPDF gives up multi-
grained scanning and builds a new layer-by-layer structure, which
can identify more important defect features effectively. 

.1.2. Statistical significance test 

The last second row in Table 2 shows the results of statistical sig-
ificance test. We can notice that DPDF can statistically significantly
mprove the performance of baselines in most projects. 



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 2 

The AUC results of all classifiers. 

Dataset Project DPDF gcForest DBN NB LR RF SVM 

NASA JW1 0.69 0.68 0.64 0.64 0.67 0.65 0.61 

MC1 0.79 0.75 0.74 0.65 0.63 0.72 0.68 

MC2 0.72 0.64 0.71 0.66 0.66 0.67 0.67 

MW1 0.75 0.68 0.74 0.7 0.48 0.65 0.67 

PC1 0.87 0.79 0.74 0.68 0.76 0.79 0.79 

PC2 0.83 0.73 0.79 0.68 0.55 0.58 0.66 

PC3 0.82 0.78 0.73 0.75 0.81 0.76 0.73 

PC4 0.92 0.87 0.68 0.72 0.9 0.87 0.88 

PC5 0.77 0.74 0.66 0.71 0.72 0.74 0.71 

PROMISE Xalan v2.6 0.86 0.82 0.57 0.78 0.8 0.83 0.81 

Ant v1.7 0.82 0.79 0.79 0.78 0.79 0.80 0.78 

Camel v1.6 0.72 0.63 0.63 0.66 0.67 0.68 0.65 

Jedit v4.0 0.82 0.8 0.75 0.76 0.72 0.77 0.77 

Log4j v1.0 0.87 0.8 0.83 0.77 0.72 0.74 0.74 

Lucene v2.4 0.79 0.72 0.75 0.71 0.76 0.73 0.75 

Poi v3.0 0.88 0.85 0.81 0.8 0.79 0.86 0.81 

Tomcat v6.0 0.89 0.84 0.82 0.77 0.78 0.77 0.73 

AEEEM LC 0.82 0.78 0.77 0.77 0.55 0.72 0.71 

JDT 0.86 0.79 0.79 0.81 0.78 0.83 0.84 

PDE 0.77 0.72 0.69 0.75 0.72 0.73 0.70 

EQ 0.85 0.81 0.81 0.79 0.66 0.84 0.82 

ML 0.82 0.76 0.64 0.72 0.70 0.76 0.78 

Relink Apache 0.75 0.73 0.54 0.74 0.70 0.76 0.76 

Safe 0.73 0.59 0.77 0.69 0.67 0.73 0.69 

Zxing 0.70 0.64 0.63 0.61 0.57 0.67 0.66 

Average 0.80 0.75 0.72 0.72 0.70 0.75 0.74 

win/tie/loss – 25/0/0 23/1/1 25/0/0 25/0/0 24/1/0 24/1/0 

Cliffs delta – 0.414(M) 0.578(L) 0.648(L) 0.638(L) 0.432(M) 0.539(L) 

5

 

a  

m  

t
 

t  

d  

t

5

 

c  

c
 

i  

r  

c  

e  

f  

a  

i  

p  

2  

i  

f  

r  

n  

f
 

i  

c

5

 

F  

M  
.1.3. Effect size test 

The results of Cliff’s delta for effect size among the baselines and our
pproach are shown in the last row of Table 2 . We can notice that the
agnitudes between DPDF and baselines are mostly large . This means

hat our method is significantly better than baselines. 
Based on the results, we conclude that our approach ( DPDF ) obtains

he best performance compared with six baselines, and our improved
eep forest can achieve better results in software defect prediction tasks
han the previous deep forest (gcForest). 

.2. RQ2: benefits of the cascade strategy 

In order to show the effect of our cascade strategy, it is necessary to
ompare our DPDF with random forest (RF) because the random forest
lassifier is the basic structure of our DPDF . 

Fig. 5 shows the AUC results of DPDF and RF for defect prediction
n NASA and PROMISE (total 17) projects, where the green color rep-
esents the values of DPDF while pink color represents that of RF. We
an see that the performance of DPDF is better than that of random for-
st in all 17 projects, which means that our cascade strategy is useful
Fig. 5. The AUC results of DPDF and Random For

210 
or defect prediction. Specifically, DPDF improves AUC values by 7% on
verage compared with that of the random forest. Moreover, the best
mprovement for our model is on the PC2 project, which increases the
erformance by 25%. The project Lucene v2.4 has a ratio of defects of
.1% with only 16 defective instances since such few defect instances
s hard for traditional machine learning method to learn important de-
ect features. So it is effective for our cascade strategy to handle feature
elationships which can help provide more input information for the
ext layer input by abstracting and combining original features into the
eatures with better recognition ability. 

Based on the above results, we conclude that the cascade strategy
s effective to increase the performance of traditional machine learning
lassifiers. 

.3. RQ3: the running time of all models 

Table 3 reports the running time about all models on 25 datasets.
rom Table 3 , it takes about 2 s for our approach to finish one running.
eanwhile, other deep models need more time to run. Although there
est for defect prediction in the 17 projects. 



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 3 

The running time of all classifiers (in seconds (s)). 

Dataset Project DPDF gcForest DBN NB LR RF SVM 

NASA JW1 12.250 32.448 57.455 0.129 0.177 1.156 3.447 

MC1 2.200 65.662 16.824 0.055 0.120 0.297 0.137 

MC2 1.754 55.361 1.622 0.005 0.013 0.125 0.007 

MW1 1.241 29.552 2.840 0.009 0.022 0.133 0.012 

PC1 1.456 20.895 6.582 0.023 0.042 0.179 0.039 

PC2 1.374 20.982 7.105 0.025 0.047 0.174 0.028 

PC3 1.768 65.085 9.783 0.032 0.066 0.216 0.083 

PC4 3.345 21.088 10.985 0.037 0.090 0.236 0.120 

PC5 2.447 47.736 14.395 0.047 0.136 0.347 0.253 

PROMISE Xalan v2.6 1.654 21.157 7.334 0.016 0.082 0.177 0.055 

Ant v1.7 2.261 20.970 6.332 0.013 0.025 0.163 0.034 

Camel v1.6 2.278 64.515 8.060 0.019 0.031 0.204 0.058 

Jedit v4.0 1.288 47.039 2.818 0.007 0.018 0.143 0.011 

Log4j v1.0 1.855 29.322 1.597 0.005 0.016 0.119 0.005 

Lucene v2.4 1.857 29.609 3.135 0.006 0.019 0.139 0.014 

Poi v3.0 1.282 20.903 3.879 0.009 0.02 0.145 0.018 

Tomcat v6.0 1.537 29.707 7.109 0.016 0.029 0.166 0.038 

AEEEM LC 1.556 21.149 7.418 0.030 0.081 0.179 0.060 

JDT 1.761 58.246 10.138 0.046 0.093 0.239 0.100 

PDE 3.147 39.111 14.539 0.067 0.125 0.321 0.198 

EQ 1.231 55.886 3.839 0.015 0.040 0.177 0.026 

ML 2.460 29.562 17.936 0.083 0.139 0.346 0.298 

Relink Apache 2.343 47.024 2.062 0.006 0.018 0.137 0.010 

Safe 1.115 38.198 1.013 0.004 0.011 0.131 0.004 

Zxing 1.316 47.135 3.732 0.012 0.023 0.150 0.019 

i  

c

6

6

 

f  

p  

p  

H  

s  

f  

b
 

p  

t  

p  

e  

1  

b  

p  

i  

p
 

p  

o
 

m  

d

6

 

l  

i
 

t  

Fig. 6. Performance of DPDF under different parameter settings. 

T  

w  

c  

p  

t  

r

6

 

s  

b  

c  

f  

r  

n  

t  
s no way to compare running time with traditional machine learning
lassifiers, we believe that 2 s is an acceptable cost. 

. Discussions 

.1. Performance of DPDF under different parameter settings 

In this section, we discuss the performance of our DPDF under dif-
erent parameter settings. Because many researchers suppose that the
erformance of deep learning models are affected by large and complex
arameter settings, which depends on the skills of parameter tuning.
owever, for our DPDF , the users only need to decide how many deci-

ion trees are in each forest. For the other parameter settings about each
orest, we adopted the default values and these default parameters can
e easily obtained in the official scikit-learn documentation. 

To show this, we vary the values of this parameter and conduct ex-
eriments on project PC2, PC4 , and Jedit v4.0, respectively. Fig. 6 shows
he AUC of DPDF under different numbers of decision trees. The first
oint represents the AUC value of DPDF under 100 decision trees in
ach forest and the last point represents the AUC value of DPDF under
000 decision trees in each forest. We can see that the optimal num-
er of decision trees is 500, where the three curves generally reach the
eak. What’s more, considering that the larger number of decision trees
s, the more running time we will take, so we choose the value of this
arameter as 500. 

Moreover, we can see that the performance of DPDF under different
arameter settings is relatively stable, which means that the users can
btain satisfactory defect prediction effect by using our default setting. 

Based on the results, we show that our DPDF is easy to use without
any parameters tuning. In addition, the performance of DPDF under
ifferent parameter settings is relatively stable. 

.2. The impact of the number of forest classifiers 

In this section, we discuss the effect of the number of forests in each
ayer. We change the value of M , which represents the number of forests
n each layer, from 3 to 5. 

The results of our experiment are shown in Table 4 . We can see
hat 𝑀 = 4 obtains the best performance in 11 software projects from
211 
able 2 . Although 𝑀 = 4 and 𝑀 = 5 achieves similar AUC results, but
hen 𝑀 = 5 , we need more computing resources. It is possible that we

an combine more than 5 forests in each layer, which may obtain better
rediction performance. However, in fact, the more forests in each layer,
he more computing resources are needed, which leads to a long-time
unning. So we choose 4 forests in each layer to build our model. 

.3. The impact of different forest classifiers 

Besides the random forest, there are also other types of forest clas-
ifiers, which can be divided into two categories, i.e., forest classifiers
ased on bagging and boosting algorithms, respectively. In the bagging
ategory, random forest and completely-random forest are the two most
amous forest classifiers. Different from the random forest, completely-
andom tree is generated by randomly selecting a feature for split at each
ode of the tree, and growing tree until each leaf node contains only
he same class of instances. In the boosting category, the most famous



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 4 

The AUC results of the number of forests in each layer. 

Dataset Project 𝑀 = 4 𝑀 = 3 𝑀 = 5 

NASA JW1 0.69 0.68 0.69 

MC1 0.79 0.79 0.80 

MC2 0.72 0.69 0.71 

MW1 0.75 0.71 0.76 

PC1 0.87 0.87 0.86 

PC2 0.83 0.82 0.85 

PC3 0.82 0.81 0.80 

PC4 0.92 0.92 0.92 

PC5 0.77 0.77 0.79 

PROMISE Xalan v2.6 0.86 0.85 0.85 

Ant v1.7 0.82 0.82 0.79 

Camel v1.6 0.72 0.70 0.69 

Jedit v4.0 0.82 0.81 0.82 

Log4j v1.0 0.87 0.85 0.88 

Lucene v2.4 0.79 0.76 0.73 

Poi v3.0 0.88 0.86 0.89 

Tomcat v6.0 0.89 0.89 0.87 

Average 0.81 0.80 0.81 

f  

i  

u  

f  

t  

D

 

c  

c  

f

6

 

a  

d  

r  

c  

Table 5 

The AUC results of different forest classifiers. 

Dataset Project DPDF D XGBoost D CompRF 

NASA JW1 0.69 0.68 0.69 

MC1 0.79 0.77 0.78 

MC2 0.72 0.60 0.70 

MW1 0.75 0.68 0.74 

PC1 0.87 0.83 0.88 

PC2 0.83 0.81 0.72 

PC3 0.82 0.81 0.85 

PC4 0.92 0.93 0.91 

PC5 0.77 0.77 0.78 

PROMISE Xalan v2.6 0.86 0.84 0.86 

Ant v1.7 0.82 0.83 0.81 

Camel v1.6 0.72 0.69 0.70 

Jedit v4.0 0.82 0.80 0.79 

Log4j v1.0 0.87 0.82 0.81 

Lucene v2.4 0.79 0.79 0.75 

Poi v3.0 0.88 0.86 0.85 

Tomcat v6.0 0.89 0.82 0.89 

Average 0.81 0.78 0.80 

2  

m  

d  

m  

t  

a  

F  

o  

c

6

 

e  

r  

fi  

T

orest classifier is eXtreme Gradient Boosting (XGBoost) [66] . XGBoost
s a scalable tree boosting system, which is a highly effective and widely
sed tree boosting method. In this section, we also investigate the per-
ormance of our approach with different forest classifiers, and we refer
o the DPDF with completely-random forest and XGBoost as D 

CompRF and
 

XGBoost , respectively. 
As Table 5 shows, our DPDF with random forest as the underlying

lassifier achieves the best AUC scores compared with other two forest
lassifiers. Thus, in practice, we recommend developers to use random
orest as the underlying classifier. 

.4. Evaluation of other measures 

In the task of defect prediction, many evaluation measures are used,
nd the most practical one is the accuracy measurement [8] . So we ad-
itionally report the accuracy of all the methods on 25 projects. The
esults can be seen in Table 6 . We can see that our model is signifi-
antly better than other methods and has achieved the best results on
Table 6 

The Accuracy results of all classifiers. 

Dataset Project DPDF gcForest 

NASA JW1 0.798 0.800 

MC1 0.983 0.977 

MC2 0.746 0.660 

MW1 0.910 0.885 

PC1 0.926 0.913 

PC2 0.982 0.975 

PC3 0.900 0.876 

PC4 0.889 0.860 

PC5 0.776 0.752 

PROMISE Xalan v2.6 0.762 0.738 

Ant v1.7 0.832 0.809 

Camel v1.6 0.808 0.802 

Jedit v4.0 0.807 0.783 

Log4j v1.0 0.792 0.780 

Lucene v2.4 0.715 0.680 

Poi v3.0 0.790 0.790 

Tomcat v6.0 0.913 0.912 

AEEEM LC 0.930 0.922 

JDT 0.850 0.820 

PDE 0.870 0.867 

EQ 0.780 0.743 

ML 0.870 0.858 

Relink Apache 0.726 0.656 

Safe 0.750 0.627 

Zxing 0.704 0.678 

Average 0.832 0.807 

212 
3 projects. In addition, we also report precision, recall, and F1 of all
ethods on 25 projects. Precision represents the rate of correctly pre-
icted buggy instances among all instances predicted as buggy; recall
easures the rate of correctly predicted buggy instances among all ac-

ual buggy instances; and F1 represents the harmonic mean of precision
nd recall [20] . The results are shown in Table 7 , Tables 8 and Table 9 .
rom these results, we notice that the average F1 and precision values
f our approach are improved, with the recall value lower than the NB
lassifier. 

.5. Other layer-by-layer structure model 

Inspired by logistic model trees [67] , we try to use our cascade strat-
gy on the logistic regression model. This model is named deep logistic
egression (DLR). In each layer, we set four logistic regression classi-
ers. Table 10 shows the AUC results of this model on 25 datasets. From
able 10 , we can easily see that DLR has better performance than LR. 
DBN NB LR RF SVM 

0.785 0.783 0.788 0.778 0.790 

0.977 0.678 0.973 0.977 0.977 

0.648 0.712 0.664 0.688 0.680 

0.853 0.609 0.814 0.867 0.893 

0.913 0.869 0.894 0.909 0.913 

0.937 0.765 0.949 0.975 0.979 

0.876 0.506 0.879 0.866 0.875 

0.862 0.791 0.894 0.878 0.887 

0.723 0.745 0.739 0.756 0.747 

0.536 0.711 0.738 0.743 0.731 

0.777 0.805 0.820 0.815 0.813 

0.805 0.790 0.801 0.800 0.808 

0.755 0.784 0.755 0.780 0.768 

0.748 0.755 0.733 0.759 0.756 

0.597 0.612 0.703 0.677 0.676 

0.636 0.548 0.762 0.782 0.760 

0.910 0.857 0.906 0.909 0.911 

0.907 0.851 0.841 0.917 0.907 

0.793 0.839 0.840 0.840 0.849 

0.86 0.835 0.856 0.865 0.861 

0.602 0.725 0.691 0.758 0.759 

0.868 0.831 0.861 0.865 0.868 

0.448 0.624 0.644 0.691 0.660 

0.607 0.696 0.732 0.705 0.571 

0.704 0.657 0.679 0.679 0.692 

0.765 0.735 0.798 0.811 0.805 



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 7 

The F1 results of all classifiers. 

Dataset Project DPDF gcForest DBN NB LR RF SVM 

NASA JW1 0.23 0.15 0.18 0.28 0.18 0.24 0.13 

MC1 0.04 0 0.04 0.09 0.08 0.18 0 

MC2 0.48 0.44 0.41 0.45 0.56 0.46 0.35 

MW1 0.51 0.13 0.22 0.26 0.18 0.06 0 

PC1 0.17 0.07 0.27 0.35 0.3 0.22 0.09 

PC2 0.83 0 0 0.07 0.12 0 0 

PC3 0.11 0 0.22 0.31 0.35 0.17 0.01 

PC4 0.33 0.23 0.51 0.37 0.53 0.35 0.34 

PC5 0.46 0.37 0.37 0.33 0.35 0.44 0.26 

PROMISE Xalan v2.6 0.72 0.7 0.68 0.6 0.69 0.7 0.68 

Ant v1.7 0.55 0.46 0.48 0.55 0.48 0.49 0.43 

Camel v1.6 0.19 0.16 0.19 0.33 0.21 0.27 0.07 

Jedit v4.0 0.46 0.38 0.46 0.46 0.4 0.41 0.26 

Log4j v1.0 0.48 0.39 0.63 0.48 0.45 0.41 0.21 

Lucene v2.4 0.75 0.73 0.75 0.57 0.74 0.73 0.73 

Poi v3.0 0.83 0.83 0.82 0.49 0.81 0.82 0.81 

Tomcat v6.0 0.21 0.07 0 0.35 0.28 0.2 0.02 

AEEEM LC 0.37 0.36 0 0.39 0.3 0.34 0.03 

JDT 0.56 0.49 0.55 0.57 0.57 0.51 0.52 

PDE 0.31 0.16 0.28 0.4 0.35 0.27 0.05 

EQ 0.75 0.67 0.59 0.59 0.61 0.69 0.68 

ML 0.26 0.13 0.24 0.36 0.31 0.26 0.02 

Relink Apache 0.73 0.71 0.65 0.58 0.64 0.68 0.67 

Safe 0.56 0.42 0.64 0.56 0.56 0.54 0.33 

Zxing 0.29 0.25 0.17 0.27 0.31 0.39 0.11 

Average 0.45 0.33 0.37 0.40 0.41 0.39 0.27 

Table 8 

The Precision results of all classifiers. 

Dataset Project DPDF gcForest DBN NB LR RF SVM 

NASA JW1 0.49 0 0.49 0.53 0.49 0.41 0.91 

MC1 0.29 0 0.03 0.05 0.12 0.49 0 

MC2 0.60 0.50 0.33 0.57 0.51 0.58 0.65 

MW1 0.63 0.14 0.31 0.16 0.17 0.06 0 

PC1 0.25 0.27 0.86 0.32 0.30 0.35 0.45 

PC2 0.98 0 0 0.04 0.10 0.01 0 

PC3 0.26 0 0.51 0.20 0.53 0.29 0.01 

PC4 0.77 0.41 0.70 0.30 0.64 0.58 0.89 

PC5 0.61 0.59 0.58 0.58 0.53 0.57 0.69 

PROMISE Xalan v2.6 0.76 0.74 0.77 0.83 0.75 0.76 0.77 

Ant v1.7 0.64 0.61 0.56 0.57 0.65 0.61 0.7 

Camel v1.6 0.46 0.29 0.53 0.42 0.84 0.47 0.28 

Jedit v4.0 0.64 0.52 0.54 0.56 0.51 0.54 0.41 

Log4j v1.0 0.65 0.50 0.88 0.45 0.46 0.52 0.27 

Lucene v2.4 0.69 0.70 0.70 0.81 0.77 0.74 0.72 

Poi v3.0 0.84 0.84 0.79 0.82 0.81 0.84 0.82 

Tomcat v6.0 0.84 0.33 0 0.29 0.47 0.35 0.50 

AEEEM LC 0.81 0.72 0 0.31 0.26 0.65 0.05 

JDT 0.72 0.61 0.64 0.65 0.65 0.67 0.74 

PDE 0.59 0.29 0.79 0.4 0.47 0.54 0.54 

EQ 0.70 0.63 0.64 0.72 0.62 0.69 0.72 

ML 0.47 0.23 0.33 0.36 0.44 0.41 0.25 

Relink Apache 0.70 0.69 0.68 0.55 0.65 0.68 0.66 

Safe 0.57 0.44 0.83 0.58 0.58 0.67 0.42 

Zxing 0.47 0.33 0.47 0.41 0.41 0.42 0.26 

Average 0.62 0.42 0.52 0.46 0.51 0.52 0.47 

6

 

u  

t  

e  

a  

i  

m  

t
 

t  

r  

m  

fi  

w  

m  

t  

a  

v  

e  

m  

t  

r

.6. Threats to validity 

Threats to construct validity relate to the performance measures
sed in our study. In our work, our findings are based on one evalua-
ion measure (AUC), and other evaluation measures may yield differ-
nt results. However, unlike other measures ( precision, recall, accuracy

nd f-measure ) which need a cut-off value on the predicted probabil-
ty of defect proneness, AUC is independent of a cut-off value. What’s
ore, AUC is a widely used measure to evaluate the defect prediction

echniques. 
Threats to internal validity are mainly concerned with the uncon-

rolled internal factors that might have influence on the experimental
213 
esults. The main internal threat is the potential faults during our
ethod implementation. To reduce this threat, we used four classi-
ers which are obtained from scikit-learn libraries, one deep belief net-
orks and one latest deep forest model called gcForest. For our proposed
ethod DPDF , we designed various test cases to test the developed pro-

otype and we prefer to use mature third-party libraries, such as pack-
ges from python. As discussed in Section 6 , DPDF adopted the default
alues obtained in the official scikit-learn documentation for the param-
ters to perform the defect prediction. Other settings of the parameters
ay produce different results. We will study how to set the values for

hese parameters in the most optimized way that can produce better
esults in our future work. 



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

Table 9 

The Recall results of all classifiers. 

Dataset Project DPDF gcForest DBN NB LR RF SVM 

NASA JW1 0.15 0.07 0.11 0.19 0.11 0.17 0.07 

MC1 0.02 0 0.06 0.5 0.06 0.11 0 

MC2 0.4 0.39 0.54 0.37 0.62 0.38 0.24 

MW1 0.43 0.12 0.17 0.64 0.19 0.06 0.04 

PC1 0.13 0.02 0.16 0.39 0.3 0.16 0.05 

PC2 0.72 0 0 0.29 0.14 0 0 

PC3 0.07 0.01 0.14 0.74 0.26 0.12 0.01 

PC4 0.21 0.16 0.4 0.49 0.45 0.25 0.21 

PC5 0.37 0.27 0.22 0.23 0.26 0.36 0.16 

PROMISE Xalan v2.6 0.68 0.66 0.61 0.47 0.64 0.65 0.61 

Ant v1.7 0.48 0.37 0.42 0.53 0.38 0.41 0.31 

Camel v1.6 0.12 0.11 0.1 0.27 0.12 0.19 0.04 

Jedit v4.0 0.36 0.3 0.4 0.39 0.33 0.33 0.19 

Log4j v1.0 0.38 0.32 0.49 0.51 0.44 0.34 0.17 

Lucene v2.4 0.82 0.76 0.81 0.44 0.71 0.72 0.74 

Poi v3.0 0.82 0.82 0.85 0.35 0.81 0.8 0.8 

Tomcat v6.0 0.12 0.03 0 0.45 0.2 0.14 0.01 

AEEEM LC 0.24 0.24 0 0.52 0.35 0.23 0.02 

JDT 0.46 0.41 0.48 0.51 0.51 0.41 0.4 

PDE 0.21 0.11 0.17 0.4 0.28 0.18 0.02 

EQ 0.81 0.72 0.55 0.5 0.6 0.69 0.64 

ML 0.18 0.09 0.19 0.36 0.24 0.19 0.01 

Relink Apache 0.76 0.73 0.62 0.61 0.63 0.68 0.68 

Safe 0.55 0.4 0.52 0.54 0.54 0.45 0.27 

Zxing 0.21 0.2 0.09 0.2 0.25 0.36 0.07 

Average 0.39 0.29 0.32 0.44 0.38 0.34 0.23 

Table 10 

The AUC results of other layer-by-layer structure. 

Dataset Project DLR ( 𝑀 = 4 ) LR DPDF 

NASA JW1 0.68 0.67 0.69 

MC1 0.41 0.63 0.79 

MC2 0.79 0.66 0.72 

MW1 0.59 0.48 0.75 

PC1 0.82 0.76 0.87 

PC2 0.43 0.55 0.83 

PC3 0.66 0.81 0.82 

PC4 0.91 0.90 0.92 

PC5 0.61 0.72 0.77 

PROMISE Xalan v2.6 0.81 0.80 0.86 

Ant v1.7 0.78 0.79 0.82 

Camel v1.6 0.68 0.67 0.72 

Jedit v4.0 0.79 0.72 0.82 

Log4j v1.0 0.90 0.72 0.87 

Lucene v2.4 0.75 0.76 0.79 

Poi v3.0 0.82 0.79 0.88 

Tomcat v6.0 0.85 0.78 0.89 

AEEEM LC 0.71 0.55 0.82 

JDT 0.82 0.78 0.86 

PDE 0.69 0.72 0.77 

EQ 0.84 0.66 0.85 

ML 0.73 0.70 0.82 

Relink Apache 0.74 0.70 0.75 

Safe 0.70 0.67 0.73 

Zxing 0.67 0.57 0.70 

Average 0.73 0.70 0.80 

 

o  

c  

v  

c  

d

7

7

 

w  

q  

c  

s  

d  

p  

t
 

r  

u  

p  

e  

t  

m  

i  

w  

d  

i  

s  

l  

p  

p  

(  

t  

B  

s  

 

s  

p  

s  

s  

i  

t  

u  

m  

p  

o  

m
 

e  
Threats to external validity relate to the possibility to generalize
ur results. We performed our study on 25 projects, which cannot indi-
ate all kinds of software. However, these datasets are often used in pre-
ious defect prediction studies [21,36,37] . In addition, our study only
onsiders the defect metrics in these datasets for the classifiers. Using
ifferent sets of defect metrics may generate different results. 

. Related work 

.1. Machine learning in software defect prediction 

Software defect prediction is essential to ensure the quality of soft-
are. In recent years, machine learning has been widely used in software
214 
uality assurance [9,10,12–15,68] . Many studies focused on the appli-
ations of machine learning in defect prediction [8,24,69–71] , which
how that machine learning models are built for two different defect pre-
iction tasks: within-project defect prediction and cross-project defect
rediction. In our work, we focus on the within-project defect prediction
ask. 

For within-project defect prediction, using machine learning algo-
ithms has become the main stream including supervised learning and
nsupervised learning. Among these work, improving the traditional su-
ervised machine learning algorithms seems to be a feasible way. Rong
t al. focused on improving the SVM model to obtain better predic-
ion effect [49] . In their work, a CBA-SVM software defect prediction
odel was proposed, which takes advantage of the non-linear comput-

ng ability of SVM model and optimization capacity of bat algorithm
ith centroid strategy. Rana et al. evaluated how information about
efect inflow distribution from historical projects is applied for model-
ng the prior beliefs/experience in Bayesian analysis which is useful for
oftware defect prediction at an early stage during the software project
ife cycle [72] . Okutan et al. used Bayesian networks to determine the
robabilistic influential relationships among software metrics and defect
roneness [50] . Arar et al. proposed a Feature Dependent Naive Bayes
FDNB) classification method, which shows that their approach is better
han the standard Naive Bayes approach [51] . Agarwal et al. used the
ayesian hierarchical modeling that performs closely with manual in-
pection and predicts surface defects with relatively good accuracy [73] .

In addition, unsupervised learning algorithms also attract a lot of
tudies in unlabeled datasets. Yang et al. proposed a new approach for
redicting defect proneness on unlabeled datasets [74] . Maruf et al. pre-
ented a new defect clustering method using k -means ++ for web page
ource code and they showed that half of the defects can be detected
n the web pages [75] . Yang et al. used the commonly change metrics
o build simple unsupervised models, which shows that many simple
nsupervised models perform better than the state-of-the-art supervised
odels in effort-aware Just-In-Time defect prediction [76] . Nam et al.
roposed CLA and CLAMI, that show the potential for defect prediction
n unlabeled datasets in an automated manner without the need for
anual effort [42] . 

In our work, we choose supervised learning algorithms because
xisting studies show that the performance of supervised learning



T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

c  

p  

t  

o

7

 

fi  

b  

g  

t  

l  

C  

t  

p  

o  

d  

i  

d  

s  

m  

t  

3  

t  

w  

d  

[
 

i  

o  

t  

w  

d  

v  

d  

t

8

 

t  

d  

T  

m  

f  

t  

t  

m  

p  

d
 

p  

c  

m  

a  

a  

T  

c  

h  

i

A

 

C  

N  

f  

K  

t  

0

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

[  

 

 

[  

[  

[  

 

[  

[  

[
[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

[

lassifiers is better than unsupervised learning classifiers in most
rojects [34,77,78] . What’s more, we use the cascade strategy on tradi-
ional supervised learning which can greatly improve the performance
f the previous classifiers. 

.2. Feature selection in software defect prediction 

Effective feature selection can improve the performance of classi-
ers. Xu et al. proposed a novel feature selection framework, MICHAC,
ased on the Maximal Information Coefficient with Hierarchical Ag-
lomerative Clustering, which is shown to be effective in selecting fea-
ures in defect prediction [79] . Liu et al. proposed a new feature se-
ection framework using FEature Clustering And feature Ranking (FE-
AR) [80] . Wang et al. leveraged the Deep Belief Network (DBN) to au-
omatically learn semantic features from token vectors extracted from
rograms’ Abstract Syntax Trees, which can improve the performance
f classifier in both within-project defect prediction and cross-project
efect prediction [81] . Laradji et al. combined selected ensemble learn-
ng models with efficient feature selection to address software defect
ata including redundancy, correlation, feature irrelevance and missing
amples, and mitigate their effects on the defect classification perfor-
ance which shows only few features contribute to high area under

he receiver-operating curve [82] . Xu et al. investigated the impact of
2 feature selection methods on the defect prediction performance over
wo versions of the NASA datasets and one open source AEEEM dataset,
hich shows that the effectiveness of these feature selection methods on
efect prediction performance varies significantly over all the datasets
83] . 

In this paper, different from the work based on Abstract Syntax Trees,
.e., Wang et al. [81] and Li et al. [25] , our work mainly used other types
f features such as process features, and complexity features. Moreover,
he setting of Wang et al.’s work is different from ours, their approach
orked on the cross-version defect prediction (i.e., using the defective
ata from previous version to predict defective classes in the current
ersion), while our approach worked in the within-version defect pre-
iction. In the future, we plan to combine the two approaches together
o further improve the performance of defect prediction. 

. Conclusion and future work 

Machine learning is widely used for software defect prediction. In
his paper, we propose a new defect prediction model ( DPDF ) based on
eep forest, which is treated as an alternative to Deep Neural Networks.
he main idea of our DPDF is to use the cascade strategy on traditional
achine learning algorithm (random forest) to help select useful defect

eatures and representation learning based on the layer-by-layer struc-
ure. Our experiments on four data sets show that DPDF can improve
he performance over the state-of-the-art machine learning classifiers,
oreover, DPDF with the cascade strategy can effectively improve the
erformance of defect prediction over the basic structure of DPDF (ran-
om forest). 

In the future, we will explore the potential of our DPDF on cross
roject defect prediction on more projects. In addition, during the pro-
ess of defect prediction based on all the input features, some features
ay not be related to the faults. We will combine other approaches to

ddress the issue of feature subset selection for further improving our
pproach. Finally, we would like to explore the potential of the SMO-
UNED method [84] proposed by Agrawal et al. to further address the
lass-imbalance problem in our defect prediction or provide a compre-
ensive study to compare with the SMOTE/SMOTUNED method on the
mbalanced datasets. 

cknowledgments 

This work is supported partially by Natural Science Foundation of
hina under Grant No. 61872312 , No. 61402396 , No. 61472344 and
215 
o. 61611540347 , partially by the Open Funds of State Key Laboratory
or Novel Software Technology of Nanjing University under Grant no.
FKT2018B12, partially by the Jiangsu “333 ” Project, partially by the

he Six Talent Peaks Project in Jiangsu Province under Grant No. RJFW-
53, and partially by the Jiangsu Overseas Visiting Scholar program. 

eferences 

[1] T. Hall , S. Beecham , D. Bowes , D. Gray , S. Counsell , A systematic literature review
on fault prediction performance in software engineering, IEEE Trans. Softw. Eng. 38
(6) (2012) 1276–1304 . 

[2] X. Sun, X. Peng, K. Zhang, Y. Liu, Y. Cai, How security bugs are fixed and what
can be improved: an empirical study with Mozilla, Sci. China Inf. Sci. 62 (1) (2018)
19102, doi: 10.1007/s11432-017-9459-5 . 

[3] X. Sun, H. Yang, X. Xia, B. Li, Enhancing developer recommendation with supple-
mentary information via mining historical commits, J. Syst. Softw. 134 (2017) 355–
368, doi: 10.1016/j.jss.2017.09.021 . 

[4] G. Tassey, The economic impacts of inadequate infrastructure for software testing
(2002). 

[5] L. Wang, X. Sun, J. Wang, Y. Duan, B. Li, Construct bug knowledge graph for bug
resolution: poster, in: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20–28, 2017 - Companion
Volume, 2017, pp. 189–191, doi: 10.1109/ICSE-C.2017.102 . 

[6] X. Sun, W. Zhou, B. Li, Z. Ni, J. Lu, Bug localization for version issues with defect
patterns, IEEE Access 7 (2019) 18811–18820, doi: 10.1109/ACCESS.2019.2894976 .

[7] X. Sun, X. Peng, B. Li, B. Li, W. Wen, IPSETFUL: an iterative process of selecting test
cases for effective fault localization by exploring concept lattice of program spectra,
Front. Comput. Sci. 10 (5) (2016) 812–831, doi: 10.1007/s11704-016-5226-y . 

[8] M.J. Shepperd , D. Bowes , T. Hall , Researcher bias: the use of machine learning in
software defect prediction, IEEE Trans. Softw. Eng. 40 (6) (2014) 603–616 . 

[9] X. Jing , F. Wu , X. Dong , F. Qi , B. Xu , Heterogeneous cross-company defect predic-
tion by unified metric representation and CCA-based transfer learning, in: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 496–507 . 

10] R. Malhotra , An empirical framework for defect prediction using machine learning
techniques with android software, Appl. Soft Comput. 49 (2016) 1034–1050 . 

11] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, B. Li, An empirical study on real bugs
for machine learning programs, in: 24th Asia-Pacific Software Engineering Con-
ference, APSEC 2017, Nanjing, China, December 4–8, 2017, 2017, pp. 348–357,
doi: 10.1109/APSEC.2017.41 . 

12] H. Lu , E. Kocaguneli , B. Cukic , Defect prediction between software versions with
active learning and dimensionality reduction, in: ISSRE ’14 Proceedings of the
2014 IEEE 25th International Symposium on Software Reliability Engineering, 2014,
pp. 312–322 . 

13] T. Wang , Z. Zhang , X. Jing , L. Zhang , Multiple kernel ensemble learning for software
defect prediction, Autom. Softw. Eng. 23 (4) (2016) 569–590 . 

14] Z.-W. Zhang , X.-Y. Jing , T.-J. Wang , Label propagation based semi-supervised learn-
ing for software defect prediction, Autom. Softw. Eng. 24 (1) (2017) 47–69 . 

15] Z. Li , X.-Y. Jing , X. Zhu , H. Zhang , Heterogeneous defect prediction through multiple
kernel learning and ensemble learning, in: 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017, pp. 91–102 . 

16] P.M. Domingos , M.J. Pazzani , On the optimality of the simple Bayesian classifier
under zero-one loss, Mach. Learn. 29 (1997) 103–130 . 

17] D.R. Cox , Two further applications of a model for binary regression, Biometrika 45
(1958) 562–565 . 

18] L. Breiman , Random forests, Mach. Learn. 45 (1) (2001) 5–32 . 
19] N. Cristianini , J. Shawe-Taylor , An Introduction to Support Vector Machines: and

Other Kernel-Based Learning Methods, Printed in the United Kingdom at the Uni-
versity Press, 2000 . 

20] S. Lessmann , B. Baesens , C. Mues , S. Pietsch , Benchmarking classification models for
software defect prediction: a proposed framework and novel findings, IEEE Trans.
Softw. Eng. 34 (4) (2008) 485–496 . 

21] B. Ghotra , S. Mcintosh , A.E. Hassan , Revisiting the impact of classification tech-
niques on the performance of defect prediction models, in: International Conference
on Software Engineering, 2015, pp. 789–800 . 

22] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep convolu-
tional neural networks, in: International Conference on Neural Information Process-
ing Systems, 2012, pp. 1097–1105 . 

23] G. Hinton , L. Deng , D. Yu , G.E. Dahl , A.R. Mohamed , N. Jaitly , A. Senior , V. Van-
houcke , P. Nguyen , T.N. Sainath , Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups, IEEE Signal Process.
Mag. 29 (6) (2012) 82–97 . 

24] X. Yang , D. Lo , X. Xia , Y. Zhang , J. Sun , Deep learning for just-in-time defect predic-
tion, in: IEEE International Conference on Software Quality, Reliability and Security,
2015, pp. 17–26 . 

25] J. Li , P. He , J. Zhu , M.R. Lyu , Software defect prediction via convolutional neu-
ral network, in: IEEE International Conference on Software Quality, Reliability and
Security, 2017 . 

26] Z.-H. Zhou , J. Feng , Deep forest: towards an alternative to deep neural networks,
in: Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017,
pp. 3553–3559 . 

27] C. Cheadle , Y.S. Cho-Chung , K.G. Becker , M.P. Vawter , Application of z -score trans-
formation to affymetrix data, Appl. Bioinf. 2 (4) (2003) 209–217 . 

28] M.H. Halstead , Elements of software science, Elsevierence (1977) . 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0001
https://doi.org/10.1007/s11432-017-9459-5
https://doi.org/10.1016/j.jss.2017.09.021
https://doi.org/10.1109/ICSE-C.2017.102
https://doi.org/10.1109/ACCESS.2019.2894976
https://doi.org/10.1007/s11704-016-5226-y
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0009
https://doi.org/10.1109/APSEC.2017.41
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0027


T. Zhou, X. Sun and X. Xia et al. Information and Software Technology 114 (2019) 204–216 

[  

[  

[  

 

[  

[  

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

 

[  

[  

 

 

[  

[  

[
[  

[  

[  

 

[  

 

[  

 

[
 

[  

[  

 

[  

[  

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

[  

 

[  

[  

 

 

 

[  

[
 

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

[  

 

[  

 

 

29] T.J. Mccabe , A complexity measure, IEEE Trans. Softw. Eng. SE-2 (4) (2006)
308–320 . 

30] S.R. Chidamber , C.F. Kemerer , A Metrics Suite for Object Oriented Design, IEEE
Press, 1994 . 

31] N. Fenton , M. Neil , W. Marsh , P. Hearty , ukasz Radliski , P. Krause , On the effective-
ness of early life cycle defect prediction with Bayesian nets, Empir. Softw. Eng. 13
(5) (2008) 499 . 

32] D. Isa , R. Rajkumar , Pipeline defect prediction using support vector machines, Appl.
Artif. Intell. 23 (8) (2009) 758–771 . 

33] J. Wang , B. Shen , Y. Chen , Compressed c4.5 models for software defect prediction,
in: International Conference on Quality Software, 2012, pp. 13–16 . 

34] F. Zhang , Q. Zheng , Y. Zou , A.E. Hassan , Cross-project defect prediction using a
connectivity-based unsupervised classifier, in: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), 2016, pp. 309–320 . 

35] Y. Bengio , A. Courville , P. Vincent , Representation Learning: A Review and New
Perspectives, IEEE Computer Society, 2013 . 

36] C. Tantithamthavorn , S. Mcintosh , A.E. Hassan , K. Matsumoto , Automated parame-
ter optimization of classification techniques for defect prediction models, in: Inter-
national Conference on Software Engineering, 2016, pp. 321–332 . 

37] X.-Y. Jing , S. Ying , Z.-W. Zhang , S.-S. Wu , J. Liu , Dictionary learning based software
defect prediction, in: Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 414–423 . 

38] M. Shepperd , Q. Song , Z. Sun , C. Mair , Data quality: some comments on the nasa
software defect datasets, IEEE Trans. Softw. Eng. 39 (9) (2013) 1208–1215 . 

39] M. Jureczko , L. Madeyski , Towards identifying software project clusters with regard
to defect prediction, in: International Conference on Predictive MODELS in Software
Engineering, 2010, p. 9 . 

40] M. D’Ambros , M. Lanza , R. Robbes , An extensive comparison of bug prediction ap-
proaches, Mining Software Repositories, 2010 . 

41] R. Wu , H. Zhang , S. Kim , S.C. Cheung , ReLink: recovering links between bugs and
changes, in: ACM SIGSOFT Symposium & the European Conference on Foundations
of Software Engineering, 2011 . 

42] J. Nam , S.H. Kim , CLAMI: defect prediction on unlabeled datasets, in: The 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2015), Lincoln, Nebraska, USA, 2015, p. 1 . 

43] X. Xia , D. Lo , S. McIntosh , E. Shihab , A.E. Hassan , Cross-project build co-change
prediction, in: 2015 IEEE 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), 2015, pp. 311–320 . 

44] A.P. Bradley , The use of the area under the ROC curve in the evaluation of machine
learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159 . 

45] C. Tantithamthavorn , A.E. Hassan , An experience report on defect modelling in prac-
tice: pitfalls and challenges, in: In Proceedings of the International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP18), 2018 .

46] F. Rahman , D. Posnett , P. Devanbu , Recalling the “imprecision ” of cross-project de-
fect prediction, in: SIGSOFT FSE, 2012, pp. 1–11 . 

47] T. Fawcett , An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8) (2006)
861–874 . 

48] F. Gorunescu , Data Mining: Concepts, Models and Techniques, Springer, 2011 . 
49] X. Rong , F. Li , Z. Cui , A model for software defect prediction using support vector

machine based on cba, Int. J. Intell. Syst. Technol. Appl. 15 (1) (2016) 19–34 . 
50] A. Okutan , O.T. Yldz , Software defect prediction using Bayesian networks, Empir.

Softw. Eng. 19 (1) (2014) 154–181 . 
51] mer Faruk Arar , K. Ayan , A feature dependent Naive Bayes approach and its ap-

plication to the software defect prediction problem, Appl. Soft Comput. 59 (2017)
197–209 . 

52] M. Pinzger , N. Nagappan , B. Murphy , Can developer-module networks predict fail-
ures? in: ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2008, pp. 2–12 . 

53] T. Menzies , Z. Milton , B. Turhan , B. Cukic , Y. Jiang , A. Bener , Defect prediction from
static code features: current results, limitations, new approaches, Autom. Softw. Eng.
17 (4) (2010) 375–407 . 

54] B. Turhan , T. Menzies , A.B. Bener , J.D. Stefano , On the relative value of cross–
company and within-company data for defect prediction, Empir. Softw. Eng. 14 (5)
(2009) 540–578 . 

55] J. Ar , Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn.
Res. 7 (1) (2006) 1–30 . 

56] X. Xia , D. Lo , S.J. Pan , N. Nagappan , X. Wang , HYDRA: massively compositional
model for cross-project defect prediction, IEEE Trans. Softw. Eng. 42 (10) (2016)
977–998 . 

57] Z. He , F. Shu , Y. Yang , M. Li , Q. Wang , An investigation on the feasibility of cross-pro-
ject defect prediction, Autom. Softw. Eng. 19 (2) (2012) 167–199 . 

58] Y. Ma , G. Luo , X. Zeng , A. Chen , Transfer learning for cross-company software defect
prediction, Inf. Softw. Technol. 54 (3) (2012) 248–256 . 

59] X. Sun, B. Li, H.K.N. Leung, B. Li, Y. Li, MSR4SM: using topic models to effectively
mining software repositories for software maintenance tasks, Inf. Softw. Technol. 66
(2015) 1–12, doi: 10.1016/j.infsof.2015.05.003 . 
216 
60] X. Sun, H. Leung, B. Li, B. Li, Change impact analysis and changeability assessment
for a change proposal: an empirical study 97349734, J. Syst. Softw. 96 (2014) 51–60,
doi: 10.1016/j.jss.2014.05.036 . 

61] L. Chen , B. Fang , Z. Shang , Y. Tang , Negative samples reduction in cross-company
software defects prediction, Inf. Softw. Technol. 62 (2015) 67–77 . 

62] J. Romano , J.D. Kromrey , J. Coraggio , J. Skowronek , Appropriate statistics for or-
dinal level data: Should we really be using t -test and Cohen’s d for evaluating group
differences on the NSSE and other surveys?, 2006 . 

63] X.Y. Jing , F. Wu , X. Dong , B. Xu , An improved SDA based defect prediction frame-
work for both within-project and cross-project class-imbalance problems, IEEE
Trans. Softw. Eng. 43 (4) (2017) 321–339 . 

64] T. Lee , J. Nam , D. Han , S. Kim , H.P. In , Developer micro interaction metrics for
software defect prediction, IEEE Trans. Softw. Eng. 42 (11) (2016) 1015–1035 . 

65] F. Zhang , A. Mockus , I. Keivanloo , Y. Zou , Towards building a universal defect pre-
diction model with rank transformed predictors, Empir. Softw. Eng. 21 (5) (2016)
2107–2145 . 

66] T. Chen , C. Guestrin , XGBoost: a scalable tree boosting system, in: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016,
pp. 785–794 . 

67] N. Landwehr , M. Hall , E. Frank , Logistic model trees, Mach. Learn. 59 (1–2) (2005)
161–205 . 

68] H. Wang , L. Wang , Q. Yu , Z. Zheng , A. Bouguettaya , M.R. Lyu , Online reliability
prediction via motifs-based dynamic Bayesian networks for service-oriented systems,
IEEE Trans. Softw. Eng. PP (99) (2017) 556–579 . 

69] C. Tantithamthavorn , S. McIntosh , A.E. Hassan , K. Matsumoto , An empirical com-
parison of model validation techniques for defect prediction models, IEEE Trans.
Softw. Eng. 43 (1) (2017) 1–18 . 

70] S. Herbold , Comments on ScottKnottESD in response to an empirical comparison of
model validation techniques for defect prediction models, IEEE Trans. Softw. Eng.
43 (11) (2017) 1091–1094 . 

71] X. Chen , Y. Zhao , Q. Wang , Z. Yuan , Multi: multi-objective effort-aware just-in-time
software defect prediction, Inf Softw. Technol. 93 (2018) 1–13 . 

72] R. Rana , M. Staron , C. Berger , J. Hansson , M. Nilsson , W. Meding , Analyzing de-
fect inflow distribution and applying Bayesian inference method for software defect
prediction in large software projects, J. Syst. Softw. 117 (2016) 229–244 . 

73] K. Agarwal , R. Shivpuri , On line prediction of surface defects in hot bar rolling based
on Bayesian hierarchical modeling, J. Intell. Manuf. 26 (4) (2015) 785–800 . 

74] J. Yang , H. Qian , Defect prediction on unlabeled datasets by using unsupervised clus-
tering, in: 2016 IEEE 18th International Conference on High Performance Comput-
ing and Communications; IEEE 14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
2016, pp. 465–472 . 

75] M.M. ztrk , U. Cavusoglu , A. Zengin , A novel defect prediction method for web pages
using k -means ++ , Expert Syst. Appl. 42 (19) (2015) 6496–6506 . 

76] Y. Yang , Y. Zhou , J. Liu , Y. Zhao , H. Lu , L. Xu , B. Xu , H. Leung , Effort-aware just-in–
time defect prediction: simple unsupervised models could be better than supervised
models, in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 157–168 . 

77] M. Yan , Y. Fang , D. Lo , X. Xia , X. Zhang , File-level defect prediction: unsupervised
vs. supervised models, in: 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2017, pp. 344–353 . 

78] Q. Huang , X. Xia , D. Lo , Supervised vs unsupervised models: A holistic look at ef-
fort-aware just-in-time defect prediction, in: 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017, pp. 159–170 . 

79] Z. Xu , J. Xuan , J. Liu , X. Cui , MICHAC: defect prediction via feature selection based
on maximal information coefficient with hierarchical agglomerative clustering, in:
IEEE International Conference on Software Analysis, Evolution, and Reengineering,
2016, pp. 370–381 . 

80] S. Liu , X. Chen , W. Liu , J. Chen , Q. Gu , D. Chen , FECAR: a feature selection frame-
work for software defect prediction, in: Computer Software and Applications Con-
ference, 2014, pp. 426–435 . 

81] S. Wang , T. Liu , L. Tan , Automatically learning semantic features for defect predic-
tion, in: 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), 2016, pp. 297–308 . 

82] I.H. Laradji , M. Alshayeb , L. Ghouti , Software defect prediction using ensemble
learning on selected features, Inf. Softw. Technol. 58 (2015) 388–402 . 

83] Z. Xu , J. Liu , Z. Yang , G. An , X. Jia , The impact of feature selection on defect predic-
tion performance: an empirical comparison, in: 2016 IEEE 27th International Sym-
posium on Software Reliability Engineering (ISSRE), 2016, pp. 309–320 . 

84] A. Agrawal, T. Menzies, Is “better data ” better than “better data miners ”?: on the
benefits of tuning SMOTE for defect prediction, in: Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27, - June 03, 2018, 2018, pp. 1050–1061, doi: 10.1145/3180155.3180197 . 

http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0057
https://doi.org/10.1016/j.infsof.2015.05.003
https://doi.org/10.1016/j.jss.2014.05.036
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0062
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0062
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0062
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0062
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0062
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0064
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0064
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0064
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0064
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0064
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0065
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0065
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0065
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0066
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0066
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0066
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0066
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0067
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0068
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0068
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0068
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0068
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0068
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0069
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0069
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0070
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0070
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0070
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0070
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0070
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0072
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0072
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0072
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0073
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0073
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0073
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0074
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0074
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0074
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0074
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0075
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0077
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0077
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0077
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0077
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0078
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0078
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0078
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0078
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0078
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0079
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0081
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0081
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0081
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0081
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
http://refhub.elsevier.com/S0950-5849(19)30146-6/sbref0082
https://doi.org/10.1145/3180155.3180197

	Improving defect prediction with deep forest
	1 Introduction
	2 Background
	2.1 Software defect prediction
	2.2 Deep forest

	3 Proposed approach
	3.1 Process of defect prediction
	3.2 Standardize defect prediction datasets
	3.3 The cascade structure

	4 Experiment setup
	4.1 Datasets
	4.2 Evaluation measure
	4.3 Baseline methods
	4.4 Research questions
	4.5 Setup

	5 Result analysis
	5.1 RQ1: effectiveness of the DPDF
	5.1.1 Comparative
	5.1.2 Statistical significance test
	5.1.3 Effect size test

	5.2 RQ2: benefits of the cascade strategy
	5.3 RQ3: the running time of all models

	6 Discussions
	6.1 Performance of DPDF under different parameter settings
	6.2 The impact of the number of forest classifiers
	6.3 The impact of different forest classifiers
	6.4 Evaluation of other measures
	6.5 Other layer-by-layer structure model
	6.6 Threats to validity

	7 Related work
	7.1 Machine learning in software defect prediction
	7.2 Feature selection in software defect prediction

	8 Conclusion and future work
	Acknowledgments
	References


