
ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Information and Software Technology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A two-phase transfer learning model for cross-project defect prediction

Chao Liu

a , b , ∗ , Dan Yang

b , Xin Xia

c , Meng Yan

d , Xiaohong Zhang

b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing University, Chongqing, China
b School of Big Data & Software Engineering, Chongqing University, Chongqing, China
c Faculty of Information Technology, Monash University, Melbourne, Australia
d College of Computer Science and Technology, Zhejiang University, Hangzhou, China

a r t i c l e i n f o

Keywords:

Cross-Project prediction

Defect prediction

Transfer learning

Source project selection

a b s t r a c t

Context: Previous studies have shown that a transfer learning model, TCA+ proposed by Nam et al., can signifi-

cantly improve the performance of cross-project defect prediction (CPDP). TCA+ achieves the improvement by

reducing data distribution difference between source (training data) and target (testing data) projects. However,

TCA+ is unstable, i.e., its performance varies largely when using different source projects to build prediction

models. In practice, it is hard to choose a suitable source project to build the prediction model.

Objective: To address the limitation of TCA+, we propose a two-phase transfer learning model (TPTL) for CPDP.

Method: In the first phase, we propose a source project estimator (SPE) to automatically choose two source

projects with the highest distribution similarity to a target project from candidates. Next, two source projects

that are estimated to achieve the highest values of F1-score and cost-effectiveness are selected. In the second

phase, we leverage TCA+ to build two prediction models based on the two selected projects and combine their

prediction results to further improve the prediction performance.

Results: We evaluate TPTL on 42 defect datasets from PROMISE repository, and compare it with two versions of

TCA+ (TCA+_Rnd, randomly selecting one source project; TCA+_All, using all alternative source projects), a

related source project selection model TDS proposed by Herbold, a state-of-the-art CPDP model leveraging a log

transformation (LT) method, and a transfer learning model Dycom with better form of TCA. Experiment results

show that, on average across 42 datasets, TPTL respectively improves these baseline models by 19%, 5%, 36%,

27%, and 11% in terms of F1-score; by 64%, 92%, 71%, 11%, and 66% in terms of cost-effectiveness.

Conclusion: The proposed TPTL model can solve the instability problem of TCA+, showing substantial improve-

ments over the state-of-the-art and related CPDP models.

1

t

p

t

c

p

a

w

t

w

d

(

d

e

p

h

n

(

g

s

c

p

a

t

t

h

R

A

0

. Introduction

Software defect prediction can help software assurance teams effec-
ively allocate testing resources by predicting defect-prone class files in
rojects prior to the testing phase [25,35] . Recent studies have shown
hat machine learning (ML) models can successfully identify defective
lasses/files/modules (aka., instances) under a within-project defect
rediction (WPDP) setting [4,8,20,38] , i.e., training and testing data
re extracted from the same project. However, in practice, WPDP cannot
ork well to a new project, since a new project has no or not sufficient

raining data to train an ML model, and the cost of manually identifying
hether the classes/files/modules are defective is high [39] .

An alternative and promising solution is the cross-project defect pre-
iction (CPDP), which trains an ML model by using plenty of training
∗ Corresponding author.

E-mail addresses: liu.chao@cqu.edu.cn (C. Liu), dyang@cqu.edu.cn (D. Yang), xin

X. Zhang).

S

ttps://doi.org/10.1016/j.infsof.2018.11.005

eceived 10 December 2017; Received in revised form 13 September 2018; Accepted

vailable online xxx

950-5849/© 2018 Elsevier B.V. All rights reserved.

Please cite this article as: C. Liu, D. Yang and X. Xia et al., A two-phase tra
and Software Technology, https://doi.org/10.1016/j.infsof.2018.11.005
ata from other projects (aka., source projects) [18,23,28,29,39] . For
xample, we can obtain training data from the PROMISE repository that
rovides many publicly released defect prediction datasets [16] . CPDP,
owever, is a challenging task as its prediction performance is usually
ot high. This is because an ML model trained by one or a set of projects
i.e., source projects) cannot generalize well to other projects (i.e., tar-
et projects) [23] , due to domain difference phenomenon between the
ource and target projects, e.g., architecture, programming language,
oding styles, and developer experience.

To conquer the challenge existed in CPDP, many transfer learning ap-
roaches, which aim to adapt the domain difference between the source
nd target projects, have been proposed [18,23,28] . TCA+ is a state-of-
he-art transfer learning algorithm for CPDP [23] , which can minimize
he data distribution difference between the source and target projects.
pecifically, TCA+ maps source and target projects into a shared latent
.xia@monash.edu (X. Xia), mengy@zju.edu.cn (M. Yan), xhongz@cqu.edu.cn

 19 November 2018

nsfer learning model for cross-project defect prediction, Information

https://doi.org/10.1016/j.infsof.2018.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:liu.chao@cqu.edu.cn
mailto:dyang@cqu.edu.cn
mailto:xin.xia@monash.edu
mailto:mengy@zju.edu.cn
mailto:xhongz@cqu.edu.cn
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1016/j.infsof.2018.11.005

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

s

a

t

i

o

c

s

(

p

p

s

f

D

s

b

p

p

b

a

d

c

m

s

s

p

a

a

p

p

T

i

i

o

w

w

(

i

e

i

T

c

s

P

p

t

n

s

t

t

f

Table 1

Experiment results using TCA+ with different source

project, where ‘All’ indicates a prediction using a com-

bination of all other 25 source projects. We use poi-2.5

as the target project.

Source F1-Score Source F1-Score

ant-1.3 0.301 synapse-1.1 0.255

ant-1.4 0.415 synapse-1.2 0.713

ant-1.5 0.467 velocity-1.4 0.312

ant-1.6 0.424 velocity-1.6 0.612

ant-1.7 0.376 tomcat 0.460

log4j-1.0 0.454 xalan-2.4 0.759

log4j-1.1 0.507 xalan-2.5 0.683

log4j-1.2 0.488 xalan-2.6 0.514

lucene-2.0 0.622 xalan-2.7 0.716

lucene-2.2 0.731 xerces-1.2 0.625

lucene-2.4 0.785 xerces-1.3 0.642

redaktor 0.706 xerces-1.4 0.766

synapse-1.0 0.505 All 0.285

t

S

W

m

r

o

2

t

2

t

a

d

m

I

d

t

[

o

t

d

b

o

f

T

w

2

t

f

s

o

i

1 The definition of F1-score is described in Section 4.2 .
2
pace where their data distribution distance is close [27] . In this way,
n ML model trained by transformed source project can better iden-
ify defective instances on transformed target project. However, TCA+
s unstable and its performance is largely determined by the selection
f source project. Our preliminary investigation shows that carefully
hoosing one source project, instead of randomly using one or a set of
ource projects, can substantially improve the performance of TCA+
 Section 2).

To address the limitation of TCA+, in this paper, we propose a two-
hase transfer learning model (TPTL) for CPDP. In the first phase, we
ropose a source project estimator (SPE) to automatically choose two
ource projects with the highest distribution similarity to a target project
rom a set of candidate source projects. SPE is inspired by a Training
ata Selection (TDS) method proposed by Herbold [11] . TDS is an un-

upervised approach, which directly measures the Euclidean distance
etween the source and target projects. Different from TDS, SPE is a su-
ervised approach, and we build SPE as two regression models, which
redict the values of F1-score and cost-effectiveness on the target project
ased on the data distribution characteristics collected from the source
nd target projects, respectively. In this study, F1-score represents the
iscriminatory power of a model, which is a harmonic average of pre-
ision and recall; and PofB20, a widely used cost-effectiveness metric,
easures the percentage of bugs that a developer can identify by in-

pecting the top 20% lines of code as sorted by the defective likelihood
core of our model [15] (details show in Section 4.2). Next, two source
rojects which are estimated to achieve the highest values of F1-score
nd PofB20 on target project are selected. In the second phase, we lever-
ge TCA+ to build two prediction models based on the two selected
rojects, and combine their prediction results to further improve the
rediction performance.

We evaluate our TPTL model against two related CPDP models,
CA+ [23] and TDS [11] by investigating 42 defect datasets, includ-

ng a total of 16,443 instances (classes), from the PROMISE data repos-
tory [21] . We implement TCA+ in two versions: TCA+ trained with
ne randomly selected source project (TCA+_Rnd), and TCA+ trained
ith all alternative source projects (TCA+_All). We also compare TLTP
ith a state-of-the-art CPDP model that leverages a log transformation

LT) method [3] . Furthermore, TPTL is compared with a transfer learn-
ng model Dycom [22] with a better form of TCA that previously shows
xcellent results in the web effort estimation dataset.

Experiment results show that TPTL achieves the best performance
n F1-score (0.481) and PofB20 (0.197). On average across 42 datasets,
PTL respectively improves TCA+_Rnd, TCA+_All, TDS, LT, and Dy-
om by 19.28%, 4.98%, 36.12%, 27.13%, and 11.08% in terms of F1-
core; by 64.15%, 91.60%, 71.01%, 11.27%, and 65.73% in terms of
ofB20, respectively. Results indicate that TPTL can solve the instability
roblem of TCA+, showing substantial improvements over the state-of-
he-art and related models. Moreover, the experiment shows that TPTL
eeds about 55 min and 0.001 s for model building and predicting re-
pectively, on average across 42 datasets, where 99.88% of building
ime are used for collecting training data for SPE. As SPE does not need
o be updated all the time, TPTL thus has an acceptable execution time
or practical use.

The main contributions of this article are:

• We propose an improved CPDP model called TPTL, which utilizes
the advantages of source project selection and transfer learning al-
gorithm to build a two-phase transfer learning model.

• We evaluate our TPTL model with previously succeeded CPDP model
TCA+ [23] , a related source selection model TDS [11] , a state-of-
the-art CPDP model LT [3] , and an excellent transfer learning model
Dycom [22] originally used for web effort estimation. Across 42 de-
fect datasets, the experiment results show that the proposed model
can substantially improve the performance of CPDP comparing to
the baseline models.
2
In the remainder of this article, we describe preliminary work on
ransfer learning and the motivation of building our TPTL model in
ection 2 . We present the implementation details of TPTL in Section 3 .
e describe the experiment settings in Section 4 . We discuss our experi-
ent results in Section 5 , and threats to validity in Section 6 . We briefly

eview related work in Section 7 . We finally present the summary and
utlook of this work in Section 8 .

. Preliminary and motivation

In this section, we describe the preliminary on transfer learning and
he motivation to build TPTL.

.1. Preliminary on transfer learning

The challenge of CPDP mainly results from the difference of data dis-
ribution between the source and target projects [23,39] . For example,
 newly created project may have many defects in large-sized classes
ue to its complexity and importance, while a stable project may have
ore defects in small-sized classes for some recently updated functions.

n this way, a model trained by one project cannot correctly identify
efective files in the other project.

To overcome the data distribution difference between source and
arget projects, TCA+ (transfer component analysis plus) is developed
23] . TCA+ is a previously succeeded CPDP model, an extended model
f TCA [27] . To reduce the distribution difference between source and
arget projects, TCA maps them into a shared latent space, where their
ata distribution distance is close [27] . In this way, a classifier trained
y the transformed source project can better identify defective classes
n transformed target project. To further minimize data distribution dif-
erence and suppress the effect of outliers, Nam et al. [23] incorporate
CA with a data pre-processing method. Details can be found in their
ork by Nam et al. [23] .

.2. Why two-phase transfer learning?

Although TCA+ can improve the performance of CPDP, it encoun-
ers a new problem: how should TCA+ chooses a suitable source project
rom candidates, randomly selecting one or combining all available
ource projects?

To investigate this question, we evaluate the performance, F1-score 1 ,
f TCA+ on 26 projects 2 from the PROMISE repository [21] as listed
n Table 1 . In the prediction, we use poi-2.5 as the target project. Other
Details of studied projects are discussed in Section 4.1 .

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Fig. 1. Overall architecture of TPTL.

2

p

u

f

l

s

=

i

t

d

t

t

3

t

3

w

f

T

c

w

r

J

m

s

t

d

t

p

h

t

3

t

p

h

b

r

Table 2

Metrics for defect prediction used by Jureczko and Madeyski [16] .

Metric Description

wmc the number of methods declared in a given class.

dit the depth of inheritance hierarchy for a given class.

noc the number of children inherited to a given class.

cbo the number of classes coupled to a given class.

rfc the number of distinct methods called in a given class.

lcom the number of method pairs in a class that do not share access to any

class attributes.

lcom3 another type of lcom metric proposed by Henderson [10] .

npm the number of public methods in a given class.

loc the number of lines of code in a given class.

dam the ratio of the number of private/protected attributes to the total

number of attributes in a given class.

moa the number of attributes in a given class which are of user-defined

types.

mfa the number of methods inherited by a given class divided by the total

number of methods that can be accessed by the member methods of

the given class.

cam the ratio of the sum of the number of different parameter types of every

method in a given class to the product of the number of methods in

the given class and the number of different method parameter types

in the class.

ic the number of parent classes coupled to a given class.

cbm the total number of new or overwritten methods that all inherited

methods in a given class are coupled to.

amc the average size of methods in a given class.

ca the number of other classes that invoke a given class.

ce the number of classes invoked in a given class.

max_cc the maximum McCabe’s cyclomatic complexity (CC) score of methods

in a given class.

avg_cc the arithmetic mean of McCabe’s cyclomatic complexity (CC) score of

methods in a given class.

p

d

p

a

i

d

e

3

o

p

i

t

a

2

t

n
5 projects are separately used or combined together (All) as a source
roject. We choose logistic regression 3 as the classifier for TCA+.

From Table 1 , we can observe that the predictions by TCA+ are
nstable if we train TCA+ with only one source project, F1-scores vary
rom 0.255 to 0.785. Thus, randomly choosing one source project may
ead to poor performance for TCA+ [26] . However, using all candidate
ource projects does not necessarily have better performance (F1-score
 0.285). These phenomena are also discovered by Turhan [34] , which

s called the dataset shift problem. To solve this problem, we present a
wo-phase model TPTL: it first chooses two source projects with similar
ata distribution to a target project; and then leverage TCA+ to build
wo prediction models based on the two selected projects, and combine
heir prediction results to further improve the prediction performance.

. Proposed model

In this section, we first describe the overall architecture of TPTL,
hen present the implementation details of its components.

.1. Overall architecture

Fig. 1 illustrates the overall architecture of the proposed model TPTL,
hich works in two phases: a source project selection phase, and a trans-

er learning phase.
Phase-I: Source Project Selection Phase. Specifically, the input of

PTL is a collection of candidate source projects, and a source project
ontains many class files. In the source projects, each class is attached
ith a known label (i.e., defective or clean), and a set of software met-

ics as shown in Table 2 . In this paper, we use the metrics proposed by
ureczko and Madeyski [16] . In the target project, we extract the same
etrics as in the source projects, but without the label. In this phase, SPE

elects two candidate source projects (Step 1), and they are estimated
o achieve the highest F1 and PofB20 scores on the target project. The
etails of SPE is presented in Section 3.2 .

Phase-II: Transfer Learning Phase. In the second phase, we build
wo TCA+ models for two pairs of the selected source and target
rojects (Step 2). These two TCA+ models respectively aim to achieve
igh F1 and PofB20 scores on the target project. We further combine
hese two TCA+ models to improve the prediction results (Step 3).

.2. Source project estimator (SPE)

Herbold [11] found that if data distributions between the source and
arget projects are close, a CPDP model can achieve better prediction
erformance. Thus, the goal of SPE is to select the source projects which
ave similar data distributions as the target project.

In this paper, SPE learns two regression models by leveraging a num-
er of independent variables (i.e., median values of all software met-
ics in a project) extracted from the source projects – one is used to
3 Description on the implementation is provided in Section 3.3 .

p

p

t

3
redict the F1-score on the target project, and another is used to pre-
ict the PofB20 score on the target project. Next, we select two source
rojects which respectively achieve the highest predicted scores of F1
nd PofB20 on the target project. Fig. 2 presents the details of the learn-
ng process of the two regression models. They are learned by using in-
ependent and dependent variables (in our case, F1 and PofB20 scores)
xtracted from source projects.

.2.1. Regression model construction

As shown in Fig. 2 , to learn two regression models, we need pairs
f source and target projects to generate values for independent and de-
endent variables. But in practices, we only have one target project, and
t does not have labels to evaluate the prediction performance. To solve
his problem, we use different combinations of labeled source projects
s the hypothetical source and target projects. For example, if we have
 labeled source projects (A and B), then we have 2 combinations of
raining data (AB and BA) for regression models.

Independent Variables. The independent variables of SPE include
ot only a hypothetical source project but also a hypothetical target
roject, because their data distribution similarity affects the prediction
erformance of CPDP [9,11,23] . We represent the features of a hypo-
hetical source and target projects by a characteristics vector. Elements

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Fig. 2. Working flow to build SPE.

Fig. 3. Illustration of the SMOreg.

i

a

l

p

t

t

d

t

p

i

e

a

t

v

w

F

p

i

h

t

d

3

g

i

d

m

t

P

3

t

a

g

t

T

(

a

t

𝐷

o

[

n

p

t

o

m

t

t

w

n

e

C

b

v

s

S

e

t

4 LIBLINEAR library: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
n the vector are median values of all software metrics in both projects
s illustrated in Fig. 2 . As each project is represented by 20 metrics as
isted in Table 2 , there are a total of 40 elements in the vector totally. Ex-
eriment results in Section 5.2 shows that the median values are enough
o capture the features of source and target projects, and using more dis-
ribution characteristics like Herbold [11] , such as mean and variance,
oes not help SPE find a better source project.

Dependent Variable. The dependent variable of SPE is the predic-
ion performance of TCA+ using a pair of hypothetical source and target
rojects in Phase-II, as shown in Fig. 2 . We build two regression models
n this study because we have two types of dependent variables, i.e. two
valuation metrics (F1-score or PofB20).

Regression Models. In default, we use the well-known supervised
lgorithm SMOreg (Sequential Minimal Optimization for regression) as
he two underlying regression models. The SMOreg is a kind of support
ector machine (SVM) model but designed for the regression problem,
hich is trained by the sequential minimal optimization method [32] .
or our research, as illustrated in Fig. 3 , SMOreg aims to learn a hy-
erplane with two short gaps (± Gap) to capture the relationship from
ndependent variables to the dependent variable, so that the learned
yperplane can be used to estimate the distribution similarity between
wo projects. We implement SMOreg by invoking Weka library [7] with
efault settings.

.2.2. Source project selection

After the two regression models are trained, given a source and a tar-
et project, SPE first extracts the same independent variables as shown
n the regression model construction step. Next, SPE inputs these in-
ependent variables into two developed regression models, and each
4
odel will get a result (i.e., F1 or PofB20 score). Finally, SPE selects
wo source projects which are estimated to achieve the highest F1 and
ofB20 scores on the target project, respectively.

.3. TCA+

TCA (Transfer Component Analysis). To reduce the data distribu-
ion distinction between a pair of source and target projects, TCA learns
 nonlinear function 𝜙 to map the source project 𝑥 𝑖 ∈ X 𝑡𝑟𝑎𝑖𝑛 and the tar-
et project 𝑥 𝑗 ∈ X 𝑡𝑒𝑠𝑡 into a latent space. In the latent space, TCA requires
he distribution distance (Dist) between two projects to be close [27] .
hus, the objective of TCA is to minimize the distance represented in Eq.
1) , where p and q indicate the total number of class files in the source
nd target projects, respectively. Pan et al. [27] provide an implicit way
o obtain the transformed source and target projects in details.

𝑖𝑠𝑡 (X 𝑡𝑟𝑎𝑖𝑛 , X 𝑡𝑒𝑠𝑡) =

‖‖‖‖‖
1
𝑝

𝑝 ∑
𝑖 =1

𝜙(𝑥 𝑖) −

1
𝑞

𝑞 ∑
𝑖 =1

𝜙(𝑥 𝑗)
‖‖‖‖‖

2



(1)

Data Preprocessing. We first process the metric values for a pair
f source and target projects via a log transformation method following
3] . Moreover, Nam et al. [23] observed that incorporating TCA with
ormalization method (e.g., min-max or z-score normalization) can im-
rove the performance of CPDP, but the performance is sensitive to the
ype of normalization approaches and the distribution characteristics
f the source and target projects. Therefore, they propose a heuristic
ethod to choose a suitable normalization method for TCA, according

o the distribution features of the source and target projects. Implemen-
ation details can be found in their work [23] . They call TCA extended
ith their heuristic method as TCA+.

Classifier. TCA+ also involves an underlying classifier, which fi-
ally determines the prediction performance of TPTL. Following Nam
t al. [23] , we use the logistic regression as the classifier for its better
PDP. The logistic regression is used to estimate the probability of a
inary response (i.e., defective or clean) based on multiple independent
ariables (i.e., 20 used software metrics in Table 2) [13] . We adopt the
ame implementation library (LIBLINEAR

4) and parameters settings (“-
0 ”, use logistic regression; “-B -1 ”, use no bias term) following Nam
t al. [23] For each class in the target project, the classifier will output
he confidence score that the class is buggy.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Fig. 4. Example of the prediction combination

with 7 classes (C1–C7). The confidence scores pre-

dicted by fTCA+ are transformed, and added with

the normalized scores (divided by 2) by pTCA+,

to maintain the discriminability of fTCA+ and the

order of pTCA+.

3

p

a

f

T

a

d

c

t

o

a

t

o

t

fi

0

n

i

t

b

p

t

a

4

a

4

r

a

o

J

s

T

d

m

T

w

t

a

p

a

f

t

t

p

f

b

b

b

d

b

c

s

c

(

m

g

a

a

A

s

l

r

c

t

S

w

S

a

t

i

4

.4. Prediction combination

Our approach builds two TCA+ models for the two selected source
rojects, and our experiments find that each TCA+ model only achieves
 high F1 or PofB20 score on the target project (we respectively call them
TCA+ and pTCA+ hereafter) 5 . Thus, we need to combine these two
CA+ models to improve both of the F1 and PofB20 scores, since they
re the most important evaluation metrics in defect prediction.

By default, the fTCA+ model predicts a class as buggy if the confi-
ence score is more than a threshold of 0.5, else it predicts the class as
lean. A fTCA+ model with a high F1-score indicates that it could iden-
ify the buggy classes accurately, i.e., a class with a confidence score
f more than 0.5 is more likely to be buggy. The pTCA+ model with
 high PofB20 score implies that the top-ranked classes are more likely
o be buggy, and the ranking list is built based on the confidence scores
utput by the pTCA+ model.

To take the advantages of two TCA+, we combine their results in
wo steps: (1) to maintain the discriminability advantage of fTCA+, we
rst turn its predicted values higher than 0.5 to be 0.5, otherwise to be
; (2) to incorporate the sequence generated by pTCA+ to fTCA+, we
ormalize the values predicted by cTCA+ to the range of 0 to 0.5 (divid-
ng all values by 2), and then add the normalized values by pTCA+ to
he transformed values by fTCA+. Fig. 4 exemplifies the way we com-
ine confidence scores of 7 classes (C1-C7) predicted by fTCA+ and
TCA+, and how we maintain the features of two lists. In the example,
he combination method cannot only predict two classes are defective
s fTCA+ but also reorder classes as pTCA+.

. Experiment

In this section, we present the experiment setup, evaluation metrics,
nd research questions for model evaluation.

.1. Experiment setup

Datasets. We evaluate TPTL using defect datasets collected by Ju-
eczko and Madeyski [16] from the PROMISE data repository [21] ,
s listed in Table 3 . The datasets contain 42 releases from 14 distinct
pen-source Java projects. Each instance in a dataset corresponds to a
ava class. And one instance is represented by 20 static code metrics as
hown in Table 2 , and is also attached by a label, i.e. defective or clean.
able 3 shows the total number of classes and defects in these 42 defect
atasets.

Baseline Models. In the study, we first compare the proposed TPTL
odel with 2 previously succeeded CPDP models including TCA+ [23] ,
5 For more details, please refer to Table 11 .

s

m

5
DS [11] . TDS is the most related work for source project selection but
ithout the process of TCA+, and we re-implement TDS according to

he pseudo-code written in the original paper. TCA+ is an extended
lgorithm of TCA with some data preprocessing work. We develop TCA
art following Pan et al. [27] and the extended part as Nam et al. [23] .

Moreover, we compare TPTL with the model LT [3] , a state-of-the-
rt multi-source CPDP model leveraging a median based metric trans-
ormation [12] . In specific, for n combined source projects X and a
arget project Y , LT first preprocesses those data by log transforma-
ion, 𝑋 = 𝑙𝑜𝑔(1 + 𝑋) , 𝑌 = 𝑙𝑜𝑔(1 + 𝑌) . To mitigate the difficulty of cross-
roject prediction, LT aligns the median of i -th metric of the trans-
ormed source project 𝑋 𝑗 to the median of transformed target project

y 𝑋 𝑖 = 𝑋 𝑖 + 𝑚𝑒𝑑𝑖𝑎𝑛 (̂𝑋 𝑖) − 𝑚𝑒𝑑𝑖𝑎𝑛 (̂𝑌 𝑖) . In this way, a cross-project model
uilt on all transformed source project 𝑋 can effectively predict the la-
els of the transformed target project 𝑌 . In the prediction, LT uses the
ecision tree C4.5 as its classifier following [12] , which is implemented
y invoking the Weka tool [7] with default settings.

In addition, we compare TPTL with the transfer learning model Dy-
om with a more advanced form of TCA, which achieves excellent re-
ults in web effort estimation [22] . Dycom is a weighted sum of n

ross-project regression models (f i , i ∈ [1, n]) and a within-project model
 𝑓 𝑛 +1) built on 10% labeled data x from target project. For a cross-project
odel f i , it is transformed with a linear function g i pre-trained by tar-

et data x , so that the transferred cross-project model g i (f i) is close to
 within-project model, i.e., 𝑔 𝑖 (𝑓 𝑖 (𝑥)) ≈ 𝑓 𝑛 +1 (𝑥) . We implement Dycom
s the same model learning strategy as described in Minku et al. [22] .
dditionally, due to the difference of web effort estimation (i.e., regres-
ion problem) and software defect prediction (i.e., classification prob-
em), we use our underlying classifier (logistic regression) to replace the
egression model (regression trees) used in Dycom.

Note that, following Nam et al. [23] , all of the baseline models ex-
ept LT use logistic regression as their underlying classifiers. The logis-
ic regression is implemented as our TPTL model, which is described in
ection 3.3 .

Source and Target Projects. To simulate the practical model usage,
e perform the cross-project prediction as previous studies [23,30,31] .
pecifically, for one defect prediction, we pick up one release of a project
s a target project (e.g., ant-1.3), and use all releases of other projects as
he candidate source projects (i.e., 37 releases not belonged to the ant
n the example). We thus have 42 cross-project predictions in total.

.2. Evaluation metrics

In this study, we adopt two widely used performance metrics, F1-
core and cost-effectiveness, to evaluate the proposed model.

F1-Score. When predicting defective classes in a target project, a
odel may succeed (True Positive, TP) or fail (False Positive, FP) to

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Table 3

Studied software systems. For each system, #Class means the number of class files; #Defect

indicates the number of defective classes; %Defect indicates the percentage of defective

classes.

Dataset #Class #Defect %Defect Dataset #Class #Defect %Defect

ant-1.3 125 20 16.00 lucene-2.0 195 91 46.67

ant-1.4 178 40 22.47 lucene-2.2 247 144 58.30

ant-1.5 293 32 10.92 lucene-2.4 340 203 59.71

ant-1.6 351 92 26.21 poi-1.5 237 141 59.49

ant-1.7 745 166 22.28 poi-2.0 314 37 11.78

camel-1.0 339 13 03.83 poi-2.5 385 248 64.42

camel-1.2 608 216 35.53 poi-3.0 442 281 63.57

camel-1.4 872 145 16.63 redaktor 176 27 15.34

camel-1.6 965 188 19.48 synapse-1.0 157 16 10.19

ckjm 10 5 50.00 synapse-1.1 222 60 27.03

ivy-1.1 111 63 56.76 synapse-1.2 256 86 33.59

ivy-1.4 241 16 06.64 tomcat 858 77 08.97

ivy-2.0 352 40 11.36 velocity-1.4 196 147 75.00

jedit-3.2 272 90 33.09 velocity-1.6 229 78 34.06

jedit-4.0 306 75 24.51 xalan-2.4 723 110 15.21

jedit-4.1 312 79 25.32 xalan-2.5 803 387 48.19

jedit-4.2 367 48 13.08 xalan-2.6 885 411 46.44

jedit-4.3 492 11 02.24 xalan-2.7 909 898 98.79

log4j-1.0 135 34 25.19 xerces-1.2 440 71 16.14

log4j-1.1 109 37 33.94 xerces-1.3 453 69 15.23

log4j-1.2 205 189 92.20 xerces-1.4 588 437 74.32

p

N

p

f

p

c

d

m

m
𝑅

m

b

i

m

a

l

d

t

d

c

i

c

2

t

4

m

w

4

T

e

o

c

d

n

Table 4

Cliff’s delta and the effectiveness level [5] .

No. Cliff’s delta (| 𝛿|) Effectiveness level

1 0.000 ≤ | 𝛿| < 0.147 Negligible

2 0.147 ≤ | 𝛿| < 0.330 Small

3 0.330 ≤ | 𝛿| < 0.474 Medium

4 0.474 ≤ | 𝛿| ≤ 1.000 Large

a

t

p

d

w

a

t

P

p

r

w

t

𝛿

n

d

4

b

d

a

A

u

m

i

c

p

S

f

a
redict a defective class, truly (True Negative, TN) or wrongly (False
egative, FN) identify a clean class. Based on these 4 possible results,
recision and recall can measure two aspects of the prediction per-
ormance. Specifically, precision equals to the proportion of correctly
redicted instances that are defective, 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃 ∕(𝑇 𝑃 + 𝐹 𝑃) ; re-
all is the proportion of defective instances that are correctly pre-
icted, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃 ∕(𝑇 𝑃 + 𝐹 𝑁) . To comprehensively evaluate a CPDP
odel, the F1-score is widely used [15,17,23] , which is a harmonic
ean of the precision and the recall, 𝐹 1 − 𝑠𝑐𝑜𝑟𝑒 = (2 × 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑒𝑐𝑎𝑙 𝑙)∕(𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙 𝑙) .

Cost-Effectiveness. Cost-effectiveness is important because after a
odel predicts defective classes in a project, developers need to inspect

uggy classes one by one, and they expect to find more bugs by read-
ng fewer lines of code [15] . PofB20 is a widely used cost-effectiveness
easure proposed by Jiang et al. [2,15,30,31] . It measures the percent-

ge of bugs that a developer can identify by inspecting the top 20%
ines of code [15] . A CPDP model with high cost-effectiveness can save
evelopers’ efforts for code inspection.

We calculate PofB20 as Jiang et al. [15] . We first sort instances in a
arget project based on their confidence scores (i.e., the probability to be
efective predicted by a CPDP model), where an instance with higher
onfidence score is more likely to be defective. We then inspect one
nstance at a time from the highest confidence score to the lowest, and
ount the total lines of code that have been reviewed. When we inspect
0% of total lines of code in testing data, we stop the inspection, and
he PofB20 is equal to the final percentage of bugs that are identified.

.3. Research questions

The core objective of this study is to investigate whether our TPTL
odel can solve the instability problem of TCA+. In the experiment,
e address the following research questions.

.3.1. RQ1: how effective is our TPTL model? how much improvement can

PTL achieve over the related models?

We investigate the extent that TPTL model advances 4 related mod-
ls, TCA+, TDS, LT, and Dycom. In this RQ, we develop two versions
f TCA+ with different source project selection approaches: TCA+_All,
ombining all candidate source projects as an input; TCA+_Rnd, ran-
omly selecting one source project as the input. Furthermore, as Dycom
eeds to be adjusted by 10% labeled data from the target project, it is
6
lso run by 10 times to suppress the effects of randomness. Note that,
o simplify the comparison of Dycom with other models, it performs
redictions on all data in the target project (including the 10% labeled
ata). Although this may overestimate the performance of Dycom, it
ould not affect the conclusion of the comparison.

To check if the performance difference between a baseline model
nd TPTL is statistically significant, we apply the Wilcoxon signed-rank
est [37] at a 95% significance level on their performance (F1-score or
ofB20) of 42 defect datasets. To counteract the results of multiple com-
arisons among baselines, we also use Bonferroni correction [1] to cor-
ect the p-values generated by the Wilcoxon signed-rank test. Moreover,
e use Cliff’s delta (𝛿, a non-parametric effect size measure) [5] to quan-

ify the amount of difference between two models. As shown in Table 4 ,
ranges from -1 to 1, and its value range is divided into four effective-
ess levels, where a higher level indicates that two model has a greater
ifference on a performance [5] .

.3.2. RQ2: how TPTL components affect its prediction performance?

What kinds of statistical metrics can better capture the distri-

ution similarity between source and target projects in SPE? By
efault, we adopt the median values of all software metrics from source
nd target projects as the independent variables of SPE in Section 3.2 .
part from the median, other statistical metrics (e.g., mean) can be also
sed [11] . Hence, we investigate whether other statistical metrics (i.e.,
ean, variance, skewness, and kurtosis) affect the performance of TPTL

ndividually. We also analyze whether TPTL can be improved by using
ombined characteristics.

Does the choice of different regression models in SPE affect the

erformance of TPTL? SPE consists of two regression models. We use
MOreg as the underlying regression models in default, but using a dif-
erent algorithm may improve the performance of TPTL. Therefore, we
pply 8 common regression models to TPTL, as shown in Table 5 , to in-

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Table 5

Overview of 8 regression models for SPE.

No. Model name Abbreviation

1 Sequential Minimal Optimization for regression SMOreg

2 Additive Regression AR

3 Decision Table DT

4 Least Squares Regression LSR

5 Linear Regression LR

6 Radical Basis Function network RBF

7 Simple Linear Regression SLR

8 ZeroR ZR

v

W

m

p

f

o

d

i

t

t

i

f

b

a

4

f

5

c

1

c

1

f

p

5

5

P

f

a

a

a

T

i

p

t

c

p

T

0

t

a

T

s

m

t

c

b

a

r

c

a

m

r

b

T

o

C

m

i

b

r

l

t

p

(

o

s

s

p

d

s

s

i

p

T

t

s

e

s

s

s

s

a

c

s

t

B

q

t

f

t

5

T

a
estigate which algorithm is the best choice for two regression models.
e implement them by invoking Weka library [7] with default settings.
Does the number of source projects in SPE affect the perfor-

ance of TPTL? SPE uses different combinations of labeled source
rojects to train two regression models. We aim to analyze if the per-
ormance of TPTL is proportional to the number of training data. If so,
ur TPTL models can be further improved by training SPE with more
ata. In specific, we train SPE in TPTL with m randomly selected train-
ng data, where m ranges from 100 to 1300 with step 200. To suppress
he effect of randomness, we run each experiment 10 times, and report
heir mean and standard deviation values.

What is the benefit of the prediction combination? As referred to
n Section 3.4 , we combine prediction results of two TCA+ (pTCA+ and
TCA+), and we aim to investigate whether the combined prediction is
etter than the results generated by pTCA+ and fTCA+ respectively,
nd why we need two TCA+.

.3.3. RQ3: how efficient is the TPTL model? how much time does it take

or TPTL model to run compared to the baseline models?

This RQ investigates the time efficiency of TPTL comparing to the
 baseline models including TCA+_Rnd, TCA+_All, TDS, LT, and Dy-
om as referred to in RQ1. We run all the models on a 64-bit, Ubuntu
4, server with 2.10 GHz CPU and 64 GB RAM. As TCA+_Rnd, and Dy-
om incorporate randomness in model training, we therefore run them
0 times, and record the average model building and predicting time
or each dataset. And we finally compare average model building and
redicting time across 42 datasets for TPTL and other baselines.

. Results and discussion

.1. RQ1: Effectiveness of TPTL

Prediction Performance. Tables 6 and 7 show the F1-score and
ofB20 values of TPTL versus 5 baseline models. TPTL gains the best per-
ormance on F1-score, whose F1-scores range from 0.050 to 0.787 with
verage 0.481 across 42 datasets. Table 6 shows that our model TPTL
chieves substantial improvements over baseline models. On average
cross the 42 defect datasets, TPTL outperforms TCA+_Rnd, TCA_All,
DS, LT, and Dycom by 19.28%, 4.98%, 36.12%, 27.13%, and 11.08%

n terms of F1-score, respectively. We notice that four of the studied
rojects (xerces, xalan, synapse, and poi) show larger improvements in
he last version. One possible reason is the latest version contains more
lasses and defective classes as shown in Table 3 , so that the defective
attern on a larger-size version is easier to be captured.

TPTL also achieves the best cost-effectiveness in terms of PofB20.
he PofB20 scores of TPTL vary from 0.027 to 0.450 with average
.197. Table 7 shows that the improvements of our model TPTL over
he baseline models are substantial. Across 42 defect datasets, the aver-
ge PofB20 of TPTL outperforms those of TCA+_Rnd, TCA+_All, TDS,
L, and Dycom by 64.15%, 91.60%, 71.01%, 11.27%, and 65.73%, re-
pectively.

We can observe that for our model PofB20 shows larger improve-
ents than F1-score. A prediction model with a high F1-score means
7
hat the model has the ability to distinguish defective classes from clean
lasses, while the model with a high PofB20 score means that there will
e more defective classes in the top-ranked classes. In practice, due to
 tight schedule and limited resources, developers might check the top-
anked classes to identify as many defects as possible. Meanwhile, we
an notice that the best average F1-score (0.443) and PofB20 (0.119)
mong baselines are not high enough, thus TPTL’s relative improve-
ents over them (+11.08% and +11.27%) are high. Note that the high

elative improvements are mainly due to the low performance of the
aseline approaches.

Number of Improvements. Moreover, the “W/T/L ” row in
ables 6 and 7 reports the number of datasets for which a baseline model
btains a better, equal, and worse performance than our TPTL model.
omparing with all baseline models, results show that TPTL achieves
ore than 24 improvements in terms of F1-score, and larger than 25

mprovements in terms of PofB20.
Statistical Test. Tables 6 and 7 also present the p -values (tested

y the Wilcoxon signed-rank test and corrected by the Bonferroni cor-
ection) and Cliff’s delta (𝛿) when comparing TPTL with the base-
ine models in terms of F1-score and PofB20 scores. We can observe
hat comparing with baselines on F1-score, TPTL shows significant im-
rovements (p -value < 0.05) over TDS and LT with medium size effect
 𝛿= 0.365 and 0.340 respectively), and has no significant improvements
n TCA+_Rnd, TCA+_All, and Dycom. As to the PofB20, TPTL shows
ignificantly improvements (p -value < 0.05) on all baselines with large
ize effect (0.582 ≤ 𝛿 ≤ 0.72) except for the LT.

Above results imply that TCA+ trained with all candidate source
rojects (TCA+_All) obtains higher performance than that with ran-
omly selected source projects (TCA+_Rnd), with largely enhanced F1-
core and slightly reduced PofB20. But we cannot ensure that combining
ource projects at hand will always gain a better performance as referred
n our case study shown in Section 2 . And by carefully choosing source
rojects from candidates, TPTL achieves substantial improvements over
CA+_All and TCA+_Rnd. Thus, the proposed model TPTL can solve
he instability issue of TCA+ with the well-chosen source project.

Besides, the TPTL’s advantage over TDS indicates that although a
uitable source project can be selected by measuring its metric differ-
nce with target project, a better substitute is to learn their relation-
hip as our source project estimator (Section 3.2). Furthermore, TPTL
hows significantly improved F1-score and competitive PofB20 over the
tate-of-the-art CPDP model LT [12] , which suggests that TPTL has a
ubstantially improved discriminability power for defect classification,
nd comparable cost to identify defects by inspecting top 20% lines of
ode.

Additionally, although the overestimated model Dycom shows a sub-
tantial advantage over other baselines on F1-score, TPTL still gains bet-
er performance with higher F1-score and significantly larger PofB20.
esides, TPTL only uses two selected source projects, but Dycom re-
uires all candidate source projects plus 10% more labeled data from
he target project. This condition implies the TPTL can potentially be
urther improved by using more selected source projects, and adjusting
he model with more data from the target project.

Result 1: The proposed TPTL model outperforms the previously suc-
ceeded CPDP models TCA+, TDS, LT, and Dycom in terms of F1-score
and cost-effectiveness. TPTL can not only solve the instability problem

of TCA+, but also largely save developers’ efforts to find defective
classes.

.2. RQ2: impact of SPE components on TPTL

Statistical metrics. Table 8 presents the F1-score and PofB20 of
PTL model that uses different statistical metrics (median, mean, vari-
nce, skewness, and kurtosis) of the source and target projects as the in-

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Table 6

F1-score comparison of TPTL model versus 5 baselines (TCA+_Rnd, TCA+_All, TDS, LT, and

Dycom) for 42 datasets. The results of TCA+_Rnd and Dycom are in the form of mean ±
standard deviation because they run 10 times for each dataset, while other models run only

once. “W/T/L ” reports the number of datasets that a baseline is better, equal, worse than TPTL.

Dataset TCA + _Rnd TCA + _All TDS LT Dycom TPTL

ant-1.3 0.376 ± 0.090 0.359 0.394 0.239 0.411 ± 0.082 0.456

ant-1.4 0.327 ± 0.037 0.380 0.345 0.283 0.393 ± 0.048 0.377

ant-1.5 0.260 ± 0.096 0.322 0.262 0.252 0.439 ± 0.121 0.237

ant-1.6 0.541 ± 0.066 0.559 0.449 0.493 0.448 ± 0.028 0.595

ant-1.7 0.431 ± 0.114 0.505 0.454 0.434 0.429 ± 0.042 0.455

camel-1.0 0.092 ± 0.040 0.096 0.111 0.159 0.365 ± 0.114 0.093

camel-1.2 0.403 ± 0.011 0.453 0.378 0.379 0.412 ± 0.010 0.502

camel-1.4 0.334 ± 0.053 0.382 0.323 0.285 0.388 ± 0.062 0.339

camel-1.6 0.308 ± 0.047 0.328 0.190 0.273 0.383 ± 0.020 0.356

ckjm 0.620 ± 0.129 0.667 0.000 0.750 0.474 ± 0.084 0.714

ivy-1.1 0.533 ± 0.049 0.654 0.642 0.333 0.454 ± 0.046 0.738

ivy-1.4 0.131 ± 0.072 0.253 0.000 0.200 0.375 ± 0.026 0.160

ivy-2.0 0.324 ± 0.076 0.383 0.305 0.278 0.422 ± 0.024 0.349

jedit-3.2 0.442 ± 0.132 0.578 0.143 0.548 0.450 ± 0.027 0.536

jedit-4.0 0.458 ± 0.080 0.473 0.235 0.442 0.412 ± 0.033 0.447

jedit-4.1 0.423 ± 0.106 0.481 0.239 0.472 0.450 ± 0.209 0.522

jedit-4.2 0.358 ± 0.080 0.381 0.440 0.336 0.396 ± 0.067 0.370

jedit-4.3 0.065 ± 0.019 0.047 0.112 0.043 0.358 ± 0.147 0.050

log4j-1.0 0.516 ± 0.063 0.495 0.528 0.377 0.437 ± 0.036 0.637

log4j-1.1 0.524 ± 0.090 0.617 0.538 0.415 0.463 ± 0.033 0.699

log4j-1.2 0.562 ± 0.059 0.611 0.314 0.271 0.555 ± 0.030 0.606

lucene-2.0 0.569 ± 0.081 0.644 0.542 0.470 0.441 ± 0.037 0.677

lucene-2.2 0.515 ± 0.066 0.591 0.581 0.495 0.467 ± 0.066 0.621

lucene-2.4 0.458 ± 0.203 0.556 0.700 0.495 0.494 ± 0.053 0.633

poi-1.5 0.510 ± 0.135 0.689 0.600 0.745 0.411 ± 0.115 0.713

poi-2.0 0.264 ± 0.053 0.187 0.217 0.187 0.388 ± 0.041 0.218

poi-2.5 0.551 ± 0.141 0.701 0.554 0.754 0.507 ± 0.017 0.728

poi-3.0 0.513 ± 0.112 0.659 0.699 0.772 0.469 ± 0.127 0.787

redaktor 0.242 ± 0.063 0.318 0.304 0.252 0.364 ± 0.073 0.353

synapse-1.0 0.215 ± 0.097 0.289 0.526 0.444 0.399 ± 0.095 0.253

synapse-1.1 0.461 ± 0.079 0.460 0.487 0.488 0.414 ± 0.027 0.475

synapse-1.2 0.549 ± 0.095 0.596 0.510 0.444 0.447 ± 0.075 0.571

tomcat 0.240 ± 0.100 0.314 0.083 0.269 0.390 ± 0.074 0.287

velocity-1.4 0.458 ± 0.095 0.494 0.136 0.258 0.514 ± 0.039 0.734

velocity-1.6 0.461 ± 0.067 0.532 0.025 0.293 0.406 ± 0.100 0.568

xalan-2.4 0.322 ± 0.045 0.379 0.345 0.235 0.416 ± 0.029 0.403

xalan-2.5 0.466 ± 0.021 0.496 0.448 0.342 0.449 ± 0.055 0.533

xalan-2.6 0.486 ± 0.036 0.536 0.647 0.362 0.446 ± 0.038 0.512

xalan-2.7 0.493 ± 0.130 0.568 0.345 0.373 0.542 ± 0.059 0.616

xerces-1.2 0.209 ± 0.033 0.197 0.167 0.190 0.390 ± 0.021 0.192

xerces-1.3 0.331 ± 0.075 0.387 0.256 0.419 0.427 ± 0.019 0.377

xerces-1.4 0.576 ± 0.090 0.604 0.250 0.324 0.472 ± 0.021 0.690

Average 0.403 ± 0.079 0.458 0.353 0.378 0.433 ± 0.178 0.481

Improved + 19.28% + 04.98% + 36.12% + 27.13% + 11.08% –

W/T/L 5/0/37 17/0/25 8/0/34 10/0/32 16/0/26 –

p-value 0.103 0.508 0.020 0.030 0.219 –

Cliff′ s 𝜹 0.269 0.085 0.365 0.340 0.204 –

d

a

m

w

t

t

p

w

i

t

[

t

o

S

W

a

P

m

m

w

o

s

c

R

t

b

m

p

i

l

b
ependent variables of SPE. Numbers in the table are the average values
cross 42 datasets. We observe that TPTL with the median of software
etrics obtains the best F1-score (0.481) and PofB20 (0.197) comparing
ith alternative statistical metrics (mean, variance, skewness, and kur-

osis) and their 4 ways of combinations. Therefore, these results indicate
hat the median values of software metrics between the source and target
rojects are enough to capture their distribution similarity, i.e. a better
ay to represent the independent variables for SPE. This phenomenon

mplies that the source and target projects can be closely connected by
heir metric medians. This is also confirmed by Camargo and Ochimizu
3] , and that is why their LT model that does standardization based on
he median shows the best performance in a CPDP benchmark [12] .

Regression models. Table 9 shows the average prediction results
f TPTL with 8 different regression models (defined in Table 5), where
MOreg is the default approach for two regression models in the SPE.
e can observe that replacing SMOreg with other alternatives has a neg-

tive effect on the prediction performance, both in terms of F1-score and

o

8
ofB20. Therefore, SMOreg is the best algorithm for the two regression
odels in SPE.

Training data. Table 10 presents the F1-score and PofB20 of TPTL
odel with different number of training data (ranging from 100 to 1300
ith step 200) in the SPE. Each training data represents a combination
f hypothetical source and target project. In the table, we use ’All’ to
tand for the number of all possible combinations, instead of a digit, be-
ause each dataset has a different number of candidate source projects.
esults show that SPE with more training data has positive effects on

he prediction performance of TPTL. This case suggests that TPTL can
e further improved by training SPE with more data.

Prediction Combination. Table 11 shows the prediction perfor-
ance of TPTL with different settings on TCA+, building one (fTCA+ or
TCA+, as referred to in Section 3.4) or two TCA+ (using our combin-
ng method). We can notice that fTCA+ has a high F1-score (0.481) but
ow PofB20 (0.126), which suggests that the prediction accuracy is high,
ut the order of predicted confidence scores for classes cost much devel-
pers’ efforts to find defective classes when inspecting code line by line.

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Table 7

PofB20 comparison of TPTL model versus 5 baselines (TCA+_Rnd, TCA+_All, TDS, LT, and

Dycom). The results of TCA+_Rnd and Dycom are in the form of mean ± standard deviation

because they run 10 times for each dataset, while other models run only once. “W/T/L ” reports

the number of dataset that a baseline is better, equal, worse than TPTL.

Dataset TCA + _Rnd TCA + _All TDS LT Dycom TPTL

ant-1.3 0.170 ± 0.162 0.150 0.150 0.250 0.118 ± 0.074 0.450

ant-1.4 0.113 ± 0.184 0.075 0.075 0.075 0.094 ± 0.067 0.150

ant-1.5 0.194 ± 0.145 0.156 0.156 0.188 0.114 ± 0.072 0.219

ant-1.6 0.134 ± 0.158 0.163 0.141 0.174 0.104 ± 0.065 0.228

ant-1.7 0.176 ± 0.163 0.163 0.157 0.217 0.113 ± 0.071 0.169

camel-1.0 0.138 ± 0.208 0.077 0.154 0.154 0.122 ± 0.089 0.385

camel-1.2 0.072 ± 0.177 0.069 0.079 0.157 0.124 ± 0.118 0.171

camel-1.4 0.107 ± 0.182 0.055 0.090 0.159 0.106 ± 0.078 0.145

camel-1.6 0.080 ± 0.191 0.053 0.069 0.154 0.128 ± 0.113 0.170

ckjm 0.240 ± 0.165 0.200 0.200 0.400 0.146 ± 0.118 0.200

ivy-1.1 0.059 ± 0.174 0.032 0.032 0.111 0.088 ± 0.071 0.143

ivy-1.4 0.075 ± 0.198 0.188 0.188 0.188 0.128 ± 0.108 0.125

ivy-2.0 0.160 ± 0.163 0.150 0.125 0.150 0.120 ± 0.076 0.175

jedit-3.2 0.040 ± 0.161 0.000 0.044 0.189 0.091 ± 0.070 0.244

jedit-4.0 0.044 ± 0.173 0.013 0.027 0.173 0.100 ± 0.085 0.227

jedit-4.1 0.201 ± 0.156 0.013 0.025 0.190 0.101 ± 0.075 0.228

jedit-4.2 0.125 ± 0.190 0.125 0.104 0.167 0.110 ± 0.073 0.313

jedit-4.3 0.200 ± 0.217 0.364 0.182 0.182 0.118 ± 0.096 0.182

log4j-1.0 0.171 ± 0.160 0.147 0.176 0.324 0.115 ± 0.075 0.353

log4j-1.1 0.211 ± 0.149 0.135 0.216 0.243 0.131 ± 0.089 0.189

log4j-1.2 0.067 ± 0.240 0.058 0.079 0.143 0.148 ± 0.142 0.138

lucene-2.0 0.134 ± 0.155 0.066 0.066 0.132 0.110 ± 0.083 0.264

lucene-2.2 0.084 ± 0.160 0.049 0.028 0.160 0.118 ± 0.102 0.222

lucene-2.4 0.065 ± 0.165 0.044 0.094 0.138 0.116 ± 0.097 0.143

poi-1.5 0.104 ± 0.192 0.071 0.085 0.142 0.105 ± 0.078 0.106

poi-2.0 0.138 ± 0.184 0.081 0.108 0.108 0.137 ± 0.117 0.243

poi-2.5 0.043 ± 0.188 0.020 0.024 0.052 0.123 ± 0.120 0.093

poi-3.0 0.095 ± 0.185 0.025 0.028 0.075 0.114 ± 0.110 0.100

redaktor 0.115 ± 0.213 0.259 0.222 0.148 0.116 ± 0.085 0.037

synapse-1.0 0.194 ± 0.183 0.250 0.313 0.313 0.127 ± 0.088 0.250

synapse-1.1 0.170 ± 0.177 0.150 0.183 0.217 0.122 ± 0.086 0.267

synapse-1.2 0.169 ± 0.154 0.151 0.186 0.163 0.116 ± 0.078 0.198

tomcat 0.191 ± 0.188 0.169 0.130 0.234 0.114 ± 0.072 0.273

velocity-1.4 0.022 ± 0.204 0.000 0.136 0.068 0.193 ± 0.228 0.027

velocity-1.6 0.118 ± 0.174 0.026 0.051 0.231 0.137 ± 0.144 0.231

xalan-2.4 0.150 ± 0.155 0.145 0.200 0.264 0.119 ± 0.084 0.155

xalan-2.5 0.090 ± 0.165 0.088 0.121 0.212 0.106 ± 0.084 0.181

xalan-2.6 0.106 ± 0.160 0.127 0.080 0.224 0.128 ± 0.110 0.224

xalan-2.7 0.093 ± 0.235 0.073 0.137 0.198 0.154 ± 0.156 0.204

xerces-1.2 0.059 ± 0.179 0.056 0.070 0.056 0.123 ± 0.138 0.141

xerces-1.3 0.077 ± 0.155 0.058 0.087 0.232 0.102 ± 0.066 0.188

xerces-1.4 0.047 ± 0.183 0.025 0.021 0.082 0.094 ± 0.071 0.124

Average 0.120 ± 0.059 0.103 0.115 0.177 0.119 ± 0.096 0.197

Improved + 64.15% + 91.60% + 71.01% + 11.27% + 65.73% –

W/T/L 5/0/37 3/2/37 6/2/34 13/3/26 6/0/36 –

p-value 0.000 0.000 0.000 0.260 0.000 –

Cliff′ s 𝜹 0.575 0.620 0.582 0.143 0.720 –

Table 8

Average performance (F1-score and PofB20) comparisons of

TPTL with different statistical metrics (mean, variance, skew-

ness, kurtosis, and median) of source and target projects as the

independent variables of SPE.

Feature F1-Score (Improved) PofB20 (Improved)

median 0.481 0.197

mean 0.467 (− 02.91%) 0.163 (− 17.26%)

variance 0.458 (− 04.78%) 0.177 (− 10.15%)

skewness 0.475 (− 01.25%) 0.161 (− 18.27%)

kurtosis 0.471 (− 02.08%) 0.167 (− 15.23%)

median + mean 0.469 (− 02.49%) 0.156 (− 20.81%)

median + variance 0.467 (− 02.91%) 0.170 (− 13.71%)

median + skewness 0.472 (− 01.87%) 0.188 (− 04.57%)

median + kurtosis 0.464 (− 03.53%) 0.191 (− 03.05%)

I

T

Table 9

Average performance (F1-score and PofB20) compar-

isons of TPTL model with different regression models

for their SPE.

Model F1-Score (Improved) PofB20 (Improved)

SMOreg 0.481 0.197

AR 0.444 (− 07.70%) 0.196 (− 00.61%)

DT 0.382 (− 20.75%) 0.138 (− 30.20%)

LSR 0.480 (− 00.16%) 0.174 (− 11.80%)

LR 0.480 (− 00.16%) 0.197 (− 00.17%)

RBF 0.383 (− 20.23%) 0.161 (− 18.46%)

SLR 0.365 (− 24.04%) 0.132 (− 33.06%)

ZR 0.365 (− 24.04%) 0.132 (− 33.06%)

r

a

w

w
n contrast, pTCA+ has low F1-score (0.413) but high PofB20 (0.222).
his result implies that developers can find more defective classes by
9
eading top 20% lines of code, but many of these classes are not actu-
lly defective (F1-score is low). Therefore, both fTCA+ and pTCA+ will
aste developers’ efforts for code inspection in practical use. Moreover,
e can find that, by combining fTCA+ and pTCA+, TPTL can maintain

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

Table 10

Performance comparison of TPTL model with different number of

randomly selected training data for their SPE. To suppress the effect

of the randomness, each experiment is repeated 10 times. Each ex-

periment results is the average value across 42 datasets in terms of

F1-score and PofB20 respectively. The ‘All’ in the last row indicates

that TPTL uses all possible training data.

#Training F1-Score (Improved) PofB20 (Improved)

100 0.419 ± 0.009 (− 12.97%) 0.161 ± 0.008 (− 18.35%)

300 0.427 ± 0.018 (− 11.30%) 0.162 ± 0.009 (− 17.88%)

500 0.439 ± 0.014 (− 08.76%) 0.166 ± 0.010 (− 15.77%)

700 0.456 ± 0.012 (− 05.20%) 0.185 ± 0.006 (− 05.92%)

900 0.461 ± 0.009 (− 04.11%) 0.184 ± 0.010 (− 06.40%)

1100 0.472 ± 0.006 (− 01.79%) 0.194 ± 0.005 (− 01.41%)

1300 0.475 ± 0.003 (− 01.19%) 0.188 ± 0.005 (− 04.78%)

All 0.481 0.197

Table 11

Average performance (F1-score and PofB20) comparisons of

TPTL model with different model settings.

Model Setting F1-Score (Improved) PofB20 (Improved)

fTCA + and pTCA+ 0.481 0.197

fTCA + 0.481 (− 00.00%) 0.126 (− 36.04%)

pTCA + 0.413 (− 14.14%) 0.222 (+ 12.69%)

Table 12

Average time of model building and predicting.

No. Model Building Predicting

1 TPTL 3300.606 s 0.001 s

2 TCA + _Rnd 0.116 s 0.001 s

3 TCA + _All 13547.193 s 0.001 s

4 TDS 0.034 s 0.001 s

5 LT 1.332 s 0.010 s

6 Dycom 0.073 s 0.002 s

a

f

i

5

a

t

T

c

f

T

a

T

r

b

b

0

l

Table 13

Average building time for TPTL components.

No. Component Execution Time

1 Collecting Training Data for SPE 3296.587 s

2 Training SPE 1.921 s

3 Executing TCA + 2.097 s

4 Building Classifier 0.001 s

S

a

b

e

m

6

e

t

o

o

w

i

a

p

h

t

c

s

s

m

d

i

d

m

s

T

e

o

7

s

d

a

u

m

t

[

a

t

e

d

c
 high F1-score (0.481) and substantially enhance the PofB20 of fTCA+
rom 0.126 to 0.197. Therefore, combining two TCA+ by our method
s reasonable and beneficial to TPTL.

Result 2: For SPE, the median is the best statistical metrics to capture
the distribution similarity between source and target projects; SMOreg
is the best approach for the two regression models in SPE; training SPE
with more data can help TPTL achieve better performance; combining
prediction results of two TCA+ built in the second phase is reasonable
and beneficial to TPTL.

.3. RQ3: time efficiency of TPTL

Table 12 lists the average time of model building and predicting,
cross 42 defect datasets. The table shows that TPTL needs about 55 min
o build, and 0.001 s to predict the labels of classes in a target project.
CA+_Rnd works fast (building time = 0.116 s) because it randomly
hooses a candidate source project for model building, instead of care-
ully selecting a better source project as TPTL. Moreover, building
CA+_All is very slow (about 3.8 h), this is because it inputs TCA+ with
ll alternative source projects. Therefore, compared with TCA+_All,
PTL saves the model building time substantially. Besides, other models
un fast for not using the TCA+.

To analyze why building TPTL needs 55 min, we provide the specific
uilding time for each TPTL component in Table 13 . We can find that
uilding SPE, TCA+ and classifier are fast (taking 1.921 s, 2.097 s and
.001 s respectively), while 99.88% of the building time is used for col-
ecting training data (independent and dependent variables) for SPE. As
10
PE does not need to be updated all the time in practices, TPTL thus has
n acceptable building time. Even if SPE is required to be updated for
etter performance of TPTL, the two regression models in SPE can be
fficiently updated with new data, instead of retraining the whole CPDP
odel from zero like TCA+_All.

Result 3: TPTL works efficiently with short predicting time. And TPTL
has an acceptable building time, because most of the time is used to
collect training data for SPE, which is unnecessary to be redone all the
time in practices.

. Threats to validity

Internal validity relates to errors and the replication of baseline mod-
ls. We re-implemented TCA+, TDS, LT, and Dycom by ourselves, and
here could be errors that we did not notice. But we have double checked
ur code to minimize the possibility to make mistakes. And we evaluate
ur model only by using defeat datasets from the PROMISE repository,
hich may involve quality issues. Besides, the regression model SMOreg

n TPTL is implemented by invoking the WEKA tool with default settings,
nd different parameters in SMOreg might cause different results. In
ractice, parameter tuning will require a lot of expertise, which will be
ard for developers especially novices. Our proposed model shows that
he default parameters in SMOreg achieve a good performance, which
an make easy deployment of our tool in practice.

External validity relates to the generalizability of the experiment re-
ults. We have investigated 42 defect datasets from 14 distinct open
ource projects from the PROMISE repository. However, our experi-
ent results may be different if we collect more datasets, and if we use
atasets from closed software projects or different repositories. To min-
mize these threats, we plan to analyze our model on more and varied
efect datasets in the near future.

Construct validity refers to the suitability of measures for our perfor-
ance metrics. We adopt two commonly used evaluation metrics, F1-

core and PofB20 (a cost-effectiveness measure) to evaluate our model.
o investigate the statistical difference between TPTL and baseline mod-
ls, we also run the Wilcoxon signed-rank test and corrected the results
f multiple comparisons by the Bonferroni correction.

. Related work

To effectively predict defective classes in software projects, re-
earchers have developed a number of defect prediction models since
ecades ago [19,24,29,35] . Their models use software metrics, such
s lines of code, to capture features of classes in projects. And they
tilize software metrics of defective and clean classes to train a ML
odel, e.g. support vector machine (SVM) [17] , under a WPDP set-

ing where training and testing data are extracted from the same project
6,15,17,33,38] . However, WPDP models have applicability problem for
 new project, since newly initiated projects rarely provide sufficient
raining data for WPDP models [39] .

To address the limitation of WPDP models, a number of CPDP mod-
ls have been proposed, which trains ML models using plenty of training
ata from other projects [18,23,28] . However, a CPDP model can hardly
apture generalizable properties of defective classes in one or a set of

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

s

s

r

p

l

t

a

[

t

t

a

a

c

p

d

t

t

p

N

(

d

t

t

O

T

b

t

m

d

t

f

b

t

a

m

s

[

p

f

i

i

m

t

t

i

s

t

a

t

8

m

t

p

t

c

f

p

(

T

D

e

s

p

f

o

A

t

6

t

a

o

R

[

[

[

[

[
ource projects, so that its prediction on target project is usually un-
table and unsatisfactory. To overcome the problem in CPDP models,
esearchers endeavor to build a bridge from source projects to target
roject. Generally, CPDP can be viewed as a specific case of transfer
earning, which extracts knowledge from a set of source projects and
ransfers it to a target project.

Previously, researchers try to improve CPDP by selecting a suit-
ble source project as the training data of a classifier. Watanabe et al.
36] verified the possibility of CPDP, and attributed such possibility to
he similarity of the domain, programming language, metrics between
he source and target projects. Later, Zimmermann et al. [39] conducted
 large scale cross-project predictions among 12 real-world applications,
nd found that CPDP is challenging (only 3.4% predictions worked) be-
ause of the data distribution difference between the source and target
rojects. To solve this issue, Herbold et al. [11] proposed a training
ata selection (TDS) method to find better source projects by measuring
he Euclidean distance between the data distributions of the source and
arget projects. The results indicated TDS can significantly improve the
rediction performance (the success rate improved to 18%). Meanwhile,
am et al. [23] successfully applied the Transfer Component Analysis

TCA) [27] method to CPDP. Instead of choosing source projects, TCA
irectly maps a given source project and a target project into a shared la-
ent space, where their distribution distance is close. Nam et al. [23] fur-
her extended this approach to TCA+ with a data preprocessing method.
ur proposed model TPTL is built upon TCA+ [23] and draws idea from
DS [11] . The main difference between our model and TDS is that we
uild two supervised regression models to estimate the data distribu-
ion similarity between source and target projects, instead of directly
easuring their Euclidean distance based on an empirical assumption.

To understand the state-of-the-art in CPDP, Hosseini et al. [14] con-
ucted a systematic literature review on 30 studies to synthesize the fac-
ors important to CPDP, with respect to models, datasets, and etc. They
ound that the CPDP model performance is influenced by the way it is
uilt, and summarized frequently adopted configurations for each fac-
or. Same as the results of this literature review, CPDP factor in our study
re configured with frequently used ones: using the logistic regression
odel as the underlying classifier, inputting classifier with combined

oftware metrics [10,16] , verifying the model with Jureczko dataset
16] , and evaluating the model with F1-score [15,17,23] .

Apart from TCA+ and TDS, many other CPDP models have been pro-
osed [12,14] . Herbold et al. [12] replicated 24 CPDP approaches, and
ound the best model is a log transformation (LT) based metric standard-
zation model [3] . Generally, LT first preprocesses metric values of files
n source and target projects by log transformation, and then aligns the
edian of transformed metrics between each source and target projects

o mitigate the difficulty of cross-project prediction. We also compare
his state-of-the-art model LT with our TPTL model.

Moreover, in the research of web effort estimation, a transfer learn-
ng model Dycom [22] with a better form of TCA was proposed and
howed excellent experimental results. Dycom is a weighted sum of mul-
iple transferred models respectively trained by different source projects
nd 10% data from the target project. In this study, we apply Dycom to
he CPDP research and also compare it with the proposed model TPTL.

. Conclusion and future work

In this article, we propose a two-phase transfer learning (TPTL)
odel for CPDP. TPTL first developed an SPE to automatically choose

wo source projects with highest distribution similarity to a target
roject from a set of candidate source projects. TPTL leverage TCA+
o build two prediction models based on the two selected projects, and
ombine their prediction results to further improve the prediction per-
ormance. We evaluate our TPTL model on 42 defect datasets and com-
are it with a related transfer learning model TCA+ with two versions
TCA+_Rnd and TCA+_All), a related source project selection model
DS, a state-of-the-art CPDP model LP, and a transfer learning model
11
ycom with better form of TCA showing excellent results in the web
ffort estimation. Experiment results show that:

• On average across 42 defect datasets, TPTL can respectively improve
TCA+_Rnd, TCA+_All, TDS, LT, and Dycom by 19.28%, 4.98%,
36.12%, 27.13%, and 11.08% in terms of F1-score, respectively; by
64.15%, 91.60%, 71.01%, 11.27%, and 65.73% in terms of cost-
effectiveness, separately. These results indicate that TPTL can solve
the instability problem of TCA+ by choosing better candidate source
projects, showing substantial improvements over the state-of-the-art
and related models.

• We select two candidate source projects by two regression models
in SPE. Results indicate that the median is the best statistical met-
rics to capture the distribution similarity between source and target
projects; SMOreg is the best approach for the two regression models
in SPE; TPTL can be further improved by training SPE with more
data; and combining prediction results of two developed TCA+ is
reasonable and beneficial to TPTL.

• When constructing a TPTL model, it respectively takes about 55 min
and 0.001 s for model building and predicting on a dataset. As
99.88% of the building time is spent on collecting training data for
SPE, which does not need to be redone all the time, therefore the
working efficiency of TPTL is acceptable for practical use.

In the near future, we plan to evaluate the TPTL model with more
oftware projects and develop a better model to further improve the
erformance of CPDP. We also plan to build a multi-source model to
ully use knowledge recorded in all candidate source projects, instead
f choosing only two source projects from candidates.

cknowledgement

The work described in this paper was partially supported by
he National Natural Science Foundation of China (Grant No.
1772093), Chongqing Research Program of Basic Science & Fron-
ier Technology with Grant No. cstc2017jcyjB0305. The source code
nd datasets of TPTL can be downloaded from: https://bitbucket.
rg/ChaoLiuCQ/replication-kit-ist2018-tptl.

eferences

[1] H. Abdi , Bonferroni and š idák corrections for multiple comparisons, Encycl. Meas.
Stat. 3 (2007) 103–107 .

[2] E. Arisholm , L.C. Briand , M. Fuglerud , Data mining techniques for building fault-
-proneness models in telecom java software, in: Software Reliability, 2007. ISSRE’07.
The 18th IEEE International Symposium on, IEEE, 2007, pp. 215–224 .

[3] A.E. Camargo Cruz , K. Ochimizu , Towards logistic regression models for predict-
ing fault-prone code across software projects, in: Proceedings of the 2009 3rd In-
ternational Symposium on Empirical Software Engineering and Measurement, IEEE
Computer Society, 2009, pp. 460–463 .

[4] C. Catal , B. Diri , Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem, Inf. Sci. 179 (8) (2009)
1040–1058 .

[5] N. Cliff, Ordinal methods for behavioral data analysis, Psychology Press, 2014 .
[6] M. D’Ambros , M. Lanza , R. Robbes , An extensive comparison of bug prediction ap-

proaches, in: Mining Software Repositories (MSR), 2010 7th IEEE Working Confer-
ence on, IEEE, 2010, pp. 31–41 .

[7] M. Hall , E. Frank , G. Holmes , B. Pfahringer , P. Reutemann , I.H. Witten , The weka
data mining software: an update, ACM SIGKDD Explorations Newsl. 11 (1) (2009)
10–18 .

[8] A.E. Hassan , Predicting faults using the complexity of code changes, in: Proceed-
ings of the 31st International Conference on Software Engineering, IEEE Computer
Society, 2009, pp. 78–88 .

[9] Z. He , F. Shu , Y. Yang , M. Li , Q. Wang , An investigation on the feasibility of cross-pro-
ject defect prediction, Autom. Softw. Eng. 19 (2) (2012) 167–199 .

10] B. Henderson-Sellers , Object-oriented metrics: Measures of complexity, Pren-
tice-Hall, Inc., 1995 .

11] S. Herbold , Training data selection for cross-project defect prediction, in: Proceed-
ings of the 9th International Conference on Predictive Models in Software Engineer-
ing, ACM, 2013, p. 6 .

12] S. Herbold , A. Trautsch , J. Grabowski , A comparative study to benchmark cross-pro-
ject defect prediction approaches, IEEE Trans. Softw. Eng. 44 (2017) 811–833 .

13] D.W. Hosmer Jr , S. Lemeshow , R.X. Sturdivant , Applied logistic regression, 398,
John Wiley & Sons, 2013 .

14] S. Hosseini , B. Turhan , D. Gunarathna , A systematic literature review and meta-anal-
ysis on cross project defect prediction, IEEE Trans. Softw. Eng. (2017) .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0014

C. Liu, D. Yang and X. Xia et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS

JID: INFSOF [m5GeSdc; November 22, 2018;11:3]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

15] T. Jiang , L. Tan , S. Kim , Personalized defect prediction, in: Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering, IEEE
Press, 2013, pp. 279–289 .

16] M. Jureczko , L. Madeyski , Towards identifying software project clusters with regard
to defect prediction, in: Proceedings of the 6th International Conference on Predic-
tive Models in Software Engineering, ACM, 2010, p. 9 .

17] S. Kim , E.J. Whitehead Jr , Y. Zhang , Classifying software changes: clean or buggy?
IEEE Trans. Softw. Eng. 34 (2) (2008) 181–196 .

18] Y. Liu , T.M. Khoshgoftaar , N. Seliya , Evolutionary optimization of software quality
modeling with multiple repositories, IEEE Trans. Softw. Eng. 36 (6) (2010) 852–864 .

19] Y. Ma , G. Luo , X. Zeng , A. Chen , Transfer learning for cross-company software defect
prediction, Inf. Softw. Technol. 54 (3) (2012) 248–256 .

20] T. Menzies , J. Greenwald , A. Frank , Data mining static code attributes to learn defect
predictors, IEEE Trans. Softw. Eng. 33 (1) (2007) 2–13 .

21] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, B. Turhan, The promise
repository of empirical software engineering data, 2012.

22] L. Minku , F. Sarro , E. Mendes , F. Ferrucci , How to make best use of cross-company
data for web effort estimation? in: Empirical Software Engineering and Measurement
(ESEM), 2015 ACM/IEEE International Symposium on, IEEE, 2015, pp. 1–10 .

23] J. Nam , S.J. Pan , S. Kim , Transfer defect learning, in: Proceedings of the 2013 Inter-
national Conference on Software Engineering, IEEE Press, 2013, pp. 382–391 .

24] N. Ohlsson , H. Alberg , Predicting fault-prone software modules in telephone
switches, IEEE Trans. Softw. Eng. 22 (12) (1996) 886–894 .

25] T.J. Ostrand , E.J. Weyuker , R.M. Bell , Predicting the location and number of faults
in large software systems, IEEE Trans. Softw. Eng. 31 (4) (2005) 340–355 .

26] S.J. Pan , Q. Yang , A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22
(10) (2010) 1345–1359 .

27] S.J. Pan , I.W. Tsang , J.T. Kwok , Q. Yang , Domain adaptation via transfer component
analysis, IEEE Trans. Neural Netw. 22 (2) (2011) 199–210 .

28] A. Panichella , R. Oliveto , A. De Lucia , Cross-project defect prediction models:
L’union fait la force, in: Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, IEEE,
2014, pp. 164–173 .
12
29] F. Peters , T. Menzies , A. Marcus , Better cross company defect prediction, in: Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE, 2013,
pp. 409–418 .

30] F. Rahman , P. Devanbu , How, and why, process metrics are better, in: Proceedings
of the 2013 International Conference on Software Engineering, IEEE Press, 2013,
pp. 432–441 .

31] F. Rahman , D. Posnett , I. Herraiz , P. Devanbu , Sample size vs. bias in defect pre-
diction, in: Proceedings of the 2013 9th joint meeting on foundations of software
engineering, ACM, 2013, pp. 147–157 .

32] S.K. Shevade , S.S. Keerthi , C. Bhattacharyya , K.R.K. Murthy , Improvements to
the smo algorithm for svm regression, IEEE Trans. Neural Netw. 11 (5) (2000)
1188–1193 .

33] S. Shivaji , J.E.J. Whitehead , R. Akella , S. Kim , Reducing features to improve bug
prediction, in: Proceedings of the 2009 IEEE/ACM International Conference on Au-
tomated Software Engineering, IEEE Computer Society, 2009, pp. 600–604 .

34] B. Turhan , On the dataset shift problem in software engineering prediction models,
Empirical Softw. Eng. 17 (1–2) (2012) 62–74 .

35] B. Turhan , T. Menzies , A.B. Bener , J. Di Stefano , On the relative value of cross-com-
pany and within-company data for defect prediction, Empirical Softw. Eng. 14 (5)
(2009) 540–578 .

36] S. Watanabe , H. Kaiya , K. Kaijiri , Adapting a fault prediction model to allow in-
ter languagereuse, in: Proceedings of the 4th international workshop on Predictor
models in software engineering, ACM, 2008, pp. 19–24 .

37] F. Wilcoxon , Individual comparisons by ranking methods, Biom. Bull. 1 (6) (1945)
80–83 .

38] T. Zimmermann , N. Nagappan , Predicting defects using network analysis on depen-
dency graphs, in: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th Interna-
tional Conference on, IEEE, 2008, pp. 531–540 .

39] T. Zimmermann , N. Nagappan , H. Gall , E. Giger , B. Murphy , Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process, in: Proceedings
of the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, ACM, 2009,
pp. 91–100 .

http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30241-6/sbref0038

	A two-phase transfer learning model for cross-project defect prediction
	1 Introduction
	2 Preliminary and motivation
	2.1 Preliminary on transfer learning
	2.2 Why two-phase transfer learning?

	3 Proposed model
	3.1 Overall architecture
	3.2 Source project estimator (SPE)
	3.2.1 Regression model construction
	3.2.2 Source project selection

	3.3 TCA+
	3.4 Prediction combination

	4 Experiment
	4.1 Experiment setup
	4.2 Evaluation metrics
	4.3 Research questions
	4.3.1 RQ1: how effective is our TPTL model? how much improvement can TPTL achieve over the related models?
	4.3.2 RQ2: how TPTL components affect its prediction performance?
	4.3.3 RQ3: how efficient is the TPTL model? how much time does it take for TPTL model to run compared to the baseline models?

	5 Results and discussion
	5.1 RQ1: Effectiveness of TPTL
	5.2 RQ2: impact of SPE components on TPTL
	5.3 RQ3: time efficiency of TPTL

	6 Threats to validity
	7 Related work
	8 Conclusion and future work
	Acknowledgement
	References

