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Context: Defect prediction is a very meaningful topic, particularly at change-level. Change-level defect 

prediction, which is also referred as just-in-time defect prediction, could not only ensure software quality 

in the development process, but also make the developers check and fix the defects in time [1]. 

Objective: Ensemble learning becomes a hot topic in recent years. There have been several studies about 

applying ensemble learning to defect prediction [2–5]. Traditional ensemble learning approaches only 

have one layer, i.e., they use ensemble learning once. There are few studies that leverages ensemble 

learning twice or more. To bridge this research gap, we try to hybridize various ensemble learning meth- 

ods to see if it will improve the performance of just-in-time defect prediction. In particular, we focus on 

one way to do this by hybridizing bagging and stacking together and leave other possibly hybridization 

strategies for future work. 

Method: In this paper, we propose a two-layer ensemble learning approach TLEL which leverages decision 

tree and ensemble learning to improve the performance of just-in-time defect prediction. In the inner 

layer, we combine decision tree and bagging to build a Random Forest model. In the outer layer, we 

use random under-sampling to train many different Random Forest models and use stacking to ensemble 

them once more. 

Results: To evaluate the performance of TLEL , we use two metrics, i.e., cost effectiveness and F1-score. 

We perform experiments on the datasets from six large open source projects, i.e., Bugzilla, Columba, JDT, 

Platform, Mozilla, and PostgreSQL, containing a total of 137,417 changes. Also, we compare our approach 

with three baselines, i.e., Deeper , the approach proposed by us [6], DNC , the approach proposed by Wang 

et al. [2], and MKEL , the approach proposed by Wang et al. [3]. The experimental results show that on 

average across the six datasets, TLEL could discover over 70% of the bugs by reviewing only 20% of the 

lines of code, as compared with about 50% for the baselines. In addition, the F1-scores TLEL can achieve 

are substantially and statistically significantly higher than those of three baselines across the six datasets. 

Conclusion: TLEL can achieve a substantial and statistically significant improvement over the state-of-the- 

art methods, i.e., Deeper, DNC and MKEL . Moreover, TLEL could discover over 70% of the bugs by reviewing 

only 20% of the lines of code. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

To produce high-quality software, much effort needs to be in-

vested to the process of testing and debugging. Unfortunately, de-

velopers often have limited resource and tight schedule, and are

thus constrained to perform rigorous and comprehensive testing

and debugging effort s on all parts of a code base. Defect prediction

techniques are proposed to help prioritize software testing and de-
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ugging efforts; they can recommend software components that

re likely to be defective to developers. Much research has been

one on defect prediction; these techniques construct predictive

lassification models built on features such as lines of code, code

omplexity and number of modified files [7–9] . 

Many past defect prediction studies predict defects at coarse

ranularity level, such as file, package, or module [9–11] . In recent

ears, several research studies propose just-in-time defect prediction

echniques that are able to predict defective changes (i.e., commits

o a version control system) [1,12] . Just-in-time defect prediction is

ore practical because it can not only ensure software quality in

he development process, but also make the developers check and
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x the defects just at the time they are introduced. The advantage

f just-in-time defect prediction includes: (1) it leads to smaller

mount of code to be reviewed because only individual changes

rather than entire files or packages) need to be reviewed [13] ; (2)

t leads to an easier assignments of developers to fix bugs because

e can easily identify the authors of the changes that introduce

efects. In a recent work, Kamei et al. perform a large-scale empir-

cal study on just-in-time defect prediction [1] . 

Ensemble learning becomes a hot topic in recent years.

any research studies have shown that ensemble learning can

chieve much better classification performance than a single classi-

er [14,15] . There have been several studies about applying ensem-

le learning to defect prediction [2–5] . However, most ensemble

earning approaches only use ensemble learning once. There are

are studies that leverages ensemble learning twice or more [16] .

e notice that different ensemble learning methods are good

or different datasets. Therefore, we assume that hybrid ensemble

earning will improve the performance of just-in-time defect pre-

iction much more. In particular, we focus on one way to do this

y hybridizing bagging and stacking together. We leave other pos-

ibly hybridization strategies for future work. 

We propose a novel approach TLEL . The approach can be seen as

 two-layer ensemble learning technique. In the inner layer, we use

agging based on decision tree to build a Random Forest model. In

he outer layer, we use stacking to ensemble many different Ran-

om Forest models. 

To evaluate TLEL , we use two widely-used evaluation metrics:

ost effectiveness [17–20] , and F1-score [12,17,21,22] . Cost effec-

iveness evaluates prediction performance considering a given cost

hreshold, e.g., a certain percentage of code to inspect. For ex-

mple, when a team has limited resources to inspect potentially

uggy lines of code, it is crucial that by manually inspecting the

op percentages of lines that are likely to be buggy, developers can

iscover as many bugs as possible. We measure cost effectiveness

s the percentage of bugs that can be discovered by inspecting the

op 20% LOC based on the confidence levels that a change classifi-

ation technique outputs (PofB20) [1,8] . In addition, we also eval-

ate our method using the F1-score [12,17,21,22] , which is a sum-

ary measure that combines both precision and recall. F1-score

s a good evaluation metric when there is enough resource to in-

pect all predicted buggy changes. A higher F1-score usually means

 better method for just-in-time defect prediction. 

We perform experiments on six large-scale software projects

rom different communities, i.e., Bugzilla, Columba, JDT, Mozilla,

latform, and PostgreSQL, containing a total of 137,417 changes. We

ompare our approach with three baselines, i.e., Deeper , the ap-

roach proposed by us [6] , DNC , the approach proposed by Wang

t al. [2] , and MKEL , the approach proposed by Wang et al. [3] . The

xperimental results show that on average across the six projects,

LEL could discover over 70% of the bugs by reviewing only 20%

f the lines of code, as compared with about 50% for the base-

ines. Also, TLEL can achieve F1-scores of 0.25-0.67, which are sub-

tantially and statistically significantly higher than those of the

aselines. 

The main contributions of this paper are: 

1. We propose a novel approach TLEL , which can be seen as a two-

layer ensemble learning technique, to achieve a better perfor-

mance for just-in-time defect prediction problem. 

2. We compare TLEL with three baselines, i.e., Deeper, DNC and

MKEL , on six large software projects. The experiment results

show that our approach can achieve a better performance than

all of them. 

The rest of our paper is organized as follows. Section 2 intro-

uces the background of our work. Section 3 presents the over-

ll framework of our approach and elaborates the techniques that
e use in our approach. Section 4 describes our experiments and

he results. Section 5 presents some discussions about our work.

ection 6 discusses the related work. Conclusion and future work

re presented in the last section. 

. Preliminaries and motivation 

In this section, we first introduce the general method of just-in-

ime defect prediction in Section 2.1 . Next, we introduce ensemble

earning in Section 2.2 . Technical motivation will be presented at

ast. 

.1. Just-in-time defect prediction 

Just-in-time defect prediction aims to predict if a particular file

nvolved in a commit (i.e., a change) is buggy or not. Traditional

ust-in-time defect prediction techniques typically follow the fol-

owing steps: 

1. Training Data Extraction. For each change, label it as buggy or

clean by mining a project’s revision history and issue tracking

system. Buggy change means the change contains bugs (one or

more), while clean change means the change has no bug. 

2. Feature Extraction. Extract the values of various features from

each change. Many different features have been used in past

change classification studies. The features include change dif-

fusion (which represents the number of files a change in-

volves), change size (which represents the number of lines of

code churned in a change), change purpose (which represents

whether a change is a defect fix) and so on [1] . 

3. Model Learning. Build a model by using a classification algo-

rithm based on the labeled changes and their corresponding

features. 

4. Model Application. For a new change, extract the values of var-

ious features. Input these values to the learned model to predict

whether the change is buggy or clean. 

.2. Ensemble learning 

Ensemble learning becomes more and more popular in recent

ears. Generally, different classifiers have many different character-

stics, such as the intrinsic principle and the sensitivity to differ-

nt training data. It is likely that different classifiers make different

redictions for the same data. Ensemble learning can improve the

lassification performance by combining the predictions of multi-

le different classifiers into a single robust prediction [14,15] . The

wo key parts of ensemble learning are base learners and ensem-

le methods. There are many classification techniques that can be

sed as base learners such as support vector machine, decision

ree [23] . Also, there are mainly three ensemble methods, i.e., bag-

ing, boosting and stacking [24] . 

In this paper, for the ensemble methods, we use both bagging

nd stacking to create a two-layer ensemble learning approach.

agging, also referred to as bootstrapped aggregation, can reduce

he variance of the prediction [24] . In bagging, data are sampled

niformly from the original training data set with replacement, so

hat different sets of sampled data lead to different models even if

he algorithms of the models are the same. Eventually, the class

f the majority vote from the different models becomes the fi-

al prediction label. Stacking is a very general ensemble learn-

ng approach, in which two levels of classification are used [24] .

n the first level, several different classifiers are trained based on

he training dataset. In the second level, a final classifier is trained

ased on the output of the first-level classifiers. 

For the base learner, almost all the classification techniques can

e used. However, different techniques have different theoretical
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Table 1 

PofB20 of five classification techniques for just-in-time defect pre- 

diction. 

Project NB(%) SVM(%) DT(%) LDA(%) NN(%) 

Bugzilla 36.91 37.21 52.65 38.27 32.72 

Columba 42.40 48.71 46.07 43.28 30.20 

JDT 46.22 10.55 52.60 47.49 34.15 

Mozilla 49.45 19.11 55.54 52.22 34.06 

Platform 56.73 18.91 57.07 52.23 38.16 

PostgreSQL 48.33 54.56 56.18 52.51 40.71 

Average 46.67 31.51 53.35 47.67 35.00 

Table 2 

F1-score of five classification techniques for just-in-time defect pre- 

diction. 

Project NB SVM DT LDA NN 

Bugzilla 0.5456 0.4593 0.5816 0.4682 0.5322 

Columba 0.3780 0.2400 0.4838 0.4166 0.4796 

JDT 0.3262 NAN 0.3075 0.1038 0.2702 

Mozilla 0.1324 NAN 0.2138 0.1467 0.1817 

Platform 0.3476 NAN 0.3316 0.0983 0.3135 

PostgreSQL 0.4048 0.3358 0.4803 0.3895 0.4400 

Average 0.3558 NAN 0.3998 0.2705 0.3695 
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basis so that suitable to different problems. Here we introduce five

of the popular classification techniques mentioned above. We se-

lect one with best performance as base classifier from them. 

1. Naive Bayes. Naive Bayes is a probabilistic model based on

Bayes theorem for conditional probabilities [23] . Naive Bayes

assumes the feature variables are independent of one another.

The simplification can quantify the relationship between the

feature variables and the target labels as a conditional proba-

bility much easier. 

2. Support Vector Machine. Support Vector Machine (SVM) is de-

veloped from traditional linear models [23] . As with all tra-

ditional linear models, it use a separating hyperplane as the

decision boundary to differentiate two classes. However, tradi-

tional linear models only consider empirical error, while SVM

considers structural error which includes both empirical er-

ror and confidence error. Therefore, the separating hyperplane

achieved by SVM has maximum margin between two classes,

which makes SVM one of the best classifiers. 

3. Decision Tree. Decision Tree is modeled with the use of a set

of hierarchical decisions on the feature variables, arranged in a

tree-like structure [23] . In the tree-constructing process, Deci-

sion Tree can rapidly find the feature variables that differentiate

different classes the most. In addition, it can generate explicit

rules for different classes, while many other classifiers can not. 

4. Linear Discriminant Analysis. Linear Discriminant Analysis

(LDA) is similar to Principle Component Analysis (PCA) in that

they both look for a linear combination of feature variables that

best explains the data [23] . However, PCA doesn’t consider dif-

ferences between classes, while LDA attempts to model the dif-

ference and uses a perpendicular hyperplane to the most dis-

criminating direction as a binary class separator. 

5. Nearest Neighbor Classifier. Nearest Neighbor Classifier is an

instance-based classifier [23] . The principle of it is very simple:

Similar instances have similar class labels. For an unlabeled in-

stance, we can check k most similar neighbors of it, and deter-

mine its label by the label the majority of the k neighbors be-

long to. There are many criteria to measure the similarity, such

as Euclidean distance and Manhattan distance. In our paper, we

use Euclidean distance. 

2.3. Technical motivation 

The effectiveness of our approach relies on two observations: 

Observation 1. Decision tree is a good classifier for just-in-time

defect prediction. 

Observation 2. Ensemble classifier can achieve better performance

than that of a single classifier. 

To demonstrate the first observation, we make a rough investi-

gation to look for the technique that performs the best for just-in-

time defect prediction. We perform experiments on six datasets,

i.e., Bugzilla, Columba, Eclipse JDT, Eclipse Platform, Mozilla and

PostgreSQL using ten-fold cross validation 

1 ). We choose five pop-

ular classification techniques which are introduced briefly in the

above Section, i.e., Naive Bayes (NB), Support Vector Machine

(SVM), Decision Tree (DT), Linear Discriminant Analysis (LDA) and

Nearest Neighbours (NN), as the candidates. We train the differ-

ent classifiers using the same features 2 and we use PofB20 and

F1-Score 3 to make comparison of their performances. 

Tables 1 and 2 present PofB20 and F1-score of five classifica-

tion techniques for just-in-time defect prediction. Note that SVM
1 Detail information of the experiment setup is presented in Section 4.1 . 
2 Detail information of the features we use are presented in Section 3.1 . 
3 Detail information of the two evaluation metrics are presented in Section 4.2 . 

s  

f  

i  

t  

i  
as F1-score of NAN in three datasets (i.e., JDT, Mozilla and Plat-

orm), which results from the severe imbalance problem of the

hree datasets (in which the minority class occupies only less than

5% of the whole dataset). The severely imbalanced training data

eads to the construction of a poor SVM model and thus the SVM

odel predicts all the testing data as the majority class. Also be-

ause of the same reason, the values of PofB20 generated by SVM

n the three datasets are very small (less than 20%). From the ta-

le, we can see that Decision Tree, whose average PofB20 is 53%

nd F1-score is 40%, performs the best for just-in-time defect pre-

iction. Specifically, in terms of PofB20, decision tree can beat the

ther four classification techniques for all datasets except for one

ituation, where SVM has a little higher PofB20 than decision tree

or the dataset Columba. In terms of F1-score, Decision Tree can

eat the other four classification techniques for all datasets except

or two situations, where Naive Bayes has a little higher F1-Score

han Decision Tree for the datasets JDT and Platform. Therefore, we

an conclude that Decision Tree is the best classifier among the

ve for just-in-time defect prediction and we will use it as base

lassifier in our proposed approach. 

The second observation has been demonstrated by many past

tudies [14,15] . There are two main components in the error of a

lassifier, i.e., bias and variance. Bias is the difference between the

ecision boundary of a classifier and the true decision boundary.

ariance is caused by different training data. Ensemble classifier

an often be used to reduce bias or/and variance [24] . Therefore,

nsemble classifier can achieve better performance than that of a

ingle classifier. 

The above two observations motivate us to build an ensemble

lassifier based on decision tree. There have been several stud-

es that leverage bagging [5,25,26] and stacking [25,26] in defect

rediction. Unfortunately, whether their combination can improve

he performance of defect prediction has not been studied yet. In-

erestingly, we find that bagging and stacking performs better for

ifferent datasets ; thus, motivating our choice to combine them

o allow the strengths of one to cover for the weaknesses of the

ther. Tables 3 and 4 present PofB20 and F1-score of bagging and

tacking techniques (based on decision trees) for just-in-time de-

ect prediction using the dataset that we have described earlier

n this section. From the table, we can see that stacking is bet-

er than bagging on some datasets (i.e., JDT, Mozilla, Platform C

n terms of PofB20), while bagging is the better than stacking on
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Fig. 1. The Overall Framework of TLEL. Sub i represents a subset of the training datasets by using Random Under-Sampling. C i represents a base classifier learned based on 

the corresponding subset. w i represents a weight of the corresponding base classifier. 

Table 3 

PofB20 of bagging and stacking techniques 

for just-in-time defect prediction. 

Project Bagging(%) Stacking(%) 

Bugzilla 45.70 43.57 

Columba 42.84 42.03 

JDT 49.09 51.05 

Mozilla 61.90 70.65 

Platform 56.47 58.46 

PostgreSQL 53.74 53.25 

Table 4 

F1-score of bagging and stacking tech- 

niques for just-in-time defect predic- 

tion. 

Project Bagging Stacking 

Bugzilla 0.6155 0.6789 

Columba 0.5231 0.5897 

JDT 0.2658 0.4094 

Mozilla 0.1659 0.2560 

Platform 0.3196 0.4299 

PostgreSQL 0.5129 0.5853 
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Table 5 

Fourteen basic change measures. 

Name Description 

NS The number of modified subsystems [27] 

ND The number of modified directories [27] 

NF The number of modified files [28] 

Entropy Distribution of modified code across each file [29] 

LA Lines of code added [30] 

LD Lines of code deleted [30] 

LT Lines of code in a file before the change [31] 

FIX Whether or not the change is a defect fix [32,33] 

NDEV The number of developers that changed the modified files [33] 

AGE The average time interval between the last and the current 

change [34] 

NUC The number of unique changes to the modified files [29] 

EXP Developer experience [27] 

REXP Recent developer experience [27] 

SEXP Developer experience on a subsystem [27] 
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4 Detail information of this technique is presented in Section 3.2 . 
5 Detail information of this technique is presented in Section 3.3 . 
6 Detail information of this technique is presented in Section 3.4 . 
ome other datasets (e.g., Bugzilla, Columba and PostgreSQL C in

erms of PofB20). Therefore, we propose to combine bagging and

tacking to build a two-layer ensemble learning model. 

. Our proposed approach 

In this section, we present the details of our proposed approach

LEL . We first present the overall framework, and then we describe

n detail the individual steps in the overall framework. 

.1. Overall framework 

Fig. 1 presents the overall framework of our proposed approach

LEL . The framework contains two phases: the model building

hase and the prediction phase. In the model building phase, our

oal is to build an ensemble classifier, by leveraging ensemble

earning and decision tree, from historical changes with known la-

els (i.e., buggy or clean). In the prediction phase, this ensemble
lassifier would be used to predict if an unknown change would

e buggy or clean. 

Our framework first extracts a number of features from a set

f training changes (i.e., changes with known labels) (Step 1). Fea-

ures are various quantifiable characteristics of changes that could

otentially distinguish changes that are buggy from those that are

lean. In this paper, we use the 14 basic features proposed by

amei et al. [1] as shown in Table 5 . In addition, all the features

re normalized using z-score method 

4 so that the values of all fea-

ures are in the same order of magnitude. 

Next, we construct the base learners based on decision tree

Step 2–4). For each base learner, we firstly perform random under-

ampling 5 [35] to handle the class imbalance problem [36] (Step

). Then, the sampled data is used to train a classifier using Ran-

om Forest 6 , which is an advanced version of bagging of decision

rees (Step 3). After the classifier is trained, we can assign it with a

eight (Step 4). The trained classifier together with its weight can

e seen as a single unit of the ensemble learner (i.e. base learner).

ote that random under-sampling will generate different sampled
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data every time so that we can learn many different Random For-

est classifiers and corresponding weights when we repeat these

steps. 

After we have several trained Random Forest classifiers, we

construct an ensemble classifier based on them and their corre-

sponding weights using stacking. Note that our training process

uses bagging and stacking in turn based on decision tree. There-

fore, our approach can be seen as a two-layer ensemble learning

technique. 

In the prediction phase, the ensemble classifier is then used to

predict whether a change with an unknown label is buggy or clean.

For each of such changes, our framework first extracts the same set

of features and normalize the values of the features using the same

method as the model building phrase (Step 5). Next, these features

are input into all the trained Random Forest classifiers (Step 6).

With these classifiers, different prediction results would be gener-

ated. In the end, with the weights of these classifiers, we ensemble

the different prediction results to produce a final prediction result,

which is one of the following labels: buggy or clean (Step 7). 7 

3.2. Z-score method 

Considering that the values of the 14 basic change features are

not in the same order of magnitude, we perform data normaliza-

tion on these features. In this paper, we use the z-score method

to do the normalization [23] . It transforms all values to make their

average value be 0 and their variance be 1. Given a feature f , we

denote the mean and variance of the initial values in f as mean ( f )

and std ( f ) respectively. For each value f i of the feature f , the nor-

malized value z i is computed as: 

z i = 

f i − mean ( f ) 

std( f ) 

3.3. Random under-sampling 

Random under-sampling [36] is one of the effective approaches

to deal with class imbalance problem. It randomly deletes data be-

longing to the majority class until the amount of data in the ma-

jority class is approximately equal to the minority. Random under-

sampling can help the learned classifier not to be biased to the

majority class, thus in most case it can improve the performance of

the classifier [35,37] . In just-in-time defect prediction, the number

of clean changes is much more than the buggy changes, which will

lead to a bad classifier or even training failure. Therefore, random

under-sampling is essential and important for just-in-time defect

prediction to make the number of buggy (majority class) and clean

(majority class) changes equal. 

3.4. Inner layer ensemble: bagging 

In the inner layer, we combine decision tree and bagging to

build a Random Forest model. Random Forest is an advanced

bagging technique based on decision tree [24] . Bagging works

best when the base learners are independent and identically dis-

tributed. However, traditional decision trees constructed using bag-

ging can’t meet this condition. Random Forest solve the problem

by introducing randomness into the model building process of each

decision tree. In the construction of traditional decision trees, the

split of each node are performed by considering the whole set of

features, while in random forest, the split in each tree are per-

formed by considering only a random subset of all features. The

randomized decision trees have less correlation so that bagging

them performs better. 
7 Detail information of this step is presented in Section 3.5 . 

i  

t  

r

.5. Outer layer ensemble: stacking 

Due to random under-sampling, we can learn different Ran-

om Forest classifiers trained by different subsets of training data.

herefore, we use stacking to ensemble them once more in the

uter layer. We simply assign all the classifiers equal weights since

ll the training data should be treated equally. 

For an unlabeled change x , we first input its normalized fea-

ures into all the trained Random Forest classifiers to obtain dif-

erent prediction results p . Each p generated by a Random Forest

lassifier is either 1 (buggy) or −1 (clean). Specifically, assume in

 Random Forest classifier, there are nb decision trees that classify

 as buggy while nc decision trees that classify x as clean. If nb >

c , then the final prediction result p generated by the specific Ran-

om Forest classifier will be 1, and otherwise −1. Since we have

any Random Forest classifiers, each of which can generate a pre-

iction result, we simply add all the prediction results due to equal

eights of all the classifiers to generate Ensemble ( x ), as follows: 

nsemble (x ) = 

∑ 

i 

p x,i 

According to the above formula, Ensemble ( x ) can be positive or

egative or even 0, depending on the number of prediction results

 that are 1 or -1. From the ensemble score, we compute the out-

ut score Out ( x ) as: 

ut(x ) = 

Ensemble (x ) 

LOC(x ) 

In the above equation, LOC ( x ) refer to the number of total lines

f code in x . If Out ( x ) ≥ 0, we predict the change as buggy; else

e predict it as clean. 

The output score of a change considers both the likelihood of

he change to be buggy and the effort to review the change. There-

ore, the output score is a better indicator for sorting changes to be

eviewed than the ensemble score. There are prior studies that also

ake into consideration review cost by dividing with LOC [38–40] .

ende et al. describe a model that takes the module size mea-

ured in lines of code into account [38,39] . Kamei et al. revisit bug

rediction by making use of effort-aware models [40] . These stud-

es conclude that models perform better when taking review cost

nto account. 

Note that our two-layer ensemble learning approach is not

athematically equivalent to a single-layer random forest with the

ame number of trees. Below we elaborate it with an example

here there are totally 100 decision trees. For a single-layer ran-

om forest, its prediction result p (1 or −1) depends on nb and

c (here nb + nc equals to 100). On the contrary, for our two-layer

nsemble learning approach, it contains 10 random forests, each

f which has 10 decision trees and generates a prediction result p

1 or −1) depends on nb and nc (here nb + nc equals to 10). The

utput of the 10 random forests are then added together to gen-

rate a final result. Due to random under-sampling, the result of

 single random forest is not reliable enough while our approach

onsiders the results of 10 random forests. Therefore, our two-layer

nsemble learning approach can have more robust and better per-

ormance than that of a single-layer random forest. 

. Experiments and results 

In this section, we evaluate the effectiveness of TLEL . The exper-

mental environment is an Intel(R) Core(TM) T6570 2.00 GHz CPU,

 GB RAM desktop running Windows 7. We first present our exper-

ment setup and evaluation metrics in Sections 4.1 and 4.2 respec-

ively. We then present six research questions and our experiment

esults that answer these research questions in Section 4.3 . 
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Table 6 

Statistics of the datasets used in our study. 

Project Time # Instances % Buggy 

Bugzilla 1998.08–2006.12 4620 36% 

Columba 20 02.11–20 06.07 4455 31% 

JDT 20 01.05–20 07.12 35,386 14% 

Mozilla 20 0 0.01–20 06.12 98,275 5% 

Platform 20 01.05–20 07.12 64,250 14% 

PostgreSQL 1996.07–2010.05 20,431 25% 

Table 7 

Confusion Matrix. 

Predicted buggy Predicted clean 

True Buggy TP FN 

True Clean FP TN 
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.1. Experiment setup 

We evaluate TLEL on six datasets from six well-known open

ource projects, which are Bugzilla, Columba, Eclipse JDT, Eclipse

latform, Mozilla and PostgreSQL. These datasets are also used

y Kamei et al. [1] . Table 6 summarizes the statistics of each

ataset, containing the period of each dataset, the total number

f instances (i.e., changes), and the proportions of the defective

hanges. Note that all the datasets are imbalanced. The most im-

alanced dataset, Mozilla, contains only 5% defects, while the most

alanced dataset, Bugzilla, contains 36% defects. 

We use ten-fold cross validation [23] to evaluate the perfor-

ance of TLEL . In 10-fold cross validation, we randomly divide each

f the datasets into 10 folds, in which 9 folds are used as train-

ng dataset, and the remaining one fold is used as testing dataset.

lso, cross validation means each fold is used as testing dataset

nce. Furthermore, we ensure that each fold has the same class

roportion as the original dataset. To make the experiment re-

ults more convincing, we run ten-fold cross validation 100 times

nd record the average performance. Cross validation is a standard

valuation setting, which is widely used in software engineering

tudies [41,42] . 

.2. Evaluation metrics 

We use two evaluation metrics to evaluate the performance

f our approach TLEL . One is cost effectiveness and the other is

1-score. 

.2.1. Cost effectiveness 

Cost effectiveness is often used to evaluate defect prediction ap-

roaches [18–20,43,44] . Cost effectiveness is measured by comput-

ng the percentage of buggy changes found when reviewing a spe-

ific percentage of the lines of code. To compute cost-effectiveness,

iven a number of changes, we firstly sort them according to their

utput scores. We then simulate to review the changes one-by-one

rom the highest ranked change to the lowest ranked change and

ecord buggy changes found. Using this process we can obtain the

ercentage of buggy changes found when reviewing different per-

entages of lines of code (1%–100%). 

.2.2. F1-score 

The F1-score is a commonly-used measure to evaluate classifi-

ation performance [21,23] . It combines Precision and Recall and

an be derived from a confusion matrix, as shown in Table 7 . The

onfusion matrix lists all four possible prediction results. If an in-

tance is correctly classified as “buggy”, it is a true positive (TP);

f an instance is misclassified as “buggy”, it is a false positive (FP).

imilarly, there are false negatives (FN) and true negatives (TN).
ased on the four numbers, Precision, Recall and F1-score are cal-

ulated. Precision is the ratio of correctly predicted “buggy” in-

tances to all instances predicted as “buggy” ( Precision = 

T P 
T P+ F P ).

ecall is the ratio of the number of correctly predicted “buggy” in-

tances to the actual number of “buggy” instances ( Recall = 

T P 
T P+ F N ).

inally, F1-score is a harmonic mean of Precision and Recall: F1-

core = 

2 ∗Recal l ∗Precision 
Recal l + Precision 

. F1-score is often used as a summary mea-

ure to evaluate if an increase in precision outweighs a reduction

n recall (and vice versa). 

.3. Research questions 

To evaluate the performance of TLEL , we compare it against

hree baselines. The first baseline is a deep learning approach pro-

osed by us earlier [6] . The approach firstly uses deep belief net-

ork to generate a more expressive feature set, and then uses Ran-

om Under-Sampling and Logistic Regression. It is referred to as

eeper in the following text. The other two baselines are state-

f-the-art approaches for defect prediction. One is a dynamic Ad-

Boost.NC approach proposed by Wang et al. [2] . The approach is

ased on AdaBoost and decision tree, but it can adjust the param-

ter in the training process dynamically. It is referred to as DNC in

he following text. The other is a multiple kernel ensemble learn-

ng approach proposed by Wang et al. [3] . The approach is a boost-

ng of multiple SVMs each with different kernel functions. It is re-

erred to as MKEL in the following text. We examine our approach

n terms of its effectiveness, stability and efficiency in the first four

esearch questions. 

TLEL has two tunable parameters, i.e., NLearner and NTree.

Learner is used to specify the number of base ensemble learn-

rs (Random Forest Classifiers) constructed. NTree is used to spec-

fy the number of decision trees in each Random Forest. In our ex-

eriments, we assign NLearner as 10 and NTree as 10 by default. For

he fifth research question, we investigate the influence of different

alues of these parameters. 

Q1 How effective is TLEL? 

otivation. To validate the effectiveness of TLEL , we compare it

ith the three baselines mentioned above. 

pproach. We use the two evaluation metrics mentioned above,

.e., cost effectiveness and F1-score, to make comparisons. They are

ommonly-used measures to evaluate the performance of a defect

rediction approach. To make our results more convincing, we per-

orm 10-fold cross validation 100 times and report the average re-

ults. In addition, to make fair comparisons, all the ensemble ap-

roaches have the same number of base learners. Specifically, there

re 100 decision trees in TLEL and DNC , and there are 100 SVMs in

KEL . 

For cost effectiveness, we record the percentage of buggy in-

tances found when adding every one percentage of lines of code

eviewed. So we will have 100 average values corresponding to

he percentage of buggy instances found when reviewing 1%–100%

ines of code. We specifically focus on the percentage of buggy in-

tances found when reviewing 20% lines of code, which is referred

o as PofB20 [8] . For F1-score, we calculate the average of the 100

1-score values that we obtain after performing 100 times 10-fold

ross validation. We use this average value to compare with the

aselines. 

In addition, we also calculate p-value and cliff delta to better

nvestigate whether or not TLEL improve the baselines significantly

nd substantially. 

esults. Tables 8–11 present the PofB20, Precision, Recall and F1-

core values of TLEL as compared with those of the three baselines.

rom these tables, we can conclude several points. 
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Table 8 

PofB20 values of TLEL and the three baselines. 

Project Deeper (%) DNC(%) TLEL(%) MKEL(%) 

Bugzilla 43.52 43.47 61.67 33.02 

Columba 41.33 42.39 58.85 30.05 

JDT 48.81 54.20 72.55 26.00 

Mozilla 68.30 72.52 82.40 50.98 

Platform 57.25 62.82 77.08 48.94 

PostgreSQL 54.11 56.63 70.64 33.33 

Average 52.22 55.34 70.53 37.05 

Table 9 

Precision of TLEL and the three baselines. 

Project Deeper (%) DNC(%) TLEL(%) MKEL(%) 

Bugzilla 57.28 57.15 62.39 36.71 

Columba 48.01 45.75 51.22 30.55 

JDT 26.02 27.37 29.34 14.20 

Mozilla 13.23 20.11 15.79 5.19 

Platform 26.31 28.66 31.42 14.66 

PostgreSQL 46.93 43.58 49.86 25.00 

Average 36.30 37.10 40.00 21.05 

Table 10 

Recall of TLEL and the three baselines. 

Project Deeper (%) DNC(%) TLEL(%) MKEL(%) 

Bugzilla 69.83 74.90 75.92 1 

Columba 67.37 76.52 74.33 1 

JDT 69.06 72.32 73.48 1 

Mozilla 68.00 61.01 77.75 1 

Platform 69.84 76.49 77.48 1 

PostgreSQL 66.71 81.41 76.97 1 

Average 68.47 73.77 75.99 1 

Table 11 

F1-score of TLEL and the three baselines. 

Project Deeper DNC TLEL MKEL 

Bugzilla 0.6292 0.6472 0.6850 0.5371 

Columba 0.5606 0.5721 0.6065 0.4680 

JDT 0.3779 0.3971 0.4194 0.2488 

Mozilla 0.2215 0.3023 0.2625 0.0987 

Platform 0.3822 0.4169 0.4471 0.2558 

PostgreSQL 0.5509 0.5675 0.6052 0.40 0 0 

Average 0.4537 0.4839 0.5043 0.3352 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

Mappings of Cliff’s delta values to effective- 

ness levels [46] . 

Cliff’s delta ( δ) Effectiveness level 

−1 < = δ < 0.147 Negligible 

0.146 < = δ < 0.33 Small 

0.33 < = δ < 0.474 Medium 

0.474 < = δ < = 1 Large 

Table 13 

Adjusted P-values (after Bonferroni correction) 

of TLEL compared with the two baselines in 

terms of F1-Score. 

Project With deeper With DNC 

Bugzilla < 1.32e −15 < 1.32e −15 

Columba < 1.32e −15 < 1.32e −15 

JDT < 1.32e −15 < 1.32e −15 

Mozilla < 1.32e −15 < 1.32e −15 

Platform < 1.32e −15 < 1.32e −15 

PostgreSQL < 1.32e −15 < 1.32e −15 
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First, from Table 8 , we can see that the PofB20 values of TLEL

range from 59% to 82%, which exceed those of the baselines sub-

stantially for all the datasets. On average, over 70% of the buggy

instances can be found by reviewing only 20% of the lines of code,

which is a substantial improvement as compared to the results

achieved by the baselines. In addition, the result is also competi-

tive with results reported by many recent studies about defect pre-

diction [38,45] . For example, Ostrand et al. found on average 83%

of the defects in 20% of the files [45] . However, note that their 20%

of the files actually contains over 50% of the lines of code. And

Mende et al. evaluate a model named LoC-MOM on two datasets

KC1 and PC5, and find that when considering 20% of the files, LoC-

MOM is able to identify around 55% of the defects in KC1 and over

90% in PC5 [38] . 

Second, from Tables 9 to 11 , we can find that in terms of preci-

sion, TLEL is the best performer by achieving an average precision

of 60%. And in terms of recall, TLEL is better than Deeper and DNC .

Although MKEL has higher Recall than TLEL , the Precision of MKEL

is rather low. Also, in terms of F1-score, which is the summary of

the above two indicators, TLEL is the best predictor by achieving

an average F1-score of 49%. 
Third, in the experiment, we find that the approach MKEL is the

orst in terms of both PofB20 and F1-score in all of the datasets.

he direct reason could be that the base learner of MKEL is SVM,

hich has been demonstrated (in Section 2.3 ) to have worse per-

ormance than decision tree for just-in-time defect prediction. In

ddition, there are actually two big weaknesses of MKEL . First,

t needs two very huge three-dimension kernel matrixes, one for

raining data and the other for testing data, which leads to a high

pace complexity. Second, in MKEL the weight update strategy suf-

ers from an algorithmic issue. In the strategy, the weights of de-

ective samples will always increase and not decrease at all, while

he weights of non-defective samples will always decrease and not

ncrease at all. Although it seems that the strategy can be a so-

ution to the class imbalance problem, it will lead to infinite loop

hen sampling using the weights in a later round, say, the 90th

ound of boosting. This is the case because each time the sam-

led data must contain two classes, but the tiny weights of non-

efective samples in the later round won’t allow it. Due to the rea-

on, we set the number of boosting rounds as 50, which we have

mpirically tried and found to be a suitable number that will avoid

he infinite loop issue. 

In summary, TLEL is more effective than those baselines. 

To better demonstrate the superiority of our approach, we per-

orm the Wilcoxon signed-rank statistical test with Bonferroni cor-

ection to compute the p-value. We also compute the Cliff’s delta.

ilcoxon statistical test is often used to check if the difference in

wo means is statistically significant (which corresponds to a p-

alue of less than 0.05). We include the Bonferroni correction to

ounteract the impact of multiple hypothesis tests. Cliff’s delta is

ften used to check if the difference in two means are substan-

ial. The range of Cliff’s delta is in [ −1, 1], where −1 or 1 means

ll values in one group are smaller or larger than those of the

ther group, and 0 means the data in the two groups is similar.

he mappings between Cliff’s delta scores and effectiveness lev-

ls are shown in Table 12 . Note that since MKEL suffers from per-

ormance and algorithmic issues, we won’t compare our approach

ith it in the remainder of this section. By computing the p-value

nd Cliff’s delta, the extent of which our approach improves over

he two baselines can be more rigorously assessed. 

Tables 13 and 14 present p-values and Cliff’s deltas of TLEL com-

ared with the two baselines for each of the six datasets. From

he two tables, we can see the effectiveness of our approach more

learly. In terms of cost effectiveness, TLEL im proves the perfor-

ance of the baselines statistically significantly and substantially
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Table 14 

Cliff’s delta of TLEL compared with the two base- 

lines in terms of F1-ccore. 

Project With deeper With DNC 

Bugzilla 1(large) 1(large) 

Columba 1(large) 1(large) 

JDT 1(large) 1(large) 

Mozilla 1(large) −1 (negligible) 

Platform 1(large) 1(large) 

PostgreSQL 1(large) 1(large) 
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Table 15 

Individual contribution of each ensemble layer in 

terms of PofB20. 

Project Sub-1(%) Sub-2(%) TLEL(%) 

Bugzilla 61.08 60.73 61.67 

Columba 58.05 57.35 58.85 

JDT 71.80 71.52 72.55 

Mozilla 81.26 81.37 82.40 

Platform 75.55 75.66 77.08 

PostgreSQL 69.23 68.96 70.64 

Average 69.50 69.27 70.53 

Table 16 

Individual contribution of each ensemble layer 

in terms of F1-score. 

Project Sub-1 Sub-2 TLEL 

Bugzilla 0.6503 0.6789 0.6850 

Columba 0.5783 0.5897 0.6065 

JDT 0.3871 0.4094 0.4194 

Mozilla 0.2300 0.2560 0.2625 

Platform 0.4080 0.4299 0.4471 

PostgreSQL 0.5647 0.5853 0.6052 

Average 0.4697 0.4915 0.5043 

Table 17 

Adjusted P-values (after Bonferroni correc- 

tion) of TLEL compared with Sub-1 and Sub-2 

in terms of PofB20. 

Project With Sub-1 With Sub-2 

Bugzilla < 1.32e −15 < 1.32e −15 

Columba < 1.32e −15 < 1.32e −15 

JDT < 1.32e −15 < 1.32e −15 

Mozilla < 1.32e −15 < 1.32e −15 

Platform < 1.32e −15 < 1.32e −15 

PostgreSQL < 1.32e −15 < 1.32e −15 

Table 18 

Cliff’s deltas of TLEL compared with Sub-1 

and Sub-2 in terms of PofB20. 

Project With Sub-1 With Sub-2 

Bugzilla 1(large) 1(large) 

Columba 1(large) 1(large) 

JDT 1(large) 1(large) 

Mozilla 1(large) 1(large) 

Platform 1(large) 1(large) 

PostgreSQL 1(large) 1(large) 
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n all datasets. In terms of F1-score, TLEL improves the performance

f the baselines statistically significantly and substantially in five

ut of the six datasets. 

TLEL is more effective than the two baselines for just-in-time defect

prediction. On average, by reviewing only 20% lines of code, over

70% of the buggy changes can be found with it. 

Q2 How effective is TLEL when different percentages of LOC are 

nspected? 

otivation. We have validated the effectiveness of TLEL in terms of

ost effectiveness and F1-score in the first research question. We

ave demonstrated that TLEL outperforms the baselines in terms

f cost effectiveness statistically significantly and substantially. We

ant to go further by showing the percentage of buggy instances

ound when reviewing different amount of lines of code using TLEL .

iven the same amount of lines of code reviewed, the more buggy

nstances found, the more useful an approach is. 

pproach. We record the percentage of buggy instances found

hen adding every one percentage of lines of code reviewed. So

e will have 100 average values corresponding to the percentage

f buggy instances found when reviewing 1%–100% lines of code.

e can generate a figure whose x-axis represents the percentage

f code reviewed and y-axis represents the percentage of defects

ound for each dataset. In each chart there are three lines, repre-

enting TLEL, Deeper and DNC correspondingly. 

esults. Fig. 2 shows six charts comparing the cost effectiveness

f our approach TLEL with two baselines, Deeper and DNC , for dif-

erent percentages of LOC inspected. The black solid curve corre-

ponds to TLEL , the blue dashed curve corresponds to Deeper and

he red dashed curve corresponds to DNC . From the charts, we can

ee that the red solid curves are always more convex than the blue

ashed curves, which means that our approach can always detect

ore buggy changes than the two baselines in the whole range of

ercentages of LOC inspected. Therefore, the performance of our

pproach TLEL is much better than DNC and Deeper in terms of the

ost effectiveness. 

TLEL can identify more buggy changes than Deeper and DNC for a

wide range of lines of code inspected. 

Q3 What is the benefit of using two ensemble layers in TLEL? 

otivation. We have validated the effectiveness of TLEL through

he above two research questions. TLEL clearly outperforms the two

tate-of-the-art baselines. In this RQ, we want to go further by in-

estigating the individual contribution of the two ensemble layers

f TLEL . 

pproach. To measure the individual contribution of the two en-

emble layers to the overall performance of TLEL , we create two

ncomplete versions of TLEL – referred to as Sub-1 and Sub-2 re-

pectively. For Sub-1 , we use the inner layer ensemble bagging

ethod to create a single random forest. The detail is the same

s Section 3.4 but we do not use stacking. For Sub-2 , we only
se the outer layer ensemble stacking method to create another

ind of ensemble of decision trees. The detail is the same as

ection 3.5 except that we replace random forest with decision

ree. Note that both TLEL and Sub-2 use undersampling, so we also

pply undersampling to Sub-1 . That is, in Sub-1 we first use un-

ersampling to balance the training data and then build a sin-

le random forest. In addition, all the approaches take review cost

nto consideration by dividing with LOC . We can then observe the

ndividual contribution of the two ensemble layers by comparing

he performance of Sub-1, Sub-2 and TLEL . Also note that the total

umber of base learners used by all the approaches are the same

i.e., 100) for a fair comparison. 

esults. Tables 15 and 16 show the performance of Sub-1, Sub-2

nd TLEL . From the tables, we can note that TLEL outperforms Sub-1

nd Sub-2 in all the datasets in terms of both PofB20 and F1-score.

o better demonstrate the superiority of our approach to Sub-1 and

ub-2 , we compute p-values (with Bonferroni correction) and Cliff’s

elta as we do in RQ1. 
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Fig. 2. Cost effectiveness trends for the six datasets. 
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Tables 17 and 18 present p-values and Cliff’s deltas of TLEL com-

pared with Sub-1 and Sub-2 for each of the six datasets. From the

two tables, we can see the effectiveness of our approach more

clearly. Through Wilcoxon signed-rank statistical test and Cliff’s

delta we find that the improvement achieved by our approach is

statistically significant and substantial to both Sub-1 and Sub-2 in

terms of both cost effectiveness and F1-score. It indicates that both

of the two ensemble layers contribute to the overall performance

of TLEL , and removing any one of them degrades the overall per-

formance. 

Both of the two ensemble layers contribute to the good perfor-

mance of TLEL. 
v  
Q4 What is the effect of varying the amount of training data on the 

ffectiveness of TLEL? 

otivation. For some projects, the amount of training data (i.e.,

hanges known to be buggy or non-buggy) can be limited. Thus,

n this research question, we want to investigate the stability of

LEL by varying the amount of training data. 

pproach. In the above research questions, we perform 10-fold

ross validations which means that 90% of the data are used for

raining and 10% of data are used for testing. In this RQ, we per-

orm 2-fold to 10-fold cross validations on the datasets. To make

he results more convincing, we also perform each kind of cross

alidation 10 times. For each dataset, we plot two curves on one
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Fig. 3. Two-to-ten fold validation results on six datasets. 
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hart showing the PofB20 values and F1-scores for 2-folds to 10-

olds cross validations. 

esults. Fig. 3 presents the PofB20 values (red solid line) and F1-

cores (blue dashed line) for different cross validations. In the fig-

re, the curves are very stable. In terms of PofB20, the biggest fluc-

uation is less than 2%. In terms of F1-score, the biggest fluctuation

s less than 3%. Therefore, we can conclude that TLEL has good sta-

ility and can work with different amount of training data very

ell. 
TLEL is stable and able to work well for reduced amount of training

data. 

Q5 How much time does it take for TLEL to run? 

otivation. Now that we have examined the effectiveness and the

tability (with reduced training data) of our approach TLEL , we

hall test the efficiency of TLEL . The efficiency of an approach is

lso an important indicator to evaluate whether or not the ap-

roach is good enough. 

pproach. In order to answer the question, we measure the train-

ng and testing time of TLEL . The training time includes the time
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Table 19 

Training time of TLEL and the two baselines 

(in seconds). 

Project Deeper DNC TLEL 

Bugzilla 4.56 5.88 1.65 

Columba 3.77 7.08 1.55 

JDT 9.40 101.75 4.14 

Mozilla 13.31 723.65 4.73 

Platform 23.91 439.38 7.95 

PostgreSQL 11.74 40.48 3.81 

Average 11.12 219.70 3.97 

Table 20 

Testing time of TLEL and the two baselines 

(in seconds). 

Project Deeper DNC TLEL 

Bugzilla 0.002 0.02 0.06 

Columba 0.004 0.02 0.07 

JDT 0.005 0.20 0.09 

Mozilla 0.021 0.60 0.16 

Platform 0.011 0.52 0.14 

PostgreSQL 0.006 0.10 0.07 

Average 0.008 0.24 0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 21 

A clear comparison of two parameter settings in terms of PofB20. 

Project NTree = 5 & NLearner = 10 (%) NTree = 10 & NLearner = 5 (%) 

Bugzilla 61.67 61.97 

Columba 59.37 57.83 

JDT 73.06 72.04 

Mozilla 82.58 81.26 

Platform 77.19 76.24 

PostgreSQL 70.52 70.05 

Average 70.73 69.90 

Table 22 

A clear comparison of two parameter settings in terms of F1-score. 

Project NTree = 5 & NLearner = 10 NTree = 10 & NLearner = 5 

Bugzilla 0.6838 0.6642 

Columba 0.6202 0.5957 

JDT 0.4284 0.4066 

Mozilla 0.2719 0.2503 

Platform 0.4526 0.4289 

PostgreSQL 0.6108 0.5947 

Average 0.5113 0.4901 
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c  
taken for all the rounds of random under-sampling and base

learner training. The testing time is the time taken to produce all

the prediction results for the whole testing dataset. 

Results. Tables 19 and 20 present the training time and testing

time of TLEL and the baselines on the six datasets. From Table 19 , it

takes only less than 4 s on average for TLEL to finish training a sta-

tistical model, while Deeper needs more than 10 s and DNC needs

more than 200 s. From Table 20 , the testing time of all approaches

are very small, less than 1 s, which is quite acceptable. 

On average, TLEL needs less than 4 s to build a statistical model

and about 0.1 s to do the prediction, which we believe to be rea-

sonably good. 

RQ6 What is the effect of varying the two parameters settings? 

Motivation. We have shown the superiority of our approach TLEL

in terms of its effectiveness, stability and efficiency. Note that in

TLEL , there are two parameters (i.e., NTree and NLearner ) that can

be tuned. Therefore, we want to examine the effect of varying

these parameters. 

Approach. In order to answer the question, we perform two sets

of experiments. In each set, we only change one parameter and fix

the other parameter to see its individual influence to TLEL . For ex-

ample, to examine the effect of parameter NTree , we only vary the

value of NTree and fix NLearner to its default value (i.e., 10). We

vary NTree from 1 to 20 when fixing NLearner , and vary NLearner

from 1 to 20 when fixing NTree . Therefore, the total number of de-

cision trees varies from 10 to 200. For each dataset, we plot two

curves on one chart showing the PofB20 values and F1-scores for

varying the two parameters settings. 

Results. Figs. 4 and 5 present the effect of varying the values of the

two parameters NTree and NLearner on the performance of TLEL on

six datasets. From these figures, we can conclude several points. 

First, for NTree , we can see that varying their values has lit-

tle influence on the performance in terms of both PofB20 and F1-

score. In all the datasets, the values of the two metrics change lit-

tle when the values of NTree change. The biggest fluctuation is less

than 0.05. 

Second, for NLearner , we can find that varying its value has

some influence on the performance in terms of both PofB20 and
1-score. Specifically, for PofB20 there is some improvement when

Learner varies from 1 to 10. However, the performances are sim-

lar when NLearner varies from 10 to 20. This indicates that the

erformance of TLEL improves with the increase of the number of

ase learners in the beginning, but remain stable when the num-

er of base learners increases to a proper number. 

Third, when considering NTree and NLearner together, we can

nd that the same number of base learners (decision trees) does

ot necessarily lead to the same performance. For example, the

erformance generated when NTree is 5 and NLearner is 10 is bet-

er than the performance generated when NTree is 10 and NLearner

s 5. Tables 21 and 22 present a clear comparison of the two pa-

ameter settings in terms of PofB20 and F1-score. We can clearly

ee that the performance of the first parameter setting is better

han that of the second parameter setting in terms of both PofB20

nd F1-score. It indicates implicitly that the two ensemble layers

ave different contributions to TLEL . 

TLEL performance remains more or less the same when NTree

is increased. On the other hand, its performance improves when

NLearner is increased but the performance gain tapers off after

NLearner reaches a certain number (i.e., 10). 

. Discussion 

We have investigated six research questions about TLEL and

hown the superiority of our approach TLEL . However, there still

xists one point that can be discussed. 

TLEL is compared with three baselines. Among them, Deeper is

 state-of-the-art deep learning approach for just-in-time defect

rediction, while DNC and MKEL are two state-of-the-art ensemble

earning approaches. Actually, when comparing different ensemble

pproaches, it would be good to also see the differences in per-

ormance when using the same base learner. However, the base

earners of TLEL and DNC are the same (i.e., decision tree), while

he base learner of MKEL is SVM. To better demonstrate the su-

eriority of our ensemble learning approach, we create a variant

f TLEL (referred to as TLEL_SVM ) by replacing the base learner of

LEL with SVM, and we compare MKEL, TLEL_SVM and TLEL . Note

hat the experiment setting is the same as the one described in

ection 4 . 

Tables 23 and 24 present the performances of MKEL, TLEL_SVM

nd TLEL in terms of PofB20 and F1-score. From these tables, we

an see that when using the same base learner, TLEL_SVM is better
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Fig. 4. The effect of varying parameter NTree when NLearner = 10 on the performance of our approach on six datasets. 

Table 23 

The performance of TLEL compared with TLEL_SVM in 

terms of PofB20. 

Project MKEL(%) TLEL_SVM(%) TLEL(%) 

Bugzilla 33.02 55.37 61.67 

Columba 30.05 54.45 58.85 

JDT 26.00 61.37 72.55 

Mozilla 50.98 61.22 82.40 

Platform 48.94 61.63 77.08 

PostgreSQL 33.33 58.08 70.64 

Average 37.05 58.69 70.53 

Table 24 

The performance of TLEL compared with 

TLEL_SVM in terms of F1-score. 

Project MKEL TLEL_SVM TLEL 

Bugzilla 0.5371 0.6061 0.6850 

Columba 0.4608 0.5482 0.6065 

JDT 0.2488 0.3538 0.4194 

Mozilla 0.0987 0.1969 0.2625 

Platform 0.2558 0.3435 0.4471 

PostgreSQL 0.40 0 0 0.5357 0.6052 

Average 0.3352 0.4307 0.5043 
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Fig. 5. The Effect of Varying Parameter NLearner When NTree = 10 on the Performance of Our Approach on Six Datasets. 
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than MKEL for all datasets in terms of PofB20 and F1-score, which

further demonstrates the superiority of our ensemble learning ap-

proach TLEL . In addition, the performance of TLEL_SVM is worse

than that of TLEL . It indicates that decision tree is indeed better

than SVM as the base learner, which corresponds to the first ob-

servation described in Section 2.3 . 

5.1. Threats to validity 

Threats to internal validity relate to errors in our experiments.

We have double checked our experiments and implementations.
till, there could be errors that we did not notice. Threats to ex-

ernal validity relate to the generalizability of our results. We have

valuated our approach on 137,417 changes from six open source

rojects. In the future, we plan to reduce this threat further by

nalyzing even more datasets from more open source and com-

ercial software projects. Threats to construct validity refer to

he suitability of our evaluation metrics. We use cost effective-

ess and F1-score which are also used by past software engineer-

ng studies to evaluate the effectiveness of various prediction tech-
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iques [12,17–19,21,22,47] . Thus, we believe there is little threat to

onstruct validity. 

. Related work 

We classify related work into two parts. The first part is about

tudies on defect prediction. The second part is about studies on

nsemble learning. 

.1. Defect prediction 

There are some prior studies on just-in-time defect prediction.

ockus et al. predict defects at change-level in a telecommunica-

ion system [27] . They propose a number of measures that char-

cterize a change including change diffusion, change size, change

urpose and so on, and use logistic regression to do prediction. All

he change measures satisfy three basic conditions: The measure

an be computed automatically from changes, the measure can be

btained immediately after changes, and the measure can reflect a

roperty of changes. Kim et al. predict defects at change-level in

2 open source projects [12] . They use Support Vector Machine to

redict whether or not a change will lead to a bug. Kamei et al.

erform a large-scale empirical study of just-in-time defect pre-

iction [1] . They choose 14 change measures that perform well in

raditional defect prediction research and build Logistic Regression

odels to predict if changes are defective or not. 

There are many studies on traditional defect prediction. Zim-

ermann et al. use network analysis to analyze dependencies be-

ween various pieces of code, which can help managers to iden-

ify central program units that are more likely to be defective [10] .

immermann et al. propose a cross-project defect prediction ap-

roach; they train a model on a source project which is selected

onsidering several factors, and use the model on a given target

roject [48] . Turhan et al. employ a k-nearest neighbor algorithm

or cross-project defect prediction, which selects 10 nearest in-

tances from source projects to be used as training data for a tar-

et project [11] . D’Ambros et al. present a benchmark for defect

rediction and provide an extensive comparison of well-known ap-

roaches used for defect prediction in their survey [9] . Rahman

t al. analyze code metrics from several different perspectives, and

uild prediction models across 12 large open source projects to un-

erstand the performance, stability, portability and stasis of differ-

nt sets of metrics for defect prediction [18] . Nam et al. propose

CA+, a novel approach to make feature distributions in source

rojects similar to that of target projects, which can improve the

erformance of cross-project defect prediction [21] . 

.2. Ensemble learning 

In defect prediction, class imbalance is a severe problem. Class

mbalance is a situation in which the instances of some classes are

uch less than those of other classes [36] . Ensemble learning is

ne of the best solutions to class imbalance problem [49,50] . In ad-

ition, ensemble learning can combine strengths of different base

earners so that it can achieve much better classification perfor-

ance [14,15] . 

There are many studies on applying ensemble learning to de-

ect prediction. Based on the class-imbalance learning method Ad-

Boost.NC [36] , Wang et al. propose a dynamic version of Ad-

Boost.NC for software defect prediction [2] . The approach uses

ecision tree as base learner and can adjust its parameters dy-

amically during the training process. Based on the multiple ker-

el boosting approach MKBoost [51] , Wang et al. propose a mul-

iple kernel ensemble learning approach for software defect pre-

iction [3] . The approach uses boosting method. In each boosting
ound, different kernels are tried and the SVM with the best ker-

el is chosen as base ensemble learner. Zheng proposes a boosted

eural network with cost-sensitive method to improve the perfor-

ance of software defect prediction [4] . In the approach the mis-

lassification costs are considered in the weight-update strategy.

un et al. present a coding-based ensemble learning method for

oftware defect prediction [5] . The approach converts imbalanced

inary-class data into balanced multi-class data. Rodriguez et al.

uggest a descriptive approach for defect prediction [16] . They

se two well-known subgroup discovery algorithms to obtain rules

hat identify defect prone modules. Different from theirs, our ap-

roach is a two-layer ensemble learning approach based on classic

lassification techniques. 

. Conclusion and future work 

In this paper, we propose a two-layer ensemble learning ap-

roach TLEL for just-in-time defect prediction. The approach has

wo layers of ensemble learning technique. In the inner layer,

e combine Decision Tree and Bagging to build a Random Forest

odel. In the outer layer, we use random under-sampling to train

any different Random Forest models and ensemble them once

ore using stacking. We evaluate TLEL on datasets taken from six

arge open source projects and use two evaluation metrics which

re cost effectiveness and F1-score. We compare TLEL with three

aselines, i.e., Deeper, DNC and MKEL . The results show that TLEL is

he best in terms of the two metrics. For cost effectiveness, our ap-

roach can identify over 70% defective changes by reviewing only

0% lines of code, which is much more than the defective changes

hat can be identified by the three baselines. In addition, our ap-

roach achieve an average F1-score of close to 50%. 

In the future, we plan to improve the performance of our ap-

roach by optimizing parameters of TLEL . We also plan to perform

xperiments on more datasets to reduce the threats to external va-

idity. 
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