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a b s t r a c t 

Context: State-of-the-art works on automated detection of Android malware have leveraged app descrip- 

tions to spot anomalies w.r.t the functionality implemented, or have used data flow information as a 

feature to discriminate malicious from benign apps. Although these works have yielded promising perfor- 

mance, we hypothesize that these performances can be improved by a better understanding of malicious 

behavior. 

Objective: To characterize malicious apps, we take into account both information on app descriptions, 

which are indicative of apps’ topics, and information on sensitive data flow, which can be relevant to 

discriminate malware from benign apps. 

Method: In this paper, we propose a topic-specific approach to malware comprehension based on app 

descriptions and data-flow information. First, we use an advanced topic model, adaptive LDA with GA, to 

cluster apps according to their descriptions. Then, we use information gain ratio of sensitive data flow 

information to build so-called “topic-specific data flow signatures”. 

Results: We conduct an empirical study on 3691 benign and 1612 malicious apps. We group them into 

118 topics and generate topic-specific data flow signature. We verify the effectiveness of the topic-specific 

data flow signatures by comparing them with the overall data flow signature. In addition, we perform a 

deeper analysis on 25 representative topic-specific signatures and yield several implications. 

Conclusion: Topic-specific data flow signatures are efficient in highlighting the malicious behavior, and 

thus can help in characterizing malware. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The momentum of smart mobile devices carries along an im-

ressive number of malicious apps which pose serious threats to

sers. Indeed, malware can lead to damages of varying severity,

anging from spurious app crashes to financial losses with mal-

are sending premium-rate SMS, as well as to private data leaks.

o devise tools and techniques that are efficient in detecting mal-

are, researchers and practitioners require, more than ever, exten-

ive knowledge of malicious behavior and how they can be char-

cterized [1] . 
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Research on automated detection of malware in the Android

cosystem has produced numerous approaches [2–4] in the last

ears. Among those approaches, Gorla et al. have proposed to clus-

er apps according to their description, and then to use anomaly

nalysis techniques on the functionality implemented to identify

alicious apps within each cluster [5] . More recently, Avdiienko

t al. have devised an approach to identify malware by using pat-

erns of sensitive data flows to discriminate malicious from be-

ign apps [6] . While both approaches have shown promising re-

ults, they do not exploit any understanding of malicious behavior

n their detection schemes. 

In this work, we consider a related but different problem than

hose studies about malware detection. We aim at understanding

alware traits. Although malware detection is a very meaningful

ask since it can help automatically detect malware for users, mal-

are characterization goes further since it can also help people

ware of why an app is malware. To achieve the target, we raise

http://dx.doi.org/10.1016/j.infsof.2017.04.007
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Fig. 1. The graphical model of LDA. 
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two questions. What may cause an app being malicious? Does the

apps of different topics have different causes for being malicious? 

To answer the above two questions, we focus on associating

description information of apps with their data flow information

to characterize malicious behavior. we propose a topic-specific ap-

proach which combines description and sensitive data flow infor-

mation. In a first step, we group different apps into several top-

ics according to their descriptions. To that end, we leverage an

adaptive Latent Dirichlet Allocation (LDA) with Genetic Algorithm

(GA) [7] which allows to select the appropriate number of topics to

optimally group apps. In a second step, for each topic, we collect

the sensitive data flow information from the associated apps. Each

piece of sensitive data flow information is weighted according to

the number of times it appears in benign apps and in malicious

apps, to yield an information gain ratio [8] value. 

With this approach, we generate a so-called “topic-specific data

flow signature”. This signature is a list of data flow patterns along

with their importance, represented by the information gain ratio,

to discriminate malicious apps from benign apps. Building topic-

specific data flow signatures presents three advantages compared

to a generic (overall) data flow signature: (1) each topic-specific

signature will include fewer, specific, data flow patterns; (2) each

data-flow signature contains more discriminative information to

identify malicious apps in a specific topic; (3) each data flow signa-

ture characterizes more fine-grained behavior of malicious apps in

this topic by highlighting the specific data-flow patterns that they

are prone to exhibit. 

We implemented our approach and conducted an experimen-

tal assessments based on 5303 apps (3691 benign and 1612 mali-

cious). We have crawled descriptions of apps from Google Play Store

and Best Apps Market 1 for benign and malicious apps respectively,

and leveraged MUDFLOW [6] to collect data flow information from

all the apps. We group all the apps into 118 topics and generate

topic-specif ic data flow signatures. We verify the effectiveness of

the topic-specific data flow signatures by comparing them with the

overall data flow signature. Moreover, we perform a deeper anal-

ysis on several representative topic-specific signatures and yield

several implications. In conclusion, topic-specific data flow signa-

tures can help better characterize malware. 

The main contributions of this paper are: 

1. We propose a topic-specific approach to generate data flow sig-

natures. The topic-specific data flow signatures is much better

than the overall data flow signatures to characterize malware. 

2. We conduct an empirical study to demonstrate the benefits of

topic-specific data flow signatures and perform a deeper analy-

sis on several representative topic-specific signatures. 

In the remainder of the paper, we provide background informa-

tion (cf. Section 2 ), present our approach (cf. Section 3 ) and exper-

iments (cf. Section 4 ) before discussing related work (cf. Section 5 )

and giving concluding remarks (cf. Section 6 ). 

2. Background 

We introduce Android malware and overview some details on

data flow information in Section 2.1 . Section 2.2 provides back-

ground details on the working of Latent Dirichlet Allocation (LDA)

which we leverage in our work. At last we present the motivation

of our work. 

2.1. Malicious apps and data flow information 

Malicious apps (or malwares) are apps that implement func-

tionalities which contradict with app user interests. Generally, mal-
1 http://www.bestappsmarket.com/. 

 

 

ares, which include viruses, worms, trojans and spyware, are

armful at diverse severity scales. 

Nowadays, there are more and more malicious apps that leak

ser’s sensitive data without user’s permission. These sensitive

ata include for example user’s location, text message records,

nd even contact information. Usually, such malicious apps can be

dentified by manually checking their implementation code. In a

revious work, Avdiienko et al. have identified malware by ana-

yzing sensitive data flows between source and sink API calls [6] .

 source is a method that accesses personal data such as ac-

ount, unique device ID, and location. A sink is a method that can

ransmit local data to an external entity such as network, file and

og. They demonstrated that it is possible to identify malware by

imply inspecting whether a sensitive user data (e.g., account) is

eaked from its source to an unsafe sink (e.g., network). To simplify

he detection of leaks between sources and sinks, Adviienko et al.

ave regrouped the large number of sensitive Android APIs into a

et of 34 semantic categories detailed in Table 1 . Following Advi-

enko et al., we leverage the 34 provided categories in our work to

implify and record data flow information. 

.2. Latent Dirichlet allocation 

Latent Dirichlet Allocation (LDA) [9] is a well-known topic

odel used for various tasks of software engineering re-

earch [7,10,11] . In particular, many studies about malware detec-

ion leverage LDA [5,12,13] . In the graphical model of LDA repre-

ented in Fig. 1 , a circle represents a variable, an arrow represents

 dependency between two variables and a rectangle represents a

rocess which is repeated a number of times. 

K denotes the number of topics, D denotes the number of docu-

ents and N the number of terms in a document. Generally, D and

 are fixed by the problem, while K needs to be specified manu-

lly. Two other parameters must also be tuned carefully: 

1. alpha , which affects the topic distribution of the documents

(i.e., descriptions). A higher alpha leads to more uniform dis-

tribution of the topics per document. By default, alpha is set to

0.1. 

2. Beta , which affects the term distribution of the topics. A higher

beta leads to more uniform distribution of the terms per topic.

By default, beta is set to 0.01. 

In theory, LDA is a generative probabilistic model, which as-

umes that the data (a collection of documents) is generated based

n a certain statistical process for each document d and each topic

 . Specifically, LDA contains three steps: 

1. Step 1: LDA generates a topic distribution vector theta and a

term distribution vector phi based on two Dirichlet distribu-

tions [14] defined by the parameters alpha and beta , respec-

tively. 

http://www.bestappsmarket.com/
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Table 1 

Sensitive API categories. 

Categories Description 

Source only 

ACCOUNT_INFORMATION APIs to read details of user’s online accounts. 

BLUETOOTH_INFORMATION APIs to read Bluetooth communication settings and state, along with information about connected and connecting devices. 

CONTENT_RESOLVER APIs to read contents of a given URI. 

DATABASE_INFORMATION APIs to read data from database and retrieve database metadata. 

EMAIL_INFORMATION APIs to read emails and email settings. 

FILE_INFORMATION APIs to obtain URI of resources stored in either internal or external storage devices. 

HARDWARE_INFO APIs to read device’s hardware information. 

LOCATION_INFORMATION APIs to read geographical information. 

NETWORK_INFORMATION APIs to read network, telephony and connection settings. 

NO_SENSITIVE_SOURCE Non-sensitive source APIs. 

PHONE_INFORMATION APIs to read other phone related information. 

UNIQUE_IDENTIFIER APIs to read device’s and user’s identifiers, e.g., device id, subscriber id, etc. 

VOIP_INFORMATION APIs to obtain VOIP settings and state. 

Sink only 

ACCOUNT_SETTINGS APIs to modify user’s account settings. 

BLUETOOTH APIs to send information using Bluetooth service. 

EMAIL APIs to send emails. 

EMAIL_SETTINGS APIs to modify email settings. 

FILE APIs to write data to files or other resources. 

INTENT APIs to start, fragment and manage Android’s activity. 

LOG APIs to send data, warnings, and error messages to be logged. 

NETWORK APIs to modify network settings, e.g., WiFi settings, etc. 

NO_SENSITIVE_SINK Non-sensitive sink APIs. 

PHONE_CONNECTION APIs to modify phone connection settings. 

PHONE_STATE APIs to modify phone state. 

SYNCHRONIZATION_DATA APIs to manage synchronization operation. 

VOIP APIs to send data through VOIP. 

Both 

AUDIO APIs to manage volume, ringer, and other audio-related settings. 

BROWSER_INFORMATION APIs to manage browser bookmarks and data. 

CALENDAR_INFORMATION APIs to manage date and time related information. 

CONTACT_INFORMATION APIs to manage device’s central repository containing data about people (e.g., their phone numbers). 

IMAGE APIs to manage metadata of image (e.g., JPEG) files. 

NFC APIs to manage communication to NFC tag. 

SMS_MMS APIs to manage SMS and MMS operations such as reading and sending text, reading and sending multimedia, etc. 

SYSTEM_SETTINGS APIs to manage device and system configurations such as password, performance counters, web settings, etc. 
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2. Step 2: LDA generates a topic assignment vector z to assign each

term in a document a specific topic according to the topic dis-

tribution vector of the document theta . 

3. Step 3: LDA generates each term in a document with the topic

distribution vector phi and the topic assignment vector z . 

By repeating step 1 K times, K topics are generated. By repeat-

ng step 2 and 3 N times, a document having N terms is generated.

y repeating step 1 to 3 D times, a collection of D documents is

enerated. 

In practice, LDA takes a document-by-term ( D 

∗N ) matrix a as

nput, and outputs two matrices b and c , i.e., document-by topic

 D 

∗K ) matrix and topic-by-term ( K 

∗N ) matrix. The document-by-

erm matrix a can be a term frequency matrix, in which a ij rep-

esents the number of times that the j th term appears in the i th

ocument. In the document-by-topic matrix b, b ij represents the

robability of the i th document belongs to the j th topic. Generally

 document is regarded as belonging to the topic with the highest

robability. In the topic-by-term matrix c, c ij represents the proba-

ility that the j th term belongs to the i th topic. Likewise, we assign

 term to the topic with the highest probability and then we can

onclude what a topic is about by looking up the terms it contains.

To some extent, LDA can be seen as a clustering algorithm. By

ssigning a specific topic for each document using document-by-

opic matrix, a clustering of documents can be completed. 

There are several implementations for LDA in the literature.

n our work, we use an implementation based on collapsed

ibbs sampling. This approach achieves the same accuracy as the
tandard LDA implementation while being faster in each execu-

ion [15,16] . Besides the three parameters, alpha, beta and K in-

roduced above, our implementation is tuned with a parameter m

or the number of Gibbs sampling iterations. m is defaultly set to

0 0 0. 

.3. Motivation 

We envision our work can give a deeper insight into mal-

are compared with the studies which generate signatures with-

ut taking into account the specificities of different topics of mal-

are [17–19] . Indeed, since different apps provide different func-

ionality, building a generic (overall) signature of malware across

he various topics of apps may not be optimal. For example, most

pps which track user’s real-time location are likely malicious. Tak-

ng this information to build an overall signature may lead to false

ositives in the case of navigation apps which benignly, and on

urpose, must track user’s location and may even save this sensi-

ive information outside the app (e.g., in a log file). 

Topic-specific data flow signatures can benefit security experts

ho may use them to characterize malicious apps and build

ignature-based approaches to malware detection. Users, when

rovided with such information, can also understand the risk that

hey take in installing a given app. Finally, app developers, based

n such signatures, can learn to avoid unorthodox implementations

hich may make their apps easily assimilable to malware. 
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Table 2 

An example of how a data flow pattern is generated. 

Source API Uri.getQueryParameter() 

Source API category NETWORK_INFORMATION 

Sink API Log.e() 

Sink API category LOG 

Data flow pattern NETWORK_INFORMATION → LOG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The data flow information of one benign app 

(com.phoneapps99.unblockyoutube) and one malicious app 

(VirusShare_57e868d46163387793fd3e260ed56ac4). 

App Data flow information 

Unblockyoutube NETWORK_INFORMATION → LOG 

(Benign) NETWORK_INFORMATION → NO_SENSITIVE_SINK 

DATABASE_INFORMATION → NO_SENSITIVE_SINK 

NO_SENSITIVE_SOURCE → INTENT 

NO_SENSITIVE_SOURCE → LOG 

NO_SENSITIVE_SOURCE → FILE 

NO_SENSITIVE_SOURCE → SYSTEM_SETTINGS 

VirusShare NETWORK_INFORMATION → SMS_MMS 

(Malicious) NETWORK_INFORMATION → INTENT 

NETWORK_INFORMATION → LOG 

NETWORK_INFORMATION → NO_SENSITIVE_SINK 

NO_SENSITIVE_SOURCE → LOG 

NO_SENSITIVE_SOURCE → INTENT 

Fig. 2. The overall framework of our approach. 
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3. Case study setup 

In this section, we describe the details of the setup of our em-

pirical experiments. We first detail the data collection and prepro-

cessing step in Section 3.1 , and then we present our experimental

approach in Section 3.2 . 

3.1. Data collection 

As we introduced earlier, our topic-specific approach is per-

formed on top of two basic artifacts: the sensitive data flow in-

formation and the descriptions of Android apps. We collect them

based on static analysis. To collect the sensitive data flow informa-

tion of Android apps, we leverage in our work an existing dataset,

which is previously published by Adviienko et al. [6] , containing a

set of Android apps and their sensitive data flow patterns. Those

sensitive data flow patterns are extracted through a well-known

state-of-the-art tool called FlowDroid [20] . Table 2 shows an ex-

ample of how a data flow pattern is generated. As previously intro-

duced in Section 2 , the source and sink APIs in the data flow pat-

tern (showed in the first and third rows) are represented through

their corresponding semantic categories (showed in the second

and fourth rows). Operator → indicates data flow direction. There-

fore, the data flow pattern means that the app calls a source API

in the NETWORK_INFORMATION category to generate data and this

data is passed to a sink API in the LOG category (which means the

data is logged somewhere). 

The second artifact we need to collect is the descriptions of An-

droid apps that are going to be investigated. However, it is not

trivial to collect the descriptions of a given set of Android apps,

especially for malicious apps as they are unlikely to be available

on popular app markets, such as the Google Play store, from which

we are only able to collect descriptions of benign apps. To this end,

we first manually searched descriptions for a set of Android apps

then come to a semi-automatic approach based on the knowledge

learned from the manual process. The semi-automatic approach at-

tempts to crawl as much descriptions as possible from a set of pre-

defined app markets, such as Best Apps Market . 2 

Actually, Adviienko et al. [6] have only made available the MD5

names of their Android apps. It is nearly impossible to search

descriptions of a given app through its MD5 information. Thus,

there is a need to obtain the unique name of a given Android app

through its MD5 information. Again, this is not trivial as well. We

thus come to a work around approach: at first, we collect a big

data set of malicious Android apps from VirusShare, 3 and then we

consider only such apps that exist in both Adviienko’s dataset and

our downloaded dataset. The unique app name is further retrieved

from the downloaded apps. 

Totally, we collect 5303 apps, including 3691 benign and 1612

malicious apps, for which we could get both their descriptions

and sensitive data flow patterns. And there are totally 128 differ-

ent data flow patterns appearing in these apps. Note that the ra-

tio of benign apps over malicious ones is about 2.3, which mim-
2 http://www.bestappsmarket.com/. 
3 https://virusshare.com/. 

(

A

cs the ratio of benign and malicious apps in the real world. 4 Also

ote that a given app can have several sensitive data flow patterns,

hile different apps may exhibit a same data flow pattern. As an

xample, Table 3 illustrates the sensitive data flow patterns col-

ected from a benign and a malicious apps, where a sensitive data

ow pattern, named NETWORK_INFORMATION → LOG , is actu-

lly shared by both of these two apps. 

.2. Data analysis 

We now detail our topic-specific approach. In particular, we

rst present an overview of our data analysis framework. Then, we

epict in detail the implementation of each important step of our

ramework. 

.2.1. Overall framework 

Fig. 2 presents the overall framework of our proposed two-

hase topic-specific approach. During the app clustering phase,

pps are clustered according to the topics inferred from their de-

criptions using LDA. During the data flow signature generation
4 We estimate the ratio of benign and malicious apps using the AndroZoo project 

 https://androzoo.uni.lu/markets ) [21] , in which there are currently over 5 million 

ndroid apps and the goodware/malware ratio is 2.36. 

http://www.bestappsmarket.com/
https://virusshare.com/
https://androzoo.uni.lu/markets
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hase, we build a topic-specific signature of apps using the sen-

itive data flow information which differentiates benign from ma-

icious apps in that topic. 

In Step 1, we first extract a number of features from app de-

criptions. These features are selected as representative terms that

re useful in building a good topic model. In our work, we extract

he representative terms and use their term frequency as features

cf. Section 3.2.2 ). Next, in Step 2, we build a topic model with

he extracted features using adaptive LDA with Genetic Algorithm

GA). GA is used to determine the optimal number of topics (cf.

ection 3.2.3 ). At the end of this step, LDA clusters the different

pps into their corresponding topics. 

Once all apps have been grouped in different topics, we gen-

rate, in Step 3, a topic-specific data flow signature per topic by

omputing information gain ratio of each piece of data flow in-

ormation. For each piece of data flow information in a topic, we

rst count the number of times it appears in benign apps with this

opic and the number of times it appears in malicious apps with

his topic. We then compute the information gain ratio of the piece

f data flow information accordingly (cf. Section 3.2.4 ). In the end,

ach topic-specific data flow signature consists of data flow pat-

erns along with their likelihood to appear in benign and malicious

pps estimated through the information gain ratio . 

.2.2. Feature extraction – text preprocessing 

In general, an app description provides raw information for its

se and functionality. To cluster apps with LDA, we preprocess

he descriptions as many prior work did [9,22,23] . To the pur-

ose, we use the python package NLTK. 5 NLTK is a leading platform

or building Python programs to work with natural language data.

ith the help of NLTK, we first tokenize all the terms (i.e., words)

rom the descriptions. We then remove the stop words, numbers,

unctuation marks and other non-alphabetic characters since they

dd little value to the topic. To further reduce the noises and fea-

ure dimensions, we also remove the terms that do not exist in the

nglish vocabulary of NLTK. 6 Subsequently, we use the Snowball

temmer [24] to transform the remaining terms to their root forms

e.g., reading and reads are reduced to) to unify similar words into

 common representation. Finally, we compute the term frequency-

nverse document frequency (tf-idf) value for each stemmed term. 

At the end of these steps, an app description d is represented

s a term frequency vector, i.e., d = (w 1 , w 2 , . . . , w n ) , where w i de-

otes tf-idf value of the i th term (i.e., the number of times the i th

erm appears in the description d divided by the number of de-

criptions in which such a term appears). In total, there are 8832

ifferent stemmed terms extracted from all the app descriptions.

ote that we do not do any word filtering since LDA itself is a fea-

ure reduction algorithm which has been proved to be better than

raditional information retrieval algorithm tf-idf. 

.2.3. App clustering – adaptive LDA with genetic Aagorithm 

As mentioned in Section 2 , we use LDA to cluster apps into dif-

erent topics. In LDA, the number of topics k is an undetermined

ut important parameter. An overly large or overly small value of

 may influence the performance of our approach severely. There-

ore, we use an adaptive LDA technique, leveraging Genetic Algo-

ithm (GA), to optimize the value of k . 

Genetic algorithms simulate evolutions by natural selec-

ion [25] . In GA, the parameters waited to be searched are encoded

s an individual “chromosome” and a so-called fitness function is

re-defined. The fitness function is used to evaluate the different

arameter configurations by generating different fitness values. As
5 http://www.nltk.org/. 
6 http://www.nltk.org/ . 

w

 start, a population of randomly-generated chromosomes are initi-

ted, where each of them represents a random parameter configu-

ation. Then, the population will evolve a number of generations to

earch for an optimal parameter configuration. For each generation,

he population goes through three phrases: selection, crossover

nd mutation. In the selection phrase, the different chromosomes

re selected by a selection probability, which is transformed from

heir corresponding fitness values. The higher the fitness value is,

he higher the selection probability is. In the crossover phrase, the

elected chromosomes are paired in a random way and each pair

f chromosomes are crossed over to generate a new pair of chro-

osomes by a crossover function and crossover rate. In the mu-

ation phrase, the new generated chromosomes are mutated ran-

omly by a mutation function and a mutation rate. After the afore-

entioned three phrases, the whole population is updated and be-

omes a new generation. With the generations evolving, better and

etter individuals (with higher fitness values) will emerge. There-

ore, with the help of GA, we can obtain a proper value of k . 

lgorithm 1 The GA Process in Adaptive LDA. 

1: Input: The population size, p; 

The number of generations, n ; 

The search scope of the number of topics k , [ min, max ] ; 

2: Output: The number of topics, k _ best; 

3: Pick p random values of number of topics, from the range

[ min, max ] , using an initialization function. Denote them as k ; 

4: For each value k i , compute the Silhouette coefficient as its fit-

ness value; 

5: According to the fitness value, use a selection function to select

better values in k ; 

6: Cross over selected values using a crossover function to gener-

ate new values. Denote them as k _ new ; 

7: Mutate some values in k _ new using a mutation function, and

replace k with these values; 

8: Repeat Steps 4 to 7 n times and output the value k _ best with

the best fitness value; 

Algorithm 1 presents the GA process in adaptive LDA. In our

ork, our LDA–GA approach is implemented on top of Pyevolve, 7 

n evolutionary computation framework. For the encoding scheme,

e use the classical chromosome representation: 1D Binary String.

hat is, we represent k in the binary system (i.e., “10 0 0 01” rep-

esents 33 as the value of k ). We set the length of each bi-

ary string as 7 since 7 bits is likely to be sufficient for the

aximum number of topics (“1111111” can reach 127). We use

he default function G1DBinaryStringInitializator , which is the only

nitialization function for binary strings and can randomly gen-

rate binary strings. For the selection phase, we use the func-

ion GRankSelector , which is a rank-based selector. We choose it

ince it behaves in a more robust manner than proportional se-

ector, c.f., [26,27] ). For the crossover phase, we use the function

1DBinaryStringXUniform and use the default crossover rate (i.e.,

.9). G1DBinaryStringXUniform performs crossover uniformly, and it

s proposed by Syswerda [28] . We choose it since it helps to re-

uce the bias associated with the length of the binary representa-

ion used [28] . For the mutation phase, we use the default func-

ion G1DBinaryStringMutatorFlip and use the default mutation rate

i.e., 0.02). G1DBinaryStringMutatorFlip is the classical flip mutator,

hich randomly perform bit inversion (0 to 1 or 1 to 0) in a bi-

ary string. Finally, we set p as 20, which results from the tradeoff

f good results and execution time needed. We set n as 10 since

e find the fitness value becomes stable within 10 generations. 
7 http://pyevolve.sourceforge.net/. 

http://www.nltk.org/
http://www.nltk.org/
http://pyevolve.sourceforge.net/
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For the fitness function, we follow Panichella et al.’s work on

LDA–GA [7] and use the Silhouette coefficient as the fitness value.

The Silhouette coefficient is first proposed by Kogan [29] and is a

common evaluation metric for clustering [30–32] . The computation

of the Silhouette coefficient consists of three steps: 

1. Step 1: For a document d i , we calculate the maximum Eu-

clidean distance from d i to the other documents in the same

cluster, which is denoted as a( d i ). And we calculate the mini-

mum Euclidean distance from d i to the centroids of the other

clusters (i.e., the clusters that do not contain d i ), which is de-

noted as b( d i ). 

2. Step 2: Given a( d i ) and b( d i ), we can calculate the Silhouette

coefficient S( d i ) for the document d i according to the following

formula: 

S(d i ) = 

b(d i ) − a (d i ) 

ma x ( a ( d i ) , b( d i )) 

3. Step 3: We compute the mean value of all S( d i ) as the overall

Silhouette coefficient. 

The scope of the Silhouette coefficient is in [ −1,1]. A bigger

value of the Silhouette coefficient indicates a better clustering.

When a value of number of topics achieves a high Silhouette coef-

ficient, it means that the value leads to a good result for LDA. The

higher Silhouette coefficient a value achieves, the more likely it is

to be kept in the evolution process. Therefore, by using the adap-

tive LDA with GA, we can find a proper number of app topics and

we assign each app a specific topic according to its description. 

3.2.4. Data flow signature generation – information gain ratio 

Information gain ratio is a ratio of information gain to the in-

trinsic information, in which the “intrinsic information” represents

the initial information entropy. It has been used in many malware

detection studies [33–36] . In our work, information gain ratio can

indicate what percentage of information a data flow pattern can

gain from the intrinsic information. Therefore, we use information

gain ratio to evaluate each data flow pattern and generate a topic-

specific data flow signature per topic. A topic-specific data flow

signature is a list of data flow patterns that appear in apps of the

corresponding topic, where each pattern is associated with an in-

formation gain ratio value indicating its power to discriminate ma-

licious from benign apps. 

To compute information gain ratio, we first calculate informa-

tion gain IG . For each topic, we denote the number of malicious

apps of the topic as P , and that of benign apps of the topic as

N . For each data flow pattern in a topic, we denote the number

of times it appears in the malicious apps of the topic as pos and

that in the benign apps of the topic as neg , respectively. We also

denote total , which is equal to pos + neg, as the number of times

it appears in all the apps of the topic. Then, the information gain

IG ( d ) of a data flow pattern d can be calculated as follows: 

IG (d) = E(P, N) − (total/ (P + N)) × E(pos, neg) 

− (1 − total/ (P + N)) × E(P − pos, N − neg) , 

where 

E(x, y ) = −(x/x + y ) × log(x/x + y ) − (y/x + y ) × log(y/x + y ) . 

In the above formula, E denotes the information entropy and log

is on the base of 2. When x equals to y, E will achieve the maxi-

mum value (i.e., 1). When either neg or pos equals to zero, E will

achieve the minimum value (i.e., 0). The information gain IG ( d ) is

the difference of three information entropies (i.e., the intrinsic in-

formation entropy E ( P, N ) and two information entropies generated

by splitting an attribute), and thus its value is above 0 and below

E ( P, N ). 
Since different topics have different intrinsic information en-

ropy E ( P, N ), directly comparing IG ( d ) of different topics is unrea-

onable. Therefore, we divide them by E ( P, N ) to normalize them,

hich leads to information gain ratio Ratio : 

atio(d) = 

IG (d) 

E(P, N) 
. 

The value range of Ratio is in [0, 1], with which each data flow

attern can be well investigated. If Ratio is 0, it means that the

ata flow pattern cannot differentiate malicious apps from benign

pps, since the pattern cannot decrease the information entropy. If

atio is 1, it means that the data flow pattern is a excellent indica-

or which can completely discriminate malicious apps from benign

pps, since the pattern gains all the intrinsic information. More-

ver, the bigger the Ratio is, the better is the data flow pattern to

e an indicator. 

. Case study 

We first enumerate research questions in Section 4.1 to as-

ess the suitability of our approach. We then present experimen-

al results on the case study of Android malware in Section 4.2 ,

nd summarize the findings before discussing threats to validity in

ection 4.4 . 

.1. Research questions 

We consider the following research questions for assessing the

fficiency of the proposed approach to enable better characteriza-

ion of malicious apps. 

RQ-1: What is the distribution of malicious/benign apps over dif-

erent topics? 

With the first research question we aim to investigate the dis-

ribution of malicious/benign apps over different topics. The dis-

ribution of malicious/benign apps over different topics can influ-

nce the effectiveness of topic-specific malware characterization. If

 topic contains much more malware than benign apps (or much

ore benign apps than malwares), it indicates that topic-specific

alware characterization is effective. On the contrary, if a topic

ontains almost equally malicious and benign apps, it indicates

hat topic-specific malware characterization is not useful. We use

he proportion of malicious apps Proportion as the evaluation met-

ic. Specifically, given a specific topic t , number of malicious apps

n t is mal , and number of benign apps in t is ben, Proportion is

efined as follows: 

 roportion = mal/ (mal + ben ) . 

Q-2: Are topic-specific data flow signatures effective? 

We then investigate the effectiveness of topic-specific data flow

ignatures. To that end, we compare topic-specific data flow sig-

atures with the overall data flow signature (i.e., the data flow

ignature derived by investigating benign apps and malicious apps

ithout considering their respective association in topics). We use

nformation gain ratio, which is introduced in Section 3.2.4 , as the

valuation metric. Note that for the overall data flow signature, the

alculation of information gain ratio is based on all apps we in-

estigate without considering their different topics. Since a signa-

ure contains many data flow patterns (each with an information

ain ratio), we report the distributions of information gain ratio

or each topic-specific signature, and use statistical tests to demon-

trate whether topic-specific data flow signatures are substantially

nd statistically significantly better than the overall data flow sig-

ature in terms of information gain ratio. 

RQ-3: What can we learn from topic-specific data flow signatures?

In the last research question, we go further by making a more

n-depth qualitative analysis on several topic-specific data flow sig-

atures. We discuss the data flow patterns in several topic-specific
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Fig. 3. Distribution of Apps in topics (ordered by number of apps). (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

Table 4 

The top ten representative terms and corresponding assigned names for example 

topics. 

Assigned name Top-10 terms (After stemming) 

Body building Weight bodi help track lose calcul health easi reach 

Sport live Sport live footbal leagu world match manag interact varieti 

Puzzle game Game puzzl play fun brain match bubbl easi solv 

Weather forecast Weather clock forecast day current hour locat temperatur 

wind 

Protector Secur devic protect mobil safe phone android block data 

Reader Read book reader bibl free day write content digit 

News News latest inform access break sport world read offici 

Timer Screen touch set alarm button timer volum start turn 

Calendar Day time calendar daili week month import everi year 

Power management Batteri phone power speed memori manag save charg run 

Kid education Kid fun learn child educ help littl babi age 

App launcher Theme launcher design appli android phone open choos 

rate 

Cloud storage Manag file android zip cloud devic copi server storag 

Camera Photo camera effect share galleri add editor sticker creat 

Flash player Flash player free adob auto angri grand citi play 

Music player Music song listen player audio play equal artist album 

Social app Chat peopl date meet free singl profil send connect 

Wallpaper Wallpap live free screen home set beauti background menu 

Video player Video watch player movi play android content best music 

Navigator Travel navig traffic job rout avail map time trip 

Browser Browser brows android fast best speed dolphin histori 

search 

Network shopping Shop buy product price sell trade offer differ purchas 

Financial Card scan money code manag busi credit use expens 

Dictionary English word learn dictionari translat languag vocabulari 

pronunci use 

Screen locker Lock screen password unlock devic hide phone use set 
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ignatures. We aim to conclude several implications and better

haracterize malicious apps based on topic-specific signatures. 

All experiments for answering the above research questions

ere conducted on an Intel(R) Core(TM) T6570 with 2.10 GHz CPU

nd 4 GB RAM PC running Windows 7 (64-bit). 

.2. Experiment results 

RQ-1: What is the distribution of malicious/benign apps over dif-

erent topics? 

As mentioned in Section 3.2.3 , we first use the adaptive LDA

ith GA to find an optimal number of topics k . Since GA is a ran-

omized algorithm and as such it may return different results over
ifferent runs, we run GA 10 times to reduce the bias. As a result,

he mean of k is 117.7, the median of k is 119 and the standard

eviation of k is 7.31. We use the mean of k rounded up to the

earest integer (i.e., 118) as the number of topics to input to LDA.

able 4 presents 25 representative example topics of the LDA re-

ult. We list the top 10 representative stemmed terms, and infer a

ummarizing name for each topic. From the table, we can see that

ur approach can cluster apps into distinct categories well. Each

et of top-10 stemmed terms is related to a specific topic differ-

nt from the rest. This result supports the feasibility of generating

opic-specific signatures. 

Each topic includes a number of apps, some benign and others

alicious. Fig. 3 shows the distribution of apps (green for benign

nd red for malicious) in the 118 topics. 

From Fig. 3 , we can find that malicious and benign apps are

ot equally distributed across topics. Some topics tend to con-

ain more benign apps while others tend to contain more mali-

ious apps. Specifically, among 118 topics, there are 38 topics that

ave Proportion over 80% or below 20%. For example, based on the

ataset, “Flash Player” and “Wallpaper” apps include significantly

ore malware than benign apps (with Proportion of 87 and 62%),

hile apps for “Dictionary” and “Weather Forecast” are on the op-

osite end of the spectrum (with Proportion of 12 and 12%). This

uggests that, to some extent, malware writers favor a few top-

cs of apps more and thus demonstrates the suitability of topic-

pecific malware analysis. 

Malicious and benign apps are not equally distributed over 

different topics and some topics tend to contain more benign 

apps while others tend to contain more malicious apps, which 

indicates the suitability of topic-specific malware analysis. 

RQ-2: Are topic-specific data flow signatures effective? 

To show the effectiveness of topic-specific data flow signatures,

e compare topic-specific data flow signatures with the overall

ata flow signature based on information gain ratio. Figs. 4 –6

resent the distributions of information gain ratio for all topic-

pecific signatures and the overall signature. From the figures, we

an see that all topic-specific signatures are above the overall sig-

ature. For the average information gain ratio (of all the data flow

atterns in one signature), topic-specific data flow signatures are
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Fig. 4. Distribution of information gain ratios for all topic-specific signatures (Part1). 

Fig. 5. Distribution of information gain ratios for all topic-specific signatures (Part2). 
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between Cliff’s delta scores and effectiveness levels are shown in 
in the range of [0.02, 1], while the overall signature is only 0.008.

Moreover, among the 118 topic-specific signatures, there are 7 sig-

natures which contain at least one data flow patterns whose infor-

mation gain ratio values achieve 1, which means these 7 signatures

can correctly and totally distinguish malicious apps from benign

ones of the corresponding topics. These findings suggest that topic-

specific data flow signatures have better quality than the overall

data flow signature and can help characterize malicious apps bet-

ter. 

To better demonstrate the superiority of the topic-specific data

flow signatures, we perform statistical tests by comparing all in-

formation gain ratios (with each corresponding to a data flow pat-

tern) in a topic-specific signature with those in the overall signa-
ure. Note that we perform the statistical analysis in the topic-level

ather than in the app-level; this is the case since we generate a

ignature for each topic instead of each app. In particular, we per-

orm the Wilcoxon rank sum test (with Benjamini–Hochberg Cor-

ection) to compute the p -value, and also compute the Cliff’s delta.

ilcoxon rank sum test is often used to check if the difference

n two data groups is statistically significant (which corresponds

o a p-value of less than 0.05) or not. Cliff’s delta is often used

o check if the difference in two data groups is substantial. The

ange of Cliff’s delta is in [ −1, 1], where −1 or 1 means all values

n one group are smaller or larger than those of the other group,

nd 0 means the data in the two groups is similar. The mappings
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Fig. 6. Distribution of information gain ratios for all topic-specific signatures (Part3). 

Fig. 7. Distribution of p -values and Cliffs deltas for all topic-specific signatures compared to the overall signature. 

Table 5 

Mappings of Cliff’s delta values to their 

interpretations [37] . 

Cliff’s delta ( δ) Interpretation 

−1 < = δ < 0.147 Negligible 

0.146 < = δ < 0.33 Small 

0.33 < = δ < 0.474 Medium 

0.474 < = δ < = 1 Large 
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able 5 . By computing the p-value and Cliffs delta, the extent of

hich the topic-specific data flow signatures improves over the

verall data flow signature can be more rigorously assessed. 

Fig. 7 presents the distributions of p -values and Cliffs deltas

or all topic-specific signatures compared to the overall signature.

rom the figures, we can see that all p -values are less than 0.05

nd all Cliffs deltas are above 0.5 (which is large). Therefore, we

an conclude that topic-specific data flow signatures are better

han the overall data flow signature substantially and statistically

ignificantly in terms of information gain ratio. 
m  
The topic-specific data flow signatures are effective. Statistical 

tests have shown that all the topic-specific data flow signa- 

tures are better than the overall data flow signature substan- 

tially and statistically significantly in terms of information gain 

ratio. 

RQ-3: What can we learn from topic-specific data flow signatures?

In total, the overall data flow signature contains 128 unique

ata flow patterns. On the contrary, the topic-specific data flow

ignatures have much less patterns. The smallest signature con-

ains only 16 patterns, and the biggest signature contains no more

han half of all the data flow patterns (i.e., 61). In addition, the

opic-specific signatures contains an average of 34 patterns, which

s about 1/4 of all the data flow patterns. 

Although the topic-specific signatures contain fewer data flow

atterns, we assume their patterns are more discriminative since

hese patterns are restricted to a specific topic. In addition, a re-

uced number of data flow patterns to inspect increases charac-

erization efficiency by leading to a concise report. Therefore, we

ake a more in-depth qualitative analysis to investigate each data



36 X. Yang et al. / Information and Software Technology 90 (2017) 27–39 

Table 6 

Data flow patterns in the topic-specific signature for “Flash Player”. 

Data flow patterns Information gain ratio 

NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.6369 

UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.4287 

NO_SENSITIVE_SOURCE → NETWORK 0.3516 

LOCATION_INFORMATION → NO_SENSITIVE_SINK 0.2616 

CALENDER_INFORMATION → NO_SENSITIVE_SINK 0.2127 

NO_SENSITIVE_SOURCE → FILE 0.2127 

CONTENT_RESOLVER → NO_SENSITIVE_SINK 0.2127 

DATABASE_INFORMATION → INTENT 0.1812 

NO_SENSITIVE_SOURCE → INTENT 0.14 4 4 

FILE_INFORMATION → NO_SENSITIVE_SINK 0.1320 

ACCOUNT_INFORMATION → NO_SENSITIVE_SINK 0.1320 

Table 7 

Data flow patterns in the topic-specific signature for “Wallpaper”. 

Data flow Information gain ratio 

UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.4106 

LOCATION_INFORMATION → NO_SENSITIVE_SINK 0.3129 

NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.2622 

NO_SENSITIVE_SOURCE → NETWORK 0.1838 

ACCOUNT_INFORMATION → NO_SENSITIVE_SINK 0.1559 

Table 8 

Data flow patterns in the topic-specific signature for “Weather Forecast”. 

Data flow patterns Information gain ratio 

DATABASE_INFORMATION → FILE 0.2736 

NO_SENSITIVE_SOURCE → AUDIO 0.1539 

UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 0.1415 

UNIQUE_IDENTIFIER → LOG 0.1379 

NETWORK_INFORMATION → LOG 0.1369 

NO_SENSITIVE_SOURCE → NETWORK 0.1360 

NETWORK_INFORMATION → NO_SENSITIVE_SINK 0.1353 

UNIQUE_IDENTIFIER → INTENT 0.1308 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

The exclusive data flow patterns of one benign 

app (com.devexpert.weather) and one malicious app 

(VirusShare_aea02d6d5afbba7c0411b9a0f58b8256). 

App Exclusive data flow patterns 

Benign FILE_INFORMATION → INTENT 

FILE → NO_SENSITIVE_SINK 

NO_SENSITIVE_SOURCE → SYSTEM_SETTINGS 

Malicious LOCATION_INFORMATION → LOG 

DATABASE_INFORMATION → LOG 

NETWORK_INFORMATION → LOG 

UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK 

CONTENT_RESOLVER → NO_SENSITIVE_SINK 

NO_SENSITIVE_SOURCE → FILE 

NO_SENSITIVE_SOURCE → NETWORK 
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flow pattern in the topic-specific signatures. Due to space con-

straints, we present analysis for three representative topics, namely

“Flash Player”, “Wallpaper” and “Weather Forecast”. 

For the signature in “Flash Player” topic, there are totally 24

distinct data flow patterns, 11 of which can gain at least 10% of

the intrinsic information. For the signature in “Wallpaper” topic,

there are totally 36 distinct data flow patterns, 5 of which can

gain at least 10% of the intrinsic information. And for the signature

in “Weather Forecast” topic, there are totally 53 distinct data flow

patterns, 8 of which can gain at least 10% of the intrinsic informa-

tion. Tables 6 –8 enumerate those data flow patterns for the three

topic-specific signatures, respectively. From the tables, we can con-

clude several points. 

First, different topic-specific signatures have different relevant

data flow patterns. For example, 5 out of 8 patterns are exclusive

for the topic “Weather Forecast”. Spreading different relevant pat-

terns to different topics can much reduce the number of data flow

patterns in a topic-specific signature and better characterize mal-

wares. As a result, it is possible to immediately identify the mali-

ciousness of an app by inspecting only the small number of rele-

vant patterns instead of all patterns (such as 128 patterns in our

dataset). 

Second, even the same data flow patterns have different

capabilities for different topic-specific signatures. For example,

the pattern UNIQUE_IDENTIFIER → NO_SENSITIVE_SINK
is the most discriminative pattern for the topics “Flash Player”

and “Wallpaper”, but not for the topic “Weather Forecast”. The

most discriminative pattern for the topic “Weather Forecast”,

DATABASE_INFORMATION → FILE , does not even appear in

the other two topics. 
As a showcase of malware characterization, we also investigate

wo apps in “Weather Forecast” topic: com.devexpert.weather which

s benign and VirusShare_aea02d6d5afbba7c0411b9a0f58b8256

hich is malicious. For the data flow information, the benign app

as 9 sensitive data flow patterns and the malicious app has 13

ensitive data flow patterns, among which they have 6 mutual pat-

erns. We list the exclusive data flow patterns of the two apps in

able 9 . From the table, we can see that the 3 exclusive data flow

atterns from the benign app seem quite normal. However, the 7

xclusive data flow patterns from the malicious app are suspect.

he first three of them are about leaking location, database and

etwork information into log files, while another data flow exists

or sending apparently non sensitive data (which may include log

ata) via the network. The combination may suggest to an analyst

 malicious behavior that tracks and leaks user data. 

In summary, building topic-specific signatures can be seen as

imension reduction of features which can contribute to faster and

learer decision on malware classification, since the topic-specific

ignatures include fewer but more relevant data flow patterns. In-

eed, every data flow pattern is a feature for learning. Following

he signature information, one can select the data flow patterns

hat have big information gain ratio values as features for mal-

are classification, since they are the ones which better discrim-

nate malicious apps from benign apps better. 

The topic-specific data flow signatures contain fewer but more 

relevant data flow patterns which can gain much more in- 

formation about differentiating malicious apps from benign 

ones. Therefore, the topic-specific data flow signatures can 

help characterize malicious apps better. 

.3. Threats to validity 

Threats to internal validity relate to randomness and errors in

ur experiments. First, GA is a randomized algorithm and as such it

ay return different LDA configurations over different runs. There-

ore, we run GA 10 times and use the average result as the final

umber of topics for LDA. Second, LDA is a probabilistic topic mod-

ls, which means that it may return different topics in different

xecutions. The randomness can be reduced substantially when a

ufficiently large number of Gibbs sampling iterations (i.e., m men-

ioned in Section 2.2 ) is employed. We have tried various values of

 and found 20 0 0 to be a proper value that can generate stable re-

ults with acceptable running time. Setting m as 20 0 0, we run LDA

0 times and we find that the differences are minimal. We also

nd that larger values of m have little influence to the results. In

ddition, we have double checked our implementations and all the
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Table 10 

The top five representative terms and corresponding assigned 

names for example topics. 

Our topics Google Play topics 

Body building Health & fitness 

Sport live Sports 

Puzzle game Puzzle 

Weather forecast Weather 

Protector Tools 

Reader Tools 

News News & magazines 

Timer Tools 

Calendar Events 

Power management Tools 

Kid education Education 

App launcher Tools 

Cloud storage Tools 

Camera Photography 

Flash player Tools 

Music player Music& audio 

Social app Communication 

Wallpaper Art & design 

Video player Video players & editor 

Navigator Maps & navigation 

Browser Tools 

Network shopping Shopping 

Financial Finance 

Dictionary Books & reference 

Screen locker Tools 
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xperiment results. Hence, we believe there are minimal threats to

nternal validity. 

Threats to external validity relate to the generalizability of our

esults. We have evaluated our approach on 5303 apps, containing

691 benign apps and 1612 malicious apps. Although the number

f apps is quite high, it is still not guaranteed that they are repre-

entative enough. In the future, we plan to reduce this threat fur-

her by analyzing more representative apps and ensure that each

opic contain significant number of samples. 

.4. Discussion 

We also compare the topics generated by our approach with

he topics (i.e., categories) used by Google Play. Table 10 presents

he 25 example topics generated by our approach and their corre-

ponding Google Play topics. We can note several points. First, our

opics and Google Play topics share common topics. For example,

oth Google Play and our topics contain “Puzzle Game”, “Naviga-

or”, “Video Player”, etc. Second, our topics are in a finer granular-

ty compared to Google Play topics. For example, Google Play has

 topic named “Tools”, in which it includes protectors, power man-

gement tools, flash player, browser, etc. 

Unfortunately, we cannot compute information gain ratios using

ategories from Google Play. We crawl benign apps from Google

lay and malicious apps from Best Apps Market (i.e., http://www.

estappsmarket.com/ ). We do so since most apps in Google Play

re clean – a similar assumption was made in prior studies [ 38 ,

9 ] – and Google Play quickly deletes malicious apps. As a result,

e do not have the Google Play categories of the malicious apps. 

. Related work 

In this paper, we leverage an advanced topic model called adap-

ive LDA with GA to perform topic-specific malware comprehen-

ion. State-of-the-art works that relate to this one are mainly in

wo folds: malware identification and topic model based investiga-

ion. 
.1. Malware identification and detection 

The most related works to ours are the recent studies con-

ucted by Gorla et al. [5] and Avdiienko et al. [6] . Gorla et al.

ropose an approach called CHABADA, which is dedicated to iden-

ify malicious apps [5] through app descriptions. They first clus-

er different apps according to their descriptions, and then use

nomaly analysis technique to identify outliers with respect to

heir API usage. However, they only consider the APIs that are

overned by user permissions, which may consequently result in

alse negatives and false positives, as APIs are too coarse to rep-

esent the apps’ behavior. Avdiienko et al. thus propose another

pproach called MUDFLOW to mitigate this limitation, which uses

ensitive data flows rather than APIs to better exploit the infor-

ation of apps’ API usage [6] . Those sensitive data flows are col-

ected by MUDFLOW through a well-known static taint analysis

ool named FlowDroid [20] . With the data flow information, MUD-

LOW improves the performance of malware identification by a

arge amount. However, unlike the implementation of CHABADA,

hey do not take apps’ descriptions into consideration. Therefore, in

his paper, we take into account both the aforementioned features

descriptions and sensitive data flow information) to implement a

opic-specific approach, mining topic-specific data flow signatures

ithin an attempt to have a deeper insight into malicious apps. In-

ormation gain is further leveraged by our approach to differentiate

alicious apps from benign apps. 

Aside from the two recent works highlighted above, there are

lso other studies related to malware identification and detec-

ion [1,40–43] . As examples, Kirat and Vigna propose an automatic

echnique MALGENE for extracting analysis evasion signatures [40] .

hey leverage a combination of data mining and data flow anal-

sis techniques to automatically identify evasive behavior in the

all events, as more and more malware can now be aware of the

resence of the analysis environment (in order to evade detec-

ion). Zhou et al. propose a permission-based behavioral footprint-

ng scheme to detect known malware and a heuristics-based filter-

ng scheme to detect unknown malware [41] . In the first scheme,

hey detect malicious apps based on the inherent Android per-

issions and malware-specific behavioral footprints. In the second

cheme, they first define suspicious behaviors from possibly mali-

ious apps and then use them to detect suspect apps. Christodor-

scu et al. present an automatic technique to mine specifications

f malicious behavior [42] . They compare the execution behaviors

f a known malware against those of a set of benign apps so that

he malicious behaviors present in the malware but not in the be-

ign apps can be mined. Li et al. investigate a new feature set for

alware detection [43] . The feature set is based on the sensitive

ata-flows that involve Android inter-component communications. 

llix et al. conduct an analysis of a large set of malware and be-

ign applications from the Android ecosystem [1] . Their study has

eported precious insights on the writing process of Android mal-

are and built a malware detection scheme based on these in-

ights. 

.2. Studies leveraging topic model 

The most related works to ours are the recent study by

anichella et al. [7] . Panichella et al. introduce a novel solution

amed LDA-GA to use topic models for software engineering tasks

ore effectively [7] . They use Genetic Algorithm (GA) to search for

 near optimal configuration for Latent Dirichlet Allocation (LDA),

hich lead to better performances on different software engineer-

ng tasks. In our paper, we use their algorithm as a sub step to

etermine a proper number of app categories. 

There are also a large number of software engineering studies

hat have leveraged topic model [44–54] to achieve their function-

http://www.bestappsmarket.com/
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ality. For example, Nguyen et al. propose an automated approach

called BugScout to help developers reduce buggy code locating ef-

forts by narrowing the search space of buggy files [44] . They de-

velop a specialized topic model to correlate bug reports and the

corresponding buggy files via their shared topics. In a later work,

Nguyen et al. introduce a novel approach called DBTM, which again

leverages topic model, to detect duplicate bug reports [45] . Their

approach that combines both information retrieval and topic mod-

eling techniques have taken the advantages of both IR-based fea-

tures and topic-based features. Lukins et al. present a static LDA-

based technique for automatic bug localization [46] . Their study

shows that the performance of the LDA-based technique is neither

affected by the size of the software system nor by the stability of

the source code base. 

6. Conclusion and future work 

We have proposed to mine topic-specific sensitive data flow

signatures to improve malware characterization. Our approach first

groups different apps into several clusters (i.e., topics) according to

their descriptions using an advanced topic model. Then, we gen-

erate topic-specific signatures by computing the information gain

ratio for each data flow pattern seen in the apps from this topic.

Empirical investigation with 3691 benign apps and 1612 malicious

apps reveal that these signatures can indeed help better charac-

terize malicious behavior. In future work, we plan to put signifi-

cant effort to collect more datasets and further assess the power

of topic-specific signatures for fine-grained malware identification. 

Replication package. The source code and datasets of our work

are available in: “https://github.com/goddding/IST ”. 

Acknowledgment 

This research was supported by NSFC Program (Nos. 61602403

and 61572426 ), and National Key Technology R&D Program of the

Ministry of Science and Technology of China (No. 2015BAH17F01 ). 

References 

[1] K. Allix , Q. Jerome , T.F. Bissyande , J. Klein , R. State , Y. Le Traon , A forensic anal-
ysis of android malware – how is malware written and how it could be de-

tected? in: Proceedings of the IEEE Thirty-Eight Annual Conference on Com-
puter Software and Applications, IEEE, 2014, pp. 384–393 . 

[2] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, K. Rieck, Drebin: effective and
explainable detection of android malware in your pocket, in: Proceedings of

the Symposium on Network and Distributed System Security, 2014, pp. 23–26,

doi: 10.14722/ndss.2014.23247 . 
[3] H. Gascon , F. Yamaguchi , D. Arp , K. Rieck , Structural detection of android mal-

ware using embedded call graphs, in: Proceedings of ACM Workshop on Arti-
ficial Intelligence and Security, 2013, pp. 45–54 . 

[4] A . Reina , A . Fattori , L. Cavallaro , A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors, in: Pro-

ceedings of the ACM European Workshop on Systems Security, 2013 . 

[5] A. Gorla , I. Tavecchia , F. Gross , A. Zeller , Checking app behavior against app
descriptions, in: Proceedings of the Thirty-Sixth International Conference on

Software Engineering, ACM, 2014, pp. 1025–1035 . 
[6] V. Avdiienko , K. Kuznetsov , A. Gorla , A. Zeller , S. Arzt , S. Rasthofer , E. Bodden ,

Mining apps for abnormal usage of sensitive data, in: Proceedings of the Inter-
national Conference on Software Engineering, 2015 . 

[7] A. Panichella , B. Dit , R. Oliveto , M. Di Penta , D. Poshyvanyk , A. De Lucia , How

to effectively use topic models for software engineering tasks? An approach
based on genetic algorithms, in: Proceedings of the International Conference

on Software Engineering, IEEE Press, 2013, pp. 522–531 . 
[8] J. Han , M. Kamber , J. Pei , Data Mining: Concepts and Techniques, Elsevier, 2011 .

[9] D.M. Blei , A.Y. Ng , M.I. Jordan , Latent Dirichlet allocation, J. Mach. Learn. Res.
3 (2003) 993–1022 . 

[10] H.U. Asuncion , A.U. Asuncion , R.N. Taylor , Software traceability with topic
modeling, in: Proceedings of the International Conference on Software Engi-

neering, ACM/IEEE, 2010, pp. 95–104 . 

[11] S.W. Thomas , Mining software repositories using topic models, in: Proceed-
ings of the International Conference on Software Engineering, ACM, 2011,

pp. 1138–1139 . 
[12] B. Birrer , R.A. Raines , R.O. Baldwin , M.E. Oxley , S.K. Rogers , Using qualia and hi-

erarchical models in malware detection, J. Inf. Assur. Secur. 4 (2009) 247–255 . 
[13] J. Kuriakose , P. Vinod , Ranked linear discriminant analysis features for meta-
morphic malware detection, in: Proceedings of the IEEE International Confer-

ence on Advance Computing, IEEE, 2014, pp. 112–117 . 
[14] G. Heinrich , Parameter Estimation for Text Analysis, University of Leipzig,

2008 . Technical Report. 
[15] T.L. Griffiths , M. Steyvers , Finding scientific topics, in: Proceedings of the

National academy of Sciences, 101(Suppl 1), National Acad Sciences, 2004,
pp. 5228–5235 . 

[16] H.M. Wallach , D.M. Mimno , A. McCallum , Rethinking LDA: why priors mat-

ter, in: Proceedings of the Advances in Neural Information Processing Systems,
2009, pp. 1973–1981 . 

[17] H. Yin , D. Song , M. Egele , C. Kruegel , E. Kirda , Panorama: capturing sys-
tem-wide information flow for malware detection and analysis, in: Proceed-

ings of the Fourteenth ACM Conference on Computer and Communications Se-
curity, ACM, 2007, pp. 116–127 . 

[18] Q. Zhang , D.S. Reeves , Metaaware: Identifying metamorphic malware, in: Pro-

ceedings of the Twenty-Third Annual Conference on Computer Security Appli-
cations, IEEE, 2007, pp. 411–420 . 

[19] G. Bonfante , M. Kaczmarek , J.-Y. Marion , Control flow graphs as malware sig-
natures, in: Proceedings of the International Workshop on the Theory of Com-

puter Viruses, 2007 . 
[20] S. Arzt , S. Rasthofer , C. Fritz , E. Bodden , A. Bartel , J. Klein , Y. Le Traon ,

D. Octeau , P. McDaniel , Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps, Acm Sigplan Notices 49 (6)
(2014) 259–269 . 

[21] K. Allix , T.F. Bissyandé, J. Klein , Y. Le Traon , Androzoo: collecting millions
of android apps for the research community, in: Proceedings of the Thir-

teenth International Workshop on Mining Software Repositories, ACM, 2016,
pp. 468–471 . 

[22] L. AlSumait , D. Barbará, C. Domeniconi , On-line LDA: adaptive topic models

for mining text streams with applications to topic detection and tracking, in:
Proceedings of the Eighth IEEE International Conference on Data Mining, IEEE,

2008, pp. 3–12 . 
[23] O. Jin , N.N. Liu , K. Zhao , Y. Yu , Q. Yang , Transferring topical knowledge from

auxiliary long texts for short text clustering, in: Proceedings of the Twentieth
ACM International Conference on Information and Knowledge Management,

ACM, 2011, pp. 775–784 . 

[24] M.F. Porter , Snowball: A language for stemming algorithms. October 2001, Re-
trieved March 1 (2001) 2014 . 

[25] D.E. Goldberg , J.H. Holland , Genetic algorithms and machine learning, Mach.
Learn. 3 (2) (1988) 95–99 . 

[26] L.D. Whitley , et al. , The genitor algorithm and selection pressure: why
rank-based allocation of reproductive trials is best., in: Proceedings of the In-

ternational Conference on Genetic Algorithms, 89, 1989, pp. 116–123 . 

[27] T. Bäck , F. Hoffmeister , Extended selection mechanisms in genetic algorithms,
in: ICGA4, Morgan Kaufmann, 1991, pp. 92–99 . 

[28] G. Syswerda , Uniform crossover in genetic algorithms, in: Proc. Third Interna-
tional Conference of Genetic Algorithms, Morgan Kaufmann, 1989, pp. 2–9 . 

[29] J. Kogan , Introduction to Clustering Large and High-Dimensional Data, Cam-
bridge University Press, 2007 . 

[30] P.J. Rousseeuw , L. Kaufman , Finding Groups in Data, Wiley Online Library,
1990 . 

[31] J. Sander , M. Ester , H.-P. Kriegel , X. Xu , Density-based clustering in spatial

databases: the algorithm GDBSCAN and its applications, Data Min. Knowl. Dis-
cov. 2 (2) (1998) 169–194 . 

[32] A . Hotho , A . Maedche , S. Staab , Ontology-based text document clustering, Kn-
stliche Intelligenz 16 (4) (2002) 48–54 . 

[33] F. Ahmed , H. Hameed , M.Z. Shafiq , M. Farooq , Using spatio-temporal informa-
tion in API calls with machine learning algorithms for malware detection, in:

Proceedings of the Second ACM Workshop on Security and Artificial Intelli-

gence, ACM, 2009, pp. 55–62 . 
[34] S.M. Tabish , M.Z. Shafiq , M. Farooq , Malware detection using statistical analysis

of byte-level file content, in: Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics, ACM, 2009, pp. 23–31 . 

[35] Z. Aung , W. Zaw , Permission-based android malware detection, Int. J. Sci. Tech-
nol. Res. 2 (3) (2013) 228–234 . 

[36] I. Santos , F. Brezo , X. Ugarte-Pedrero , P.G. Bringas , Opcode sequences as repre-

sentation of executables for data-mining-based unknown malware detection,
Inf. Sci. (NY) 231 (2013) 64–82 . 

[37] N. Cliff, Ordinal Methods for Behavioral Data Analysis, Psychology Press, 2014 . 
[38] Y. Wang , J. Zheng , C. Sun , S. Mukkamala , Quantitative security risk assess-

ment of android permissions and applications, in: Proceedings of the IFIP An-
nual Conference on Data and Applications Security and Privacy, Springer, 2013,

pp. 226–241 . 

[39] W. Yang , X. Xiao , B. Andow , S. Li , T. Xie , W. Enck , Appcontext: differentiating
malicious and benign mobile app behaviors using context, in: Proceedings of

the Thirty-Seventh IEEE/ACM International Conference on Software Engineer-
ing, 1, IEEE, 2015, pp. 303–313 . 

[40] D. Kirat , G. Vigna , Malgene: automatic extraction of malware analysis evasion
signature, in: Proceedings of the Twenty-Second Conference on Computer and

Communications Security, ACM, 2015, pp. 769–780 . 

[41] Y. Zhou , Z. Wang , W. Zhou , X. Jiang , Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets., in: Proceedings of

the Symposium on Network and Distributed System Security, 2012 . 
[42] M. Christodorescu , S. Jha , C. Kruegel , Mining specifications of malicious behav-

https://github.com/goddding/IST
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100002855
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0001
http://dx.doi.org/10.14722/ndss.2014.23247
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0025a
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0025a
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0039


X. Yang et al. / Information and Software Technology 90 (2017) 27–39 39 

 

[  

 

 

[  

 

 

[  

 

 

[  

 

 

 

[  

[  

 

[  

 

 

 

[  

 

[  

[  
ior, in: Proceedings of the First India Software Engineering Conference, ACM,
2008, pp. 5–14 . 

43] L. Li , K. Allix , D. Li , A. Bartel , T.F. Bissyandé, J. Klein , Potential component leaks
in android apps: an investigation into a new feature set for malware detec-

tion, in: Proceedings of the IEEE International Conference on Software Quality,
Reliability and Security, IEEE, 2015, pp. 195–200 . 

44] A.T. Nguyen , T.T. Nguyen , J. Al-Kofahi , H.V. Nguyen , T.N. Nguyen , A topic-based
approach for narrowing the search space of buggy files from a bug report, in:

Proceedings of the Twenty-Sixth International Conference on Automated Soft-

ware Engineering, IEEE, 2011 . 
45] A.T. Nguyen , T.T. Nguyen , T.N. Nguyen , D. Lo , C. Sun , Duplicate bug report de-

tection with a combination of information retrieval and topic modeling, in:
Proceedings of the Twenty-Seventh International Conference on Automated

Software Engineering, IEEE, 2012 . 
46] S.K. Lukins , N.A. Kraft , L.H. Etzkorn , Bug localization using latent Dirichlet al-

location, Inf. Softw. Technol. 52 (9) (2010) 972–990 . 

[47] Y. Zhang , D. Lo , X. Xia , T.-D. B. Le , G. Scanniello , J. Sun , Inferring links between
concerns and methods with multi-abstraction vector space model, in: Proceed-

ings of the IEEE International Conference on Software Maintenance and Evolu-
tion, IEEE, 2016, pp. 110–121 . 
48] I. Santos , Y.K. Penya , J. Devesa , P.G. Bringas , N-grams-based File Signatures for
Malware Detection, ICEIS 9 (2) (2009) 317–320 . 

49] J. Pfoh , C. Schneider , C. Eckert , Leveraging string kernels for malware detec-
tion, in: Proceedings of the International Conference on Network and System

Security, Springer, 2013 . 
50] X.-L. Yang , D. Lo , X. Xia , Z.-Y. Wan , J.-L. Sun , What security questions do devel-

opers ask? A large-scale study of stack overflow posts, J. Comput. Sci. Technol.
31 (5) (2016) 910–924 . 

[51] X. Xia , D. Lo , Y. Ding , J.M. Al-Kofahi , T.N. Nguyen , X. Wang , Improving auto-

mated bug triaging with specialized topic model, IEEE Trans. Softw. Eng. 43
(3) (2017) 272–297 . 

52] X. Xia , D. Lo , X. Wang , B. Zhou , Accurate developer recommendation for bug
resolution, in: Proceedings of the Twentieth Working Conference on Reverse

Engineering, IEEE, 2013, pp. 72–81 . 
53] X. Xia , D. Lo , X. Wang , B. Zhou , Dual analysis for recommending developers to

resolve bugs, J. Softw. Evol. Process 27 (3) (2015) 195–220 . 

54] Y. Zhang , D. Lo , X. Xia , J.-L. Sun , Multi-factor duplicate question detection in
stack overflow, J. Comput. Sci. Technol. 30 (5) (2015) 981–997 . 

http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30366-X/sbref0051

	Characterizing malicious Android apps by mining topic-specific data flow signatures
	1 Introduction
	2 Background
	2.1 Malicious apps and data flow information
	2.2 Latent Dirichlet allocation
	2.3 Motivation

	3 Case study setup
	3.1 Data collection
	3.2 Data analysis
	3.2.1 Overall framework
	3.2.2 Feature extraction - text preprocessing
	3.2.3 App clustering - adaptive LDA with genetic Aagorithm
	3.2.4 Data flow signature generation - information gain ratio


	4 Case study
	4.1 Research questions
	4.2 Experiment results
	4.3 Threats to validity
	4.4 Discussion

	5 Related work
	5.1 Malware identification and detection
	5.2 Studies leveraging topic model

	6 Conclusion and future work
	 Acknowledgment
	 References


