
Which Packages Would be Affected
by This Bug Report?

Qiao Huang∗, David Lo†, Xin Xia‡X, Qingye Wang∗, and Shanping Li∗
∗College of Computer Science and Technology, Zhejiang University, China
†School of Information Systems, Singapore Management University, Singapore
‡Department of Computer Science, University of British Columbia, Canada
{tkdsheep, wqyy, shan}@zju.edu.cn, davidlo@smu.edu.sg, xxia02@cs.ubc.ca

Abstract—A large project (e.g., Ubuntu) usually contains a
large number of software packages. Sometimes the same bug
report in such project would affect multiple packages, and
developers of different packages need to collaborate with one
another to fix the bug. Unfortunately, the total number of
packages involved in a project like Ubuntu is relatively large,
which makes it time-consuming to manually identify packages
that are affected by a bug report. In this paper, we propose an
approach named PkgRec that consists of 2 components: a name
matching component and an ensemble learning component. In
the name matching component, we assign a confidence score for
a package if it is mentioned by a bug report. In the ensemble
learning component, we divide the training dataset into n subsets
and build a sub-classifier on each subset. Then we automatically
determine an appropriate weight for each sub-classifier and
combine them to predict the confidence score of a package being
affected by a new bug report. Finally, PkgRec combines the name
matching component and the ensemble learning component to
assign a final confidence score to each potential package. A list
of top-k packages with the highest confidence scores would then
be recommended. We evaluate PkgRec on 3 datasets including
Ubuntu, OpenStack, and GNOME with a total number of 42,094
bug reports. We show that PkgRec could achieve recall@5 and
recall@10 scores of 0.511-0.737, and 0.614-0.785, respectively. We
also compare PkgRec with other state-of-art approaches, namely
LDA-KL and MLkNN. The experiment results show that PkgRec
on average improves recall@5 and recall@10 scores of LDA-KL
by 47% and 31%, and MLkNN by 52% and 37%, respectively.

Index Terms—Bug Report, Package Recommendation, Multi-
Label Classification

I. INTRODUCTION

During software development and maintenance, bugs are
inevitable and bug fixing is a time-consuming and costly
task. Many software projects use bug tracking systems (e.g.,
Bugzilla and JIRA) to manage bug reporting, bug resolution,
and bug archiving processes [1].

A large project (e.g., Ubuntu) usually contains a large
number of software packages. Sometimes the same bug report
in such project would affect multiple packages, and developers
of different packages need to collaborate with one another to
fix the bug. Notice that when we say a bug report affects a
package, it means that developers need to release a patch for
the package (i.e., change its code) to fix the bug.

Since the total number of packages involved in a project like
Ubuntu is relatively large (e.g., in our dataset, after removing

XCorresponding author.

inactive packages, we still have 341 packages in Ubuntu), it is
time-consuming to manually identify packages that would be
affected by a bug report. Thus, in this paper, we are interested
in developing an automated approach to process a new bug
report and recommend a list of software packages1 that are
possibly affected by this bug report. We denote this problem
as package recommendation for bug resolution (or package
recommendation, for short). Once a bug report is received,
recommending suitable packages that are likely to be affected
can reduce the time and cost of the bug fixing process.

In this paper, We propose an automatic approach named
PkgRec that consists of 2 components: name matching com-
ponent and ensemble learning component. The name matching
component is based on the observation: some bug reports
may mention the full names (or part of the names) of several
packages in the title or description, and these packages are
likely to be affected. Thus, we assign a confidence score for
a package if it is mentioned by a bug report. Notice that the
name matching component does not work well if no packages
are mentioned by a bug report or the packages mentioned
are not affected by the bug report. To deal with the limi-
tation of the first component, we create another component,
which performs text classification on the textual contents of a
bug report, to recommend potentially affected packages. This
component, referred to as the ensemble learning component,
divides the training dataset into n subsets and build a sub-
classifier on each subset. Then we automatically determine an
appropriate weight for each sub-classifier and combine them to
predict the confidence score of a package being affected by a
new bug report. PkgRec combines name matching component
and ensemble learning component to assign a final confidence
score to each potential package. A list of top-k packages
with the highest scores would then be recommended. Our
experiment results show that the combination of these two
components would improve the overall performance.

We evaluate our approach on 3 datasets: Ubuntu2, Open-
Stack3 and GNOME4. In total, we analyze 42,094 bug reports.

1In this paper, we also refer the third-party projects that a bug affects as
”package” since they are used in a project such as Ubuntu in the same way
as third-party packages.

2https://bugs.launchpad.net/ubuntu
3https://bugs.launchpad.net/openstack
4https://bugs.launchpad.net/gnome

https://bugs.launchpad.net/ubuntu
https://bugs.launchpad.net/openstack
https://bugs.launchpad.net/gnome

We measure the effectiveness of our approach in terms of
recall@5 and recall@10 following previous studies in software
engineering [2]–[4]. For the 3 datasets, our approach can
achieve recall@5 and recall@10 scores of up to 0.741, and
0.785 respectively. We compare our approach with 2 state-of-
the-art approaches, namely LDA-KL [5] and MLkNN [6]. Our
approach on average improves recall@5 and recall@10 scores
of LDA-KL by 47.25% and 31.41%, and MLkNN by 52.49%
and 37.36%, respectively.

The main contributions of this paper are:
• We propose PkgRec to automatically recommend pack-

ages that are possibly affected by a bug report.
• We evaluate PkgRec on 3 datasets with 42,094 bug reports

in total. The experiment results show that PkgRec outper-
forms LDA-KL and MLkNN by a statistically significant
margin.

Paper organization. The remainder of this paper is organized
as follows. Section II presents the motivation and preliminaries
of our approach PkgRec. Section III elaborates on the details
of PkgRec. Section IV and Section V present the experiment
setup and results on 3 datasets. Section VI discusses other
aspects of PkgRec, and threats to validity. Section VII surveys
the related work. Finally, Section VIII concludes the paper and
points out potential future directions.

II. PRELIMINARIES

In this section, we first present a motivating example of
bug reports affecting multiple packages. Then we introduce
the preliminary materials, including bug report representation
and multi-label classification.
Motivating Example. Table I presents an example of bug re-
port in Ubuntu project that affects multiple packages. The bug
report has a field called Affects, which records the packages
marked by developers for further investigation. For each of the
marked package, there is also a field called status to record
whether it is truly affected. In this bug report, 2 packages
are affected, namely GTK+ and unity-2d. Note that different
packages can have their own status for the same bug report.
In our motivating example, the nautilus package is also in the
Affects list, but its status is Invalid (i.e., not truly affected).
We only consider a package as truly affected if its status is
Fix Released.
Observations and Implications. From the above bug report, we
make the following observations:

1) The bug report describes a wallpaper loading problem in
nautilus package, but it affects unity-2d and GTK+.

2) In the bug report description, 3 packages are mentioned,
namely unity-2d, gnome-session-fallback and nautilus.
This a good indicator for us to automatically find pack-
ages that are possibly affected by the bug report. Howev-
er, only unity-2d is truly affected by this bug report, while
the other 2 packages are not affected (e.g., the final status
of the bug report for nautilus is “Invalid”).

3) By manually reading the developers’ discussion, we find
that in the early stage of bug fixing, nautilus is one of the

TABLE I
BUG REPORT #804435 IN UBUNTU PROJECT

Bug ID: #804435
Summary: Wallpaper is loaded twice with different alignment by
gnome-session and nautilus (Oneiric)
Affects:
nautilus (Status: Invalid)
GTK+ (Status: Fix Released)
unity-2d (Status: Fix Released)
Bug Description:
When using Unity-2D and gnome-session-fallback in Oneiric the
wallpaper, painted by nautilus, is not loaded correctly at session
startup.
For some seconds is not aligned with screen, there is a large left
margin colored grey, then after some seconds is reloaded correctly
and well-aligned.
ProblemType: Bug
DistroRelease: Ubuntu 11.10
Package: nautilus 1:3.1.2-0ubuntu2
ProcVersionSignature: Ubuntu 3.0-2.3-generic 3.0.0-rc4
Uname: Linux 3.0-2-generic i686
Architecture: i386
Date: Fri Jul 1 18:51:10 2011
ProcEnviron:
PATH=(custom, no user)
LANG=it IT.UTF-8
SHELL=/bin/bash
SourcePackage: nautilus
UpgradeStatus: No upgrade log present (probably fresh install)

suspected packages. For example, one developer said in
the comment: “I confirm this bug, and it really seems to
be caused by nautilus.” However, 2 months later, another
developer confirmed that it is a bug in GTK+. Note that
GTK+ is a package for creating graphical user interfaces,
which shares common features with packages like unity-
2d. Thus, simple name matching is not sufficient to find
affected packages given a bug report.

Bug Report Representation. In this paper, we use the Vector
Space Model (VSM) [7] to represent each bug report as a
vector of feature values. In this model, a feature can be viewed
as a dimension, and a bug report can then be viewed as a
data point in a high-dimensional space. We extract words
from the summary and description texts as features. More
specifically, for each bug report, we concatenate the summary
and description text, then tokenize the text, remove stop words,
stem them (i.e., reduces them to their root forms, e.g., tests
and testing are reduced to test) by using Porter stemmer5, and
represents them in the form of a vector. We ignore the text of
developer discussion since it is not available at the time a new
bug report is submitted. Finally, to calculate the weight of each
feature (i.e., word), we use TF-IDF [8], which is widely used
as a weighting factor in information retrieval and text mining.
To measure the similarity of two bug reports, we use cosine
similarity, which is widely used to calculate text similarity in
information retrieval and text mining domains [9], [10].

Multi-Label Classification. Given a data instance (i.e., bug
report), the task of multi-label classification is to predict a set
of labels (i.e., packages) that should be assigned to it. Standard
classification task only assigns one label to each data instance.

5http://tartarus.org/martin/PorterStemmer/

http://tartarus.org/martin/PorterStemmer/

However, in many settings a data instance can be assigned to
more than one label. In our work, each data instance (i.e.,a
bug report) can also be assigned with multiple labels (i.e.,
packages).

MLkNN is a state-of-the-art algorithm in the multi-label
classification literature [6]. To infer the labels for a new
instance (i.e., bug report) Xnew, MLkNN follows three steps:
the computation of membership counting scores, the compu-
tation of MLkNN confidence scores, and the assignment of
labels. We describe the details of each step in the following
paragraphs.

Membership Counting Score. For a new instance Xnew, M-
LkNN first finds its k-nearest neighbors knn(Xnew) from the
training dataset. Then for each label (i.e., package) l in the
label set L, it counts the number of instances in knn(Xnew)
that are assigned to label l, denoted as CXnew

(l).

MLkNN Confidence Score. With the membership counting
score CXnew(l) for each label l, we consider two events: H l

1 is
the event that Xnew is assigned to l, and H l

0 is the event that
Xnew is not assigned to l. Moreover, El

m denotes the event
that there are exactly m instances that are assigned to label l,
among knn(Xnew). Then, the MLkNN confidence score for
l and Xnew is the probability that the Xnew is assigned to
l, given that exactly CXnew(l) instances in knn(Xnew) are
assigned to label l. Formally, we have the following equation:

ML(Xnew, l) = P (Hl
1 | El

CXnew (l)) (1)

From Equation 1, and using Bayes rule, we can derive:

ML(Xnew, H
l
1) =

P (Hl
1)× P (El

CXnew (l) | Hl
1)∑

i∈{0,1} P (Hl
i)× P (El

CXnew (l) | Hl
i)

(2)

The parameters of P (H l
1), P (H

l
0), P (E

l
m | H l

1) and
P (El

m | H l
0) can be inferred from the training dataset. The

detail of the inference process is available in [6].

Label Assignment. In MLkNN, if the confidence score of H l
1

is larger than that of H l
0, then label l would be assigned to

Xnew. In this paper, instead of outputting predicted labels
for Xnew, we modify MLkNN to recommend the top-k
labels that have the highest confidence scores, denoted as
MLkNN(Xnew, H

l
1).

III. APPROACH

In this section, we propose PkgRec, an automatic approach
to recommend a list of software packages that are possibly
affected by a bug report. PkgRec consists of 2 components:
name matching component and ensemble learning component.
In Section III-A and Section III-B, we present technical details
of the name matching component and ensemble learning com-
ponent, respectively. In Section III-C we present a composition
of these two components that would result in PkgRec.

A. Name Matching Component

From Table I, we notice that some packages are men-
tioned in the description of the bug report. We observe this
phenomenon by manually reading a large number of bug
reports. Thus, we guess that if the title or description of a
bug report contains the name of a package, then the bug
described in the report has a relatively high probability of
affecting the package. Many packages use compound words
as their names. For example, the “gdk-pixbuf” package has
2 words in its name: gdk and pixbuf. In practice, our name
matching component also considers the situation that part of
the name of a package is mentioned in the title or description
of a bug report.

Given a bug report b and a package p, the name matching
component would assign for the bug report b a confidence
score Name(b, p) that denotes the likelihood of this bug report
b to affect package p. The confidence score Name(b, p) is given
by the following equation:

Name(b, p) =

{
1 completely matched
nameHits(b,p)

wordsInName(p) otherwise
(3)

The equation considers two situations. If the full name of
a package p is mentioned (i.e., completely matched) in the
title or description of a bug report b, then the confidence
score of package p being affected by bug report b is set
to 1. Otherwise, we first tokenize the package name into a
set of single words, and count the number of single words
in the package name, denoted as wordsInName(p). Then
we count the number of single words that appear in the title
or description of a bug report, denoted as nameHits(b, p).
Finally, the confidence score is calculated as the ratio of single
words being mentioned by a bug report. For example, for
package “xserver-xorg-video-intel”, if only the word “intel”
appears in the bug report, then the confidence score would be
1/4 = 0.25.

Note that if a bug report does not mention any package, then
name matching component cannot recommend any packages.
Also, the packages mentioned in the bug report may not be
affected. Thus, we design another component based on multi-
label classification to get more accurate results.

B. Ensemble Learning Component

Many bug reports do not mention any package name in their
titles or descriptions, making the name matching component
useless. To leverage all textual features in a bug report, we
design the ensemble learning component, which builds multi-
label classifiers (i.e., MLkNN) on the training bug reports.

Previous studies [11], [12] have shown that ensemble
learning, which trains multiple classifiers (with either random
initialization and/or different subsets of the training set) and
combine them, can help to overcome overfitting problem. In
the ensemble learning component, instead of simply building
one MLkNN classifier on the whole training dataset, we divide
the training dataset into n equal-sized disjoint sets and build
n sub-classifiers (i.e., MLkNN).

When we combine these sub-classifiers, we also assign
a weight factor to each of them. Ideally, if a sub-classifier
performs well on the testing dataset, then it should be assigned
with a higher weight factor. However, we cannot know the true
labels of testing dataset when we determine the value of weight
factors in the training phase. So we build a mock set of bug
reports for preliminary testing. That is, for each bug report
in the real testing dataset, we find its “nearest neighbor” bug
report in the training dataset, and add this “nearest neighbor”
into the mock set. Thus, the feature distribution of bug reports
in the mock set should be relatively similar to those in real
testing dataset. Then we evaluate each sub-classifier on the
mock set, and determine the weight factors according to their
performance on the mock set.

Formally, we calculate the values of a vector ~α = {α1,
α2, ..., αn}, where αi denotes the weight factor of the ith

sub-classifier Ci. The value of αi is given by the following
equation:

αi =
EC(Ci,MockSet)∑

16j6nEC(Cj ,Mockset)
(4)

In the above equation, EC(Ci,MockSet) is the perfor-
mance of the ith sub-classifier Ci on the mock set when
using a certain evaluation criterion EC. By default, we set
the evaluation criterion EC as recall@k (see Section V).

Finally, given a new bug report b and a package p, the
ensemble learning component would combine the n sub-
classifiers to calculate a confidence score of package p being
affected by bug report b, denoted as Ensemble(b, p), which
is given by the following equation:

Ensemble(b, p) =

n∑
i=1

αi × Ci(b, p) (5)

In the above equation, Ci(b, p) denotes the confidence score
of package p being affected by bug report b when applying
the ith sub-classifier on the test case.

Algorithm 1 presents the pseudo-code to estimate appropri-
ate weight values of ~α. We first divide the training bug reports
into n equal-sized disjoint sets and build a sub-classifier on
each subset (Lines 9 and 10). Specifically, we apply MLkNN
to build these sub-classifiers. Then we create a mock set of bug
reports from the training set that are similar to the bug reports
in testing set. To do so, for each bug report in testing set, we
find its nearest bug report in training set using cosine similarity
and add this nearest neighbor into the mock set (Lines 11-15).
After that, we evaluate each sub-classifier Ci on mock set
and calculate the score of the given evaluation criterion EC,
to determine the weight factor αi (Line 16-19). Finally, we
return ~α (Line 20).

C. PkgRec: A Composite Approach

As shown in previous sections, given a bug report b and
a package p, we can get confidence score Name(b, p) and
Ensemble(b, p) from the name matching component and
ensemble learning component, respectively. In this section,

Algorithm 1 EstimateWeights: Estimation of ~α in ensemble
learning component

1: EstimateWeights(TrainSet, TestSet, EC)
2: Input:
3: TrainSet: Training set of bug reports
4: TestSet: Testing set of bug reports
5: EC: Evaluation criterion
6: Output:
7: ~α: Weight vector for the sub-classifiers
8: Method:
9: Divide the training bug reports into n equal-sized disjoint sets;

10: Built subset classifiers C1, C2, . . . , Cn on the n disjoint sets;
11: MockSet = ∅;
12: for all bug report br ∈ TestSet do
13: Find its nearest bug report br′ in TrainSet using cosine

similarity;
14: Add br′ into MockSet;
15: end for
16: for i from 1 to n do
17: Evaluate Ci on MockSet and calculate the score of EC;
18: Compute αi according to Equation 4;
19: end for
20: return ~α;

we propose PkgRec which combines both Name(b, p) and
Ensemble(b, p) to calculate a composite confidence score
PkgRec(b, p), as follows:

PkgRec(b, p) = γ1 ∗Name(b, p)+γ2 ∗Ensemble(b, p) (6)

Where γ1, γ2 ∈ [0,1] represent the weight factors of name
matching score and ensemble learning score to the overall
PkgRec score. Similar to Algorithm 1, the values of γ1 and γ2
are also automatically determined by separately evaluating the
name matching component and ensemble learning component
on the mock set.

Finally, for a new bug report, PkgRec would recommend
the top-k packages that have the highest confidence scores.

IV. EXPERIMENT SETUP

In this section, we describe the experiment setup that we
follow to evaluate the performance of our approach. We
evaluate PkgRec on 3 datasets and compare it with LDA-KL
and MLkNN. The experimental environment is a computer
equipped with Intel(R) Core(TM) i5-2410M CPU and 4GB
RAM, running Windows 7 (64-bit).

A. Dataset and Experiment Settings

We collect our datasets from 3 open source projects: Ubun-
tu, OpenStack and GNOME. Table II presents the statistics
of our datasets. The columns correspond to the project name
(Project), the time period of collected bug reports (Time), the
number of collected reports (# Reports), the number of unique
features (i.e., words) in the collected reports (# Terms), the
number of packages (# Packages) and the average number of
packages that a bug report affects (# Avg. Affects).

For each dataset, we delete the words which appear in less
than 0.1% of all bug reports (e.g., in GNOME dataset, a term

TABLE II
STATISTICS OF COLLECTED BUG REPORTS.

Project Time # Reports # Features # Packages # Avg. Affects
Ubuntu 2004-12-26 - 2011-11-29 18,530 3,808 341 2.005

Openstack 2012-05-16 - 2014-10-09 18,207 2,839 71 1.203
GNOME 2005-06-18 - 2016-05-26 5,357 3,016 167 1.757

is removed if it appears in less than 5 bug reports). Inspired
by Al-Kofahi et al.’s work [13], we also remove inactive
packages because they may introduce noise. In practice, we
can use historical data to guide the removal of such packages.
Specifically, we remove packages that are affected by less than
0.1% of all bug reports (e.g., in GNOME dataset, a package
is removed if it is affected by less than 5 bug reports) since
such packages are practically inactive.

To simulate the usage of our approach in practice, we use
the same longitudinal data setup described in [5], [14]. For
each dataset, we sort the bug reports in chronological order of
creation time, and then divide them into 10 non-overlapping
folds (or windows) of equal sizes. The evaluation process
proceeds as follows: First, we use bug reports in fold 1 as
training data, and test the bug reports in fold 2. Then, we use
bug reports in 2 folds (i.e., fold 1 and fold 2) as training data,
and test using the bug reports in fold 3, and so on. In the final
fold, we train using bug reports in fold 1 to 9, and test using
bug reports in fold 10.

There are 2 parameters in PkgRec: the number of nearest
neighbors n in MLkNN, and the number of sub-classifiers k
in ensemble learning component. In our experiment, both k
and n are set to 10 by default. We also investigate the effect
of varying these parameters. When using MLkNN alone as
baseline, we also set n to 10 by default. We use Mulan6 as
the MLkNN implementation.

LDA-KL in [15] was first proposed for recommending
components affected by a bug report. We can use LDA-KL
for package recommendation too – by viewing packages as
components. For the number of topics and iterations in LDA-
KL, we use the same parameter setting as [15]. We use
JGibbsLDA7, which uses Gibbs sampling process, as the LDA
implementation. More specifically, since the values of hyper-
parameters (alpha and beta) in LDA were not given in [15], we
use the recommended parameter setting in JGibbsLDA (i.e.,
alpha is 50/K and beta is 0.1, where K represents the number
of topics). Finally, to enable others to use our techniques, we
have published our source code and dataset on GitHub8.

B. Evaluation Metrics

We evaluate the performance of PkgRec and other baseline
approaches using two metrics: recall@k, and precision@k.
The definitions of recall@k and precision@k are as follows:

Suppose that there are m bug reports. For each bug report bi,
let the set of its actual affected packages be Di. We recommend
the set of top-k packages Pi for bi using our approach (or
the baselines). The recall@k and precision@k for the m bug
reports are given by:

6http://mulan.sourceforge.net/
7http://jgibblda.sourceforge.net/
8http://github.com/tkdsheep/MultiPackage

TABLE III
CLIFF’S DELTA AND THE EFFECTIVENESS LEVEL

Cliff’s Delta (| δ |) Effectiveness Level
| δ |< 0.147 Negligible

0.147 ≤| δ |< 0.33 Small
0.33 ≤| δ |< 0.474 Medium
| δ |≥ 0.474 Large

Recall@k =
1

m

∑ |Pi

⋂
Di|

|Di|
(7)

Precision@k =
1

m

∑ |Pi

⋂
Di|

|Pi|
(8)

We focus on top-k since practitioners are not likely to check
too many packages, c.f., [16]–[18]. Notice that our approach
is meant to be a recommendation tool. For such setting, recall
(ability to find affected packages) is more important than
precision, c.f., [19], [20]. Thus, we focus on recall@k in our
experiment, and the value of k is set to 5 and 10, which
also follows previous software engineering studies [2]–[4].
However, we still discuss the precision@k of PkgRec, and
present the details in Section VI.

V. EXPERIMENT RESULTS

A. RQ1: How effective is PkgRec? How much improvement
can it achieve over other state-of-the-art approaches?

Motivation. To show that PkgRec is useful, one of the first
questions is to see how effective it is in performing its
package recommendation and whether it can perform as well
as, or better than state-of-the-art approaches. Answering this
research question would shed light on how much PkgRec
advances the state-of-the-art.
Approach. To answer this research question, we compare
PkgRec with 2 state-of-the-art approaches, namely LDA-KL
and MLkNN. We record the average recall@5 and recall@10
across different folds of training data for each project.

To check if the differences in the performance of PkgRec
and the baseline approaches are statistically significant, for
each dataset, we run the Wilcoxon signed-rank test [21] at
95% significance level on two competing approaches. Since
we run the test many times, we use Bonferroni correction [22]
to counteract the results of multiple comparisons. We also
compute Cliff’s delta (δ) [23], which is a non-parametric
effect size measure that quantifies the amount of difference
between two approaches. The delta values range from -1 to 1,
where δ = -1 or 1 indicates the absence of overlap between
two approaches (i.e., all values of one group are higher than
the values of the other group, and vice versa), while δ =
0 indicates the two approaches are completely overlapping.
Table III describes the meaning of different Cliff’s delta values
and their corresponding interpretation [23].

http://mulan.sourceforge.net/
http://jgibblda.sourceforge.net/
http://github.com/tkdsheep/MultiPackage

TABLE IV
RECALL@5 AND RECALL@10 OF PkgRec AND LDA-KL, AND THE IMPROVEMENT OF PkgRec OVER LDA-KL (IMPROVE.). THE LAST ROW SHOWS THE

AVERAGE RECALL@5 AND RECALL@10 SCORES OF PkgRec AND LDA-KL, AND THE AVERAGE IMPROVEMENT.

Projects Recall@5 Recall@10
PkgRec LDA-KL Improve. p-value δ PkgRec LDA-KL Improve. p-value δ

Ubuntu 0.511 0.290 76.21% <0.01 0.85 0.614 0.388 58.25% <0.01 0.88
OpenStack 0.679 0.584 16.27% <0.05 0.73 0.784 0.703 11.52% <0.05 0.75
GNOME 0.737 0.435 69.43% <0.01 0.89 0.785 0.570 37.72% <0.01 0.89
Average. 0.642 0.436 47.25% - - 0.728 0.554 31.41% - -

TABLE V
RECALL@5 AND RECALL@10 OF PkgRec AND MLKNN, AND THE IMPROVEMENT OF PkgRec OVER MLKNN (IMPROVE.).

Projects Recall@5 Recall@10
PkgRec MLkNN Improve. p-value δ PkgRec MLkNN Improve. p-value δ

Ubuntu 0.511 0.306 66.99% <0.01 0.70 0.614 0.407 50.86% <0.01 0.77
OpenStack 0.679 0.596 13.93% <0.01 0.72 0.784 0.703 11.52% <0.01 0.73
GNOME 0.737 0.360 104.72% <0.01 0.89 0.785 0.479 63.88% <0.01 0.89
Average. 0.642 0.421 52.49% - - 0.728 0.530 37.36% - -

Results. Table IV compares recall@5 and recall@10 of P-
kgRec and LDA-KL. Table V compares recall@5 and recal-
l@10 of PkgRec and MLkNN. The recall@5 and recall@10 of
PkgRec vary from 0.511 to 0.737, and 0.614 to 0.785, respec-
tively. The improvement of PkgRec over baseline approaches
and the corresponding p-value of δ are also shown in the two
tables. Notice that the “average” p-value and δ is not calculated
because they are meaningless.

In each dataset, PkgRec outperforms both LDA-KL and
MLkNN. From Table IV, PkgRec outperforms LDA-KL by
47.25% and 31.41% for average recall@5, and recall@10,
respectively. In the Ubuntu dataset, PkgRec achieves the
highest improvement of 76.21% and 58.25% over LDA-KL for
recall@5 and recall@10, respectively. From Table V, PkgRec
outperforms MLkNN by 52.49% and 37.36% for average
recall@5 and recall@10, respectively. In the GNOME dataset,
PkgRec achieves the highest improvement of 104.72% and
63.88% over MLkNN for recall@5 and recall@10, respec-
tively.

We consider that PkgRec statistically significantly improves
a baseline approach at the confidence level of 95% if the
adjusted p-value is less than 0.05. Across the 3 datasets, every
p-value is less than 0.05 and some of them are even less
than 0.01. Also, δ varies from 0.72 to 0.89. Thus, PkgRec
shows significant improvement over the baseline approaches
with large effect size.

We also note that the performance of PkgRec (and also the
baselines) varies between different projects. For example, the
recall@5 of PkgRec on GNOME is approximately 40% higher
than that on Ubuntu. One reason is that these projects are in
different domains with different data distributions, which could
impact the performance of PkgRec. Also, in RQ2, we find that
the name matching component achieves relatively high recall
on GNOME, which indicates that bug reports in GNOME are
more likely to mention the name of the affected packages, thus
making it easier for prediction.

B. RQ2: What is the performance of the ensemble learning
component and name matching component?

Motivation. PkgRec has two components (i.e., ensemble learn-
ing component and name matching component) and we want

to see if the combination of the two components results in
better or poorer performance.

Approach. To answer this research question, we separately
evaluate name matching component and ensemble learning
component on the 3 datasets and compare their performance
with that of PkgRec. Similar to RQ1, we run Wilcoxon signed-
rank test with Bonferroni correction to check if the differences
in the performance of PkgRec and each component of PkgRec
are statistically significant. We also use Cliff’s delta (δ) to
measure the effect size of the difference between PkgRec and
the 2 components.

Results. Table VI and Table VII present the recall@5 and
recall@10 scores of PkgRec compared with those of en-
semble learning component and name matching component.
The improvement of PkgRec over the 2 components and the
corresponding p-value of δ are also shown in the two tables.

In each dataset, PkgRec outperforms both the ensemble
learning component and name matching component. Notice
that the “contribution” of these two components to the per-
formance of PkgRec may vary a lot in different datasets. For
example, in OpenStack dataset, the major contribution comes
from the ensemble learning component, while in GNOME
dataset, name matching component contributes much more to
the performance of PkgRec. On average of the three datasets,
PkgRec outperforms the ensemble learning component by
44.59% and 29.08% for recall@5, and recall@10, respectively.
PkgRec also outperforms the name matching component by
53.96% and 61.78% for average recall@5, and recall@10,
respectively.

Across the 3 datasets, every p-value is less than 0.01 and
δ varies from 0.62 to 0.89. Thus, PkgRec shows significant
improvement over the 2 components with large effect size.
The results show that it is beneficial to combine the ensemble
learning component and name matching component.

Additionally, for each dataset, the performance of ensemble
learning component also outperforms MLkNN baseline. For
example, in the GNOME dataset, the recall@5 and recall@10
of ensemble learning component is 0.398 and 0.535, which
improves MLkNN (its recall@5 and recall@10 are 0.360 and
0.479 respectively) by 10.56% and 11.69%, respectively.

TABLE VI
RECALL@5 AND RECALL@10 OF PkgRec AND ITS ENSEMBLE LEARNING COMPONENT.

Projects Recall@5 Recall@10
PkgRec Ensemble. Improve. p-value δ PkgRec Ensemble. Improve. p-value δ

Ubuntu 0.511 0.334 52.99% <0.01 0.64 0.614 0.430 42.79% <0.01 0.70
OpenStack 0.679 0.600 13.17% <0.01 0.70 0.784 0.728 7.69% <0.01 0.67
GNOME 0.737 0.398 85.18% <0.01 0.89 0.785 0.535 46.72% <0.01 0.89
Average. 0.642 0.444 44.59% - - 0.728 0.564 29.08% - -

TABLE VII
RECALL@5 AND RECALL@10 OF PkgRec AND ITS NAME MATCHING COMPONENT.

Projects Recall@5 Recall@10
PkgRec Name. Improve. p-value δ PkgRec Name. Improve. p-value δ

Ubuntu 0.511 0.361 41.55% <0.01 0.83 0.614 0.407 50.86% <0.01 0.85
OpenStack 0.679 0.232 192.67% <0.01 0.89 0.784 0.261 200.38% <0.01 0.89
GNOME 0.737 0.659 11.84% <0.01 0.62 0.785 0.683 14.93% <0.01 0.89
Average. 0.642 0.417 53.96% - - 0.728 0.450 61.78% - -

Fig. 1. Recall@5 and recall@10 for when using different number of folds as training data (Ubuntu dataset).

Fig. 2. Recall@5 and recall@10 for when using different number of folds as training data (OpenStack dataset).

C. RQ3: How effective is PkgRec when the amount of training
data is varied?

Motivation. To evaluate the performance of PkgRec, we use
the longitudinal data setup. The amount of training data avail-
able is different for different folds; the latter folds have more
training data. In this research question, we investigate whether
the performance of PkgRec increases when the amount of
training data increases.
Approach. To answer this research question, we present the
recall@5 and recall@10 scores when using different number
of folds (from 1 fold to 9 folds) as training data.
Results. Figures 1, 2 and 3 present the recall@5 and recall@10
for PkgRec and other approaches with different amount of
training data (fold 1 - fold 9). The results show that, for all of
the folds, the recall@5 and recall@10 scores of PkgRec are
always better than those of the other approaches.

We also notice that for several settings (such as using
the first 5 folds as training data to test the 6th fold in
OpenStack dataset), the performance of PkgRec (and the other
approaches) decreases as compared with other settings.

By manually investigating the data, we find that there are
some completely new packages in the testing dataset which
are never seen in the training dataset. For example, Mistral (a
package to provide workflow service) and Congress (a package
to provide policy as a service) are not affected by any bug
reports in the first five folds of training data of OpenStack.
Our approach (and the baselines) cannot recommend the new
packages which affect its performance.

D. RQ4: How effective is PkgRec when varying the number
of nearest neighbors in MLkNN?

Motivation. MLkNN is the underlying classifier of PkgRec.
We need to set the parameter k (i.e., the number of nearest
neighbors to compare) when using MLkNN. By default, k is
set to 10. In this RQ, we investigate the performance of PkgRec
with different settings of k. Answering this research question
can help us identify a suitable range of parameter settings for
MLkNN in PkgRec.

Approach. To answer this research question, we vary k from
1 to 30, with a step of 5. Note that in this experiment, the

Fig. 3. Recall@5 and recall@10 for when using different number of folds as training data (GNOME dataset).

Fig. 4. Recall@5 and recall@10 of PkgRec on 3 datasets when varying the number of nearest neighbor in MLkNN

number of sub-classifiers in the ensemble learning component
is fixed to 10.

Results. Figure 4 presents the recall@5 and recall@10 scores
of PkgRec on 3 datasets when varying the number of nearest
neighbor k in MLkNN. The results show that, in Ubuntu
and GNOME dataset, the performance of PkgRec is generally
stable across different settings of k. For example, in GNOME
dataset, recall@5 and recall@10 scores vary from 0.727 to
0.738, and 0.774 to 0.785. In OpenStack dataset, setting a
larger k can improve the performance of PkgRec. For example,
recall@5 is 0.639 when k is set to 1, while recall@5 increases
to 0.703 when k is set to 30, which corresponds to an
improvement of 10.02%. In summary, our approach is robust
with different parameter settings of k.

E. RQ5: How effective is PkgRec when the number of sub-
classifiers in ensemble learning component is varied?

Motivation. By default, we build 10 sub-classifiers in the
ensemble learning component. In this RQ, we also investigate
the performance of PkgRec with a different number of sub-
classifiers. Answering this research question can help us iden-
tify suitable parameter setting range for the ensemble learning
component.

Approach. To answer this research question, we vary the
number of sub-classifiers n from 6 to 15, with a step of 1.
Note that in this experiment, the number of nearest neighbors
in MLkNN is fixed to 10.

Results. Figure 5 presents recall@5 and recall@10 scores
of PkgRec for the 3 datasets when varying the number of
sub-classifier in ensemble learning component. The results
show that the performance of PkgRec is generally stable
across various numbers of sub-classifiers. For example, for
OpenStack dataset, the recall@5 and recall@10 scores vary
from 0.678 to 0.691, and 0.776 to 0.784 when the number

of sub-classifiers is varied from 6 to 15. In summary, our
approach is robust with different parameter settings of n.

VI. DISCUSSION

In this section, we discuss the precision@k of PkgRec, the
time efficiency of PkgRec and threats to validity.
Precision@k of PkgRec. In RQ1, we focus on investigating
recall@k of PkgRec. In this section, we also discuss the
precision@k of PkgRec. Tables VIII and IX compare the
precision@5 and precision@10 of PkgRec, LDA-KL, and
MLkNN. The precision@5 and precision@10 of PkgRec vary
from 0.152 to 0.257, and 0.089 to 0.136, respectively. These
numbers might seem low. However, notice that the average
number of packages affected by a bug report is low. Thus,
the optimal precision@k value is also low. For example, in
GNOME, the average number of packages affected by a bug
report is 1.757. If we recommend top-10 packages, the best
precision@10 would be 0.177. The precision@10 of PkgRec
for the GNOME dataset is 0.136, which is close to the optimal
value.

Also, the improvement of PkgRec over LDA-KL and M-
LkNN on precision@k is substantial. Compared with LDA-
KL, PkgRec improves the average precision@5, and pre-
cision@10 by 56.15% and 36.47%, respectively. Compared
with MLkNN, PkgRec improves the average precision@5,
and precision@10 by 61.11% and 43.21%, respectively. We
also run Wilcoxon signed-rank test with Bonferroni correction
and compute Cliff’s delta. We find that the differences are
all statistically significant (with p-values less than 0.05) and
substantial (with Cliff’s deltas ≥ 0.74).
Time Efficiency of PkgRec. The time efficiency of PkgRec
will affect its practical use. Thus, we report the model building
and prediction time of PkgRec, and compare them with those
of LDA-KL and MLkNN. Due to space limitation, we only
present the average time it takes when using different number

Fig. 5. Recall@5 and recall@10 of PkgRec for the 3 datasets when varying the number of sub-classifiers in the ensemble learning component

TABLE VIII
PRECISION@5 OF PkgRec, LDA-KL AND MLKNN ON THE 3 DATASETS.

Approaches Ubuntu OpenStack GNOME Average.
PkgRec 0.200 0.152 0.257 0.203

LDA-KL 0.109 0.130 0.151 0.130
Improve. LDA-KL 83.49% 16.92% 70.20% 56.15%

MLkNN 0.116 0.134 0.128 0.126
Improve. MLkNN 72.41% 13.43% 100.78% 61.11%

TABLE IX
PRECISION@10 OF PkgRec, LDA-KL AND MLKNN ON THE 3 DATASETS.

Approaches Ubuntu OpenStack GNOME Average.
PkgRec 0.122 0.089 0.136 0.116

LDA-KL 0.076 0.080 0.099 0.085
Improve. LDA-KL 60.53% 11.25% 37.37% 36.47%

MLkNN 0.079 0.080 0.084 0.081
Improve. MLkNN 54.43% 11.25% 61.90% 43.21%

of folds (from 1 fold to 9 folds) as training data. The results
are shown in Table X.

Compared to other approaches, PkgRec has the fastest mod-
el building time; this is the case since PkgRec will build sub-
classifiers using the disjoint sets of the training data (which
are smaller in size), while the remaining approaches train
their models using all the training data. We also notice that
the model prediction time of PkgRec is longer than baseline
approaches. However, we believe it is still acceptable (e.g.,
the average time to predict packages for Ubuntu bug reports
is less than 1 minute).
Threats to Validity. Threats to internal validity relates to
errors and bias in our experiments. We have double checked
and fully tested our code; still there could be errors that we
did not notice. For the ground truth creation, to ensure the
affected packages of a bug report are truly affected, we only
consider affected packages with the status of ”Fix Released”
in a bug report. Moreover, our settings for the parameters of
PkgRec might not be optimal. To minimize this threat we

TABLE X
MODEL BUILDING TIME, AND PREDICTION TIME FOR PKGREC, LDA-KL,

AND MLKNN (IN SECONDS).

Project PkgRec LDA-KL MLkNN
Model building time

Ubuntu 134.85 525.17 154.52
OpenStack 64.89 201.81 103.88

Gnome 11.02 45.96 14.10
Average. 70.25 257.65 90.83

Prediction time
Ubuntu 31.49 0.86 21.18

OpenStack 14.64 0.18 11.90
Gnome 2.55 0.13 1.89

Average. 16.23 0.39 11.66

have investigated the performance of PkgRec when varying
the number of nearest neighbors in MLkNN and the number
of sub-classifiers in ensemble learning component. The results
show that our approach is relatively stable with different
parameter settings.

Threats to external validity relates to the generalizability
of our results. We have analyzed 42,094 bug reports from 3
projects. In the future, we plan to reduce this threat further by
analyzing more bug reports from more projects. Another threat
is that our approach needs to observe the distribution of testing
data. Note that the use of testing data to train a classifier is
allowable as long as their class labels are not used [24]. For
a large project, many bug reports are often opened for a long
time and need to be queued before developers start working
on them. For these reports, we know their contents but not
the labels (i.e., which packages are affected), and we can use
them to tune our model once the number of newly received
bug reports are sufficiently many. However, the above may not
be true for projects that receive a small number of bug reports.
We plan to investigate the performance of our approach using
less bug reports as testing data in future work.

Threats to construct validity refers to the suitability of our
evaluation measures. We use recall@5 and recall@10 which
follows previous software engineering studies [2]–[4]. Thus,
we believe there is little threat to construct validity.

VII. RELATED WORK

In this section, we briefly review studies that recommend
components affected by a bug report, studies on bug triaging,
and other studies on bug report management.
Component Recommendation. The most related work to
our paper is conducted by Somasundaram and Murphy [15].
They investigated the performance of different approaches to
automatically recommend affected components given a bug
report. They found that LDA-KL performs the best. LDA-KL
first applies Latent Dirichlet Allocation (LDA) [25] to compute
the average topic distribution of a collection of training bug
reports belonging to the same unit (i.e., component) and the
the topic distribution of a new bug report. Then it computes
the Kullback-Leibler (KL) divergence between the topic dis-
tribution of the new bug report and that of each component.
The components with the least divergence are recommended
for the new bug report.

In our work, we focus on recommending software packages
that would be affected by a bug report. A component usually

refers to internal part of the software project, while a package
can be a third-party code. In Somasundaram and Murphy’s
work, the number of components is relatively small (i.e., it
ranges between 13 and 26), while in our datasets, the number
of packages ranges between 71 and 341. Our experiment
results also show that PkgRec outperforms LDA-KL by a
wider margin when the number of packages is large (e.g.,
PkgRec achieves an improvement of 76.21% over LDA-KL
for recall@5 on Ubuntu dataset, which has 341 packages).

Studies on Bug Triaging. There are a number of approaches
that recommend developers to a bug report (aka. automated
bug triaging approaches) [5], [14], [26]–[31]. Anvik et al. [26]
and Cubranic et al. [27] were the first to investigate this
problem, and they used machine learning approaches such as
SVM, Naive Bayes, and C4.8 to solve it. Jeong et al. [28]
proposed a graph model based on Markov chains, which
captures bug tossing history to improve bug triaging prediction
accuracy. Bhattacharya et al. [14] furthered improved the
accuracy of the approach by Jeong et al. by proposing a multi-
feature tossing graph. Naguib et al. [29] proposed a LDA-
based approach to compare a bug report with developers in
topic space. Tamrawi et al. [5] proposed Bugzie, which uses a
fuzzy set and cache-based approach to increase the accuracy
of bug triaging.

There are also a number of automatic bug triaging ap-
proaches that use other information sources (e.g., source code
comments and commit logs) in addition to bug reports to
recommend developers to bug reports. A number of approach-
es [32]–[34] use feature location techniques to find program
units (e.g., files or classes) that are related to a change request
(i.e., bug report or feature request) and then mine comments
in source code files or commits in version control systems
to recommend appropriate developers. However, the accuracy
of feature location techniques is often still low, which may
impact the performance of the approaches above [35]. Also,
the quality of the commit logs and source code comments
can be poor due to different reasons, such as unavailability of
authorship information for authors without commit rights in
CVS and SVN repositories [36], outdated comments [37], etc.

In this paper, we focus on recommending software packages
that are possibly affected by a bug report. Our work is
complementary to bug triaging, since it can also help in
finding appropriate developers in different groups (who are
responsible for these packages) to collaborate in bug fixing.

Studies on Bug Localization. There are a number of bug
localization approaches that locate buggy code in different
granularities (e.g., in file, class or method level) for a bug
report [38]–[43]. Zhou et al. [38] proposed BugLocator, an
information retrieval based approach that ranks all files based
on the textual similarity between the initial bug report and
the source code using a revised Vector Space Model (rVSM),
taking into consideration information about similar bugs that
have been fixed before. Nguyen et al. [39] developed a
specialized topic model to narrow down the search space of
buggy files given a bug report. Ye et al. [40] proposed an

adaptive ranking approach that leverages domain knowledge
extracted from bug reports and source files such as lexical
similarity, code change history and so on. Wen et al. [41]
proposed Locus, an IR-based approach to locate bugs using
software changes, which provides contextual clues for bug-
fixing.

Our work is different from these prior work, since they
require the access of source code while most of the packages
in our dataset are in the binary level. Also, our approach can
work as a complement to bug localization techniques. When a
large project contains a large number of packages, it would be
time consuming to scan all the source code in every package.
The maintainers of the project could first apply our approach
to locate the most suspect packages, and then inform the
corresponding developers of those packages to further locate
the buggy code.
Other Studies on Bug Report Management. There are
also many other studies that have been proposed to help
developers deal with a large number of bug reports [16],
[20], [44]–[56]. Rastkar et al. [44] designed a conversation-
based extractive summary generator to produce summaries for
bug reports. Zanetti et al. [45] proposed a social network
based approach to predict valid bugs in open source projects.
Herzig et al. [46] conducted an empirical study on the im-
pact of misclassification on earlier studies of bug prediction
and recommended manual data validation for future studies.
Zimmermann et al. [47] performed an empirical study on the
reopened bugs in the Microsoft Windows operating system.
Wang et al. [20] used execution trace information (i.e., list of
executed methods) of bug-revealing runs and natural language
information contained in bug reports to identify duplicate bug
reports. Sun et al. [48] proposed a discriminative model based
approach for duplicate bug report detection and they [49]
also proposed a retrieval function which extends BM25F, to
measure the similarity between two bug reports.

Our work is orthogonal to the above studies; we focus on
recommending software packages that are possibly affected by
a bug report, which is a different problem.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose PkgRec to automatically rec-
ommend packages that are likely to be affected by a bug
report. Our approach consists of 2 components: name matching
component and ensemble learning component. We evaluate
PkgRec on 3 datasets with 42,094 bug reports in total. The
experiment results show that, PkgRec outperforms other state-
of-the-art approaches. On average across the 3 datasets, P-
kgRec improves the recall@5 and recall@10 scores of LDA-
KL by 47.25% and 31.41%, and MLkNN by 52.49% and
37.36%, respectively. In future work, we plan to improve the
performance of PkgRec further. We also plan to experiment
with more bug reports from more projects.
Acknowledgment. This work was partially supported by NS-
FC Program (No. 61602403 and 61572426), and National Key
Technology R&D Program of the Ministry of Science and
Technology of China (No. 2015BAH17F01).

REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proceedings of the 2010 ACM conference on
Computer supported cooperative work. ACM, 2010, pp. 291–300.

[2] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE Press, 2013, pp. 287–296.

[3] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “Drex: Developer recommen-
dation with k-nearest-neighbor search and expertise ranking,” in 2011
18th Asia-Pacific Software Engineering Conference. IEEE, 2011, pp.
389–396.

[4] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom: Developer recom-
mendation based on topic models for bug resolution,” in Proceedings
of the 8th international conference on predictive models in software
engineering. ACM, 2012, pp. 19–28.

[5] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011, pp. 365–375.

[6] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

[7] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[8] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[9] G. Salton and M. J. McGill, “Introduction to modern information
retrieval,” 1986.

[10] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[11] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[12] M. Woźniak, M. Graña, and E. Corchado, “A survey of multiple classifier
systems as hybrid systems,” Information Fusion, vol. 16, pp. 3–17, 2014.

[13] J. M. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and
T. N. Nguyen, “Fuzzy set approach for automatic tagging in evolving
software,” in Software Maintenance (ICSM), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–10.

[14] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–10.

[15] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug
reports using latent dirichlet allocation,” in Proceedings of the 5th India
software engineering conference. ACM, 2012, pp. 125–130.

[16] X. Xia, L. Bao, D. Lo, and S. Li, “automated debugging considered
harmful considered harmful: A user study revisiting the usefulness
of spectra-based fault localization techniques with professionals using
real bugs from large systems,” in Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on. IEEE, 2016, pp.
267–278.

[17] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, 2016, pp. 165–
176.

[18] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis. ACM, 2011, pp. 199–209.

[19] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 499–
510.

[20] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 461–470.

[21] F. Wilcoxon, Individual Comparisons by Ranking Methods. Springer
New York, 1992.

[22] H. Abdi, “The bonferonni and šidák corrections for multiple compar-
isons,” Encyclopedia of measurement and statistics, vol. 3, pp. 103–107,
2007.

[23] N. Cliff, Ordinal methods for behavioral data analysis. Lawrence
Erlbaum Associates, 1996.

[24] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 382–391.

[25] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[26] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[27] D. Čubranić, “Automatic bug triage using text categorization,” in In
SEKE 2004: Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering. Citeseer, 2004.

[28] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 111–120.

[29] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Mining Software Reposito-
ries (MSR), 2013 10th IEEE Working Conference on. IEEE, 2013, pp.
22–30.

[30] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, vol. 43, no. 3, pp. 272–297, 2017.

[31] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending
developers to resolve bugs,” Journal of Software: Evolution and Process,
vol. 27, no. 3, pp. 195–220, 2015.

[32] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software: Evolution
and Process, vol. 24, no. 1, pp. 3–33, 2012.

[33] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on. IEEE, 2012, pp. 451–460.

[34] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
2–11.

[35] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug lo-
calization using structured information retrieval,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 345–355.

[36] C. Kolassa, D. Riehle, and M. A. Salim, “A model of the commit size
distribution of open source,” in International Conference on Current
Trends in Theory and Practice of Computer Science. Springer, 2013,
pp. 52–66.

[37] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software bugs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2293–2304, 2012.

[38] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 2012, pp. 14–24.

[39] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on. IEEE, 2011,
pp. 263–272.

[40] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in ACM Sigsoft International
Symposium on Foundations of Software Engineering, 2014, pp. 689–
699.

[41] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from
software changes,” in Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on. IEEE, 2016, pp. 262–273.

[42] X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang, “Cross-language bug
localization,” in Proceedings of the 22nd International Conference on
Program Comprehension. ACM, 2014, pp. 275–278.

[43] Y. Zhang, D. Lo, X. Xia, T.-D. B. Le, G. Scanniello, and J. Sun,
“Inferring links between concerns and methods with multi-abstraction
vector space model,” in Software Maintenance and Evolution (ICSME),
2016 IEEE International Conference on. IEEE, 2016, pp. 110–121.

[44] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[45] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “Categoriz-
ing bugs with social networks: a case study on four open source software
communities,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 1032–1041.

[46] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 392–401.

[47] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characteriz-
ing and predicting which bugs get reopened,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1074–
1083.

[48] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 45–54.

[49] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-

ing. IEEE Computer Society, 2011, pp. 253–262.
[50] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-

curacy prediction of reopened bugs,” Automated Software Engineering,
vol. 22, no. 1, pp. 75–109, 2015.

[51] X.-L. Yang, D. Lo, X. Xia, Q. Huang, and J.-L. Sun, “High-impact
bug report identification with imbalanced learning strategies,” Journal
of Computer Science and Technology, vol. 32, no. 1, pp. 181–198, 2017.

[52] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embed-
ding with information retrieval to recommend similar bug reports,” in
Software Reliability Engineering (ISSRE), 2016 IEEE 27th International
Symposium on. IEEE, 2016, pp. 127–137.

[53] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in Proceedings of the 14th
International Conference on Mining Software Repositories. IEEE Press,
2017, pp. 413–424.

[54] T. Zhang, J. Chen, H. Jiang, X. Luo, and X. Xia, “Bug report enrichment
with application of automated fixer recommendation,” in Proceedings of
the 25th International Conference on Program Comprehension. IEEE
Press, 2017, pp. 230–240.

[55] X. Xia, D. Lo, X. Wang, and B. Zhou, “Automatic defect categoriza-
tion based on fault triggering conditions,” in Engineering of Complex
Computer Systems (ICECCS), 2014 19th International Conference on.
IEEE, 2014, pp. 39–48.

[56] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” Empirical Software Engineering,
vol. 20, no. 5, pp. 1354–1383, 2015.

	Introduction
	Preliminaries
	Approach
	Name Matching Component
	Ensemble Learning Component
	PkgRec: A Composite Approach

	Experiment Setup
	Dataset and Experiment Settings
	Evaluation Metrics

	Experiment Results
	RQ1: How effective is PkgRec? How much improvement can it achieve over other state-of-the-art approaches?
	RQ2: What is the performance of the ensemble learning component and name matching component?
	RQ3: How effective is PkgRec when the amount of training data is varied?
	RQ4: How effective is PkgRec when varying the number of nearest neighbors in MLkNN?
	RQ5: How effective is PkgRec when the number of sub-classifiers in ensemble learning component is varied?

	Discussion
	Related Work
	Conclusion and Future Work
	References

