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Abstract—Similar bugs are bugs that require handling of
many common code files. Developers can often fix similar bugs
with a shorter time and a higher quality since they can focus
on fewer code files. Therefore, similar bug recommendation is
a meaningful task which can improve development efficiency.
Rocha et al. propose the first similar bug recommendation system
named NextBug . Although NextBug performs better than a
start-of-the-art duplicated bug detection technique REP , its
performance is not optimal and thus more work is needed to
improve its effectiveness. Technically, it is also rather simple as
it relies only upon a standard information retrieval technique,
i.e., cosine similarity. In the paper, we propose a novel approach
to recommend similar bugs. The approach combines a traditional
information retrieval technique and a word embedding technique,
and takes bug titles and descriptions as well as bug product
and component information into consideration. To evaluate the
approach, we use datasets from two popular open-source projects,
i.e., Eclipse and Mozilla, each of which contains bug reports
whose bug ids range from [1,400000]. The results show that
our approach improves the performance of NextBug statistically
significantly and substantially for both projects.

Index Terms—Similar Bugs, Word Embedding, Information
Retrieval, Recommendation Systems

I. INTRODUCTION

To improve the quality of software systems, developers

often allow users and testers to report bugs that they encounter.

Such bugs are often reported in bug tracking systems, e.g.,

Jira or Bugzilla. It is often the case that a large number of

bugs are reported. For example, Anvik et al. highlight that for

Eclipse up to 300 new bug reports are reported daily [1]. This

is far too many for developers to handle. Indeed, in many

bug tracking systems, often hundreds of bug reports remain

open for a long period of time (even years). Thus, there is a

need to help developers to resolve bug reports more efficiently.

As bug reports are resolved, the reliability and security of a

software system would be improved. Defects would be fixed

and vulnerabilities would be closed before it gets exploited.

To help address the above-mentioned need, recently, Rocha

et al. propose the recommendation of similar bugs [2]. Similar

bugs are defined as those that require handling of a large

proportion of common files (e.g., at least 50% of common

files). Intuitively, developers are often more efficient when they

need to solve similar bugs one after another, and the quality of

the bug fixes can also potentially be improved. This is the case

since developers can focus on fewer source code files which
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reduces program comprehension effort. Rocha et al. have sup-

ported this intuition by a field study with Mozilla developers

and built a recommendation system named NextBug . They

show that NextBug achieves better performance than a start-

of-the-art technique that recommends duplicated bug reports.

Unfortunately, NextBug performance is still not optimal

and thus more accurate solutions are needed. Also, technically

NextBug is rather simple since it relies only on a standard

information retrieval technique namely cosine similarity. More

advanced solutions can potentially be built to achieve higher

accuracy which can push the technique closer to adoption.

Thus, in the paper, we propose a novel approach to recommend

similar bugs. The approach combines a standard information

retrieval technique and a word embedding technique, and

takes bug titles and descriptions as well as bug product and

component information into consideration. With preprocessed

bug report documents (i.e., bug titles and descriptions), we

build TF-IDF (Term Frequency-Inverse Document Frequency)

vectors and word embedding vectors and calculate two similar-

ity scores based on them respectively. In addition, we calculate

a third similarity score based on bug product and component

information. Finally, we combine the three similarity scores

into one final score and make similar bug recommendation

with it.

To evaluate the effectiveness of our approach and compare

it with NextBug , we perform experiments on two datasets

from two large open source software projects, i.e., Eclipse and

Mozilla, containing a total of 763,729 bug reports (389,975

bug reports in Eclipse and 373,754 bug reports in Mozilla).

As accuracy yardsticks, we use three evaluation metrics,

i.e., recall-rate@k, mean average precision (MAP) and mean
reciprocal rank (MRR). These metrics are commonly-used in

evaluating past recommendation systems to aid developers in

performing software engineering tasks [3], [4], [5], [2], [6].

The experimental results show that our approach can achieve

an improvement than NextBug by a statistically significan-

t and substantial margin for similar bug recommendation.

Specifically, our approach improves the performance in terms

of all the metrics by nearly 60% for the Eclipse dataset and by

nearly 85% for the Mozilla dataset. In addition, our approach

performs better than the three incomplete versions of our

approach (its sub-approaches that only uses one of the three

similarity scores respectively), which highlights the benefit of

combining the three similarity scores.
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The main contributions of this paper are:

1) We propose a novel approach for similar bug recommen-

dation. The approach leverages bug titles, descriptions

and product and component information of bug reports,

and combines a standard information retrieval technique

and a word embedding technique.

2) We compare our approach with a state-of-the-art base-

line approach NextBug on two large open source

projects, i.e., Eclipse and Mozilla. The experiment re-

sults show that our approach achieves a statistically

significant and substantial improvement over NextBug
for similar bug recommendation.

The rest of our paper is organized as follows. Section II

introduces the background of our work. Section III presents the

data collection and preprocessing steps. Section IV presents

the overall framework of our approach. Section V describes

our experiments and the results. Section VI discusses the

related work. Conclusion and future work are presented in

the last section.

II. PRELIMINARIES

In this section, we first introduce the basic concepts of

similar bugs in Section II-A. Next, we briefly introduce the

main technique we leverage in our approach, namely word

embedding technique, in Section II-B. Finally, we present the

motivation of our proposed approach in Section II-C.

A. Similar Bug

Similar bug is a newly-proposed concept, which refers

to the bugs that require handling of many common source

code files (e.g., 50% of files modified to resolve the bugs are

common). Similar bug is related to duplicate bug, which has

been widely studied in the literature [7], [8], [9], [10], [11].

However, the condition for two bugs being similar is much

more loose than that for duplicate bugs, which means that

there are more similar bugs than duplicate bugs, given a query

bug. Table I and II show a pair of similar bugs in Eclipse’s bug

tracking system. From the figures, we can see that although

both of them are bugs about breakpoints, these two bugs are

by no means duplicate bugs. However, they are in the same

product, the same component, and they require handling the

same file “core/plugins/org.eclipse.dltk.debug/src/org/eclipse/
dltk/internal/debug/core/model/ScriptBreakpointManager.java”.

TABLE I
BUG 355616 IN ECLIPSE’S BUG TRACKING SYSTEM

Item Content
Bug ID 355616
Component Common-Debug
Product DLTK
Title Path mapping not done for ”Run to line” break-

points
Description When using ”Run to line”, the created break-

point contains the path for original file without
any mapping. The proposed patch just adds this
mapping before creating the breakpoint.

TABLE II
BUG 399991 IN ECLIPSE’S BUG TRACKING SYSTEM

Item Content
Bug ID 399991
Component Common
Product DLTK
Title Blocking breakpoint command
Description When a breakpoint is added a ”set breakpoint”

command is sent to each thread (session) ... This
problem is also available for the other commands
manage by ScriptBreakpointManager

Fig. 1. The Architectures of CBOW Models

We can see that based on similar bug recommendation,

developers can focus on fewer files when handling the same

number of bugs. A developer assigned to similar bugs are like-

ly to be able to resolve them faster than if he/she is assigned

to irrelevant bugs since they can spend less time on program

comprehension, which has been shown to take a substantial

proportion of development and debugging time [12].

B. Word Embedding

In 1954, Harris proposed the distributional hypothesis,

which states that words appearing in similar context tend to

have similar meaning [13]. From then on, many distributional

semantic models (DSMs) are proposed. In DSMs, each word

is represented as a d-dimensional vector of real numbers such

that words appearing in similar context have similar vector

representations. Most of traditional DSMs are count-based

models. Recently, some novel models based on neural network

are proposed [14], [15], [16], [17]. These models use deep

neural networks to learn from the context of the corpus to

generate low-dimensional word vector representations, which

is called “word embedding”. Word embedding models have

been proven to perform much better than the traditional count-

based models for various information retrieval tasks [6], [18].

There are two popular word embedding models, i.e., CBOW

model and skip-gram model [16], [17]. Figure 1 and 2 shows

the architectures of the two models. In the figure, w(t)
represents the current word and w(t±i) (i=1,2,...,n) represents
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Fig. 2. The Architectures of Skip-gram Models

the surrounding words of w(t) (i.e., the context). Specifically,

CBOW model predicts the current word based on its context,

while skip-gram model predicts the surrounding words given

the current word. In our work, we use skip-gram model, since

it has been shown to work well by past studies to solve other

software engineering tasks [6], [18].

C. Motivation of Using Word Embedding

In software engineering, there are many information re-

trieval tasks such as duplicate bug identification in open source

projects and tag recommendation in Q&A websites [9], [10],

[19]. Most of them leverage traditional information retrieval

techniques such as cosine similarity and TF-IDF method and

extend the techniques to achieve good performance on these

tasks.

Recently, word embedding techniques have been applied

to several information retrieval tasks in software engineering

and shown to achieve good performance [6], [18]. Word

embedding techniques focus more on the relationship of words

considering the context they appear, while traditional informa-

tion retrieval techniques such as TF-IDF method focus more on

the relationship of different documents in the whole corpus.

We think the two classes of techniques are complementary.

Therefore, in our approach we compute and combine two

similarity scores based on word embedding vectors and TF-

IDF vectors.

III. DATA COLLECTION AND PREPROCESSING

In this section, we describe the details our data collection

and data preprocessing step. We first introduce how we extract

useful information from bug reports in Section III-A. Then

we describe the process of building ground truth in detail in

Section III-B.

A. Extracting Information From Bug Reports

We first collect bug reports whose bug ids range from

[1,400000] for each of two large open-source projects, i.e.,

Eclipse and Mozilla, from the projects’ Bugzillas. The bug

reports of Eclipse are from October 2001 to February 2013,

and those of Mozilla are from September 2001 to October

2007. Note that we use bug reports that are submitted at

least 3 years ago since we want to consider only a set of

fixed bug reports that are not likely to be reopened. Newer

bug reports may not be stable; they can be reopened and the

corresponding new fixes can touch more files. The latest bug

reports considered by Rocha et al.’s study [2] are from 2012.

For each bug report, we extract its title and description as well

as the product and component information. These information

will be used by our approach for recommending similar bugs.

For each bug report, we combine its title and description into

a single document. And then we preprocess the document with

the following steps. First, we extract all the terms (i.e., words)

from the document. And then we remove stop words, numbers,

punctuation marks and other non-alphabetic characters since

they contain little information. Finally, we use the Snowball

stemmer [20] to transform the remaining terms to their root

forms (e.g., ‘reading’ and ‘reads’ are reduced to ‘read’) in

order to reduce the feature dimensions and unify similar words

into a common representation.

For the product and component information, we directly

extract them from two fields of bug reports, i.e., product field

and component field. We integrate the two kinds of information

as a set. Specifically, each bug corresponds to a set set =
{p, c}, in which p denotes the product information of the bug

and c denotes the component information of the bug.

B. Building Ground Truth

To build the ground truth, we also collect in total 3,838,708

commit logs of Eclipse and Mozilla from Github. Generally,

a commit log contains a message describing which bug the

commit is aimed to fix and a list of committed files. Therefore,

we can have bugs (bug ids) and their corresponding commit

file lists based on these commit logs. Specifically, we use the

approach proposed by Sliwerski et al. [21] to extract bug ids

from commit messages. Since one bug may correspond to

several commit logs, we union the committed file lists which

correspond to the same bug id. Finally, we link bug reports

and committed file lists according to the bug ids in order to

ensure each bug has both bug report and committed file list.

Using the linked bug reports and committed file lists, we

identify similar bugs. As mentioned before, similar bugs are

bugs that require handling of many common code files. We use

the method proposed by Rocha et al. to label similar bugs.

Specifically, given two bugs x and y, we first calculate the

ratio of mutually committed files, denoted as Mutual(x, y),
as follows:

Mutual(x, y) =
|Fx

⋂
Fy|

min(|Fx|, |Fy|)
In the above formula, Fx and Fy represents the committed

file lists of x and y. Next, we set a threshold for Mutual(x, y)
to identify whether x and y are similar. By default, the

threshold is set as 0.5. That is, if at least half of the committed

files of x and y are mutually committed, they are labeled as
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Fig. 3. The Overall Framework of Our Approach.

similar; otherwise, they are labeled as not similar. We follow

the process to compare each pair of bugs and label all the

similar bugs as the ground truth. In total, we find 13,337,653

pairs of similar bugs in Eclipse and 10,596,675 pairs of similar

bugs in Mozilla.

IV. OUR PROPOSED APPROACH

In this section, we elaborate our proposed approach. In

particular, we first present an overall framework of our ap-

proach. Then, we describe in detail the implementation of each

important step of our framework.

A. Overall Framework

Figure 3 presents the overall framework of our proposed

approach. The framework mainly contains four components,

i.e., TF-IDF component, word embedding component, prod-

uct & component information component and combination

component. In the first three components, we calculate three

similarity scores based on the documents (i.e., bug titles and

descriptions) and product and component information in the

bug reports for the query bug and each of the pending bugs.

In the last component, we combine the three similarity scores

into a final score for each pending bug and recommend the

bugs with the highest final scores as the similar bugs with

respect to the query bug.

Specifically, given a query bug, in the first component we

transform the documents (i.e., bug titles and descriptions) into

TF-IDF vectors (cf. Section IV-B), and calculate the cosine

similarity of the query bug with each of pending bugs based

on their TF-IDF vectors to generate the first similarity score

Score1 (Step 1-2). In the second component, we transform

the documents (i.e., bug titles and descriptions) into word

embedding vectors (cf. Section IV-C), and calculate the cosine

similarity of the query bug with each of pending bugs based on

their word embedding vectors to generate the second similarity

score Score2 (Step 3-4). In the third component, we generate

the third score Score3 for the query bug and each of pending

bugs based on the product and component information (cf.

Section IV-D) in their bug reports (Step 5).

After having the three similarity scores, we combine them

into a final score for each pending bug (cf. Section IV-E). The

higher the score, the more similar the corresponding pending

bug is with the query bug. Therefore, we sort the pending

bugs based on the final scores, and recommend the top bugs

as similar bugs (Step 6).

B. TF-IDF Vectors

TF-IDF (Term Frequency-Inverse Document Frequency) is

one of the most popular information retrieval techniques. The

main idea of TF-IDF is that if a term appears many times in

one document and a few times in the other documents, the

term has a good capability to differentiate the documents, and

thus the term has high TF-IDF value.

Specifically, given a term t and a document d, we can define

TF and IDF as follows:

TF (t, d) =
Number of times t appears in d

Number of terms in d

IDF (t) = log
Total number of documents

Number of documents that contain t + 1

Finally, TF-IDF is computed as:

TF-IDF(t, d) = TF (t, d)× IDF (t)

With the above formula, a document d (i.e., a bug report’s

title and description) can be represented as a TF-IDF vector,

i.e., d = (w1, w2...wn), where wi denotes the TF-IDF value

of the ith term in the document d.

With the TF-IDF vectors, we can compute similarity of

two documents. We use cosine similarity since it is a popular

method and has been shown to work well for TF-IDF vectors.

Given two TF-IDF vectors v1 and v2, the similarity score

Score1 is calculated as follows:

Score1 =
v1 · v2

|v1| ∗ |v2|
A bigger value of Score1 indicates that the corresponding

two documents are more similar.

C. Word Embedding Vectors

In our paper, we leverage word embedding technique using

skip-gram model. Specifically, given a word w, we denote

the set of the surrounding context words of w as Cw. The

objective function J of a skip-gram model (which needs to be
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maximized) is the sum of log probabilities of the surrounding

context words under the condition of a center word:

J =
n∑

i=1

∑
wj∈Cwi

log p(wj |wi)

In the above formula, n denotes the whole length of

the word sequence. In addition, p(wj |wi) is the conditional

probability defined using the following softmax function:

p(wj ∈ Cwi
|wi) =

exp(vTwj
vwi

)∑
w∈W exp(vTwvwi

)

In the above formula, vw is the vector representation of the

word w, and W is the vocabulary of all words. By training a

whole corpus, all the words in the vocabulary of the corpus can

be represented as a d-dimensional vectors where d is a variable

parameter and generally set as an integer such as 100.

With skip-gram model, each word is transformed into a

fixed-length vector. In theory, a document can be represented

as a matrix in which each row represents a word. However,

since different documents have different numbers of words,

it is difficult to measure document similarity in this way.

Therefore, we transform the document matrix into a vector

by averaging all the word vectors the document contains.

Specifically, given a document matrix that has n rows in total,

we denote the i-th row of the matrix as ri and the transformed

document vector vd is generated as follows:

vd =

∑
i ri
n

With the above formula, each document can be represented

as a word embedding vector. We also use cosine similarity

to measure the similarity of each pair of word embedding

vectors to generate the similarity score Score2. Also, the

bigger Score2 is, the more similar two documents are.

D. Leveraging Product & Component Information

Based on the definition of similar bugs (i.e., bugs that

require handling of many common code files), almost all

similar bugs are in the same product and component. There-

fore, we also generate a similarity score Score3 based on

the product and component information in bug reports to

better recommend similar bugs. As mentioned in Section III,

each bug can be mapped to a set containing its product and

component information. Given two bugs, we denote their

corresponding sets as set1 and set2. The similarity score

Score3 is calculated as follows:

Score3 =
|set1

⋂
set2|

|set1
⋃
set2|

According to the above formula, if two bugs are in the same

product and in the same component, Score3 equals to 1. If

two bugs are neither in the same product nor in the same

component, Score3 equals to 0. In other cases (two bugs are

in the same product or in the same component), Score3 equals

to 0.5.

E. Similar Bug Recommendation

After Score1, Score2 and Score3 have been computed, we

combine them to produce a final score to better recommend

similar bugs. As mentioned before, although both Score1 and

Score2 represent document (bug title and description) simi-

larity, they are complementary. The score Score1 is generated

based on TF-IDF vectors, which focus more on relationship

of different documents in the whole corpus. The score Score2
is generated based on word embedding vectors, which focus

more on the relationship of words considering the context they

appear. Since it is unclear which of the two scores are more

important, we simply add them up so that they have equal

weight. The score Score3 can be seen as a filter. If two bugs

are in the same product and in the same component, whether

they are similar bugs or not depends mainly on their document

similarity, while if two bugs are neither in the same product

nor in the same component, they are unlikely to be similar

bugs even if their document similarity is high. Therefore, we

multiply the sum of the first two scores with Score3 as the

final score Score:

Score = (Score1 + Score2)× Score3

Based on the above formula, Score is a non-negative

number. A bigger Score indicates that the corresponding pair

of bugs are more similar.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our ap-

proach. The experimental environment is an Intel(R) X-

eon(TM) E5-2650 2.00 GHz CPU, 80GB RAM desktop

running Windows Server 2008 (64-bit). We first present our

evaluation metrics and experiment setup in Sections V-A

and V-B. We then present three research questions and our

experiment results that answer these questions in Section V-C.

A. Evaluation Metrics

We use three evaluation metrics, i.e., recall-rate@k, mean
average precision (MAP) and mean reciprocal rank (MRR), to

evaluate the effectiveness of our approach. These metrics are

commonly-used to evaluate recommendation systems to solve

software engineering tasks [3], [4], [5], [2], [6]. To briefly

introduce these metrics, we first give some notations. Given

a query bug q, let us denote its ground truth similar bug set

as S(q), and the top-k recommendation set produced by a

recommendation system as R(q). Based on these notations

we define the three metrics as follows:

1) Recall-rate@k. Recall-rate@k checks whether a top-

k recommendation is useful. The definition of recall-
rate@k for a query bug q is as follows:

Recall-rate@k(q) =

{
1 if S(q)

⋂
R(q) �= ∅

0 Otherwise

According to the formula, if there is at least one ground

truth similar bug in the top-k recommendation, the top-k

recommendation is useful for the query bug q. Given a
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set of query bugs, we compute the proportion of useful

top-k recommendations by averaging the recall-rates@k
of all query bugs to get an overall recall-rate@k.

2) MAP. MAP (Mean Average Precision) is defined as the

mean of the Average Precision (AvgP) values obtained

for all the evaluation queries. The AvgP of a single query

q is calculated as follows:

AvgP (q) =

|S(q)|∑
n=1

Prec@k(q)

|S(q)|

In the above formula, Prec@k is the retrieval precision

over the top-k bugs in the ranked list, i.e., the ratio of

ground truth similar bugs of the query bug q in the top-k

recommendation:

Prec@k(q) =
# of ground truth similar bugs in top-k

n

3) MRR. MRR (Mean Reciprocal Rank) is defined as the

mean of the Reciprocal Rank (RR) values obtained for

all the evaluation queries, where RR of a single query q
is the multiplicative inverse of the rank of the first correct

answer firstq (i.e., first ground truth similar bug in the

recommendation list):

RR(q) =
1

firstq

B. Experimental Settings

In our experiment, we simulate real bug resolution process

to recommend similar bugs. When a bug triager (i.e., a person

who evaluates incoming bug reports to decide the subsequent

course of action) processes a new bug report, he/she may

search for similar bugs reported before to find similar bugs,

and assign the new bug to a developer who have resolved a

similar bug recently. Therefore, all bugs in our datasets are

regarded as query bugs once. And given a query bug q, we

only recommend its potential similar bugs whose bug ids are

less than that of q (i.e., bugs reported before q was reported).

Since our approach recommends similar bugs based on

the combined similarity scores, we can rank all the pending

bugs given a query bug. Therefore, we can achieve top-k

recommendation with any integer less than the total number

of pending bugs for k. Specifically, for each query bug,

we recommend k most similar bugs which have the highest

similarity scores in a top-k recommendation.

In our approach, word embedding technique is applied by

using the python package named gensim1. The implementa-

tion contains many parameters such as context window size

s, initial learning rate alpha and the dimension of the word

vector d. We use the default values for all the parameters.

Specifically, s is set as 5, alpha is set as 0.025 and d is set

as 100.

1http://radimrehurek.com/gensim/models/word2vec.html

C. Research Questions

Our experiments are designed to answer the following

research questions:

RQ1 How effective is our approach to recommend similar
bugs?
Motivation. In the first research question, we want to in-

vestigate the effectiveness of our approach in similar bug

recommendation. We also need compare our approach with

the state-of-the-art approach to investigate whether and to what

extent it improves over the prior work.

Methodology. We compare our approach against NextBug [2].

NextBug relies on a standard information retrieval technique

for preprocessing documents (i.e., titles of bug reports) and

calculating the cosine similarity of the documents for the

query bug and all pending bugs. After having all the similarity

scores, NextBug sets a threshold (ranging from 0.0 to 0.8) to

recommend similar bugs. That is, NextBug only recommends

similar bugs whose similarity scores are above the threshold.

In our experiment, we set the threshold as 0.3 for NextBug
since the value achieves a good result [2]. Although NextBug
is simple, it has been proven to perform better than an alter-

native approach (REP [10]) for similar bug recommendation

by Rocha et al. [2].

We use the three metrics presented earlier to make compar-

ison. For recall-rate@k, we consider recall-rate@1, recall-
rate@5 and recall-rate@10. We use recall-rate@1 to in-

vestigate the effectiveness of our approach and NextBug
under the strictest requirement. However, the recall-rate@1
result may not be good; thus, we also investigate other top-k

results (where k is a relatively small number, e.g., 10). Past

recommendation studies in software engineering also consider

larger values of k [5], [22]. For example, for bug localization,

Kochhar et al. show that many developers are willing to check

top-5 and even top-10 results [22]. Therefore, we consider

recall-rate@5 and recall-rate@10 as well.

TABLE III
PERFORMANCE OF OUR APPROACH COMPARED WITH NEXTBUG FOR THE

ECLIPSE DATASET

Project NextBug Our Approach Improvement
Recall-Rate@1 0.1140 0.1691 48.33%
Recall-Rate@5 0.2499 0.3791 58.90%

Recall-Rate@10 0.3176 0.4867 53.24%
MAP 0.1696 0.2669 57.37%
MRR 0.2858 0.4489 57.07%

TABLE IV
PERFORMANCE OF OUR APPROACH COMPARED WITH NEXTBUG FOR THE

MOZILLA DATASET

Project NextBug Our Approach Improvement
Recall-Rate@1 0.1093 0.1993 82.34%
Recall-Rate@5 0.2349 0.4342 84.84%

Recall-Rate@10 0.2908 0.5373 84.77%
MAP 0.1821 0.3330 82.87%
MRR 0.3202 0.5905 84.42%
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Results. Tables III and IV present the results of our approach

as compared with those of the baseline NextBug . From the

tables, we can conclude several points.

First, NextBug does not perform as well as what we expect

in our experiment, which results from two main reasons. First,

the similarity calculation method is not good enough. Second,

since NextBug sets a threshold, it at times recommends few

bugs. For example, given a query bug q and a threshold 0.3,

if there are only one pending bug whose similarity score is

above 0.3, then NextBug only recommends one similar bugs

for q.

Second, our approach beats NextBug in terms of all the

metrics for both Eclipse and Mozilla datasets. Specifically,

our approach achieves a recall-rate@10 of 0.49 and a MRR of

0.45 for the Eclipse dataset, and a recall-rate@10 of 0.54 and a

MRR of 0.59 for the Mozilla dataset. In addition, our approach

achieves an improvement of nearly 60% for the Eclipse dataset

and an improvement of nearly 85% for the Mozilla dataset over

NextBug in terms of all the metrics.

TABLE V
MAPPINGS OF CLIFF’S DELTA VALUES TO THEIR INTERPRETATIONS [23]

Cliff’s Delta (δ) Interpretation
-1 <= δ < 0.147 Negligible

0.146 <= δ < 0.33 Small
0.33 <= δ < 0.474 Medium
0.474 <= δ <= 1 Large

To better demonstrate the superiority of our approach, we

perform the Wilcoxon signed-rank statistical test to compute

the p-value, and also compute the Cliff’s delta. Wilcoxon

signed-rank statistical test is often used to check if the dif-

ference in two data groups is statistically significant (which

corresponds to a p-value of less than 0.05) or not. We include

the Bonferroni correction to counteract the impact of multiple

hypothesis tests. Cliff’s delta is often used to check if the

difference in two data groups are substantial. The range of

Cliff’s delta is in [-1, 1], where -1 or 1 means all values

in one group are smaller or larger than those of the other

group, and 0 means the data in the two groups is similar. The

mappings between Cliff’s delta scores and effectiveness levels

are shown in Table V. We use all results from all query bugs

to compute p-value and Cliffs delta. For each query bug, we

have one value for NextBug and another for our approach. By

computing the p-value and Cliff’s delta, the extent of which

our approach improves over NextBug can be more rigorously

assessed.

Tables VI and VII present the p-values and Cliff’s deltas

of our approach compared with NextBug in terms of five

metrics for the Eclipse and Mozilla dataset, respectively. From

the tables, we can see the effectiveness of our approach more

clearly. Compared with NextBug , our approach statistically

significantly (i.e., p-value < 0.05) and substantially (i.e.,

Cliff’s delta is not negligible) achieves a better performance in

terms of all the metrics for both Eclipse and Mozilla datasets.

TABLE VI
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH NEXTBUG’S FOR THE ECLIPSE DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)

Recall-Rate@10 <2.2e-16 1 (large)
MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

TABLE VII
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH ’S FOR THE MOZILLA DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)

Recall-Rate@10 <2.2e-16 1 (large)
MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

Our approach improves the performance of the start-of-the-

art approach NextBug statistically significantly and sub-

stantially for similar bug recommendation. Specifically, our

approach achieves an improvement of nearly 60% for the

Eclipse dataset and an improvement of nearly 85% for the

Mozilla dataset in terms of all the metrics.

RQ2 Does the combined similarity score generated by our
approach works better than the three individual similarity
scores?
Motivation. We have validated the effectiveness of our ap-

proach through the first research question. Our approach

clearly outperforms the state-of-the-art baseline for similar bug

recommendation. Since our approach combines three similari-

ty scores, in this RQ we want to go further by investigating the

recommendation effectiveness of the three individual similarity

scores. We want to know whether the combined similarity

score generated by our approach is better than the three

individual similarity scores.

Methodology. To demonstrate the superiority of the combined

similarity score generated by our approach, we compare our

approach with three incomplete versions of our approach (sub-

approaches) – referred to as Sub-1, Sub-2 and Sub-3. For

Sub-1, we only use the first similarity score (generated by

computing cosine similarity of TF-IDF vectors) to recommend

similar bugs. The first sub-approach is similar to NextBug .

The only difference is that Sub-1 recommends similar bugs on-

ly according to the similarity score without setting a threshold.

For Sub-2, we only use the second similarity score (generated

by computing cosine similarity of word embedding vectors) to

make recommendation. And for Sub-3, we only use the third

similarity score, which is based on product and component

information in a bug report, to make recommendation.

Results. Table VIII and IX present the effectiveness of our

approach compared with the three incomplete versions of

our approach (its sub-approaches). From the tables, we can

conclude several points.
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TABLE VIII
PERFORMANCE OF OUR APPROACH COMPARED WITH THE THREE

SUB-APPROACHES FOR THE ECLIPSE DATASET

Metrics Sub-1 Sub-2 Sub-3 Our Approach
Recall-Rate@1 0.1153 0.0781 0.0280 0.1691
Recall-Rate@5 0.2608 0.1864 0.1082 0.3791

Recall-Rate@10 0.3434 0.2495 0.1777 0.4867
MAP 0.1696 0.1135 0.0636 0.2669
MRR 0.2858 0.1972 0.1417 0.4489

TABLE IX
PERFORMANCE OF OUR APPROACH COMPARED WITH THE THREE

SUB-APPROACHES FOR THE MOZILLA DATASET

Metrics Sub-1 Sub-2 Sub-3 Our Approach
Recall-Rate@1 0.1152 0.0606 0.0933 0.1993
Recall-Rate@5 0.2726 0.1646 0.2858 0.4342

Recall-Rate@10 0.3665 0.2302 0.4043 0.5373
MAP 0.1821 0.1013 0.2204 0.3330
MRR 0.3202 0.1821 0.4073 0.5905

First, our approach performs much better than the three

incomplete versions of our approach (its sub-approaches) in

terms of all the metrics. Specifically, for the Eclipse dataset

our approach improves the best sub-approach by 42%, 57%

,57% for recall-rate@10, MAP, MRR respectively, and for

the Mozilla dataset our approach improves the best sub-

approach by 33%, 51% ,45% for recall-rate@10, MAP, MRR

respectively. The results indicate that the combined score gen-

erated by our approach works better than the three individual

similarity scores indeed.

Second, the three sub-approaches have different perfor-

mances in different datasets and there is no exclusive one that

performs the best in both datasets. For example, for the Eclipse

dataset the first sub-approach Sub-1 performs the best, while

the third sub-approach Sub-3 performs the worst in terms of all

the metrics. On the contrary, for the Mozilla dataset the third

sub-approach Sub-3 performs the best in terms of four out of

the five metrics except recall-rate@1. These results highlight

that it is reasonable to combine the three individual scores into

one final score. By doing so, the weakness of one score can

be covered by the strength of the others for different datasets.

To better demonstrate the superiority of our approach over

the three sub-approaches, we also compute the p-value (using

Wilcoxon signed-rank statistical test) and the Cliff’s delta.

TABLE X
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB1 FOR THE ECLIPSE DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)
Recall-Rate@10 <2.2e-16 1 (large)

MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

Tables X to XV present the p-values and Cliff’s deltas of

our approach compared with the three incomplete versions of

TABLE XI
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB1 FOR THE MOZILLA DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)

Recall-Rate@10 <2.2e-16 1 (large)
MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

TABLE XII
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB2 FOR THE ECLIPSE DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)

Recall-Rate@10 <2.2e-16 1 (large)
MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

our approach (its sub-approaches) in terms of five metrics for

the Eclipse and Mozilla dataset, respectively. From the tables,

we can see the superiority of our approach over its three sub-

approaches more clearly. Compared with the sub-approaches,

our approach statistically significantly (i.e., p-value < 0.05)

and substantially (i.e., Cliff’s delta is not negligible) achieves

a better performance in terms of all the metrics for both Eclipse

and Mozilla datasets.

The combined similarity score generated by our approach

works better than the three individual similarity scores. Our

approach statistically significantly and substantially achieves

a better performance in terms of all the metrics for both

Eclipse and Mozilla datasets, which highlights the benefit of

combining the three scores together.

D. Discussion

The above two research questions has shown the effective-

ness and benefit of a design decision of our approach by

comparing it with the start-of-the-art approach NextBug and

the three incomplete versions of our approach. As mentioned

before, a recommendation system can generate top-k recom-

mendation in which k is a variable. Therefore, we also vary the

value of k from 1 to 10 to better investigate the performance

of our approach for similar bug recommendation.

We use the metric recall-rate@k and we plot five curves

on one chart representing five approaches, i.e., our approach,

NextBug , Sub-1, Sub-2 and Sub-3. From the curves, we can

observe how the recommendation performance improves with

the increase of k.

Figure 4 shows the recommendation performance of the five

approaches when varying the parameter k in top-k recommen-

dation for both datasets. From the figure, we can see that the

recommendation performance of our approach steadily rises

with the increase of k and is better than those of the other

four approaches by a large margin.
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(a) Eclipse (b) Mozilla

Fig. 4. The recall-rate@k of five approaches when varying the parameter k in top-k recommendation on the Eclipse and Mozilla datasets

TABLE XIII
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB2 FOR THE MOZILLA DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)
Recall-Rate@10 <2.2e-16 1 (large)

MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

TABLE XIV
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB3 FOR THE ECLIPSE DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)
Recall-Rate@10 <2.2e-16 1 (large)

MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

E. Threats to Validity

Threats to construct validity relate to the suitability of our

evaluation metrics. We use three metrics, i.e., recall-rate@k,

MAP (Mean Average Precision) and MRR (Mean Recipro-

cal Rank). These metrics are commonly-used in information

retrieval tasks in software engineering [3], [4], [5], [2], [6].

Thus, we believe there is little threat to construct validity.

Threats to internal validity relate to errors in our exper-

iments. When building ground truth and linking bug reports

and committed file lists, two large databases are involved. One

is bug report database which contains a total of 763,729 bug

reports, and the other is commit log database which contains

a total of 3,838,708 commit logs. There may be some errors

when processing so much data. We have double checked

our implementations and also inspect part of ground truth to

ensure they are truly similar bugs. Hence, we believe there are

minimal threats to internal validity.

Threats to external validity relate to the generalizability of

our results. We have evaluated our approach on two popular

open source projects, i.e., Eclipse and Mozilla. In the future,

TABLE XV
P-VALUES AND CLIFF’S DELTA COMPARING THE FIVE METRICS OF OUR

APPROACH WITH SUB3 FOR THE MOZILLA DATASET

Metrics P-Value Cliff’s Delta
Recall-Rate@1 <2.2e-16 1 (large)
Recall-Rate@5 <2.2e-16 1 (large)

Recall-Rate@10 <2.2e-16 1 (large)
MAP <2.2e-16 1 (large)
MRR <2.2e-16 1 (large)

we plan to reduce this threat further by analyzing more datasets

from more open source projects.

VI. RELATED WORK

In this section, we first highlight the most related work about

similar bug recommendation in Section VI-A. Then we present

several works about duplicate bug recommendation, which

is related to similar bug recommendation, in Section VI-B.

Next, we present several other works about bug report man-

agement in Section VI-C. At last, we introduce some software

engineering studies that also leverage word embedding in

Section VI-D.

A. Similar Bug Recommendation

Similar bug recommendation is a newly-proposed task. The

most related work to ours is the recent study by Rocha

et al. [2]. They propose a recommender named NextBug
which relies on standard information retrieval techniques for

preprocessing documents (i.e., titles of bug reports) and cal-

culating cosine similarity between documents (i.e., query bug

and all pending bugs). After having all the similarity scores,

NextBug sets a threshold to recommend similar bugs. In our

work, we compare our approach with NextBug since it is the

first and state-of-the-art approach. Rocha et al. have shown

that NextBug outperforms a state-of-the-art duplicated bug

detection technique REP for similar bug recommendation.

B. Duplicated Bug Recommendation

There are a number of studies focusing on the recommen-

dation of duplicate bug reports [7], [8], [9], [10]. Runeson et
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al. use three similarity metrics, i.e., cosine, dice and Jaccard

similarity, to identify potential duplicates of a given bug

report [7]. Wang et al. analyze both the textual contents in bug

reports and execution information to detect if two bug reports

are duplicates of each other [8]. They find that execution

information is very useful and can largely improve the perfor-

mance of duplicate bug report detection. Sun et al. leverage a

discriminative model to identify duplicate bug reports [9]. In a

later work, they propose a retrieval function REP to improve

the performance of their previous model [10]. REP utilizes

more information available in bug reports and extends BM25F

to measure text similarity more accurately.

In our work, we consider a related but different problem,

i.e., similar bug recommendation. The condition for similar

bugs is much looser than that of duplicate bugs.

C. Bug Report Management

There are many studies on other bug report management

tasks [24], [25], [26], [27], [28], [29], [30], [31], [32], [33].

We highlight three categories of them below.

There are many studies on bug categorization in the lit-

erature [31], [34], [35]. Vcubranic proposes to apply text

categorization techniques to assist in bug triage [31]. Huang

et al. propose a novel Orthogonal Defect Classification (ODC)

system by integrating experts’ experience and domain knowl-

edge [34]. Thung et al. propose a text mining solution that can

categorize bugs into various types [35]. They compare six clas-

sic classification algorithms and conclude that SVM achieves

the best performance for automatic bug categorization.

There are a number of studies on re-opened bug identifi-

cation by leveraging machine learning algorithms [32], [36],

[37]. Shihab et al. study re-opened bugs on three projects

and propose prediction models based on decision trees [32].

They use sampling methods to handle the imbalanced datasets.

Xia et al. investigate the performance of different supervised

learning algorithms for re-opened bug identification [36].

They find that bagging of decision trees achieves the best

performance. In a later work, Xia et al. propose a novel

approach ReopenPredictor which extract more textual features

from the bug reports [37]. The approach automatically estimate

thresholds to maximize the identification performance.

Also, there are some studies that predict the severity of

bug reports [33], [38], [39]. Menzies and Marcus propose a

novel automated method called SEVERIS [33]. The method

is based on text mining and machine learning techniques

and it is applied to predict the severity of bug reports from

NASA. Lamkanfi et al. investigate whether the severity of

a reported bug can be accurately predicted by analyzing its

textual description using text mining algorithms [38]. Different

from Menzies and Marcus, Lamkanfi et al. focus on coarse-

grained severity levels (i.e., severe and not-severe) rather than

fine-grained ones. In a later work, they go further to compare

four well-known text mining algorithms to accurately predict

the severity of bug reports [39].

Similar to the above studies, the goal of this work is also

to help developers better manage bug reports, which are often

too many for developers to deal with [1]. We consider an

orthogonal research problem than the above studies though,

namely similar bug recommendation.

D. Studies Leveraging Word Embedding

To our best knowledge, there are only a few software en-

gineering studies that leverage word embedding techniques to

solve software engineering tasks [6], [18], [40]. We highlight

two of them below. Ye et al. propose an approach which

projects natural language statements and code snippets as

meaningful vectors in a shared representation space [6]. Their

empirical evaluations show that word embedding techniques

lead to improvements in information retrieval tasks for soft-

ware engineering. Chen et al. present a novel approach to

recommend analogical libraries in Q&A discussions [18]. The

approach incorporates relational and categorical knowledge

into word embedding and achieves a good performance in

analogical libraries recommendation.

In this work, we are the first to leverage word embedding

techniques for similar bug recommendation. We consider a

different problem than the problems addressed by prior soft-

ware engineering studies that also leverage word embedding

techniques.

VII. CONCLUSION AND FUTURE WORK

In the paper, we propose a novel approach to recommend

similar bugs. The approach combines a traditional information

retrieval technique and a word embedding technique, and

takes bug report titles and descriptions as well as product

and component information in bug reports into consideration.

With preprocessed bug report documents (i.e., bug titles and

descriptions), we build TF-IDF vectors and word embedding

vectors and calculate two similarity scores based on them

respectively. In addition, we calculate a third similarity score

based on product and component information. Finally, we

combine the three similarity scores into one final score and

recommend similar bugs with it. We compare our approach

with a state-of-the-art approach named NextBug and perform

experiments on two large open source software projects, i.e.,

Eclipse and Mozilla, containing a total of 763,729 bug reports

(389,975 bug reports in Eclipse and 373,754 bug reports in

Mozilla). The experimental results show that our approach

achieves better performance than NextBug for similar bug

recommendation. In particular, our approach achieves an im-

provement of nearly 60% for the Eclipse dataset and an

improvement of nearly 85% for the Mozilla dataset in terms

of all the metrics.

In the future, we plan to perform experiments on more

datasets to reduce the threats to external validity. We also plan

to further improve the approach by optimizing the parameters

of the word embedding technique.
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