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ABSTRACT
In open source communities (e.g., GitHub), developers fre-
quently submit pull requests to fix bugs or add new features
during development process. Since the process of pull re-
quest is uncoordinated and distributed, it causes massive
duplication. Usually, only the first pull request qualified by
reviewers can be merged to the main branch of the repository,
and the others are regarded as duplication by maintainers.
Since the duplication largely aggravates workloads of project
reviewers and maintainers, the evolutionary process of open
source repositories is delayed. To identify the duplicate pull
requests automatically, Ren et al. proposed a state-of-the-art
approach that models a pull request by nine features and
determine whether a given request is duplicate with the other
existing requests or not. Nevertheless, we notice that their
approach overlooked the time factor which is a significant
feature for the task. In this study, we investigate the influence
of time factor and improve the pull request representation.
We assume that two pull requests are more likely duplicate
when their created time are close to each other. We verify
the assumption based on 26 open source repositories from
GitHub with over 100,000 pairs of pull requests. We integrate
the time feature to the nine features proposed by Ren et al.
and the experimental results show that it can substantially
improve the performance of Ren et al.’s work by 14.36% and
11.93% in terms of F1-score@1 and F1-score@5, respectively.
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1 INTRODUCTION
Pull requests are commonly used by developers or teams to
collaborate on their development work. Every contributor can
fork or clone the repositories and make their changes indepen-
dent with each other. Many open source projects on GitHub
use pull requests to manage changes from contributors. They
are quite useful for providing a mechanism to inform project
maintainers about changes that contributors have made. Also,
they could be used to initiate code review and general discus-
sion on a series of changes before being merged into the main
branch. Gousios et al. [11] have illustrated the popularity of
pull request development model. They concluded that pull
request is a significant mechanism for distributed software
development. Many projects are growing fast with a large
number of pull requests, e.g., Rails1, which has received more
than 23,000 pull requests.

Despite the benefit of pull request process, it in nature
is an uncoordinated and distributed process. It is difficult
to maintain an overview of what changes in individual pull
request because contributors can make any necessary modifi-
cations [5, 8, 9, 37]. Developers could simultaneously submit
pull requests implementing the same functionality. These pull

1https://github.com/rails/rails/pulls
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requests are termed as duplicate pull requests. Much effort is
wasted in open source projects due to duplicate development.
It significantly increases the maintenance effort for project
maintainers [8, 30]. Yu et al. [41] analyzed pull requests from
26 prevalent projects on GitHub. They found that on average
2.5 reviewers participated in review discussions of duplicate
pull requests and 5.2 review comments were generated before
the duplicate relation was identified. Moreover, duplicate
development is common in the open source projects. Gousios
et al. [11] summarized nine reasons why pull requests were
rejected with 290 projects on GitHub, and found that 23% of
pull requests were rejected because of duplicate development
(including parallel development and superseding other pull
requests). Wang et al. [38] conducted an empirical study
to investigate why code changes were abandoned with four
prevalent open source projects on Gerrit, which is common-
ly used for code review. They found that about 40% code
changes were abandoned due to duplicate development. Thus,
it is necessary to detect duplicate pull requests which will
help project maintainers to decrease workload of processing
duplicate pull requests.

To address the problem of duplicate pull requests, there
are two threads of work as follows:

∙ pull request retrieval: given a new pull request, re-
turn other pull requests that are similar to it.

∙ pull request classification: given a new pull request,
classify whether it is a duplicate pull request or not.

For the first thread, we refer to it as pull request retrieval
problem as the task is similar to the retrieval of similar
document from a corpus. Li et al. [22] proposed an approach
to identify duplicate pull requests among history pull requests.
They calculated the textual similarity between a pair of pull
requests through title and description. At last, they got the
top-K duplicate pull requests among existing ones by ranking
them with arithmetic average of the two similarity value of
title and description.

For the second thread, we refer to it as pull request clas-
sification problem as the task is to assign one out of the
two labels (i.e., duplicate or not) to pull requests. Ren et al.
[27] extracted nine features of pull requests where title and
description are both included. For the nine features, they
calculated their similarity respectively and adopted a ma-
chine learning algorithm to aggregate the nine features. At
last, they got a specific result whether a pull request is du-
plicate or not. Ren et al. [27] compared their approach to
Li et al.’s work [22], and achieved better results by 16-21%
recall-rate@k. To our best knowledge, Ren et al.’s work is
the state-of-the-art approach.

However, we observed two limitations of Ren et al.’s work.
First, the evaluation methodology of Ren et al.’s work is
extremely hard to follow which brings barriers to the following
works. It takes huge manual effort to label for all of the pull
requests for testing. To address this, we constructed a dataset
that can be used to evaluate the approach automatically.
Second, we observed that time factor plays a significant role

to indicate whether two pull requests are duplicate or not.
However, it is not considered in Ren et al’s work.

In this paper, we aim to investigate how time affects du-
plicate pull request detection. For the pull requests in our
training dataset, we extract ten features (i.e., the combina-
tion of time feature and the nine features proposed by Ren et
al.). Then, we train a classifier with these features. Next, for
new pull requests, we extract their features and take them
as input into the classifier. The output is whether the pull
requests are duplicate. We have experimented our approach
based on Ren et al.’s work. It shows that our approach could
outperform the study by Ren et al..

Our contributions are as follows:
(1) We proposed a new feature in terms of time for du-

plicate pull request detection, and found that it is a
significant indicator to detect duplicate pull requests.

(2) We integrated the new feature into the existing features
proposed by [27], and we found that the new feature
boosted 14.36% and 11.93% improvements over the
state-of-the-art approach in terms of F1-score@1 and
F1-score@5, respectively.

The remainder of this paper is organized as follows. In Section
2, we introduce the background and motivation. In Section
3, we present our approach. In section 4, we describe our
experiments. We present related work in Section 5. We discuss
the implications and describe threats to validity in Section 6.
We conclude our work and present future work in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Pull Request Process
Pull request as a distributed development model, and as
implemented by GitHub in particular, has formed a new ap-
proach for collaboration in distributed software development.
An outstanding characteristic of pull request development
is that it allows developers to clone any public repository.
The clone creates a repository that belongs to the developers.
The developers can modify the repository without being part
of the development team.

A typical pull request process on GitHub involves the
following steps. First of all, contributors could find an attrac-
tive project by following some well-known developers and
watching their projects. Secondly, by forking a repository,
contributors add a new feature or fix a bug on their cloned
repository. Thirdly, the contributors send the patches they
modify from the forked repository to its source database by a
pull request. Fourthly, all developers in the community have
access to review the pull request. They can discuss and give
some comments whether the pull request meets the standard
or whether the project needs the feature implemented in the
pull request or how to further improve the quality of the pull
request and so on. Next, contributors would improve and
update the pull request according to reviewers’ suggestions
by attaching new commits. Then, reviewers discuss the pull
request again. Finally, a responsible manager of the core team
takes all the view of reviewers into account, and then make
a decision to merge or reject the pull request.
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2.2 Ren et al.’s Study
To our best knowledge, the state-of-the-art approach is pro-
posed by Ren et al. [27]. Ren et al. considered the same
problem as ours and they proposed an approach to detect
duplicate pull requests, which we used as baseline in this
work. In their study, nine features included in five dimensions
were proposed. The features include:

1) Change description: It is a summary of the pull requests
written in natural language. It contains title and description.
Ren et al. calculated the similarity for title and description
respectively by Latent Semantic Indexing (LSI) [19] and
cosine similarity techniques. They made the two similarity
values as two features.

2) Patch content: It is the differences of text changes in
every file by running ‘git diff’ command. Ren et al. extracted
representative keywords from each pull request because they
found developers often share keywords when defining vari-
ables and functions. Finally, they calculated the similarity by
Vector Space Model (VSM) and cosine similarity, and made
the similarity value as a feature.

However, when a pull request is duplicate with only a
subset of another pull request, the similarity is small, which
makes it difficult to identify duplicate pull requests. To solve
the problem, they calculated the similarity of patch content
only on overlapping files, and made the similarity value as
another feature.

3) Changed files list: It contains all the changed files in
a pull request. They operationalized the similarity of two
lists of files into calculating the overlap between two sets of
changed files by using Jaccard similarity coefficient. They
made the similarity value as a feature.

Moreover, for changed files, in case that one pull request
is much bigger than the other, which results in a small ratio
of overlapping files, they made the number of overlapping
files as another feature.

4) Location of code changes: It is a range of changed lines
in the corresponding changed files. Ren et al. calculated the
similarity of location by comparing the size of overlapping
code blocks between a pair of pull requests. A pair of pull
requests are more similar if they have more overlapping
blocks. They defined the Location similarity as the length of
overlapping blocks divided by length of all the blocks, and
made the similarity value as a feature.

Besides, in order to catch duplicate pull requests between
big and small size in file level, they calculated the similarity
of pull request location for only overlapping files, and made
it as another feature.

5) References to issue tracker: It is a common practice in
which developers explicitly link a change to an existing issue
or feature request in the issue tracker. In general, the pair
of pull requests are likely to be duplicate if they reference
the same issue. Hence, Ren et al. made the reference to issue
tracker as a feature. They defined three possible values for
this feature: if the references link to different issues, the value
is -1; if they link to the same issue, the value is 1; otherwise
it is 0.

With the nine features included in five dimensions as
shown in Table 1 (the first nine features), Ren et al. used
machine learning method to train a model. After conducting
a preliminary experimental study among six popular machine
learning algorithms, they used the AdaBoost [10] which could
get the best results in the preliminary experimental study.
Their results showed that they achieved 57-83% precision for
detecting duplicate pull requests.

2.3 Motivation
Although Ren et al. extracted five dimensions of features,
they missed an important factor that impacts the duplicate
relation. Intuitively, if the created time of a pull request is
close to the created time of another one, they are likely to
be duplicate. For example, there are three pull requests in
the same project. We define them as A, B, and C, which
were created at May 1, 2012, June 1, 2018, and July 1,
2018, respectively. Intuitively, the pair of C and B have
higher chance to be duplicate than the pair of C and A
because the interval of created time between C and A is over
six years where there may be many changes in the project.
Figure 1 shows an example where there are two duplicate
pull requests (i.e., #38571 and # 38587 pull requests in
kubernetes/kubernetes on GitHub). The two pull requests
achieved the same function according to their title and the
code they added. The # 38571 pull request2 was submitted
on Dec 11, 2016, and was merged. The #38587 pull request3

was submitted on Dec 12, 2016, and was closed because it
was duplicated of # 38571 pull request which the developers
said in the Conversation part.

To validate the assumption, we did statistic analysis for
the interval of created time for each pair of pull requests in
our duplicate dataset, which is shown in Figure 2. We found
that the smaller the value of the interval of created time
for two pull requests, the more the number of duplicate pull
requests. That is, if the interval of created time of a pair of
pull requests is small, they are more likely to be duplicate.
Hence, in this paper, we aim to investigate how time factor
affects duplicate pull request detection.

3 PROPOSED APPROACH
3.1 Overall Approach
Figure 3 presents our overall approach which includes two
main phases: model building and prediction.

In the model building phase, our framework takes as input
a set of training pull requests with known labels (duplicate or
non-duplicate). The framework first extracts various features
from the pull requests. The features are quantifiable charac-
teristics of pull requests that could potentially differentiate
duplicate pull requests from non-duplicate ones. In this paper,
we consider features that are grouped into six dimensions:
change description, path content, changed files list, location
of code changes, reference to issue tracker and time. The first
five dimensions of features are proposed by Ren et al.. We
2https://github.com/kubernetes/kubernetes/pull/38571/files
3https://github.com/kubernetes/kubernetes/pull/38587/files
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(a) #38571 pull request created at 11 December 2016 in kuber-
netes/kubernetes on GitHub

(b) #38587 pull request created at 12 December 2016 in kuber-
netes/kubernetes on GitHub

Figure 1: Two duplicate pull requests in kuber-
netes/kubernetes on GitHub

proposed a new feature (i.e.,time feature). Then, based on
these features and the labels of training pull requests, we
use AdaBoost algorithm which is also used by Ren et al. to
build a model. Finally, the framework produces a prediction
model that output likelihood scores for the pull request to
be duplicate with the ones in a given dataset.

In the prediction phase, the framework takes as input a
set of testing pull requests whose labels are to be predicted.
Features are first extracted from the pull requests. Then,
model learned in the model building phase is applied to
predict the labels of these pull requests by analyzing the
extracted features. Finally, the framework ranks the pull
requests in descending order according to the likelihood scores
outputing by the model for each of them.

3.2 Feature Engineering
We want to capture the pertinent aspects of a pull request to
decide if it is a duplicate pull request or not. Ren et al. [27]
extracted nine features which are described in Section 2.2.
However, there is an important feature (i.e., time feature)
that Ren et al. did not take it into consideration.

(a) The relation between interval of created time in days for two pull
requests and the number of pull requests in duplicate dataset

(b) The relation between interval of created time in hours for two pull
requests and the number of pull requests in duplicate dataset

Figure 2: The relation between interval of created
time for two pull requests and the number of pull
requests in duplicate dataset.

Figure 3: Overall Framework

Figure 1 shows an example of the relation between time
and duplication which is described in Section 2.3. To further
validate the influence of the interval of created time for two
pull requests on their duplicate relation, we did statistic
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analysis in our duplicate dataset which included 2323 pairs of
duplicate pull requests. We found that the time and duplicate
relation are indeed related as shown in Figure 2. In Figure 2
(a), the X-axis represents the interval of created time between
two pull requests in days, and Y-axis is the number of pull
requests in our duplicate dataset. For Figure 2 (b), it is
similar to Figure 2 (a), where the difference is the X-axis
is the interval of created time between two pull requests
in hours. As shown in the figure, the smaller the value in
X-axis, the bigger the value in Y-axis. That is, the smaller
the interval of created time for two pull requests, the more
likely the two pull requests are duplicate.

Since the values of most features proposed by Ren et al.
are between 0 and 1, we normalized the values of time feature
by the method of min-max normalization to make it between
0 and 1 accordingly to eliminate the possible adverse effects
caused by singular sample data. In total, we use ten features
which are shown in Table 1.

Table 1: Dimensions and Corresponding Machine
Learning Features

Dimension Feature for Classifier Value

Change description Title_similarity [0,1]
Description_similarity [0,1]

Patch content Patch_content_similarity [0,1]
Patch_content_similarity_on
_overlapping_changed_files [0,1]

Changed files list Changed_files_similarity [0,1]
Number_of_overlapping
_changed_files N

Location of code changes Location_similarity [0,1]
Location_similarity_on
_overlapping_changed_files [0,1]

Reference to issue tracker Reference_to_issue_tracker {-1,0,1}
Time Interval_of_created_time [0,1]

3.3 Binary Classification
The goal of duplicate pull request detection in this paper
is to classify a pair of pull requests as duplicate or not. In
this work, we propose new feature to improve state-of-the-
art approach [27] and use a machine learning algorithm to
train a model. There are many machine learning algorithms,
such as neural network, support vector machines, AdaBoost,
k-Nearest Neighbor, random forest, logistic regressions and
decision Trees. Ren et al. [27] assessed the performance of
these machine learning algorithms for detecting duplicate
pull requests, their experimental results showed that Ad-
aBoost achieved the best result. Hence, in this paper, we use
AdaBoost to train a model.

4 EXPERIMENTS
4.1 Experimental Data
We follow the experimental setup of the work by Ren et al.
[27]. To evaluate our approach, ground truth is needed (i.e.,

Table 2: Repositories and Their Duplicate Pull Re-
quest Pairs

Repository Duplicate pairs Language

symfony/symfony 216 PHP
kubernetes/kubernetes 213 Go
twbs/bootstrap 127 CSS
rust-lang/rust 107 Rust
nodejs/node 104 JavaScript
symfony/symfony 100 PHP
scikit-learn/scikit-learn 68 Python
zendframework/zendframework 53 PHP
servo/servo 52 Rust
pandas-dev/pandas 49 Python
saltstack/salt 47 Python
mozilla-b2g 38 JavaScript
rails/rails 199 Ruby
joomla/joomla-cms 152 PHP
angular/angular.js 112 JavaScript
ceph/ceph 104 C++
ansible/ansible 103 Python
facebook/react 74 JavaScript
elastic/elasticsearch 62 Java
docker/docker 61 Go
cocos2d/cocos2d-x 57 C++
django/djang 55 Python
hashicorp/terraform 52 Go
emberjs/ember.js 46 JavaScript
JuliaLang/julia 42 Julia
dotnet/corefx 30 C#

The upper half projects are used as training dataset, and the lower half
projects are used as testing dataset.

a dataset where pull requests are labeled as duplicate). In
this paper, we use a dataset which contains 2,323 pairs of
duplicate pull requests from 26 prevalent repositories on
GitHub [41] as shown in Table 2, which is used by Ren et al..
Half of the duplicate pull requests are picked which includes
1,174 pairs of duplicate pull requests of 12 repositories as
the positive samples in the training dataset to calibrate
classifier. The remaining 1,149 pairs of 14 repositories are
used as testing dataset. This dataset only provides examples
of duplicate pull requests, and does not provide non-duplicate
pull requests which are more common in practice [11]. To
solve this problem, some pairs of merged pull requests from
the same repositories are randomly sampled according to
the assumption that if two pull requests are both merged,
they are most likely non-duplicate [27]. Overall, 100,000 pairs
of negative samples are randomly sampled from the same
repositories, 50,000 for training, and 50,000 for testing.

4.2 Evaluation Metrics
We evaluate the performance of our approach and the baseline
approach by using the following metrics:
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Precision@k. Precision is the proportion of actually du-
plicate pull requests that are correctly classified as duplicate
among all of the pull requests classified as duplicate. It is
defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝐴𝐷𝑃𝑅𝑠 𝑖𝑛 𝑡𝑜𝑝− 𝑘

𝑘
(1)

In the above equation, ADPRs refers to those actually
duplicate pull requests. In this paper, we set k = 1, 2, 3, 4
and 5.

Recall@k. Recall is the proportion of actually duplicate
pull requests that are correctly classified as duplicate among
all of the actually duplicate pull requests in the repository.
It is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝐴𝐷𝑃𝑅𝑠 𝑖𝑛 𝑡𝑜𝑝− 𝑘

𝐴𝐷𝑃𝑅𝑠 𝑖𝑛 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦
(2)

It is impractical to check every pull request in repository
to determine whether it is duplicate to the input pull request.
Therefore, ADPRs in Repository refers to the set of actually
duplicate pull requests of the top 20 pull requests returned
by Ren et al.’s approach for the input pull request. In this
paper, we set k = 1, 2, 3, 4 and 5.

F1-score@k. F1-score is the harmonic mean of precision
and recall, which can combine both of the two metrics above.
It evaluates if an increase in precision (or recall) outweighs a
reduction in recall (or precision) respectively.

𝐹1− 𝑠𝑐𝑜𝑟𝑒@𝑘 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ×𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 +𝑅𝑒𝑐𝑎𝑙𝑙@𝑘
(3)

Ren et al. used precision and recall to evaluate their ap-
proach. However, there is a limitation in their evaluation
methodology. For calculating precision, every time they run
the classifier, the output of the classifier is a pull request
number (i.e., pull request ID) and the possibility score that
the pull request is duplicate to a given one. They need many
round of manually labelling the output data whether they
are duplicate to calculate the precision, which is very time-
consuming and takes huge human effort. In order to solve the
problem, in this work, we built a fixed dataset to evaluate our
approach. In test dataset, there are 1149 pairs of duplicate
pull requests, and we randomly sampled 10% of the data (i.e.,
115 pairs of duplicate pull requests) in test dataset because
it takes huge human effort to label data. For each pair of
the data, first, we compare the pull request numbers and
find the one whose number is bigger which means the pull
request is created later than another one. We aim to identify
whether it is duplicate to the ones in history, so we need to
tell whether the pull request created later is duplicate to the
one created earlier. To our best knowledge, Ren et al.’s work
is state-of-the-art. Thus, for the pull request whose number
is bigger in the pair, we get top 20 most similar ones from all
the history pull requests in this project whose pull request
numbers are smaller than the given one with Ren et al.’s
approach. Ren et al. trained a classification model with Ad-
aBoost algorithm by nine features. The model can output the
rank of the pull requests in descending order according to the

likelihood scores. We get the top 20 pull requests assuming
that all the potential duplicate pull requests to the given one
exist in the top 20 pull requests. Then we label whether the
pull request is duplicate with the 20 pull requests one by one.
In total, we label 2,300 pairs (i.e., 115 * 20) of pull requests.
Next, we use the labeled data to evaluate the approaches in
this paper with Precision@k, Recall@k and F1-score@k.

4.3 Experimental Results
To investigate the impact of time feature on duplicate pull re-
quest detection, we conducted some experiments and studied
the following three correlated research questions.

4.3.1 RQ1: How does time affect duplicate pull request de-
tection? How much improvement can it achieve over baseline
if there is only time feature to train a classification model?
Motivation. We aim to understand whether the interval
of created time influences the detection of duplicate pull
requests. The research question is to investigate how effective
it is if we use the time feature to train a classification model
and predict the result (i.e., time approach). Moreover, we
want to know whether it can perform as well as, or better
than the state-of-the-art approach (i.e., baseline approach).
Answering this research question would shed light on whether
time feature affects duplicate pull request detection.
Approach. To answer this research question, we compare
the effect of time on duplicate pull request detection with the
state-of-the-art baseline approach. First, we re-implement
the experiment of baseline approach which includes nine
features. Secondly, we conduct an experiment where there
is just one time feature to train a classification model. We
use our labeled data mentioned in Section 4.2 as test data.
Given a pair of pull requests from the 115 pairs test data,
we use the state-of-the-art model by Ren et al. (i.e., using
nine features to train a model) to get the top 20 most similar
pull requests to the one in the pair whose ID is bigger. We
use the model which is trained by the only time feature to
predict among the top 20 pull requests. Then we get the new
list of top 20 most similar ones. This is our time approach
which is the combination of just using time feature to train
a model and testing the data which returns the top 20 pull
requests with the approach by Ren et al. Finally, we evaluate
the performance of the two experiments with Precision@k,
Recall@k, F1-score@k, where the values of k range from 1 to
5.
Results. Table 3 shows the Precision@k, Recall@k and F1-
score@k scores of baseline approach, time approach and the
improvement of time approach over baseline.

As shown in the table, time approach could achieve a good
result. The Precision@1, Recall@1, F1-score@1 are 56.52%,
51.46% and 53.87%, respectively. It means that the time in-
deed is an important feature to detect duplicate pull requests.
In most evaluation metrics, i.e., Precision@k, Recall@k, F1-
score@k where the values of k range from 2 to 5, the time
approach outperforms the baseline approach. For example,
the improvement of Precision@3, Recall@3, F1-score@3 are
11.34%, 8.90% and 10.64%, respectively. However, in terms of
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Table 3: The result of baseline approach, time ap-
proach and improvement of time approach over base-
line approach

Evaluation k Baseline Time Approach Improvement

Precision@k

1 65.22% 56.52% -13.33%
2 39.57% 40.87% 3.30%
3 28.12% 31.30% 11.34%
4 22.83% 24.78% 8.57%
5 19.30% 21.22% 9.91%

Recall@k

1 56.97% 51.46% -9.67%
2 67.48% 70.83% 4.96%
3 71.17% 77.51% 8.90%
4 77.70% 82.72% 6.47%
5 81.25% 85.93% 5.76%

F1-score@k

1 60.82% 53.87% -11.41%
2 49.88% 51.83% 3.90%
3 40.31% 44.60% 10.64%
4 35.29% 38.14% 8.09%
5 31.20% 34.03% 9.09%

Precision@1, Recall@1, F1-score@1, time approach is worse
than baseline approach. It means that time feature has a
disadvantage of detecting the top 1 duplication.

In summary, time is an important factor that affects dupli-
cate pull request detection, and time approach outperforms
the state-of-the-art baseline method in terms of Precision@k,
Recall@k, F1-score@k where the values of k range from 2 to
5.

4.3.2 RQ2: How effective is our approach? How much im-
provement can it achieve over baseline approach?
Motivation. To further investigate the significance of the
influence of time on duplicate pull request detection, we want
to see how effective it is if we combine time feature and the
nine features in Ren et al.’s work (i.e., our approach). We
also want to know whether the combination can perform
as well as, or better than the state-of-the-art approach by
Ren et al. (i.e., baseline approach). Answering this research
question would stand out how significant the influence of
time on duplicate pull request detection.
Approach. To answer this research question, We conduct
two experiments. The first one is we re-implemented the
baseline approach (i.e., using nine features to train a model
) which returns the top 20 most similar pull requests to a
given one. The second experiment is we combine the time
feature and the nine features proposed by Ren et al. as input
into a classifier. Then we use our labeled data mentioned in
Section 4.2 as test data. The test process is the same to the
one in RQ1. We evaluate the performance of the experiments
with Precision@k, Recall@k, F1-score@k, where the values
of k range from 1 to 5.
Results. Table 4 shows the Precision@k, Recall@k and F1-
score@k scores of baseline approach, our approach and the
improvement of our approach over baseline method.

Table 4: The result of baseline, our approach and
improvement of our approach over baseline

Evaluation k Baseline Our Approach Improvement

Precision@k

1 65.22% 73.91% 13.33%
2 39.57% 46.52% 17.58%
3 28.12% 33.91% 20.62%
4 22.83% 26.30% 15.24%
5 19.30% 21.74% 12.61%

Recall@k

1 56.97% 65.67% 15.26%
2 67.48% 78.87% 16.88%
3 71.17% 84.25% 18.37%
4 77.70% 86.86% 11.79%
5 81.25% 88.67% 9.13%

F1-score@k

1 60.82% 69.55% 14.36%
2 49.88% 58.52% 17.32%
3 40.31% 48.36% 19.97%
4 35.29% 40.38% 14.44%
5 31.20% 34.92% 11.93%

As shown in the table, our approach could achieve a better
result. The Precision@1, Recall@1, F1-score@1 are 73.91%,
65.67% and 69.55%, respectively. In all of the evaluation
metrics in this paper, our approach outperforms the baseline
approach. The biggest improvement is when k is 3 where
Precision@3, Recall@3, F1-score@3 are 20.62%, 18.37% and
19.97%, respectively. The smallest improvement is when k is 5
where Precision@5, Recall@5, F1-score@5 are 12.61%, 9.13%
and 11.93%, respectively. It means that time feature indeed
is a significant feature for duplicate pull request detection.

To sum up, the approach of integrating the time feature
into the exiting features proposed by Ren et al. significantly
outperforms the state-of-the-art baseline method. The ad-
vantage of our approach is more evident for duplicate pull
request detection.

4.3.3 RQ3: How much improvement can our approach achieve
over that using time feature to train a classification model?
Motivation. We want to know whether the combination
(i.e., our approach) of time feature and other nine features
proposed by Ren et al. can perform better than the approach
that only considers time feature to train a model (i.e., time
approach). Answering this research question would shed light
on when the time feature matters or does not matter.
Approach. To answer this research question, we compare
the effect of time on duplicate pull request detection with
the combination of time feature and other nine features. We
conduct two experiments. The first one is using ten features
to train a model, and we use our labeled data mentioned in
Section 4.2 as test data. The test process is the same to the
one in RQ1. The other experiment is just using time feature
to train a model. Also, the test process is the same to the one
in RQ1. We evaluate the performance of with Precision@k,
Recall@k, F1-score@k, where the values of k range from 1 to
5.
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Table 5: The result of time approach, our approach
and improvement of our approach over time ap-
proach

Evaluation k Time Our Approach Improvement

Precision@k

1 56.52% 73.91% 30.77%
2 40.87% 46.52% 13.83%
3 31.30% 33.91% 8.33%
4 24.78% 26.30% 6.14%
5 21.22% 21.74% 2.46%

Recall@k

1 51.46% 65.67% 27.60%
2 70.83% 78.87% 11.36%
3 77.51% 84.25% 8.69%
4 82.72% 86.86% 4.99%
5 85.93% 88.67% 3.19%

F1-score@k

1 53.87% 69.55% 29.09%
2 51.83% 58.52% 12.91%
3 44.60% 48.36% 8.44%
4 38.14% 40.38% 5.87%
5 34.03% 34.92% 2.60%

Results. Table 5 shows the Precision@k, Recall@k and F1-
score@k scores of our approach, time approach and the im-
provement of our approach over time approach.

As shown in the table, our approach performs better. In
all of the evaluation metrics, i.e., Precision@k, Recall@k, F1-
score@k where the values of k range from 1 to 5, our approach
outperforms time approach. Especially, the improvement
of Precision@1, Recall@1, F1-score@1 are 30.77%, 27.60%
and 29.09%, respectively. It means that time feature has a
disadvantage of detecting the top 1 duplication compared
with the combination of ten features. As shown in the table,
when the values of k range from 3 to 5, the approach of
combining ten features does not significantly improve the
result, which means that time feature matters in identifying
the top k duplicate pull requests where the values of k range
from 3 to 5.

In a word, the combination of time feature and existing
features proposed by Ren et al. could achieve better result
than only using time feature to train a classification model.

5 RELATED WORK
5.1 Duplicate Pull Request Detection
Yu et al. [41] created a dataset of duplicate pull request-
s (called DupPR) extracted from 26 popular open source
projects on GitHub. Each pair of duplicate pull requests in
DupPR were manually verified after an automatic identifi-
cation process. The dataset constructed by Yu et al. which
contains 2323 pairs of duplicate pull requests is used as part
of our ground truth data in this paper.

Li et al. [22] proposed a method to detect duplicate pull
requests. For a given pull request, they computed the textual
similarity between it and other history pull requests, and then
returned a candidate list of the most similar ones. Textual
information consists of two parts: title and description. They

investigated the detection performance of title similarity, de-
scription similarity and the combined similarity, respectively.
Recall-rate is used to evaluate their approach. The evaluation
result showed that about 55.3%-71.0% of the duplicate pull
requests could be found when they used the combination of
title similarity and description similarity.

Besides textual factor, Ren et al. [27] investigated more
factors (e.g., source code information) on duplicate pull re-
quest detection. Firstly, they identified factors that indicated
a pair of pull requests might be similar by manually checking
45 pairs of duplicate pull requests, and they summarized
nine features which were included in five dimensions. Next,
they calculated the similarity between pull requests for each
feature. Finally, they used the list of similarities as input to
train a classifier to predict whether a pair of pull requests
were duplicate. Different from the above work, we explored
whether time factor can be used to detect duplicate pull
requests on GitHub.

5.2 Duplicate Bug Report Detection
Although we focus on duplicate pull request detection, there
are many studies to detect other forms of duplicate submis-
sions, such as bug report [12, 24, 28, 29, 39]. They are similar
because the two kinds of submissions (i.e., pull request and
bug report) are both in a distribute and parallel way. More-
over, the two kinds of duplicate detection are both comparing
text information of submissions.

Although very few work studies on duplicate pull request
detection, there are a number of studies on investigating how
to identify duplicate bug reports. As proposed by Lin et al.
[23] and reused by Kang [16], duplicate detection approach
could be classified into three categories:

∙ Ranking approaches: [3, 6, 7, 13, 14, 21, 28, 31–34, 39,
42],they use a bug report as input and output a ranked
list of duplicate candidates from a corpus of existing
bug reports;

∙ Binary approach: [35], it takes a bug report as input
and label it as either duplicate or not duplicate;

∙ Decision-making approaches: [1, 13, 18, 20], they con-
sider a pair of bug reports and determine whether they
are duplicate of each other.

Bug reports provide textual description that involves the
natural language bug description reported by developers, i.e.,
title and description. The aforementioned unstructured infor-
mation could be used by researchers to study the similarity
between existing bug reports and an incoming bug report for
classification purposes [17, 23, 26, 35, 36, 39]. Natural lan-
guage information and information retrieval (IR) techniques
are widely used to calculate the similarity scores between a
given data and the retrieved data. In this context, Bettenburg
et al. [4] conducted a study on the effort required for man-
ually identifying duplicate issue report. Their classification
model achieved an average precision and recall of 68% and
60%, respectively.

Researchers have studied the value of adding extra informa-
tion other than the title and description to improve duplicate



Duplicate Pull Request Detection: When Time Matters Internetware ’19, October 28–29, 2019, Fukuoka, Japan

retrieval. The main sources of additional information are the
bug report’s creation data [7, 18, 20, 21, 28] and categorical
features [1, 6, 13, 18, 20, 25, 28, 31, 35] such as the affected
system version or component. Jalbert and Weimer [15] used
surface features, textual semantics and graph clustering to
predict duplicate status. Tian et al. [35] improved the work
by [15]. They used maximum REP similarity, and added an-
other category information. Also, they brought into relative
similarity to determine the importance of the text similarity
between bugs. Our work is different from the above studies
since we focus on duplicate pull request detection rather than
duplicate bug report detection.

6 DISCUSSION
6.1 Implications
We are interested to further investigate why the time factor
plays a significant role for duplicate pull request detection.
From Table 3, we found that the time approach achieved a
better performance over baseline method in terms of Pre-
cision@k, Recall@k and F1-score@k where the values of k
range from 2 to 5. The possible reasons are as follows: for
each pair of pull requests in duplicate test dataset, we choose
the one whose pull request number is bigger (i.e., the one who
is created later) because we aim to decrease the workload
of project maintainers, i.e., given a pull request, we identify
whether it is duplicate with all the history pull requests. To
avoid many round of manually labelling data for evaluation in
Ren et al.’s approach, we build a fixed dataset. For the later
created pull request of each pair in duplicate test dataset, we
get the top 20 most similar pull requests to it by Ren et al.
approach (i.e., return the top 20 most similar pull requests
by the model trained by nine features). Moreover, the data
statistics between the interval of created time and duplicate
relation involved that time indeed affects duplicate relation,
and it indicates that time feature could be a significant factor.
Besides, from the Table 3, we could see that the Precision@1,
Recall@1 and F1-score@1 of time approach are worse than
the ones of baseline method. It means that time feature has
disadvantage of detecting the top 1 duplicate pull request.
The possible reason is that there are many new pull requests
every day. It could’t identify the top 1 duplicate pull request
only using time feature because other features are also needed
and important.

There have been a large amount of approaches proposed
to detect other forms of duplicate submissions, including bug
reports [12, 24, 28, 39] and Stack Overflow questions [2, 40].
They are similar to our work because the individuals are
submitted in a distributed and parallel way. Thus leveraging
time feature may be able to further improve those tasks.

6.2 Threats to validity
Threats to internal validity relate to errors in our code
and personal bias in manual classification of labeling duplicate
pull requests. To reduce errors in our code, we have double
checked and fully tested our code, still there could be errors
that we did not notice. To reduce personal bias on manual

classification of pull requests, the first two authors classify
them independently. We further reduce bias by using an
external evaluator to help resolve disagreement. These steps
increase our confidence in the manually created dataset.

Threats to external validity relate to the quantity and
quality of our dataset and the generalizability of our results.
To guarantee quantity and quality of our dataset, we use 26
open source projects and over 100,000 pairs of pull requests
on GitHub. However, all the 26 projects are developed by
open source communities, and it is still unclear whether our
approach is generalizable when applying to projects in a com-
pany. Since open source communities are highly distributed
and independent and developers are usually allowed to add
new features or fix bugs, they are more likely to submit dupli-
cate pull requests. In contrast, it is possible that developers
in a company are assigned a task and usually they focus
their all attention on their task rather than fixing bugs or
adding new features that are not assigned to them. So in this
paper, we only focus on the scope of open source projects.
Besides, although 26 projects are analyzed, there are so many
projects on GitHub. In the future, we plan to analyze more
pull requests from additional software projects. Moreover,
since it takes huge human effort to label all data in duplicate
testing data which includes 1,149 pairs of pull requests, we
randomly sampled 115 pairs. As for the 115 pairs of data, we
picked up the top 20 most similar pull requests to it. Totally,
we labeled 2,300 pull requests. In the future, we will label
more pull requests.

7 CONCLUSION AND FUTURE WORK
Pull request is used commonly by teams or organizations for
collaboration and the process of pull request is distributed
and in parallel. Thus, there are often many duplicate pull
requests being submitted that do the same thing (e.g., fix
the same bug or add the same feature). To address this
problem, duplicate pull request detection approaches are
required. In this paper, we proposed a new feature in terms
of time to detect duplicate pull requests. We have performed
experiments with 26 projects on GitHub. We integrated the
new feature into the existing features proposed by Ren et al.
[27], and we found that the new feature boosted 14.36% and
11.93% improvements over the state-of-the-art approach in
terms of F1-score@1 and F1-score@5.

In the future, we plan to investigate more features to
improve the accuracy of duplicate pull request detection
further. Moreover, we plan to release a tool that would help
developers to identify duplicate pull requests early.

REFERENCES
[1] Karan Aggarwal, Finbarr Timbers, Tanner Rutgers, Abram Hindle,

Eleni Stroulia, and Russell Greiner. 2017. Detecting duplicate bug
reports with software engineering domain knowledge. Journal of
Software: Evolution and Process 29, 3 (2017), e1821.

[2] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chan-
chal K Roy, and Kevin A Schneider. 2016. Mining duplicate
questions in stack overflow. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories. ACM,
402–412.



Internetware ’19, October 28–29, 2019, Fukuoka, Japan Qingye Wang, Bowen Xu, Xin Xia, Ting Wang and Shanping Li

[3] Mehdi Amoui, Nilam Kaushik, Abraham Al-Dabbagh, Ladan
Tahvildari, Shimin Li, and Weining Liu. 2013. Search-based dupli-
cate defect detection: an industrial experience. In Proceedings of
the 10th Working Conference on Mining Software Repositories.
IEEE Press, 173–182.

[4] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and
Sunghun Kim. 2008. Duplicate bug reports considered harmfulâĂę
really?. In 2008 IEEE International Conference on Software
Maintenance. IEEE, 337–345.

[5] Jürgen Bitzer and Philipp JH Schröder. 2006. The impact of entry
and competition by open source software on innovation activity.
In The economics of open source software development. Elsevier,
219–246.

[6] Vincent Boisselle and Bram Adams. 2015. The impact of cross-
distribution bug duplicates, empirical study on Debian and Ubun-
tu. In 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 131–
140.

[7] Markus Borg, Per Runeson, Jens Johansson, and Mika V Mäntylä.
2014. A replicated study on duplicate detection: Using Apache
Lucene to search among Android defects. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 8.

[8] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszyns-
ki, Martin Becker, and Krzysztof Czarnecki. 2013. An exploratory
study of cloning in industrial software product lines. In 2013 17th
European Conference on Software Maintenance and Reengineer-
ing. IEEE, 25–34.

[9] Neil A Ernst, Steve Easterbrook, and John Mylopoulos. 2010.
Code forking in open-source software: a requirements perspective.
arXiv preprint arXiv:1004.2889 (2010).

[10] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic
generalization of on-line learning and an application to boosting.
Journal of computer and system sciences 55, 1 (1997), 119–139.

[11] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014.
An exploratory study of the pull-based software development
model. In Proceedings of the 36th International Conference on
Software Engineering. ACM, 345–355.

[12] Lyndon Hiew. 2006. Assisted detection of duplicate bug reports.
Ph.D. Dissertation. University of British Columbia.

[13] Abram Hindle, Anahita Alipour, and Eleni Stroulia. 2016. A
contextual approach towards more accurate duplicate bug report
detection and ranking. Empirical Software Engineering 21, 2
(2016), 368–410.

[14] Abram Hindle and Curtis Onuczko. 2019. Preventing duplicate
bug reports by continuously querying bug reports. Empirical
Software Engineering 24, 2 (2019), 902–936.

[15] Nicholas Jalbert and Westley Weimer. 2008. Automated duplicate
detection for bug tracking systems. In 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS
and DCC (DSN). IEEE, 52–61.

[16] Li Kang. 2017. Automated Duplicate Bug Reports Detection-An
Experiment at Axis Communication AB.

[17] Nilam Kaushik and Ladan Tahvildari. 2012. A comparative study
of the performance of IR models on duplicate bug detection. In
2012 16th European Conference on Software Maintenance and
Reengineering. IEEE, 159–168.

[18] Nathan Klein, Christopher S Corley, and Nicholas A Kraft. 2014.
New features for duplicate bug detection. In Proceedings of the
11th Working Conference on Mining Software Repositories.
ACM, 324–327.

[19] Thomas K Landauer and Susan T Dumais. 1997. A solution to
Plato’s problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological review
104, 2 (1997), 211.

[20] Alina Lazar, Sarah Ritchey, and Bonita Sharif. 2014. Improving
the accuracy of duplicate bug report detection using textual simi-
larity measures. In Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 308–311.

[21] Johannes Lerch and Mira Mezini. 2013. Finding duplicates of your
yet unwritten bug report. In 2013 17th European Conference on
Software Maintenance and Reengineering. IEEE, 69–78.

[22] Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang.
2017. Detecting duplicate pull-requests in github. In Proceedings
of the 9th Asia-Pacific Symposium on Internetware. ACM, 20.

[23] Meng-Jie Lin, Cheng-Zen Yang, Chao-Yuan Lee, and Chun-Chang
Chen. 2016. Enhancements for duplication detection in bug reports

with manifold correlation features. Journal of Systems and
Software 121 (2016), 223–233.

[24] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda
Minch, Jiayang Sun, and Bin Wang. 2003. Automated support
for classifying software failure reports. In 25th International
Conference on Software Engineering, 2003. Proceedings. IEEE,
465–475.

[25] Mohamed Sami Rakha, Cor-Paul Bezemer, and Ahmed E Has-
san. 2017. Revisiting the performance evaluation of automated
approaches for the retrieval of duplicate issue reports. IEEE
Transactions on Software Engineering 44, 12 (2017), 1245–1268.

[26] Mohamed Sami Rakha, Weiyi Shang, and Ahmed E Hassan. 2016.
Studying the needed effort for identifying duplicate issues. Em-
pirical Software Engineering 21, 5 (2016), 1960–1989.

[27] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsows-
ki. 2019. Identifying Redundancies in Fork-based Development. In
2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 230–241.

[28] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007.
Detection of duplicate defect reports using natural language pro-
cessing. In Proceedings of the 29th international conference on
Software Engineering. IEEE Computer Society, 499–510.

[29] Yoonki Song, Xiaoyin Wang, Tao Xie, Lu Zhang, and Hong Mei.
2010. JDF: detecting duplicate bug reports in Jazz. In Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. ACM, 315–316.

[30] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015.
Forked and integrated variants in an open-source firmware project.
In 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 151–160.

[31] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang.
2011. Towards more accurate retrieval of duplicate bug reports.
In Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering. IEEE Computer
Society, 253–262.

[32] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-
Cheng Khoo. 2010. A discriminative model approach for accu-
rate duplicate bug report retrieval. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 45–54.

[33] Ashish Sureka and Pankaj Jalote. 2010. Detecting duplicate
bug report using character n-gram-based features. In 2010 Asia
Pacific Software Engineering Conference. IEEE, 366–374.

[34] Ferdian Thung, Pavneet Singh Kochhar, and David Lo. 2014.
DupFinder: integrated tool support for duplicate bug report de-
tection. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 871–874.

[35] Yuan Tian, Chengnian Sun, and David Lo. 2012. Improved dupli-
cate bug report identification. In 2012 16th European Conference
on Software Maintenance and Reengineering. IEEE, 385–390.

[36] Akihiro Tsuruda, Yuki Manabe, and Masayoshi Aritsugi. 2015.
Can we detect bug report duplication with unfinished bug re-
ports?. In 2015 Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 151–158.

[37] Greg R Vetter. 2007. Open source licensing and scattering oppor-
tunism in software standards. BCL Rev. 48 (2007), 225.

[38] Qingye Wang, Xin Xia, David Lo, and Shanping Li. 2019. Why
Is My Code Change Abandoned? Information and Software
Technology 110 (02 2019). https://doi.org/10.1016/j.infsof.2019.
02.007

[39] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun.
2008. An approach to detecting duplicate bug reports using
natural language and execution information. In Proceedings of
the 30th international conference on Software engineering. ACM,
461–470.

[40] Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin
Alipour. 2018. Prediction of relatedness in stack overflow: deep
learning vs. SVM: a reproducibility study. In Proceedings of
the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, 21.

[41] Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang.
2018. A dataset of duplicate pull-requests in github. In Proceed-
ings of the 15th International Conference on Mining Software
Repositories. ACM, 22–25.

[42] Jian Zhou and Hongyu Zhang. 2012. Learning to rank dupli-
cate bug reports. In Proceedings of the 21st ACM international
conference on Information and knowledge management. ACM,
852–861.

https://doi.org/10.1016/j.infsof.2019.02.007
https://doi.org/10.1016/j.infsof.2019.02.007

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Pull Request Process
	2.2 Ren et al.'s Study
	2.3 Motivation

	3 Proposed Approach
	3.1 Overall Approach
	3.2 Feature Engineering
	3.3 Binary Classification

	4 EXPERIMENTS
	4.1 Experimental Data
	4.2 Evaluation Metrics
	4.3 Experimental Results

	5 RELATED WORK
	5.1 Duplicate Pull Request Detection
	5.2 Duplicate Bug Report Detection

	6 Discussion
	6.1 Implications
	6.2 Threats to validity

	7 CONCLUSION AND FUTURE WORK
	References

