Combining Collaborative Filtering and Topic Modeling for More
Accurate Android Mobile App Library Recommendation

Huan Yu*, Xin Xiaf, Xiaogiong Zhao*, and Weiwei Qiu*
*College of Computer Science and Technology, Zhejiang University, China
TDepartment of Computer Science, University of British Columbia, Canada
yuhuan@zju.edu.cn, xxia02@cs.ubc.ca, zhaoxiaoqiong@zju.edu.cn, qiuweiwei@zju.edu.cn

ABSTRACT

The applying of third party libraries is an integral part of many
mobile applications. With the rapid development of mobile tech-
nologies, there are many free third party libraries for developers to
download and use. However, there are a large number of third party
libraries which always iterate rapidly, it is hard for developers to
find available libraries within them. Several previous studies have
proposed approaches to recommend third party libraries, which
works in the scenario where a developer knows some required
libraries, and needs to find other relevant libraries with limited
knowledge. In the paper, to further improve the performance of
app library recommendation, we propose an approach which com-
bines collaborative filtering and topic modeling techniques. In the
collaborative filtering component, given a new app, our approach
recommends libraries by using its similar apps. In the topic mod-
elling component, our approach first extracts the topics from the
textual description of mobile apps, and given a new app, our ap-
proach recommends libraries based on the libraries used by the apps
which has similar topic distributions. We perform experiments on a
set of 1,013 apps, and the results show that our approach improves
the state-of-the-art by a substantial margin.

CCS CONCEPTS

« Software and its engineering — Software libraries and reposi-
tories;

KEYWORDS

Library Recommendation, Topic Modeling, Collaborative Filtering,
Android App

ACM Reference format:

Huan Yu*, Xin Xia®, Xiaoqiong Zhao*, and Weiwei Qiu*. 2017. Combining
Collaborative Filtering and Topic Modeling for More Accurate Android
Mobile App Library Recommendation. In Proceedings of Internetware’17,
Shanghai, China, September 23, 2017, 6 pages.
https://doi.org/10.1145/3131704.3131721

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Internetware’17, September 23, 2017, Shanghai, China

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5313-7/17/09...$15.00
https://doi.org/10.1145/3131704.3131721

1 INTRODUCTION

Mobile apps continue to grow in popularity at a rapid pace, and they
become one of the most popular software systems today. Mobile app
markets such as Google Play has more than 2.8M apps!. Although
the rapid development of app market has brought huge benefits,
competition in the app industry is very tough as many apps provide
similar functionality [20]. To reduce development time, increase
the reliability of software, and improve the productivity, mobile
app developers frequently use third-party libraries.

Today, with the rapid development of the mobile app industry,
there have been a large amount of third-party libraries for devel-
opers to download and use. However, it is still a challenge for app
developers to effectively use these libraries, since they might not
be aware of these libraries as they are released. App developers
might reinvent the wheel rather than reuse the suitable third-party
libraries. To bridge the gap between the large amount of available
third-party libraries and the developers that need to use them, in
this paper, we propose an approach to automatically recommend
third-party libraries.

In recent years, several research works have been conducted on
third party libraries recommendation [5, 6, 16]. Association rule
mining [1] is a widely used technique among those works [5, 6, 16],
which identify the libraries co-occurrence relationships by mining
historical mobile apps. The recommendation accuracy of associ-
ation rule mining is highly influenced by the probability of the
co-occurrence of third party libraries. Thung et al. proposed an ap-
proach to recommend an entire third party library, which is based on
the libraries that a certain number of projects commonly uses [16] .
However, the above mentioned studies do not take into account the
textual descriptions of projects. In practice, description informa-
tion of an app always provides useful information which includes
the intent of application, the functions that application provides,
the running environment, etc. Mining these textual description to
further improve the performance of library recommendation for
mobile apps.

In this paper, we propose an automated approach AppLibRec
which combines Latent Dirichlet Allocation [3] and collaborative
filtering [4, 9, 14] to recommends a list of third party libraries for
mobile apps. Specifically, AppLibRec performs two kinds of analysis:
README file (textual description) based analysis (RM-based) and
libraries based analysis (Lib-based). In the RM-based component,
we use LDA model which takes textual descriptions as input to
compute the similarity between those textual descriptions. In the

https://www.statista.com/statistics/266210

https://doi.org/10.1145/3131704.3131721
https://doi.org/10.1145/3131704.3131721

Internetware’17, September 23, 2017, Shanghai, China

Lib-based component, we leverage collaborative filtering to recom-
mend libraries by using its similar apps. To make a comparison, we
choose LibRec proposed by Thung et al. [16] as a baseline. We per-
form experiments on a set of 1,013 apps, and the results show that
our approach improves the precision@5 and recall@5 of LibRec by
38% and 35%, respectively.

The main contributions of this paper are:

e We propose a hybrid approach that combines topic model
and collaborative filtering to recommend third party li-
braries for mobile apps.

e Experiments on 1,013 apps show the effectiveness of our
AppLibRec approach, and our approach outperforms the
state-of-the-art approach by a substantial margin.

2 RELATED WORK

Library Recommendation. To our best knowledge, Thung et
al’s study [16] is most related to ours. Thung et al. proposed LibRec
which combines association rule mining and a nearest-neighbor-
based collaborative filtering approach to recommend libraries for
projects on GitHub.

Recommender Systems in SE. Recommender systems are widely
utilized in software engineering [2, 8, 11, 13, 15-18, 21-23]. Many
previous studies have proposed approaches to recommend various
code elements (e.g., method calls, blocks of code), using various
information sources (e.g., source code, commit logs) by various
heuristics. Mandelin et al. [11] propose the problem of jungloid
mining, jungloid mining code fragments that satisfy the query
which describes the input and output types. Robbes et al. [13]
improve code auto-completion by analyzing recorded program
history. Serval tools provide real-time code clone detection [8, 10].

Compared with these code-level recommendation systems, there
are several previous that works at a different level of granularity i.e.,
library-level, and recommends analogical third party libraries to
the developers. Thung et al. [16] extract the co-occurrence libraries
which are always commonly used together on the historical third
party library. Teyton et al. [15] recommend libraries that can replace
an existing library in a software project by analyzing the evolution
of projects’ dependencies on third party libraries.

Inspired by these studies, our approach not only relies on the
information about the third party libraries that other (e.g., histori-
cal) mobile apps used, but also relies on the textual descriptions of
mobile applications. Also, we focus a different problem, i.e., recom-
mending third-party libraries for mobile apps.

3 PROBLEM DEFINITION

In this section, we first describe the process on how to identify
libraries from mobile apps. Then, we present the conditions to
define our problem.

3.1 Library Identification

Different from Thung et al’s study which extract the libraries used
in a Java project by analyzing its Maven configuration file. As we
noticed, only 51% of our collected apps use Maven to build the
system. Here, we use the following heuristics to identify libraries
from Android apps:

Yu et al.

package com.anysoftkeyboard;

import android.content.Intent;

import android.os.Bundle;

import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.Fragment;

import com.anysoftkeyboard.ui.settings.MainSettingsActivity;
import com.menny.android.anysoftkeyboard.AskGradleTestRunner;
import com.menny.android.anysoftkeyboard.R;

import net.evendanan.chauffeur.lib.FragmentChauffeurActivity;
import net.evendanan.frankenrobot.Diagram;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.robolectric.Robolectric;

import org.robolectric.RuntimeEnvironment;
import org.robolectric.util.ActivityController;

/%%

* Driver for a Fragment unit-tests

*/

@RunWith(AskGradleTestRunner.class)

public abstract class RobolectricFragmentTestCase<T extends Fragment>

Figure 1: Sample Java Class Import of Mobile Application

Libraries in Maven repository. For the 51% apps which used
Maven to build the system, we first check their pom.xml to identify
the libraries, and we record the set of libraries as Set1.

Libraries in other apps. For the remaining 49% apps, we analyze
the “import” statements in their source code files. A typical An-
droid mobile application usually uses several third party libraries,
which developers use by importing in their own java class file (see
Figure 1). We model the libraries data as a forest W, every tree in
the forest represents a third party library, the non-leaf nodes in the
tree represent potential libraries since they might be sub packages
of a library, while leaf nodes in the tree represent APIs in the sub
packages of libraries.

After we analyze all the collected apps, we manually check
whether the potential libraries in Set2 are true libraries. To do
so, we manually search online by inputting the name of each of the
potential library, and if we find its GitHub or SourgeForge website
which clearly stated it is a third-party library, we denote it as true
third-party library.

An Illustrative Example. Figure 2 illustrates the corresponding

third party libraries forest extracted from Figure 1. We extract the
four potential libraries {org.junit, net.evendanan.chauffeur.lib, net.
evendanan.frankenrobot, org.robolectric}. These packages which
are extracted as recommendatory libraries do not have leaf "sibling"
nodes in our experimental dataset, i.e., all the "sibling" nodes of
these sub packages are non-leaf nodes if they have "sibling" nodes.

3.2 Problem Definition

In this paper, we define the library recommendation problem as
follows. The set of all available libraries in our dataset are called
"LibsRepos", the set of libraries that are currently used in the mobile
application are called "UsedLibs", while the set of libraries that are to
be recommended are called "AppLibRecs". The goal of our approach
is to find "AppLibRecs" that satisfies the following conditions:

1) AppLibRecs C LibsRepos
2) AppLibRecs N UsedLibs = 0

App Library Recommendation

Internetware’17, September 23, 2017, Shanghai, China

longest common

org.junit netevendanan

org.robolectric

longest common
sub package

.

sub package

longest common
sub_package

longest common
sub package

.

Assert runner chauffeur.lib

Runtime
Environm-
ent

Robolec-tr util
ic

frankenrobot

Fragment
Chauffeur
Activity

Activity
Controller

Diagram

Figure 2: A Partial Libraries Forest

Mapping Mobile App
Description into Vector
of Words by nltk

l l

Modelling Mobile
Application —

Deseription by LDA

Mobile Application
Description
Documentation

Feature Vector
Extractor

Mobile A pplication
Libraries

Library Recommendations

Figure 3: Third Party Libraries Recommendation Frame-
work

Tind Similar
Applications

4 OUR APPROACH

We first provide a description of our overall framework in Figure 3,
then propose our AppLibRec method to solve the third party libraries
recommendation problem. In section 4.2, we describe the RM-based
component which uses LDA model. In section 4.3, we present the
Lib-based component which uses collaborative filtering. Finally, we
aggregate the two components presented in section 4.4.

4.1 Overall Framework

Figure 3 shows the overall framework of our approach also called
as AppLibRec. It contains two major components: RM-based and
Lib-based. We combine these two lists of recommendation libraries
into a new list along with their final scores. We are to recommend
the libraries that have highest scores.

4.2 RM-based Analysis

4.2.1 Training LDA Model. This step is to train the LDA
Model, and converts the textual descriptions of training applications
to topic vectors. In natural language processing, a topic represents
a distribution of words, and a document is a distribution of top-
ics. Using LDA model can convert a textual description to a topic
vector which is the document-topic distribution. After the text
pre-processing (i.e., tokenization and stemming), we get a training
textual description corpus. LDA takes as input that corpus and a
number of parameters which are described in section 5. For each
document m, LDA would generate a topic proportion vector 8,
that contains k elements. Each element presents a topic, and ranges
from 0 to 1 which corresponds the proportion of the term (i.e., word)
in m belonging to the topic in m. We denote the 6y, as the following

Om = (T[1],T[2],...,T[k]) (1)

where T[i] is the proportion of ith topic in document m, i €
{1,2,...,k}, and k is the number of all topics of training applica-
tions.

4.2.2 Find Similar Textual Description. Given a new appli-
cation which requires to be recommended libraries, we first convert
the textual description of the new application into a topic vector by
using the LDA model which is trained in the Training LDA Model
step. Finally, we calculate the distance between this topic vector
and the topic vectors of training applications which have extracted
in the first step. Cosine similarity is employed to measuring the
distance.

ONew - 9Training

@)

Consine(New, Training) = —————
|9New||9Training|

where - denotes the dot product, and |6;| presents the size of a
topic vector.

We select the top k applications which have the highest cosine
similarity scores as the k-nearest neighbors for the new project.
Finally, we collect all of the libraries that are used by k-nearest
neighbors and we are to calculate the score for each library in these
libraries. For instance, we calculate the library L score as follows:

Count (L)
Scoreppr—pased(L) = T r 3

Where Count(L) is the number of nearest neighbors that have
used the library L and k is the number of nearest neighbors. The
Scoregar—pased (L) ranges from 0 to 1. The libraries that have the
highest scores might be recommended for developers.

4.3 Lib-based Analysis

4.3.1 Feature Vector Extractor. This step is to convert the
set of libraries used by training applications to feature vectors. We
denote the set of all libraries which are arranged in alphabetical
order of their name as F, and the index of each library is a unique
F[i], where i € {1,2,...,n} and the n is the number of all distinct
libraries. The feature vector of application a, is defined as follows:

Vector(a) = (index(F[0], a), index(F[1], a),

...,index(F[n], a)) (4)
where F[i] = 1 if application a uses the ith library, or F[i] = 0
otherwise, i € {1,2,...,n}, and n is the number of all distinct
libraries.

Internetware’17, September 23, 2017, Shanghai, China

4.3.2 Find Similar Applications. Given a new application
which requires to be recommended libraries, we first convert the
set of libraries that the new application has used into a feature
vector in the same processing as was done in the Feature Vector
Extractor step. Then it calculates the distance between this feature
vector and each feature vector of all training applications which
have extracted in the first step (i.e., Feature Vector Extractor). PCC
is employed to measuring the distance [12], [7].

Sim(New, Training) =

Y (Fn,i—FN)(Fr,i —Fr)
ielyNIr

\/ Y (Fn,i—Fn)? Y. (Fr,; —Fr)?
ielnNIt ieINNIt

®)

where In NIt is the set of libraries invoked by both project New and
project Training, Fy; is the library extracted by project New, Fn. ;
= 1 if application New uses the ith library, or Fy ; = 0 otherwise.
Fn denotes the average quantity of libraries invoked by project
New.

We select the top n applications which have the highest PCC
scores as the n-nearest neighbors for the new project.Finally, we
collect all of the libraries that are used by n-nearest neighbors and
we are to calculate the score for each library in these libraries. For

instance, we calculate the library L score as: Scorey jp_pased(L) =
%ML)’ where Count (L) is the number of nearest neighbors that
have used the library L and n is the number of nearest neighbors.
The Scorer ;p_pased (L) ranges from 0 to 1. The libraries that have

the highest scores are to be recommended for developers.

4.4 Aggregator Components

In this section, We are to get the recommendation score by combin-

ing Scoregpr—pased and scorepjp_pased, denoted as ScoreappripRec-

For each library, the recommendation score is defined as follows:

ScorepppLibRec = & X SCOT€RA[—pase + B X Scorerip_pasea (6)

where « and f represent the weights of RM-based and Lib-based
respectively. We set @ + f = 1, so ScoreappripRec Tanges from
0 to 1. The top n libraries which have the highest score are to
recommended to developers.

5 EXPERIMENT RESULTS

In this section, we describe our dataset, and present our evaluation
measures. And then, we demonstrate our research questions and
the results of our experiments. Finally, we discuss the threads to
validate.

5.1 Experimental Setup

We conduct experiments on real world mobile application. We first
randomly download 3,117 mobile applications from GitHub, and
then filtered those applications by the following criteria:

After filtering applications that not have README file, use less
than 4 libraries, and are forked from other applications. There
are left with 1013 applications, including popular projects such
as AdAway (303.0 kKLOC) which is an open source ad blocker for
Android using the hosts file, NewsBlur (419.4 kLOC) which is a
personal news reader.

Yu et al.

Evaluation Metrics. Suppose that there are m applications, for
each application a;, let ground truth be the set of libraries GT;. We
recommend the set of top-k libraries Py for a; according to our
approach. In the set of all recommendations Py (for all projects),
that includes at least one library in the ground truth (defined in
Section 3). The Precision@k and Recall@k for the m applications
are defined as:

1 <& |Pp NGTy|
Precision@k = — _ 7)
m ; |P;
1 <& P NGT;
Recallak = L+ 3" e OCTil ®)
m & |GT|

Ten-fold Cross Validation. Ten-fold cross validation is employed
to measuring the accuracy of our method. Each fold includes nine
parts of the dataset as the training data and the remaining part as
the testing data. For each testing application, we drop half of the
libraries as the ground truth. The remaining libraries are taken as
inputs to our Lib-based component.

Our approach AppLibRec combines RM-based component and
Lib-based component, that takes a number of parameters. The RM-
based component uses LDA that accepts five parameters. We set the
maximum number of iterations to 1500 and the hyperparameters
a and f to 50/k and 0.01, where k is the number of topics. We use
percentages of distinct terms in out training data rather than a fix
number to set the number of topic. We vary the number of topics
for 1% to 11% of the number of distinct words in our training data
which is proposed by [19], and we set k = 1% by default. As the
RM-based component would find its k-nearest neighbors, we set
the number of neighbors to 30 by default. We use Python Software
Foundation 2 as the LDA implementation, which uses collapsed
Gibbs sampling. The Lib-based component uses collaboration filter-
ing, and we set the number of neighbors to 30 by default. The other
parameters in equation 6 to their default values i.e., = 0.3 and
B = 0.7. For LibRec [16], there are five parameters, and we set the
parameters as follows: minsup = 0.1, minconf = 0.8, n(the number
of neighbors)=20, « = 0.5, and f = 0.5. These settings have been
show to result in the best performance.

5.2 Research Questions
We are interested to answer the following research questions:

RQ1 How effective is our proposed AppLibRec? How much
improvement could our proposed approach gain over the
state-of-the-art approach by [16]?

Our AppLibRec combines RM-based component which uses LDA
model and Lib-based component which employs the collaboration
filtering approach. In our Lib-based component, PCC is employed as
metric to measure the distance between two applications. The state-
of-the-art work introduced by [16] is a combination of association
rule mining (i.e., Rule) and collaboration filtering which uses cosine
similarity as the metric to compute this distance. To answer this
question, we compare our approach with the following baselines:

1. Association Rule Mining (Rule): This method recommends libraries
by mining library usage patterns expressed as association rules.

Zhttps://pypi.python.org/pypi/lda

App Library Recommendation

Internetware’17, September 23, 2017, Shanghai, China

Table 1: Performance Comparison by p(Precision)

D s AppLibRec LibRec Rule CF _cosine LDA(RM-based) CF_pcc(Lib-based)
o p p improve P improve p improve p improve P improve
@1 0.569 0.501 13.57% 0.071 701.41% 0.491 15.89% 0.516 10.27% 0.562 1.25%
@3 0.386 0.278 38.85% 0.068 467.65% 0.276 39.86% 0.328 17.68% 0.378 2.12%
@5 0.307 0.223 37.67% 0.065 372.31% 0.214 43.46% 0.257 19.46% 0.303 1.32%
@7 0.256 0.186 37.63% 0.061 319.67% 0.181 41.44% 0.215 19.07% 0.251 1.99%
@10 0.204 0.153 33.33% 0.057 257.89% 0.146 39.73% 0.173 17.92% 0.200 2.00%
@15 0.153 0.114 34.21% 0.052 194.23% 0.109 40.37% 0.131 16.79% 0.151 1.32%
@20 0.124 0.088 40.91% 0.048 158.33% 0.087 42.53% 0.107 15.89% 0.122 1.64%
Table 2: Performance Comparison by r(Recall)
Recall AppLibRec Libl'lec Rule CF_cosine LDA(RM-based) CF_pcc(Lib-based)
T r improve T improve T improve r improve 3 improve
@1 0.147 0.128 14.84% 0.026 465.38% 0.120 18.37% 0.132 11.36% 0.143 2.80%
@3 0.270 0.201 34.33% 0.031 770.97% 0.196 27.41% 0.230 17.39% 0.263 2.66%
@5 0.337 0.249 35.34% 0.037 810.81% 0.244 27.60% 0.293 15.02% 0.334 0.90%
@7 0.382 0.231 31.27% 0.040 855.00% 0.281 26.44% 0.334 14.37% 0.376 1.60%
@10 0.429 0.291 30.79% 0.043 897.67% 0.323 24.71% 0.375 14.40% 0.422 1.66%
@15 0.478 0.328 31.68% 0.045 962.22% 0.358 25.10% 0.421 13.54% 0.470 1.70%
@20 0.508 0.363 31.61% 0.052 876.92% 0.378 25.59% 0.451 12.64% 0.501 1.40%

2. Collaboration Filtering with Cosine Simiarity (CF_cosine): This
method recommends libraries by investigating the set of libraries
that are used by similar applications, using a nearest neighbor
based collaborative filtering approach. It uses cosine similarity as
the metric to compute this distance.

3. LibRec: Thung et al. proposed LibRec which combines association
rule mining and collaborative filtering with cosine similarity to
recommend libraries for projects on GitHub.

4. LDA: LDA is commonly used latent factor based model for text
similarity. Our RM-based component recommends libraries by find-
ing similar applications, using LDA model to find the similar appli-
cations.

5. Collaboration Filtering with PCC (CF_pcc): Our Lib-based com-
ponent recommends libraries by investigating the set of libraries
that are used by similar applications, also using a nearest neighbor
based collaborative filtering approach. It uses PCC as the metric to
compute this distance.

We tune each algorithm to its best parameter, and the Table 1
and Table 2 present the precision@1, precision@3, precision@5,
precision@7, precision@10, precision@15, precision@20, recall@1,
recall@3, recall@5, recall@7, recall@10, recall15 and recall@20
of AppLibRec compared with the state-of-the-art work [16] (i.e.,
Rule+CF_cosine) and the improvement of AppLibRec over it. The
statistically significant improvements are highlighted in bold. From
Table 1, the improvement of our approach over it is significant.
AppLibRec outperforms it by 13.57%, 38.85%, 37.67%, 37.63%, 33.33%,
34.21% and 40.91% for average precision@1, precision@3, preci-
sion@5, precision@7, precision@10, precision@15 and precision@20.
From Table 2, AppLibRec outperforms it by 14.84%, 34.33%, 35.34%,
31.27%, 30.79%, 31.68% and 31.61% for average recall@1, recall@3,
recal@5, recall@7, recall@10, recall@15, recall@20, respectively.

RQ2 What is the performance of the RM-based component
and Lib-based component?

To answer this research question, we investigate the performance
of two component of AppLibRec separately. The result is presented
in Table 1 and Table 2. Table 1 shows that AppLibRec outperforms
the RM-based (i.e., LDA) component by 10.27%, 17.68%, 19.46%,
19.07%, 17.92%, 16.79% and 15.89% for precision@1, precision@3,
precision@5, precision@7, precision@10, precision@15 and preci-
sion@20. Table 1 shows that AppLibRec outperforms the Lib-based
(i.e., CF_pcc) component by 1.25%, 2.12%, 1.32%, 1.99%, 2.00%, 1.32%

0 2 a 6 5 10 12
The Percentage of Distinct Words(%)

(b) Recall@5

o 2 4 6 8) 12
The Percentage of Distinct Words(%)

(a) Precision@5

12 o 12

The ZPercen:age of D\stim?t Woré;(%)
(d) Recall@10
Figure 4: Recall@5, Recall@10, Precision@5, and Preci-

sion@10 for Different Numbers of Topics of RM-based (1-
11% of The Number of Distinct Words in The Training Data)

2 4 6 6 1o
The Percentage of Distinct Words(%)

(c) Precision@10

and 1.64% for average precision@1, precision@3, precision@5, pre-
cision@7, precision@10, precision@15 and precision@20. From
Table 2, AppLibRec outperforms RM-based component by 11.36%,
17.39%, 15.02%, 14.37%, 14.40%, 13.54% and 12.64% for average re-
call@1, recall@3, recall@5, recall@7, recall@10, recall15 and re-
call@20, respectively. And AppLibRec outperforms Lib-based com-
ponent by 2.80%, 2.66%, 0.90%, 1.60%, 1.66%, 1.70% and 1.40%for
average recall@1, recall@3, recall@5, recall@7, recall@10, recall15
and recall@20, respectively. The results show that it is beneficial to
combine the RM-based and Lib-based components, as it improves
accuracy.

RQ3 What is the effect of varying the number of topics to
the performance of AppLibRec?

We next investigate the effect of varying the number of topics
in LDA. We vary the number of topics for 1% to 11% of the number
of distinct terms in our training data [19]. As shown in Figure 4, it
presents the precision@5, precision@10, recall@5 and recall@10
of AppLibRec for different numbers of topics. The result can be seen
that the performance of AppLibRec over the various numbers of

Internetware’17, September 23, 2017, Shanghai, China

topics only varies slightly, so our AppLibRec is stable to different
number of topics that in a reasonable range.

6 CONCLUSION

The use of third party libraries allows the developer to write less
code and to focus on the key business logic of their applications.
The previous studies have proposed approaches to recommend
third party libraries methods which are based on the libraries that
an application has used. Amst them, association rule mining is
widely used. However, these mobile applications may not contain
the sufficient co-occurrence of third party libraries.ongln this paper,
we propose a new method AppLibRec to automatically recommend
third party libraries for the developers. AppLibRec combines Latent
Dirichlet Allocation and collaborative filtering to automatically
recommend libraries for developers.

Acknowledgements. This research is supported by National Key
Technology R&D Program of the Ministry of Science and Technol-
ogy of China (No. 2015BAH17F01).

REFERENCES

[1] R.Agrawal, R. Srikant et al, “Fast algorithms for mining association rules,” in
VLDB, vol. 1215, 1994, pp. 487-499.

[2] L. Bao, D. Lo, X. Xia, and S. Li, “Automated android application permission
recommendation,” Science China Information Sciences, vol. 60, no. 9, p. 092110,
2017.

[3] D. M. Blei, A. Y. Ng, and M. L Jordan, “Latent dirichlet allocation,” Journal of
machine Learning research, vol. 3, no. Jan, pp. 993-1022, 2003.

[4] R.Burke, “Hybrid recommender systems: Survey and experiments,” User modeling
and user-adapted interaction, vol. 12, no. 4, pp. 331-370, 2002.

[5] C.Chen,S. Gao, and Z. Xing, “Mining analogical libraries in q&a discussions—
incorporating relational and categorical knowledge into word embedding,” in
SANER, 2016, pp. 338-348.

[6] C.Chen and Z. Xing, “Similartech: automatically recommend analogical libraries
across different programming languages,” in ASE. ACM, 2016, pp. 834-839.

[7] A. Gayen, “The frequency distribution of the product-moment correlation co-
efficient in random samples of any size drawn from non-normal universes,’
Biometrika, vol. 38, no. 1/2, pp. 219-247, 1951.

[8] S.Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and
H. Iida, “Shinobi: A tool for automatic code clone detection in the ide,” in 2009
16th Working Conference on Reverse Engineering. IEEE, 2009, pp. 313-314.

[9] Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative filtering,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 4, no. 1, p. 1,
2010.

[10] M.-W.Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Instant code clone search,” in Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, 2010, pp. 167-176.

[11] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, “Jungloid mining: helping to
navigate the api jungle,” in ACM SIGPLAN Notices, vol. 40, no. 6. ACM, 2005,
pp. 48-61.

[12] K. Pearson, “Note on regression and inheritance in the case of two parents,
Proceedings of the Royal Society of London, vol. 58, pp. 240-242, 1895.

[13] R. Robbes and M. Lanza, “Improving code completion with program history,”
Automated Software Engineering, vol. 17, no. 2, pp. 181-212, 2010.

[14] L. Terveen and W. Hill, “Beyond recommender systems: Helping people help
each other,” HCI in the New Millennium, vol. 1, pp. 487-509, 2001.

[15] C.Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,” in 2012
19th Working Conference on Reverse Engineering. IEEE, 2012, pp. 289-298.

[16] F. Thung, L. David, and J. Lawall, “Automated library recommendation,” in
2013 20th Working Conference on Reverse Engineering (WCRE 2013): Proceedings:
Koblenz, Germany, 14-17 October 2013, 2013, pp. 182-191.

[17] X.Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving
automated bug triaging with specialized topic model,” IEEE Transactions on
Software Engineering, vol. 43, no. 3, pp. 272-297, 2017.

[18] X.Xia, D. Lo, X. Wang, and X. Yang, “Who should review this change?: Putting
text and file location analyses together for more accurate recommendations,” in
ICSME. IEEE, 2015, pp. 261-270.

[19] X.Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for reccommending developers
to resolve bugs,” Journal of Software: Evolution and Process, vol. 27, no. 3, pp.
195-220, 2015.

[20]
[21]
[22]

(23]

Yu et al.

X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing releases of
mobile applications,” in ESEM. ACM, 2016, p. 29.

B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot - automated generation of answer
summary to developersaf technical questions,” in ASE 2017, to appear.

B. Xu, Z. Xing, X. Xia, D. Lo, Q. Wang, and S. Li, “Domain-specific cross-language
relevant question retrieval” in MSR. ACM, 2016, pp. 413-424.

T. Zhang, J. Chen, H. Jiang, X. Luo, and X. Xia, “Bug report enrichment with
application of automated fixer recommendation,” in ICPC. IEEE Press, 2017, pp.
230-240.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Library Identification
	3.2 Problem Definition

	4 Our Approach
	4.1 Overall Framework
	4.2 RM-based Analysis
	4.3 Lib-based Analysis
	4.4 Aggregator Components

	5 Experiment Results
	5.1 Experimental Setup
	5.2 Research Questions

	6 Conclusion
	References

