
Scalable Relevant Project Recommendation on GitHub
Wenyuan Xu

School of Information Engineering
Yangzhou University

Yangzhou, China
x565178035@gmail.com

Xiaobing Sun
School of Information Engineering

Yangzhou University
Yangzhou, China

xbsun@yzu.edu.cn

Xin Xia
Department of Computer Science
University of British Columbia

Canada
xxia02@cs.ubc.ca

Xiang Chen
School of Computer Science and Technology

Nantong University
Nantong, China

xchencs@ntu.edu.cn

ABSTRACT
GitHub, one of the largest social coding platforms, fosters a flex-
ible and collaborative development process. In practice, develop-
ers in the open source software platform need to find projects rel-
evant to their development work to reuse their function, explore
ideas of possible features, or analyze the requirements for their
projects. Recommending relevant projects to a developer is a dif-
ficult problem considering that there are millions of projects hosted
on GitHub, and different developers may have different require-
ments on relevant projects. In this paper, we propose a scalable and
personalized approach to recommend projects by leveraging both
developers’ behaviors and project features. Based on the features of
projects created by developers and their behaviors to other projects,
our approach automatically recommends top N most relevant soft-
ware projects to developers. Moreover, to improve the scalability of
our approach, we implement our approach in a parallel processing
frame (i.e., Apache Spark) to analyze large-scale data on GitHub
for efficient recommendation. We perform an empirical study on
the data crawled from GitHub, and the results show that our ap-
proach can efficiently recommend relevant software projects with a
relatively high precision fit for developers’ interests.

KEYWORDS
Software recommendation, parallel processing frame, GitHub

ACM Reference format:
Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen. 2017. Scalable
Relevant Project Recommendation on GitHub. In Proceedings of Internet-
ware’17, Shanghai, China, September 23, 2017, 10 pages.
DOI: 10.1145/3131704.3131706

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware’17, Shanghai, China
2017 ACM. 978-1-4503-5313-7/17/09. . . $15.00

DOI: 10.1145/3131704.3131706

1 INTRODUCTION
In Github, developers are initiators of all software repositories. They
not only create a repository for their own projects, but also ex-
plore other projects which they are interested in [21]. For their own
projects, they do not need to build everything from scratch. More of-
ten, they reuse parts of other projects and then tailor the features to
implement their own functionalities. During software development,
if there is a tool which could recommend similar or relevant1 soft-
ware projects for developers, they can reuse these projects to speed
up the development process [8, 12]. In addition, some software
projects in open source community develop slowly because only
a few developers know them. If we recommend these projects to de-
velopers who have similar requirements, their development process
can be improved.

In practice, developers may use a search engine to detect simi-
lar projects by inputting the query keywords. However, search en-
gines usually focus on text matching [7]. Because software projects
are holistic, these keywords may not fully describe the character-
istics of a project. In addition, some works focus on the recom-
mendation of software projects for developers. These studies tend
to recommend relevant software projects based on project descrip-
tion or source code without considering user behaviors [7, 16, 22],
i.e., different developers may have different requirements on rele-
vant projects. These recommendation results are usually inaccurate,
which decreases developers’ trust in the recommender system.

To address the above challenges, we propose a recommendation
approach considering both the developers’ behaviors and software
projects’ features on GitHub2. For developers’ behaviors, we con-
sider the developers’ ratings for their projects as their behaviors like
Create, Fork and Star. For project’s features, we analyze both the de-
scription documents and source code. The source code is the main
part of a project, while the documents describe the functionalities
and usage of the project [19]. We extract the terms from the source
code and documents, and use cosine similarity to measure the tex-
tual similarity between two projects [14]. Finally, our approach rec-
ommends top N most relevant projects generated by the above two
components (i.e., developers’ behaviors and projects’ features) to
each developer. Considering there are millions of projects on GitHub,

1In this paper, we use the terms “similar” and “relevant” interchangeably.
2https://github.com/

Internetware’17, September 23, 2017, Shanghai, China Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen

to improve the scalability, we parallelize our algorithm on Apache
Spark platform3.

We evaluate our approach with four groups of datasets which
represent three different development areas and a mixed one from
GitHub. We compare our approach with two state-of-the-art recom-
mendation algorithms, i.e., user-based collaborative filtering (UserCF)
and an item-based collaborative filtering (ItemCF) [11]. The re-
sults show that the Accuracy of top 5 project recommendation in
four groups is 71.59%, 87.64%, 67.58%, and 42.14% respectively,
which improves the baseline approaches by a substantial margin.
The time for the recommendation can be shortened by increasing
the computing nodes in the cluster on Apache Spark platform. This
paper makes the following contributions:

• We propose a novel approach to recommend relevant soft-
ware projects by considering developers’ behaviors as well
as software projects’ features (extracted from description
documents and source code) on GitHub platform.

• Our approach can be performed in a parallel way to pro-
cess the increasing volume of data on Apache Spark plat-
form.

• An empirical study is conducted with four groups of datasets
crawled from GitHub to show the effectiveness of our ap-
proach.

2 PRELIMINARIES
In this section, we present the preliminary materials, i.e., content-
based recommendation, TF-IDF measure, and Apache Spark plat-
form.

2.1 Content-based Recommendation
The content-based recommendation can be described as recommend-
ing the items similar to the one the user liked before. It relies on
extracting information about items and users’ preferences [11].

Figure 1: Technique of Content-based Recommendation

A content-based recommendation system is generally composed
of two parts, as shown in Figure 1. One is user-item behavior matrix
I, which is a |U | × |I | matrix recording relationships between a set
of users U and a set of items I ; the other is the similarity matrix of
items II, where Matrix(i1, i2) = s represents the similarity value
between item i1 and item i2. This similarity matrix is usually calcu-
lated based on the item’s features. So content-based recommenda-
tion system is mostly used for document recommendation for which
the characteristics of the item can be automatically extracted from
the document content or their unstructured text description [10, 13].
Finally, the user-item evaluation matrix III is generated from the
matrix I and II.

3http://spark.apache.org/

In this paper, we use the content-based recommendation to cal-
culate the similarity between different software repositories to rec-
ommend top N software projects.

2.2 TF-IDF Measure
TF-IDF is intended to reflect how important a word is to a document
in a collection or corpus [6].

Suppose we have a collection of N documents. We define TFi j
to be the frequency (number of occurrences) of a term (word) i in
document j. Then, the term frequency TFi j is defined as:

TFi j =
ni j∑

k ∈j nk j
(1)

where ni j represents the times of the word i appearing in document
j. The denominator is the sum of all words appeared in the docu-
ment j.

Inverse Document Frequency (IDF) measures how much infor-
mation the word provides, which means whether the word is com-
mon or rare across all documents. The IDF of a word i in the corpus
N is defined as:

IDFiN = log
(

|N |
|{d |d ∈ N , i ∈ d }|

)
(2)

where |N | represents the total number of documents in the corpus
N , and |{d |d ∈ N , i ∈ d }| means the number of documents where
the word i appears. The main usage of IDF is to find the specificity
of a word. The smaller is the denominator, the greater is the IDF
value, which shows that word i has a good classification capability.

Finally, TF-IDF is calculated as TFi j × IDFiN , which we can
learn that the results based on TF-IDF tend to filter out common
words and preserves vital words.

In this paper, we use TF-IDF to calculate the values of each word
in the source code files or documents of a project. And the features
of a project are identified based on the TF-IDF values of the words.

2.3 Apache Spark
Apache Spark is a fast and general engine for large-scale data pro-
cessing4. The engine realized distributed computing based on MapRe-
duce algorithm [9]. Apache Spark is suitable for data mining and
machine learning which needs to perform iterations with the MapRe-
duce algorithm.

Resilient distributed dataset (RDD) is the core concept of Apache
Spark. It is composed of distributed data collection performing two
main operations: transformation and action [3]. Transformation is
an operation such as filter (), map () to generate another RDD, and
action is an operation such as count () and collect () to trigger a
computation. Here we list the involved Apache Spark APIs used to
implement our recommendation algorithm:

• HashingTF () and IDF (): these two functions are used to
calculate TF-IDF values of words in a project.

• Cartesian (): this function is used to combine the projects
into pairs.

• Map (), FlatMap (), and GroupByKey (): we mainly use
these functions to transform our RDDs to complete our
similarity calculation and the recommendation process.

4https://spark.apache.org/

Scalable Relevant Project Recommendation on GitHub Internetware’17, September 23, 2017, Shanghai, China

Figure 2: An overview of the architecture of our approach.

• SubtrackByKey (): this function is used to delete projects
known to the user.

3 OUR APPROACH
Our approach is built on GitHub, where developers can create soft-
ware repositories, fork or give stars to other repositories. An ar-
chitectural overview of our approach is shown in Figure 2. First,
we analyze software repositories and calculate the similarity ma-
trix between the projects on GitHub (Part 1). Second, we analyze
developers’ behaviors to get user-project matrix (Part 2). Finally,
top N software projects are recommended for each developer using
the recommendation algorithm based on the content similarity and
users’ behaviors (Part 3).

3.1 Extracting Features of Projects
A software project on GitHub contains different types of files, such
as source code files, binary files, and description files (e.g., README
files). Different types of files reflect different characteristics of a
project, which can be used to extract features from a project. For ex-
ample, source code files are one of the main parts of a project while
the description files describe the usage of the project. We mainly
analyze these two kinds of files to extract the features of a project.

Before extracting features from a project, we usually need to pre-
process those files, e.g., removing noisy information. For project de-
scription documents (e.g., README files), they are mainly ended
with “md” and “txt”. These files are recorded to describe the project
for users to understand, which are mainly composed of natural lan-
guage descriptions. We first remove the code part in them, which
may be noisy information to describe a project. In addition, there
are some meaningless stop words (e.g., “we”, “be”, etc.), so we
need to filter them out. Finally, we obtain a list of words from the
project description documents.

For source code files, the suffix name of these files is also dis-
tinctive which is relevant to their programming language. Thus we
extract these source code files based on their suffix names. Next,
we remove the numbers and escape characters since they are mean-
ingless in measuring the similarity of projects. Then, we transform
the compound words (in our case, the identifiers) into several single
words. The names of the identifiers form a large part in the source
code which reflects the characteristics of a project. There are usu-
ally two ways to combine several words to define an identifier. One
is Camel-Case, and the other is Underline-Case. We use a regular
expression to match and separate them into single words. Finally,
we obtain a list of words from the project source code files.

After preprocessing the description files and source code files,
we extract the features of a project based on the TF-IDF measure.
The TF-IDF measure calculates a word vector which is used to in-
dicate a project’s features. In this paper, the features of a project
are represented by two vectors, i.e., TF-IDF vector of description
documents and TF-IDF vector of source code [15]. It is difficult to
compute the similarity values based on different lengths of TF-IDF
vectors. Here, we unify the length of TF-IDF vectors by using a
hash table and mapping each word to a hash integer value. A long
hash vector may increase the size of calculation, while a short hash
vector may decrease the accuracy. According to experimental re-
sults, when the vector length is 3000 ∼ 4000, the effect is relatively
good [4].

To recommend relevant and similar projects, similarity between
different projects needs to be calculated. Here we calculate the sim-
ilarity between projects based on the two vectors of description
documents and source code, respectively. Specifically, we use the
cosine measure to calculate two similarity matrices of projects on
GitHub. One matrix represents the similarity values of the projects
based on the description documents, and the other represents the
similarity values of the projects based on the source code. In each
matrix, the similarity between two projects p and q is calculated as
sim(p,q) =

Vp ·Vq√Vp ·Vq , whereVp andVq donate the TF-IDF vector

of the projects p and q on description files or source code files.
Next, we use linear combination to combine the similarity of de-

scription files and source code files, and we compute the similarity
of two projects p and q as:

SIM(p,q) = α · simdoc (p,q) + β · simsrc (p,q)

s .t .,α + β = 1
(3)

In the above equation, α and β represent the weights of similarity
between the description files and source code files of two projects,
respectively. Different weights reflect their different capability to
reflect the characteristics of a project. The values of α and β can be
empirically determined. By default, we set α to 0.8 and β to 0.2.

An Example. Figure 3 shows an example of the procedure of ex-
tracting features of the projects and calculating the similarity val-
ues between them. We have five projects, Neocomplete, Bundle,
Plug-in, AutocomplPop, and Neobundle. We first extract the words
of these five projects from their documents and source code. Then
we calculate the TF-IDF vectors of documents and source code for
each project, and calculate the similarity values between different

Internetware’17, September 23, 2017, Shanghai, China Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen

Figure 3: An example of extracting features and calculating the similarity values between different projects.

projects. Suppose we set α = 0.8 and β = 0.2, and we get the
similarity matrix of these projects.

3.2 Extracting User Behaviors
In GitHub, a developer can Create, Fork, or Star a project, which
constitutes a developer’s behavior. Here we simply introduce the
meanings of these behaviors5.

• Create behavior: GitHub allows users to create reposito-
ries and then creators or co-developers can update reposi-
tories.

• Fork behavior: A fork behavior is a copy of a repository
that you manage. You can fetch updates from or submit
changes to the original repository with pull requests.

• Star behavior: Starring a repository allows you to keep
track of projects that you find interesting, even if you are
not associated with the project.

These behaviors reflect the degree of a developer’s demand for
different projects [21]. For example, a developer created a project,
which means that the project is directly related to him/her. In this
case, he/she may need other similar projects for reference. In an-
other case, if a developer stared a project, it may show that he/she
is just interested in this project. A developer’s behaviors on his/her
known project is described as a triple < user_id,project_id,value >,
where the value describes the degree of the user’s (user_id) needs
for project (project_id). Each value is decided by what kind of
user’s behavior. In this paper, we assign different values for differ-
ent behaviors as Table 1 shows. All these behaviors constitute a
user-project matrix UP , and UP(a,b) represents the behavior value
of the user a for the project b. In GitHub, a user may have differ-
ent behaviors to the same project. In this case, we select the highest
value from these behaviors for the project.

5https://help.github.com/

Table 1: Value of each behavior.

Behavior Create Fork Star

Value 10 6 1

Figure 4: An example of modeling the user behaviours.

Continuing with the previous example, in Figure 4, Alice stared
Neocomplete, and created Plug-in; Bob stared Bundle and Neobun-
dle, forked Plug-in, and created AutocomplPop. According to the
above mapping rules, we can get the user-project matrix on the right
of the figure.

3.3 Recommending Software Projects for
Developers

When we get the project similarity matrix and user-project matrix,
we can recommend software projects for these developers. The rec-
ommendation is performed based on a Demand measure, which is

Scalable Relevant Project Recommendation on GitHub Internetware’17, September 23, 2017, Shanghai, China

Figure 5: An example of recommending projects for developers.

used to show a user’s needs for different projects. Given a user u
and a project p, the Demand(u,p) measure is defined as follows:

Demand(u,p) =
∑

i ∈proj(u)UP(u, i) × SIM(i,p) (4)

In the above equation, i ∈ proj(u) represents the projects which a
user has labelled before (i.e., create, fork, or star),UP(u, i) denotes
the user u’s demand for project i, and SIM(i,p) is the similarity
value between project i and p. Hence, the sum can be used to predict
the user’s need for unknown projects. We recommend top n projects
with higher demand values.
An Example. Figure 5 shows an example of this procedure. We get
Alice’s behaviors from user-project matrix. Suppose we set n = 2.
From the project similarity matrix, the two most similar projects
with Neocomplete are AutocomplPop and Neobundle, and the simi-
larity values are 0.29 and 0.64, respectively. The most two similar
projects with Plug-in are Neobundle and Bundle, and the similarity
values are 0.83 and 0.88, respectively. Then, we can predict the de-
gree of Alice’s needs for these projects as shown in the right rectan-
gle. Finally, a Top-N recommendation is given to each user. In this
example, if we recommend two similar projects, they are Neobun-
dle and Bundle.

3.4 Parallel Computing
Suppose the number of projects is n and length of each vector is m,
when calculating the similarity values between each pair of repos-
itories, the time complexity is O(n2m), which consumes the most
amount of time in our approach. In GitHub, there are over 10.6
million projects since 20146. Based on the above analysis, a single
machine is difficult to complete the recommendation. So we per-
form our recommendation in a parallel framework—Apache Spark.
Apache Spark revolves around the concept of a resilient distributed
dataset (RDD), which is a fault-tolerant collection of tuples with
fixed formatting that can be processed in parallel [20]. Designing
the transformation of RDD in a Directed Acyclic Graph (DAG) is
the key point to realize our parallel algorithm. Figure 6 describes
the transformation of our algorithm.

We first need to load all documents and source code in soft-
ware repositories into RDD. As shown in Step I, we extract the
words from documents and source code files and get the triples like
< rid, < doc, src >>. Here rid is the identity of a repository; doc
represents the word set of documents; and src represents the source
code. The set of these tuples constitute a RDD (repos).

6https://github.com/features

Figure 6: The process of RDD transformation.

In Step II, we use HashingTF () and IDF () functions to calcu-
late the TF-IDF vector for document and source code, respectively.
After that, we have < rid, ed , es > of each repository, where ed
represents the TF-IDF vector of documents and es represents the
source code.

In Step III, we use Cartesian() function to get pairs of vectors,
like repoPair(<< rid1, ed1, es1 >, < rid2, ed2, es2 >>). Catresian
product returns a tuple from two sets. For example, the RDD R has
element {a,b}, then Cartesian(R,R) = {(a,a), (a,b), (b,a), (b,b)}.

In Step IV, we use repoPair to do a mapping transformation to
calculate the similarity values between different projects based on
the document and the source code, respectively. This map applies
the defined Cosine() function to every item of repoPair , which is a
function of calculating the cosine similarity between vectors. So we
get repoSim1(<< rid1, rid2 >, < simdoc , simsrc >).

In Step V, we use a mapping transformation to combine docu-
ment and source code to get the similarity between different projects.
With Add() function, we get << rid1, rid2 >, simr epo >, which is
sorted in repoSim2, where simrepo represents the similarity value
between rid1 and rid2.

In Step VI, we get the tuple behavior < uid, < rid, rankinд >>
from the user-project behaviour. Here uid is the identity of a user;
rid is the identity of a repository; and rankinд is the score of the
developer’s (uid) behaviour on the software repository (rid). Then
use it to calculate the user-project demand matrix with repoSim2.
After Step VI, we get the tuple like << uid, rid >,val >, which is
sorted in recRes1. val shows the user uid’s interest in software rid .

Next step, we use resRes1’s < uid, rid > as key and use subtract-
ByKey () with behavior to remove the projects the developer has
known.

Finally, we use resRes2’s uid as key to do groupByKey () to col-
lect all the projects related to user uid and select the top-N projects.
In this way, we can get the tuple < uid, S >, where S represents the
top-N repositories recommended for user uid .

4 EMPIRICAL STUDY
4.1 Research Questions
In our study, we discuss the following three research questions:

RQ1: Does our approach perform better than the state-of-the-
art recommendation approaches?

RQ2: Is it necessary to extract the features from both the de-
scription documents and source code of a project?

RQ3: Is our parallelization algorithm scalable to large-scale
data?

Internetware’17, September 23, 2017, Shanghai, China Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen

Our approach is proposed for repository recommendation, so we
study RQ1 to investigate whether the recommendation results are
accurate. When calculating the similarity, we first extract features
of a project from both its description documents and source code
for software project recommendation. Then, we assign the source
code files and description documents to different weights. We are
also concerned about the impact of different weights on our recom-
mendation approach (to answer RQ2). Finally, as we use the paral-
lelization algorithm to improve the scalability, we investigate RQ3
to show whether our approach can be scalable to large-scale data.

4.2 Empirical Environment
We implemented our approach with Python 2.7.9 and Apache Spark
2.0.1. For RQ1∼RQ2, we launched our experiment on 8GB RAM
and 8 Cores CPU with 2.40 GHz in each core. In RQ3, we set up a
cluster with Amazon EC27 clusters consisting of n = 1 ∼ 5 worker
nodes. Each node includes a 4-core, 64-bit machine with 8GB of
RAM memory.

4.3 Parameters Setting
In our approach, there are a series of parameters which need to be
set, such as k most similar programs to perform the similarity cal-
culation. We set k to 100 which is shown to be effective [5]. In
addition, the parameters α and β represent the weight of descrip-
tion documents and source code. For RQ1, we set α to 0.8 and β
to 0.2 since we empirically find these values achieve a reasonable
good performance, which will be proved by the results of RQ2. In
RQ2, we set α from 0 to 1 with a step of 0.1, thus β was set from 1
to 0 to find the influence of these parameters on accuracy. In RQ3,
since these values do not affect the speed of calculations, we still
use the default values i.e., a = 0.8, b = 0.2. Finally, the parameter
N represents top N similar programs needed to be recommended.
In RQ1 and RQ2, we set N to be 3, 5 and 10 for our study. For other
research questions, we set N to 10.

4.4 Methods and Evaluation Metrics
4.4.1 Methods. We use GitHub API8 to fetch the data. For

RQ1∼RQ2, we used four groups of data. The first three groups are
extracted from three organizations on GitHub named vim-jp9, For-
midable10, and harvesthq11. vim-jp is a vim community for Japan-
ese developers and users, and they mainly use Java and C/C++ to
develop projects. Formidable focuses on web application develop-
ment such as PHP, Javascript, Ruby, and CSS development. har-
vesthq focuses on Android app development. These three groups
represent three different development areas so that we can figure
out the performance of our recommendation approach. The reason
we selected these three groups is that there are significant relevant

7https://aws.amazon.com/ec2/dedicated-hosts/
8https://developer.github.com/
9https://github.com/vim-jp
10https://github.com/FormidableLabs
11https://github.com/harvesthq

Table 2: Statistics of four groups on GitHub

Group Name Users Projects Development Areas

vim-jp 22 562 Vimscript
Formidable 16 185 Web
harvesthq 43 540 Android

Mixed 1010 11518 /

projects in them. For example, in vim-jp, projects vital.vim12, java-
complete13, and unite.vim14 are relevant, since they all provide sup-
port tools to vim development. We first crawled all the developers
in these 3 organizations, and then we crawled the projects that these
developers create, fork, and star15. In the last group, we crawled
1,010 active users on GitHub (they have at least 20 software reposi-
tories on GitHub) and 11,518 repositories related to them. The pref-
erences of these users and their development areas are different, and
their projects are developed in different languages. We experiment
with this group to test the effect of our system in the real environ-
ment. Specifically, we chose 60% of the developers’ behaviors and
their software projects as our input, and used the remaining 40%
for testing. Each experiment was repeated ten times and we used
the average value. The details of each group are shown in Table 2.

In RQ1, our approach recommends top N projects to each devel-
oper in each group. Then, we compared our recommendation results
with other two typical recommendation algorithms, i.e.,UserCF and
ItemCF. UserCF first identifies a collection of users that are similar
to the target user’s interests, and detects the projects that the user
likes in the collection and recommends these projects to the tar-
get user [11]. ItemCF calculates the similarity of projects based on
users’ behaviors, which generates a recommendation list according
to the similarity of the items and the user’s historical behaviors [11].

In RQ2, we changed parameter α from 0 to 1 with a step of 0.1,
thus β from 1 to 0, and observe the change in the accuracy of our
approach.

In RQ3, we crawled more data with different sizes to test the scal-
ability of our recommendation approach. We fetched four groups
with 400, 600, 800, and 1,010 users, and 5,818, 8,378, 10,473 and
11,518 projects for this study. The four groups of data are 250MB,
360MB, 450MB, and 500MB, respectively, using 1 ∼ 5 worker
nodes to calculate the running time of our algorithm.

4.4.2 Evaluation Metrics. For the first two research questions
(RQ1 and RQ2), we use the Accuracy, Recall , Precision, and F1
metrics to answer them, respectively. These four metrics are defined
as follows:

Accuracy =
��{u |u ∈ U ,R(u) ∩T (u) , ∅}��

|U | (5)

Recall =

∑
u ∈U ��R(u) ∩T (u)��∑

u ∈U ��T (u)�� (6)

12https://github.com/vim-jp/vital.vim
13https://github.com/Shougo/javacomplete
14https://github.com/Shougo/unite.vim
15The data were crawled in October 6th , 2016. The number of developers in these 3
organizations might be changed.

Scalable Relevant Project Recommendation on GitHub Internetware’17, September 23, 2017, Shanghai, China

Precision =

∑
u ∈U ��R(u) ∩T (u)��∑

u ∈U ��R(u)�� (7)

F1 =
Recall ∗ Precision ∗ 2
Recall + Precission

(8)

U represents all the users in test data. R(u) represents the number of
relevant project repositories recommended to user u by the recom-
mendation approach.T (u) represents the number of relevant project
repositories about useru in testing data which are extracted from the
remaining 40% of the user behaviors.

For RQ3, we calculate the time efficiency of the data sets with
different data sizes on different numbers of worker nodes [2]. Obvi-
ously, when the size increases, the computing time will increase [1].
Besides, we introduce the speedup ratio, which is the performance
achieved by reducing the running time in parallel computing, which
is calculated as Speedup = Ts/Td , where Ts is the time consumed
by the algorithm (i.e., on a single node) andTd is the time consumed
by the parallel algorithm (i.e., on d identical worker nodes). The
higher is the speedup value, the less the relative time is consumed
by parallel computing, and the higher is for parallel efficiency and
performance. We performed each experiment three times and used
the average time as the execution time.

5 EMPIRICAL RESULTS
5.1 Answer to RQ1
First, we show that whether the recommendation results are effec-
tive, as well as compared with two typical personalized recommen-
dation approaches, i.e., user collaborative filtering (UserCF) and
item collaborative filtering (ItemCF) [17].

The empirical results are shown in Table 3. The results show
that the Accuracy, Recall , Precision, and F1 values of our approach
are much higher than that of UserCF and ItemCF. Both UserCF
and ItemCF have poor results because there are so many unpop-
ular projects on GitHub, which makes user-project matrix sparse.
Thus, UserCF cannot accurately detect similar developers based on
users’ behaviors and ItemCF cannot use it to calculate the similar-
ity. So in our algorithm, we calculate the similarity of projects using
documents and source code, as well as developers’ behaviors. This
greatly improves the accuracy of our recommendation, for example,
in the top 10 recommendation of Formidable group, the Accuracy
value of our approach reaches 95.00%. Even in the worst case, the
Accuracy of our approach is 54.72%. This ensures that over a half
of users could find their interested projects—at least one, rather than
getting nothing.

Therefore, from the results discussed above, compared with UserCF
and ItemCF, our approach can recommend more accurate results for
developers based on their behaviors and characteristics of the soft-
ware projects.

The reason for the low Recall in Mixed group is that the user be-
havior in the test is less, while our algorithm should recommend top
N repositories for each user. We can notice that the precision of top
10 recommendation is 17.52%, which means when recommending
10 projects, there are 1.7 relevant projects. In practice, developers
might be satisfied with this approach considering there are millions
of projects on GitHub.

5.2 Answer to RQ2
In this section, we investigate whether it is necessary to analyze
both the description documents and source code to extract features
for a project on GitHub and how to set their (α and β) weights.

Through figure 7(a), we can see that α and β have little effect
on Accuracy. However, we can notice that when α = 0 (i.e., only
considering the source code) and β = 0 (i.e., only considering
the description document), the Accuracy results are not the best,
which indicates that the features of a software project cannot be
extracted only from documentation or source code. Figure 7(b) and
Figure 7(c) show the Recall and Precision results of each group with
different α and β values. Similarly, we can see that when α = 0
or β = 0 the Precision and Recall is bad. However, when α ∈
[0.7, 0.9] (i.e. β ∈ [0.1, 0.3].), their values are relatively high. In ad-
dition, Figure 7(d) demonstrates the F1 scores with different α val-
ues. The results show that when α increases, F1 increases at the be-
ginning; but when α value increases to 0.6, the growing rate slows
down. When α achieves 0.8, F1 value starts to decline. We should
notice that in case of α = 0 or α = 1, which represents that the
features of a project are extracted only from the source code or de-
scription documents, the F1 scores are not the best. Based on the
Accuracy, Precision, Recall , and F1 scores with different α and β
values, we can conclude that it is necessary to extract features of
a software project using both the description documents or source
code.

From the results discussed above, both software source code and
description documents are important for content recommendation
in our approach, and the weights assigned to them do affect the
accuracy results. To let more people find their interests—at least
one—and to ensure the recommendation accuracy, we can set α =
0.8, β = 0.2 considering the results as shown in Figure 7.

5.3 Answer to RQ3
In GitHub, there are a large number of software developers and
software projects. So to analyze such large-size data needs a lot of
time for recommendation. Moreover, the size of the data on GitHub
is still increasing. In our approach, we implement our approach
on Apache Spark to process such large-size data. In this section,
we evaluate the scalability of our approach by showing the perfor-
mance of different datasets on different numbers of worker clusters.

The experimental results are shown in Figure 8. From Figure 8(a),
we can notice that our parallel algorithm can reduce the execution
time by increasing the worker nodes. For example, when the num-
ber of worker nodes increases from 1 to 2, the reduction rate of
execution time is obvious. In addition, when the number of worker
nodes is 1, the runtime of different datasets is different; but when the
number of worker nodes is 5, the difference is significantly smaller.
It means that by controlling the number of worker nodes, the exe-
cution time of our approach is controllable. In Figure 8(b), we can
notice that the acceleration effect is different for different datasets
when the number of worker nodes increases. For example, when
the dataset is only 250MB, the speedup effect is small if we added
another node on the basis of 2 nodes. However, when the datasets
are 450M and 500M, there is a big speedup when the number of
nodes is increased from 3 to 4. This is because when the dataset is
small, one or two nodes can finish the calculation process in a short

Internetware’17, September 23, 2017, Shanghai, China Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen

Table 3: The empirical results of our system, UserCF and ItemCF

vim-jp Formidable harvesthq Mixed

Top3 Top5 Top10 Top3 Top5 Top10 Top3 Top5 Top10 Top3 Top5 Top10

Accuracy
Ours 65.13% 71.06% 75.32% 84.72% 89.07% 95.00% 61.80% 67.85% 73.99% 36.58% 42.98% 54.72%
UserCF 5.37% 6.46% 8.60% 6.57% 6.57% 6.57% 5.78% 8.53% 0.71% 1.47% 1.47% 2.41%
ItemCF 4.26% 6.98% 8.62% 7.31% 7.31% 7.31% 5.78% 7.41% 0.71% 1.47% 1.47% 2.31%

Recall
Ours 11.27% 16.51% 25.43% 30.14% 37.63% 48.46% 18.69% 25.51% 33.29% 10.32% 14.32% 24.28%
UserCF 0.44% 0.55% 0.82% 1.28% 1.28% 1.28% 0.97% 1.47% 2.10% 0.28% 0.28% 0.47%
ItemCF 0.39% 0.63% 0.90% 1.42% 1.42% 1.42% 0.96% 1.24% 1.78% 0.28% 0.28% 0.45%

Precision
Ours 45.00% 39.80% 30.82% 56.07% 42.22% 27.29% 38.98% 32.22% 26.68% 19.55% 16.27% 13.83%
UserCF 2.32% 1.89% 1.48% 1.80% 1.80% 1.80% 2.82% 2.63% 2.03% 0.46% 0.46% 0.40%
ItemCF 1.88% 2.26% 1.69% 1.90% 1.90% 1.90% 2.87% 2.23% 1.72% 0.46% 0.46% 0.39%

F1
Ours 18.01% 23.31% 27.83% 39.17% 39.76% 34.89% 25.25% 28.46% 27.47% 13.51% 15.23% 17.62%
UserCF 0.73% 0.84% 1.04% 1.45% 1.45% 1.45% 1.43% 1.88% 2.06% 0.35% 0.35% 0.43%
ItemCF 0.63% 0.98% 1.16% 1.57% 1.57% 1.57% 1.44% 1.59% 1.74% 0.35% 0.35% 0.41%

(a) Accuracy of each group. (b) Recall of each group.

(c) Precision of each group. (d) F1 of each group.

Figure 7: Results of RQ2.

time. In this situation, increasing the number of nodes will increase
the time of resource allocation. The speedup effect is not obvious.
However, when the dataset becomes large, the situation is different.
One or two nodes cannot complete the calculation. And the execu-
tion time is greatly reduced when we add nodes. Especially in the

dataset with 450M and 500M, we get a linear growth in the runtime
which shows the scalability of our approach in large-scale data.

Based on the results discussed above, the parallel framework in
our approach can process large-scale data in a short time by adding

Scalable Relevant Project Recommendation on GitHub Internetware’17, September 23, 2017, Shanghai, China

(a) Runtime of each group. (b) Speedup of each group.

Figure 8: Results of RQ3.

more machines to the cluster to ensure the scalability of the increas-
ing data in GitHub.

6 THREATS TO VALIDITY
6.1 Threats to Internal Validity
We highlight the internal threats in terms of availability of descrip-
tion files and weights in the textual similarity.

Availability of Description Files: As we noticed, some projects
might not have the description files, in such a case, our approach
will only evaluate the textual similarity of two projects based on
their source code file similarity. Although it might reduce the accu-
racy of our approach, as shown in RQ2, even without the description
file similarity, our approach still achieve a substantial improvement
over the baseline approaches.

Weights: We set the default values of the weights (α and β) as 0.8
and 0.2, respectively. In practice, the optimal value of the parame-
ters might be different for different datasets, and in our study we
empirically find α = 0.8 and β = 0.2 could achieve a reasonable
performance. In the future, we plan to design an automated algo-
rithm to tune these two weights.

6.2 Threats to External Validity
Threats to external validity mainly deals with the generalizability
of our research and experiment. We highlight the threats in terms of
the programming languages and experiment size.

Programming Languages: GitHub contains numerous repositories
written in multiple programming languages (e.g. Java, Python, PHP,
C++), or combinations of multiple programming languages. Our ap-
proach is not designed for a single language and can be applied to
all GitHub repositories. In this paper, we set up our experiments on
projects on multiple languages such as Java, Python, C/C++. In the

future, we plan to perform more experiments to further reduce this
threat.

Experiment Size: In RQ1-RQ2, we applied our technique to four
groups on GitHub. The first three groups represent three different
development domains on GitHub, and the experiment size is sim-
ilar to a previous related work by Zhang et al. [22] which uses 50
queries and search for similar projects from a pool of 1,000 projects.
The last group contains a total of more than 10,000 projects and
1,000 developers. In the future, we plan to include more developers
and projects to reduce the threats to validity.

7 RELATED WORK
Our work is inspired by the empirical study of Zhang et al. [21].
They illustrated four types of user behavior data, including fork,
watch, pull-request and member which are suitable for finding rele-
vant projects. And different user behavior data sets are suitable for
different recommendation purposes. In this paper, we proposed our
approach on GitHub to recommend software projects for developers
by considering their different behaviours.

There are some works focusing on detecting similar reposito-
ries [7, 16, 22]. McMillan et al. design a tool CLAN, which uses
Latent Semantic Indexing (LSI) to measure the similarity of repos-
itories on API usage [7]. Their approach achieves a higher preci-
sion than previous studies. Thung et al. propose a different way
which combines tags given by SourceForge to detect similar repos-
itories [16]. They performed a user study with over a hundred thou-
sand of applications from SourceForge and proved to be more effi-
cient than JavaCLAN that only consider APIs. Zhang et al. further
improve CLAN, which can detect similar repositories on GitHub
based on two data sources (i.e., GitHub stars and README files) [22].
They evaluated their technology with 4 participates and 1,000 java
repositories and got more accurate results than CLAN.

Internetware’17, September 23, 2017, Shanghai, China Wenyuan Xu, Xiaobing Sun, Xin Xia, and Xiang Chen

All of their work tend to recommend projects based on a query
project, i.e., a developer needs to enter a query project, and their
works will recommend similar projects. Different from their study,
our study solve a related but different problem: we focus on scal-
able, personalized and relevant project recommendation, i.e., we
consider the developers’ historical behaviors and project similarity
to recommend relevant projects, and we do not have the user query,
while their tools are similar to a search engine inside GitHub. More-
over, we consider different types of users’ behaviors on GitHub,
and we not only consider the README files (documents). But also
source code to improve the recommendation accuracy. As we ob-
served, not all projects in GitHub has the README files. Moreover,
CLAN only considers projects written in Java, while our approach
can process projects in all programming languages.

REPERSP is a realized tool we created based on this paper’s
method [18]. It provides a web service to interact with users, includ-
ing fetching data from GitHub, providing recommendation results,
and receiving feedbacks.

8 CONCLUSION AND FUTURE WORK
In this paper, we proposed a scalable software project recommen-
dation on GitHub. The recommendation is performed based on the
developers’ behaviors and the features extracted from the descrip-
tion and source code. In addition, our approach is implemented in
Apache Spark to process an increasing size of data on GitHub. We
evaluated our approach with four groups of data from Github, and
the results showed that our approach can recommend more accurate
results. Moreover, our approach can be used to efficiently process
large-scale data by adding more machines to the cluster to ensure
the scalability of the increasing data in GitHub.

However,there is still some further work needed to be done from
different aspects. First, we need to do more experiments, especially
online experiments with actual developers, to figure out whether
our recommendation approach is actually useful. Second, we need
to improve our approach, for example, to find a better way to detect
user behaviors, to further improve the recommendation accuracy.
Finally, we can take into account the user feedback on our recom-
mendation results, which will make our recommendation approach
more practical and effective.

ACKNOWLEDGMENTS
This work is supported partially by Natural Science Foundation of
China under Grant No. 61402396 and No. 61472344, partially by
the Open Funds of State Key Laboratory for Novel Software Tech-
nology of Nanjing University under Grant no. KFKT2016B21, par-
tially by the Jiangsu Qin Lan Project, partially by the China Post-
doctoral Science Foundation under Grant No. 2015M571489.

REFERENCES
[1] Steven H.H. Ding, Benjamin C.M. Fung, and Philippe Charland. 2016. Kam1N0:

MapReduce-based Assembly Clone Search for Reverse Engineering. In Proceed-
ings of the 22Nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD ’16). ACM, New York, NY, USA, 461–470.

[2] Zekeriya Erkin, Michael Beye, Thijs Veugen, and Reginald L. Lagendijk. 2012.
Privacy-preserving Content-based Recommender System. In Proceedings of the

on Multimedia and Security (Sec ’12). ACM, New York, NY, USA, 77–84.
[3] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-

unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data Provenance Support in Spark. Proc. VLDB Endow. 9, 3 (Nov. 2015), 216–
227.

[4] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. 2015.
Learning Spark: Lightning-Fast Big Data Analytics (1st ed.). O’Reilly Media,
Inc.

[5] Daniel T Larose. 2005. k-Nearest Neighbor Algorithm. Discovering Knowledge
in Data: An Introduction to Data Mining (2005), 90–106.

[6] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge University Press.

[7] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting
Similar Software Applications. In Proceedings of the 34th International Confer-
ence on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA,
364–374.

[8] Collin McMillan, Negar Hariri, Denys Poshyvanyk, Jane Cleland-Huang, and
Bamshad Mobasher. 2012. Recommending Source Code for Use in Rapid Soft-
ware Prototypes. In Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 848–858.

[9] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. J. Mach. Learn.
Res. 17, 1 (Jan. 2016), 1235–1241.

[10] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325–341.

[11] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-
mender systems handbook. Springer.

[12] Wei Shi, Xiaobing Sun, Bin Li, Yucong Duan, and Xiangyue Liu. 2015. Using
feature-interface graph for automatic interface recommendation: A case study. In
Advanced Cloud and Big Data, 2015 Third International Conference on. IEEE,
296–303.

[13] Xiaobing Sun, Bin Li, Yucong Duan, Wei Shi, and Xiangyue Liu. 2016. Min-
ing Software Repositories for Automatic Interface Recommendation. Scientific
Programming 2016 (2016).

[14] Xiaobing Sun, Bin Li, Yun Li, and Ying Chen. 2015. What Information in
Software Historical Repositories Do We Need to Support Software Maintenance
Tasks? An Approach Based on Topic Model. In Computer and Information Sci-
ence. 27–37. https://doi.org/10.1007/978-3-319-10509-3_3

[15] Xiaobing Sun, Xiangyue Liu, Jiajun Hu, and Junwu Zhu. 2014. Empirical
Studies on the NLP Techniques for Source Code Data Preprocessing. In Pro-
ceedings of the 2014 3rd International Workshop on Evidential Assessment
of Software Technologies (EAST 2014). ACM, New York, NY, USA, 32–39.
https://doi.org/10.1145/2627508.2627514

[16] Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. Detecting similar appli-
cations with collaborative tagging. In Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, 600–603.

[17] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 501–508.

[18] Wenyuan Xu, Xiaobing Sun, Jiajun Hu, and Bin Li. 2017. REPERSP: Recom-
mending Personalized Software Projects on GitHub. In Software Maintenance
and Evolution (ICSME), 2017 IEEE International Conference on. IEEE.

[19] Cheng Yang, Qiang Fan, Tao Wang, Gang Yin, and Huaimin Wang. 2016. Re-
poLike: Personal Repositories Recommendation in Social Coding Communities.
In Proceedings of the 8th Asia-Pacific Symposium on Internetware (Internetware

’16). ACM, New York, NY, USA, 54–62.
[20] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[21] Lingxiao Zhang, Yanzhen Zou, Bing Xie, and Zixiao Zhu. 2014. Recommend-
ing Relevant Projects via User Behaviour: An Exploratory Study on Github. In
Proceedings of the 1st International Workshop on Crowd-based Software De-
velopment Methods and Technologies (CrowdSoft 2014). ACM, New York, NY,
USA, 25–30.

[22] Yun Zhang, David Lo, Kochhar Pavneet Singh, Xin Xia, Quanlai Li, and Jian-
ling Sun. 2017. Detecting Similar Repositories on GitHub. In 2017 IEEE 24rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE.

https://doi.org/10.1007/978-3-319-10509-3_3
https://doi.org/10.1145/2627508.2627514

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Content-based Recommendation
	2.2 TF-IDF Measure
	2.3 Apache Spark

	3 Our Approach
	3.1 Extracting Features of Projects
	3.2 Extracting User Behaviors
	3.3 Recommending Software Projects for Developers
	3.4 Parallel Computing

	4 Empirical Study
	4.1 Research Questions
	4.2 Empirical Environment
	4.3 Parameters Setting
	4.4 Methods and Evaluation Metrics

	5 Empirical Results
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Answer to RQ3

	6 Threats to Validity
	6.1 Threats to Internal Validity
	6.2 Threats to External Validity

	7 Related Work
	8 Conclusion and Future Work
	References

