
A First Look at Accessibility Issues in Popular
GitHub Projects

Tingting Bi Xin Xia
Faculty of Information and Technology

Monash University
Melbourne, Australia

Email: tingting.bi, xin.xia@monash.edu

David Lo
School of Information Systems

Singapore Management University
Singapore, Singapore

Email: davidlo@smu.edu.sg

Aldeida Aleti
Faculty of Information and Technology

Monash University
Melbourne, Australia

Email: aldeida.aleti@monash.edu

Abstract—Accessibility design elements allow people to access
software products and services independent of their different
abilities. However, accessibility is challenging to handle and
whether accessibility is widely considered in software projects
is unclear. In this work, we aim to understand if accessibility
is a prevalent consideration in practice, what accessibility issues
are discussed in GitHub projects, what potential reasons cause
accessibility issues, and what solutions (e.g., tools and standards)
are applied for addressing accessibility issues. In this work, we
collect 11,820 accessibility issues and their threads discussed by
developers in popular GitHub projects. We manually analyzed
and grouped the collected accessibility issues into seven cate-
gories. The results of our study uncover that accessibility is widely
discussed in general projects, and the potential reasons that
cause accessibility issues are because developers are not aware
of the importance of accessibility and they lack knowledge about
accessibility concerns, standards, and existing tools. Our results
and findings can enhance and improve developers’ knowledge
and awareness when they conduct accessibility-relevant design
or incorporate accessibility elements into their projects.

Index Terms—Accessibility Issues, Empirical Study, Mining
Repository

I. INTRODUCTION

In recent years, accessibility concerns are increasingly re-
ceiving attention in the software engineering field [1]–[3].
Accessibility is the practice of making software applications
more usable by as many people as possible independent of
their different abilities [4]. According to ISO 9241 standard,
it is essential to incorporate accessibility goals and features
into the design. Accessibility can also benefit other groups
of people, because designing human-system interaction to
increase accessibility promotes effectiveness, efficiency, and
satisfaction [5], such as those using mobile devices or those
with slow network connections [6], and semantic HTML
improves accessibility and makes websites more easy to find
[7]. Although accessibility laws and standards [8]–[10] have
been introduced in many countries, some companies and
developers still find it challenging to incorporate accessibility
into projects. Furthermore, a certain number of people with
different abilities are struggling and have to spend extra effort
and time using popular software applications [11]. Given that
a lot of accessibility issues are reported during software devel-
opment, we argue that a better understanding of accessibility
issues, challenges, and other relevant discussions can help

developers and organizations create more accessible software
applications [12].

There are some attempts at accessibility development and
design. For example, in our previous work, we have investi-
gated developers’ general opinions on accessibility and how
accessibility is incorporated into different phases of software
development [13]. Abdulaziz et al. have presented a study
of understanding accessibility issues in Android apps from
complementary perspectives [14]. In addition, there are numer-
ous standards and guidelines available for basing accessibility
design, development, and testing [15]–[17]. While previous
works and resources are valuable for understanding accessi-
bility, some gaps exist in the literature. For example, which
accessibility issues do developers discuss in practice, what
causes accessibility issues, what solutions developers applied
for addressing accessibility issues. These gaps motivated us
to investigate accessibility issues in real-world projects, and a
comprehensive understanding of the characteristics of acces-
sibility issues would provide better support for incorporating
accessibility design elements into software applications.

GitHub is a large and popular open source platform, which
hosts various projects. Developers use “Issue”1 to report the
concerns and bugs of projects [18] [19]. In this study, we
took advantage of Issue discussions in GitHub projects as
our data source to investigate and understand accessibility
issues in practice. We manually collected 11,820 accessibility
relevant issues in 1,000 GitHub projects; based on the analysis
results and findings, we provide a set of practical lessons for
developers to be aware of accessibility issues. We offer a
complimentary analysis focusing on accessibility issues and
threads discussed by developers. We analyzed the potential
reasons that cause accessibility issues and proposed potential
suggestions for improving accessibility in practice. With those
new angles, this work makes the following key contributions:

• We found that accessibility issues are widely concerned in
real-world projects, i.e., around 70% of selected projects
in our data sample have reported and discussed accessi-
bility issues.

1https://docs.github.com/en/github/managing-your-work-on-github/about-
issues

• We grouped accessibility issues into seven categories,
and most accessibility issues and discussions (i.e., around
62% of accessibility issues) were triggered by UI design
(e.g., color and navigation). In addition, based on devel-
opers’ discussions, we analyzed four reasons potentially
causing accessibility issues.

• We structured the discussed knowledge for supporting ac-
cessibility design and development, i.e., standards, tools,
and APIs. Furthermore, we offered a set of recommenda-
tions for developers to promote better accessibility design
in practice.

The paper is organized as follows: Section II elaborates
our methodology. The results of each research question are
presented in Section III, and their implications and discussions
are presented in Section IV. Section V examines the threats
to validity, and Section VII concludes this work and outlines
the directions for future research.

II. METHODOLOGY

In this work, we conducted an exploratory study [20] to
investigate accessibility issues in GitHub projects. We elabo-
rated our goals and research questions in Section II-A, and we
described the data collection process in Section II-B, and the
data analysis process is presented in Section II-C.

A. Goals and Research Questions

This study aims to understand what accessibility issues and
relevant discussions are discussed by developers and how do
developers address those accessibility issues. The Research
Questions (RQs) we address in this study are as follows:

RQ1: What accessibility issues are discussed across
GitHub projects?

Rationale: Accessibility design covers a wide range of
elements [21] and accessibility requirements can come in
a wide variety of forms [22]. It is vital to understand if
accessibility is a general consideration across projects and
what accessibility issues are discussed by developers. By
answering this RQ, we provide insights into what accessibility
issues and relevant considerations are discussed by developers
in real-world projects.

RQ2: What are the causes of reporting accessibility
issues from the perspective of developers?

Rationale: There is a set of requirements, standards, and
goals to define accessibility [22] [23], e.g., perceivable, op-
erable, and understanding. Developers design and develop
software applications to achieve one or multiple of these acces-
sibility goals. However, many reasons could hinder software
applications from achieving these goals. Developers discuss
and report potential issues, for example, bugs, design decision
trade-offs, and improvement of accessibility. By answering
this RQ, we identify the potential causes and consequences
of accessibility issues in practice.

RQ3: What tools, standards, and APIs are applied to
address accessibility issues in practice?

Rationale: A set of standards, tools, APIs, and other design
elements for accessibility have been proposed and extensively

investigated in the literature, yet it is not known whether
developers use them. By answering this question, we provided
a list of such accessibility practical design elements, which
can help other developers make informed decisions when
dealing with accessibility and inspire researchers to develop
new approaches and tools.

RQ4: What are the practical recommendations for
developers to handle and address accessibility issues?

Rationale: The ways to design and develop software ap-
plications vary from project to project, depending on their
design contexts (e.g., development teams, financial budgets,
and project domains) [24]. Therefore, accessibility design
and development also would be addressed in different ways
in practice. By analyzing potential solutions for addressing
accessibility issues discussed between developers, we attempt
to summarize and provide recommendations for assisting
accessibility development and design in practice [25].

B. Data Collection

Step 1: Identifying the most popular GitHub repositories
for analysis.

We used star ratings and popularity to identify popular
GitHub projects to collect data in our study. This search was
done as follows:

1) Execute project search: We used the search function
provided by GitHub to rank the projects by star rating.
The number of stars of a repository works like an
easily accessible and reliable proxy to its popularity
[26]. In addition, to ensure that the GitHub projects we
investigated are non-trivial (i.e., the projects are active
and the repositories of the projects are continually being
updated), we selected the projects that were launched at
least two years ago and keep being updated.

2) Identify potential GitHub repositories: We excluded the
GitHub repositories, which are related to documentation,
as those repositories provide books, code examples,
and other textual materials [27]. In addition, Issue is a
function provided by GitHub, and each repository has its
own section for Issues [28]. Please note that, in this step,
we excluded repositories with no issues information. We
finally selected the top 1,000 GitHub projects with the
highest star rating for the next step of the analysis.

Step 2: Identifying accessibility-related issues in the
selected GitHub repositories.

In this step, we collected data related to accessibility issues.
Before the formal data collection, we defined a set of search
terms based on the topic (i.e., accessibility issues). Specially,
we defined two sets of search terms. Set A (specific terms):
“Adaptability, Disabilities Act, Alternative Text, Assistive Tech-
nology, Audio Browsers, Captions, Screen reader, Switch Con-
trol, Usability, Web Accessibility, Universal Design, Color,
Navigation” [14]. Set B (general term): “Accessibility”. We
conducted a pilot search for accessibility issues in randomly
selected 50 GitHub projects. We then checked the sample data
from the returned results, and determined their relevance to the
topic “Accessibility”.

Step 1
Identify the most
popular GitHub
repositories for

analysis

Step 2
Identify

accessibility
relevant issues

Step 3
Data analysis

GitHub
repositories

Results
for RQs

Legend

Step

Sub-step

Sequence

Consist of

Step 2.1
Collect

accessibility-related
discussions

Step 2.2
Collect other data to

answer RQs

Fig. 1. Overview of the research process.

Fig. 2. An accessibility issue example from Github repositories.

The pilot search results of Set A were 564 issues, and 478
relevant accessibility issues were finally confirmed. The pilot
search results of Set B were 554 issues, and 501 relevant
accessibility issues were finally confirmed. We found that
accessibility issue search using Set B is more efficient and can
cover the accessibility issues using the Set A search terms. In
addition, we found that when developers report accessibility-
relevant issues, they would use “accessibility” term or select
the accessibility tag to label the issue (see an accessibility issue
example in Fig 2). As such, we decided to use the general term
“accessibility” to search data and then manually check whether
the issues are actually relevant to accessibility.

In addition, for answering the RQs listed in Section II-A,
we collected the relevant discussion threads in the selected
GitHub repositories. In summary, we got two steps for data
collection:

• Step 2.1: Collecting issues relevant to accessibility. As
we discussed earlier, to identify the most suitable terms
for capturing issues relevant to accessibility, we ex-
perimented with several terms within the pilot search,

TABLE I
EXTRACTED DATA ITEMS AND THEIR DATA ANALYSIS METHODS.

No. Data item Data analysis
method

Relevant
RQ

D1 Description of accessibility is-
sues.

Constant
Comparison
and Descriptive
Statistics.

RQ1

D2 Description of accessibility
relevant discussions.

Constant
Comparison

RQ2

D3 The tools, standards, and APIs
for accessibility that discussed
by developers.

Descriptive
Statistics

RQ3

D4 Description of potential solu-
tions of the accessibility is-
sues.

Constant
Comparison

RQ4

D5 The domain of the GitHub
projects.

Descriptive
Statistics

RQ1
and
RQ4

and then we decided to use the general search term
“accessibility”. We manually checked and confirmed the
discussed accessibility issues.

• Step 2.2: Collecting whole threads discussed between
developers of the collected accessibility issues in Step
2.1. The collected data items are shown in Table I.

To reduce personal bias in data collection, we invited
another Ph.D. student for the formal data collection. The first
author and the Ph.D. student separately collected data from
500 projects. They then double-checked each other’s collected
data (i.e., whether the issues are related to accessibility), and
any disagreements were discussed and solved with the second
author. We calculated the Cohen’s Kappa coefficient [29] of
the data collection between two inspectors, and the result
achieved an agreement of 0.79. Finally, we collected 11,820
accessibility issues and their threads from the selected 1,000
popular repositories. Please note that, some GitHub projects
do not include any accessibility issues and discussions, and
we discuss the detailed results in Section IV.

C. Data Analysis

As shown in Table I, we used Descriptive Statistics and
Constant Comparison methods to analyze the extracted data
items [30]. Constant Comparative is a bottom-up open coding

approach from Grounded Theory, and Constant Comparative
is an inductive data coding process used for categorizing
and comparing qualitative data for analysis purposes [31]. To
support the coding and categorize the data, we employed a
tool, MAXQDA2, for qualitative data analysis.

We first performed a pilot data analysis exercise by ran-
domly selecting 100 accessibility issues and their threads
collected in Section II-B to mitigate personal bias in analysis
and labeling data.

The formal data analysis comprises three steps: (1) open
coding, executed by the first author and the invited Ph.D.
student, split the data into separate parts, i.e., what accessi-
bility issues are discussed, what the potential reasons cause
accessibility issues, what tools, standards, and APIs are dis-
cussed, and what the solutions discussed. The two annotators
separately label the accessibility issues and their threads of
500 projects, and they then checked each other’s labeling
results. Any disagreements on labeling accessibility issues
were discussed and confirmed with the second author. (2) axial
coding, executed by the first author and the Ph.D. student, was
employed to identify categories generated in the open coding
step. (3) reducing the personal bias in coding, we made a
final reliability test and calculated Cohen’s kappa reliability
coefficient for data analysis between two annotators, and the
mean value is 0.80 for all the RQs. The result indicates a
strong agreement between the two annotators.

III. RESULTS

We explain the results of four research questions that
investigate accessibility issues from different perspectives in
this section.

A. RQ1 - What accessibility issues have been discussed across
GitHub projects?

We found that around 70% of selected projects (708
projects, see Table III) have discussed accessibility issues.
As we discussed in Section II-B, when developers discuss
accessibility relevant issues, they would label the issues with
the “Accessibility” tag or use the term “Accessibility” in the
Title/Summary to indicate. Besides, when crafting a title,
the majority of the developers explained the situation and
problems on accessibility issues that occurred (i.e., 71.2%
of the collected accessibility issues), and some developers
copy and paste the error message (i.e., 34.5% of the collected
issues) in the description of the reported accessibility issues.
However, we found that only a few developers provided details
(e.g., release version) in the issue descriptions (i.e., 15.9% of
the collected accessibility issues). In summary, based on the
accessibility issues that we collected, most of the developers
are able to report accessibility issues clearly. To answer RQ1,
we applied open coding approach (i.e., Constant Comparison)
to group the collected accessibility issues into seven categories,
and we also presented some example issues for each category.
Please note that an accessibility issue and their threads can

2https://www.maxqda.com/

include multiple categories; as such, the total percentages of
all categories is greater than 100% (see Table II).
1. UI design - accessibility issues. This category ranks first
in our data sample (i.e., 61.2%). In this category, developers
often presented accessibility issues regarding UI design; for
example, developers discuss colors, text sizes, and keyboard
navigation issues. Accessibility in UI design leads to a better
experience for all users, regardless of ability. This result is
consistent with our previous work [13], i.e., in current software
application development, accessibility has been incorporated
somehow in a short-term goal and mostly focuses on UI
design.
Ê “After watching @mmatuzo’s talk “Writing even more

CSS with accessibility in mind”, I wanted to suggest optional
smooth scroll. I saw #24889 but it’s kinda outdated, and
with the support of prefers-reduced-motion it’s more robust
now. Very simple and lightweight PR so feel free to discard it
if you think it’s still not valuable.”
Ê “This led to unexpected results...This doesn’t ensure that

our dark foreground color will cross the threshold, neither
than its contrast ratio with background will be better than
white...”
Ê “I’m looking at ReDoc v2 (nice job by the way) but

I’m running into problems where the interface isn’t very
accessible. Looking at the ”Accessibility” tab in Firefox, it’s
mostly div and span tags with onClick events attached that are
tripping me up. In order to be useful to more people (and for
us to potentially adopt this at work)...”
2. Accessibility improvement. This category ranks second
in our data sample (i.e., 42.3%), and those issues are re-
lated to accessibility functionality improvement (e.g., adding
voice assistant functionality). Accessibility is an essential
consideration for any project. However, only a few projects
consider accessibility at the beginning of the software design
phase [32]. Many projects and developers have to improve
accessibility elements and functionalities when the project
requirements evolve.
Ê “Improves accessibility on tables by adding captions

documentation and scope=”col” on thead #23755.”
Ê “I was wondering if we should change role=”alert” to

role=”alertdialog” on dismissible alerts since W3C alert role
specs read...This would mean wrapping the text with a div
with an id and adding an aria-describedby which I don’t quite
like but on modals we have plenty of hooks to make it more
accessible.”
3. Overlapped with other quality attributes. This category
ranks third in our data sample (i.e., 22.1%) that describes how
accessibility interacts with other quality attributes, vice versa.
We found that developers report and discuss accessibility
issues along with other quality attributes, such as usability,
performance, and user privacy. For example, developers report
that accessibility services have been incorporated into Android
to make devices running the mobile operating system easier to
use for people with disabilities, but those services can provide
a path for an attacker [33].

TABLE II
A TYPOLOGY OF TOPICS ON ACCESSIBILITY ISSUES THAT DISCUSSED IN

GITHUB PROJECTS.

Category Excerpt title Percentage

UI design -
accessibility
issues

Title 1: “Bug: React roots are an-
nounced as clickable to screen read-
ers.” - screen reader

61.2%Title 2: “DevTools: Check if accessi-
bility regressions exist compared to old
DevTools.” - color for disabled
Title 3: “Flow-root clearfix alternative
proposal.” - view focus
Title 4: “Bootstrap Navigation: Radio
button inside Label not activated.” -
navigation issue

Accessibility
improvement

Title 1: “Add a play/pause button; Fo-
cus the selected item; Disable prev/next
controls when data-bs-wrap=”false”
and stopped at one end” - functionali-
ties for accessibility improvement

42.3%

Title 2: “Improve accessibility for an-
chor tag.” - accessibility improvement

Overlapped
with other
quality
attributes

Title 1: “Usability Testing? as a UX
Researcher I get asked about Bootstrap
user testing and general usability of
elements or patterns.” - usability level
changes

22.1%

Title 2: “Remove the unnecessary new-
line and unused vars” - usability and
performance
Title 3: “Added the third parameter
column for Table’s row click event” -
event addition

Solving
accessibility
relevant
technical
problems

Title 1: ”Significant change: upgrades
calico/canal for security vulnerability”
- updating issues 10.3%

Title 2: ”Existing Calico user on clus-
ters that were created prior to kops
1.8.0 need to be updated for the new
”DefaultDeny” bSolving accessibility
relevant technical problemsehavior for
Kubernetes Network Policies” - hard
coded issues
Title 3: ”Move kops-controller to use a
yaml configuration file” - accessibility
controller issue

Sharing
knowledge for
supporting
accessibility

Title 1: “QuickPick with Accessibility
Support:on on type does not auto select
first element if there is no string match”
- accessibility knowledge sharing

7.9%

Title 2: “QuickPick with accessibility
Support:on on type does not auto select
first element if there is no string match.”
- accessibility knowledge sharing

Refactoring and
reuse for incor-
porating acces-
sibility

Title: ”I work as a Web Developer for
accessibility and, to me, it felt as though
there was a parent container with a
WAI-ARIA role of ”application” some-
where which was essentially stealing
focus. There are other roles that en-
gage Forms Mode like this, expecting
the control to have coded all keyboard
interactions itself.” - refactoring for ac-
cessibility

3.9%

Documentation
update for
accessibility

Title 1: “Docs: improve/expand button
documentation.” - accessibility infor-
mation documented

2.2%

Title 2: ”Lots of documentation have
been polished” - other software artifact
update

Ê “We rely on community feedback to make changes to
components, which we usually get in larger quantities than
we can handle as it is. We also have Patrick, who provides
extensive accessibility and standards usability support. If you
have any particular questions or suggestion, we’d be happy
to hear them.”
Ê “Usability Testing? as a UX Researcher I get asked about

Bootstrap user testing and general usability of elements or
patterns.”
Ê “Significant change: upgrades calico/canal for security

vulnerability.”
4. Solving accessibility relevant technical issues. This cat-
egory ranks fourth in our data sample (i.e., 10.3%) that
reports accessibility design and development technical issues.
For example, developers discuss the coding or programming
bugs regarding accessibility functionalities (e.g., hard coding
issues).
Ê “Button shadow is hard coded. We have 3 variables for

button shadow: btn−box−shadowbtn-focus-box-shadow btn-
active-box-shadow. Issues here: If i set btn-box-shadow value
to “none”, button mixin generates incorrect box-shadow for
:focus/.focus states.”
Ê “Existing Calico user on clusters that were created prior

to kops 1.8.0 need to be updated for the new “DefaultDeny”
bSolving accessibility relevant technical problemsehavior for
Kubernetes Network Policies” - policy document update.”
5. Sharing knowledge for supporting accessibility. This cat-
egory ranks fifth in our data sample (i.e., 7.9%) that describes
developers sharing resources (e.g., API and tools), knowledge,
and their personal experience on accessibility development and
design when having new functionalities for accessibility or
fixing specific issues.
Ê “This particular use is fairly non-standard, and from an

accessibility point of view this impedes adopting a ”proper”
tabbed interface pattern with correct role “...” etc. As such,
I’d like to get opinion from implementers about whether or
not they find the current tab with dropdowns useful, or if
dropdowns can be removed (which would then allow a proper
ARIA tab implementation).”
Ê “QuickPick with Accessibility Support: on type does not

auto select first element if there is no string match.”
6. Refactoring and reuse for incorporating accessibility.
This category accounts for 3.9% of our data sample describing
the techniques for refactoring projects or components to incor-
porate accessibility. Developers discuss the information about
components or the software refactoring for accessibility func-
tionalities. Accessibility requirements need to be separately
designed for low coupling and reuse. In addition, refactoring
is a downside when projects need to incorporate accessibility
elements into a system, as many systems do not consider
accessibility at the beginning.
Ê “An accessibility refactor will improve your product and

your code base more effectively than a code-only refactor.
Refactoring as an essential technique to incrementally improve
the accessibility and usability of a web.”

Ê “I work as a Web Developer for accessibility and, to
me, it felt as though there was a parent container with a WAI-
ARIA role of “application” somewhere which was essentially
stealing focus. There are other roles that engage Forms Mode
like this, expecting the control to have coded all keyboard
interactions itself.”

7. Documentation update for accessibility. This category
ranks the least in our data sample (i.e., 2.2%). Essentially, in
this category, developers discuss documentation for checklists
about accessibility concerns and issues.

Ê “Assorted accessibility (and some consistency) fixes for
documentation.”

Ê “Update toast documentation on accessibility, maybe
need a review for english because it’s not my native langage.
Also add a question about default toast timeout actually
defined to 500ms maybe most of users will let it as is by
copy/paste... don’t know what’s the usual timer on toaster but
maybe increase it by default at 3seconds or 5seconds.”

We then further analyzed what accessibility issues have been
discussed across different project domains. As mentioned in
Section II, we collected the domain information of GitHub
projects during the data collection phase (i.e., D5 in Table
I). GitHub does not include information about the domain
of a project; however, According to Borges et al., GitHub
projects could be classified into six domains (i.e., Application
Software, System Software, Web Libraries and Frameworks,
Non-web Libraries and Frameworks, Software Tool, and Doc-
umentation) [34]. The first author and the invited Ph.D.
student manually checked the domains of selected GitHub
projects. As we mentioned in Section II-B, we did not include
projects in the documentation domain in the data collection
phase. We listed the top three accessibility issues in the five
domains in Table III. The results show that UI design relevant
accessibility issues are most frequently discussed in Software
Application domain. A potential reason is that projects in this
domain provide a range of functionalities for end-users (e.g.,
Google Docs), which need to consider accessibility elements
in their applications. In contrast, in System Software and Non-
web Libraries and Framework domains, the most frequently
discussed accessibility issues are related to Refactoring and
reuse for incorporating accessibility. Reasons could be the
most users of those projects tend to be developers, and the
projects are mostly at lower design (e.g., provide frameworks
for developers).

Summary for RQ1: Accessibility issues are widely con-
cerned in GitHub projects, and in our data set, around
70% of selected projects have reported accessibility issues.
Most accessibility issues are related to UI design (i.e., color
usage and layout navigation). This is especially true in the
Application Software domain(i.e., 72.7% of accessibility
issues are related to UI design).

TABLE III
ACCESSIBILITY ISSUE CATEGORIES REPORTED IN DIFFERENT PROJECT
DOMAINS. WE REPORTED THE TOP THREE DISCUSSED ACCESSIBILITY

ISSUES IN THE FIVE DOMAINS OF GITHUB PROJECTS.

Project domain Top three accessibility issue categories

Application Software
(312 projects)

UI design - 52.7%
Improvement for accessibility - 35.9%
Sharing knowledge for supporting accessibility
- 11.4%

System Software (129
projects)

Refactoring and reuse for incorporating
accessibility - 34.2%
Overlapped with other quality - 34.5%
Sharing knowledge for supporting accessibility
- 31.3%

Web-libraries and
Framework (102 projects)

Sharing knowledge for supporting accessi-
bility - 65.7%
Overlapped with other quality - 23.4%
Sharing knowledge for supporting accessibility
- 10.9%

Non-web Libraries and
Framework (87 projects)

Refactoring and reuse for incorporating
accessibility fixed - 54.1%
Sharing knowledge for supporting accessibility
features - 23.1%
Overlapped with other quality attributes -
22.8%

Software Tools (76
projects)

Solving accessibility relevant technical is-
sues - 65.7%
Sharing knowledge for supporting accessibility
- 26.3%
Overlapped with other quality attributes - 8.0%

B. RQ2 - What are the causes of reporting accessibility issues
from the perspective of developers?

As we discussed in Section II, we applied the Constant
Comparison method to analyze the potential reasons why
developer report accessibility issues (i.e., why developer report
them), and we got the four reasons and named them as No
awareness of accessibility, Experience accessibility problems,
Perceived negative consequences, and Development practice
causing accessibility issues (see Table IV).

No awareness of accessibility is the most frequent reason
that is incurring accessibility issues in our data sample. We
found that 85% of the accessibility issues occur because of
developers’ lack of accessibility relevant knowledge and are
unaware of accessibility at the beginning of project develop-
ment, and accessibility issues often happen in the design and
implementation phases. In addition, some developers would
share links about accessibility standards, knowledge, or tools
for facilitating accessibility design to inform other developers
in the threads. Official forums of accessibility design, research
papers, and question and answer websites are the top three
popular sources that developers pointed to for sharing acces-
sibility knowledge.
Ê “We did not notice that color is not suitable in that chat

box, might be it’s not accessible for users.”
Experience accessibility issues. 56% of the reported ac-

cessibility issues due to projects are experiencing accessibility
problems in a number of ways, e.g., their projects need to fix
some specific accessibility UI design issues or need to refactor

for incorporating accessibility design elements.
Ê “The overall accessibility of any project built with Boot-

strap depends in large part on the author’s markup, additional
styling, and scripting they’ve included. However, provided that
these have been implemented correctly, it should be perfectly
possible to create websites and applications with Bootstrap
that fulfill.”

Perceived negative consequences. Around 32% of acces-
sibility issues were reported due to this reason in our data
sample. Developers perceive and report that some potential
accessibility issues would be barriers if the system project
evolves (e.g., introducing new functionalities) or when they
need to maintain the system.

Ê “The overall accessibility of any project built with Boot-
strap depends in large part on the author’s markup, additional
styling, and scripting they’ve included. However, provided that
these have been implemented correctly, it should be perfectly
possible to create websites and applications with Bootstrap
that fulfill.”
Ê “We set our focus styles using shadows, and since we

couldn’t ensure anyone disabling those shadows would set
proper focus styles, we don’t provide a way to change this.
Focus styles are mandatory, using box-shadow allows more
theming than keeping outline.”

Development practice causing accessibility issues. We
found that architecture patterns and design patterns could
cause around 28% of reported accessibility issues. Many
projects fail to take accessibility into account initially, and
many projects start with achieving some level of accessibility
in the later design (i.e., accessibility is postponed to once
projects are built). However, at the end of the project, time
starts to decrease rapidly, and resources start to be assigned
to other priorities. In addition, at the end of the project,
accessibility is dropped or postponed for a later version.

Ê “Hey there, as a UX Researcher I get asked about
Bootstrap user testing and general accessibility of elements
or patterns. Our design system leverages Bootstrap and we
typically test the elements and patterns that we customize, so
I wanted to reach out to see how various things make their
way into a new release or recommendation? ”

Summary for RQ2: Four reasons potentially cause acces-
sibility issues that are identified in our data sample, and
one most common reason is that developers lack acces-
sibility knowledge (e.g., accessibility-related standard and
commonly used tools) or are not aware of accessibility in
the first place of project development.

C. RQ3 - What tools, standards, and APIs are applied to
address accessibility issues in practice?

To answer RQ3, we collected the tools, standards, and APIs
employed by developers to address accessibility issues. We
listed the top five most-discussed items and their counts in
Table V.

Accessibility Standards

TABLE IV
ANALYSIS ON CAUSES OF ACCESSIBILITY ISSUES.

No. Cause Type
No awareness of accessibility
1 Lacking of relevant accessibility

knowledge.
Non-technical

2 Not fully understand requirement
changes related to accessibility.

Non-technical.

3 Accessibility design is missing in the
early stage.

Non-technical

4 No proper tools or checklists for ac-
cessibility design.

Non-technical

Experience accessibility issues
5 Running through hoops of accessibil-

ity development.
Technical

6 Accessibility relevant bugs. Technical
Perceived negative consequences
7 Increasing accessibility for more

users.
Non-technical

8 Poor accessibility would hurt devel-
opment team reputation.

Non-technical

9 Involving bugs if accessibility is ig-
nored.

Technical

10 Increasing more efforts or time to
incorporating accessibility in the next
step work.

Technical

Development practice causing accessibility issues
11 Reported by external entity. Technical
12 Development team mandates accessi-

bility into project development.
Technical

There exist an overwhelming amount of accessibility stan-
dards. However, it is unclear whether developers employ them
for accessibility design in practice. We identified the top five
most-discussed accessibility standards. The World Wide Web
Consortium (i.e., W3C) issues guidelines for accessing web
content, and Web Content Accessibility Guidelines (WCAG)
are most frequently discussed and used the standards (i.e.,
accounting for 86% of all discussed accessibility standards).
Ê “Differentiate between the two WCAG

links (minimum and enhanced). The two termi-
nal.integrated.minimumContrastRatio example values 4.5
and 7 have the same text and link text but corresponds to two
different levels of compliance (4.5 minimum, 7 enhanced).
The description should call out the differences and have
unique link text.”

Accessibility Tools
There is a wide range of tools to support checking acces-

sibility during development and assessment, which come in
varying formats and varying purposes. We collected the top
five most frequently mentioned tools, which support accessi-
bility development and design. Some tools support checking
single accessibility issues (e.g., Accessibility View), and other
tools can provide a range of accessibility issues at one time
(e.g., Accessibility Checker). In addition, some automated
tools can be set to analyze the code for specific issues rapidly
and generate reports on results (e.g., A11Y).
Ê “Verify and fix our a11y support using accessibility

checker verification. Steps to Reproduce: Launch Visual Studio
Code Launch Accessibility Checker, select all verification
routines, and click Run Verifications Check the result.”

TABLE V
STANDARDS, TOOLS, AND APIS THAT DEVELOPERS APPLIED FOR

ADDRESSING ACCESSIBILITY DESIGN.

No. Name Count
Accessibility standards
1 W3C 654
2 WCAG 231
3 Authoring Tool Accessibility Guidelines (ATAG) 67
4 Accessibility Regulation 43
5 Disability Discrimination Act 29

Accessibility tool
1 Accessibility Checker 102
2 Accessibility Checklist 65
3 Accessibility View 49
4 A11Y 34
5 Accessibility Scanner 12

Accessibility APIs
1 MSAA/IAccessible (Windows) 89
2 Acceesibility Framework (Android) 71
3 NSAccessibility (Mac OS) 70
4 IAccessible2 (Windows) 54
5 UIAccessibility (IOS) 39

Accessibility APIs.
One of the key assisting technologies is accessibility API.

Accessibility is a hard technical challenge, and a firm grasp
of the technology is paramount to making informed decisions
about accessible design. We listed the top five most-discussed
APIs for accessibility design. The platform accessibility API,
Microsoft Active Accessibility (MSAA), was made available
in a 1997 update to Windows 95. MSAA provided information
about the role and state of objects and some of their properties.
Other discussed APIs are for different platforms, for example,
Accessibility Framework is developed for Android, and UIAc-
cessibility is designed for IOS operation system.

Ê “vscode api: introduce accessibilityInformation. This PR
is not yet tested. I might have missed some step in the endless
conversion of objects. Alternative name to AccessibilityInfor-
mation is just Accessibility, but for some reason I prefer the
longer version.”

Summary for RQ3: We identified the most discussed stan-
dards, tools, and APIs for supporting accessibility design
and development, and such list could help developers, espe-
cially those who do not have much accessibility background
knowledge, choose and take advantage of them better.

D. RQ4 - What are the practical recommendations for devel-
opers to handle and address accessibility issues?

To answer RQ4, we first calculated the averaged thread
length (i.e., the number of discussions per thread) for the
categories listed in Table II. For the discussion (i.e., thread)
length, there was a statistically significant difference between
categories. UI design - accessibility issues and Solving
accessibility relevant technical issues had the discussion
that yielded the most active discussion (i.e., mean length is
6.7), with mean and median thread length much higher than
the other categories in our data set. In contrast, the category
Sharing knowledge for supporting accessibility had the
shortest discussion per thread (mean length is 2.3) in our

data set. The potential reason is that UI design - acces-
sibility issues and Solving accessibility relevant technical
issues topics potentially require developers to spend a longer
time to fix and require certain knowledge. We then provided
three general recommendations discussed by developers for
addressing accessibility issues (i.e., the accessibility relevant
threads). The recommendations are not meant to exhaustive.
As we discussed in the rationale of RQ4, the ways to design
and develop accessibility can vary from project to project.
Therefore, there may be additional guidelines to address
accessibility issues.
1. Considering accessibility at earlier phases. Organizational
factors tend to impact accessibility development and design in
practice; for example, developers lack knowledge on acces-
sibility or agile development. Relatively larger development
teams tend to have more resources for addressing accessibility
issues and often prioritize them. In contrast, small-size projects
find it more challenging to address accessibility, including lack
of expertise, tight development schedule, or lack of support
from management. However, through the discussion “Shar-
ing knowledge on accessibility”, we found that developers
discuss that small steps of accessibility design can make a
big difference. All projects need to improve their practice
to handle and address accessibility during software design
and development. Based on analysis of accessibility relevant
threads, we listed several recommendations for developers
to be aware of accessibility when they design and develop
projects: (1) Resource and guidelines are essential for devel-
opers to understand common accessibility practice; (2) Having
a checklist for accessibility; and (3) Evaluating accessibility
internal the development team.
Ê “[Accessibility] tree items should be visible in 400%

zoom, Steps to Reproduce: set to screen display resolution to
1280 x 1024 some items in the tree view are not completely
visible. Low Vision users will not be able to see what is on
the screen.”
2. Communicating inside the development team. The second
recommendation is that reinforcing communication between
development teams for addressing accessibility issues. From
the very beginning of development, ensure accessibility is
a requirement of the projects, and all team members reach
an agreement on accessibility design and development. For
example, before making any decisions about “Accessibility”:
(1) All developers in a project should reach a consensus
on accessibility-relevant design elements; (2) What the ex-
act accessibility requirements are; (3) How to address these
accessibility-related requirements; (4) Put accessibility re-
quirements as a high priority to address; (5) When making
decisions about accessibility, some design decisions may be
invalid in the first place, and some trade-offs might exist
between design decisions; and (6) Accessibility requirements
need to be well-documented.
Ê “I had a look a few weeks ago but I’m not a frontender

and it wasn’t clear to me how to build a bleeding-edge or
other-branch version of the thing I include in my html page
to render specs (or is the CLI ready enough for an unskilled

person to use at this point? ... let me know if we should track
this in a separate issue or other location for discussion about
accessibility?”
3. Applying practical standards and tools for supporting
accessibility. Some standards and guidelines have been widely
discussed and applied. For example, (1) the Web Content
Accessibility Guidelines (WCAG) Developers would take ad-
vantage of those standards and tools for self-assessment in
terms of accessibility. Although technology evolves quickly
and the standards needed to catch up to ensure that people
or disabilities can access today’s systems, those standards
and tools still valuable for developers who lack accessibility
knowledge. In addition, correctly reporting problematic acces-
sibility requirements is recommended; (2) Have an iterative
process to fit accessibility into the whole life cycle; and (3)
Use a proper approach (e.g., the accessibility framework) and
appropriate supporting tools or APIs;

Ê “Setting sync: Sign in dialogs not accessibility friendly.
This dialog is very unnacessible. Problems: Once the dialog is
created the ”Please sign in to synchronize” part is not being
read out by screen reader. I recommend to use a placeholder
since that would nicely be read.”

Summary for RQ4: We provided three general recommen-
dations for addressing accessibility issues in practice; In
addition, we recommend that development teams consider
accessibility in the first place during the project develop-
ment.

IV. DISCUSSION

We reflect on our findings of research questions in this
section. We also highlight the avenues of future research on
accessibility for researchers and practitioners.

Be aware of a variety of accessibility issues. Based on the
results of RQ1 (see Section), we found that a set of different
accessibility issues widely discussed by developers. Like most
non-functional quality attributes, software accessibility should
begin as early as possible in the development process. Design
flaws often are the root cause of software accessibility issues;
these flaws can be difficult and expensive to remedy late in
the development process. In addition, accessibility is often
overlapped with other quality attributes, for example, usability,
security, and privacy. The frequent occurrence of accessibility
issues in software development may result in software refac-
toring with more effort. As such, we advocate that accessibility
could be treated as a functional requirement to ensure people
use software applications more efficiently. Such accessibility
design drives innovation in general products, and it can be
more accessible for disabled people. This could motivate
researchers to spend extra efforts on accessibility management,
design, and development.

Documenting accessibility issues. The identified acces-
sibility issues are discussed and reported along with other
defects of projects, such as configuration and testing bugs.
The impact of an isolated occurrence of an accessibility issue
is not very high, but together these issues create a broad

and consistent impact for an entire project or the majority of
primary functions, effectively blocking the application usage.
We encourage that developers pay attention to accessibility
and document accessibility issues in more detail and timely.

Applying standards, tools, and APIs for accessibility.
Although many standards and guidelines that have been widely
introduced in the literature, based on the results of RQ3, only
several standards, tools, and other APIs are discussed between
developers frequently. Those standards and tools have been
used for decades; for example, the Web Content Accessibility
Guidelines (WCAG) have been a part of digital accessibility
since 1999. Technology evolves quickly, and the standards
needed to catch up to ensure that people or disabilities can
access today’s systems. The accessibility community (e.g.,
Mobile Application development) has been eagerly await-
ing the release of new standards. As such, we encourage
researchers to craft new success and comprehensive criteria
based on different accessibility levels.

Evaluation strategies for accessibility. Based on the re-
sults of RQ2 and RQ4, we summarized four reasons that
potentially cause accessibility issues; some developers per-
ceive, identify, and raise accessibility issues when developing
projects. Those accessibility issues are vital for the project’s
continuous development and success. As such, three general
solutions could be taken for accessibility development and
design. Firstly, engaging communication with different stake-
holders of projects. The different classes of different ability
constitute the usage types, and different requirements are
depending on them. In the evaluation, representatives for each
group provide feedback on whether the product supports their
specific disability type. Secondly, to apply practical standards
and tools to supporting accessibility design and development.
In addition, our results also suggest that accessibility needs to
be concerned in the early stage of development and should be
included in all phases of software development.

V. THREATS TO VALIDITY

The threats to the validity of this study are discussed by
following the guidelines proposed by Wohlin et al. [35].
Internal validity is not considered since this study does not
address any causal relationships between variables.

Construct validity refers to whether the theoretical and
conceptual constructs are correctly interpreted and measured.
In this study, there are two key threats. The first one is
the search process related to data collection of accessibility
issues. To mitigate this threat, we leveraged the search function
provided by GitHub to collect the top 1,000 popular (i.e., by
star rating) projects. It is possible that this filtering omitted
accessibility issues of both small projects and outside data
sources. More accessibility issues from various size projects
and information from external data sources are required to
be included for a better and more comprehensive analysis. We
leave this as future work. The second threat lies in the process
of manually extracting and analyzing the collected data. To
partially mitigate this threat, we did a pilot execution of data

filtering, extraction, and coding by the first two inspectors to
agree about all the data used

External validity concerns the generality of the study
results in other settings. This depends on the sampling methods
we employed and the representativeness of the data used.
A threat is that if the accessibility issues we collected are
representative. To reduce this threat, we used a large number
of representative GitHub repositories and extracted a large
number of accessibility issues to analyze. Another threat exists
is that if the keyword for searching and collecting accessibility
was suitable. We reviewed the accessibility relevant literature
papers, and conducted a pilot search to decide the suitable
search terms to derive our search string. Further studies with
more accessibility discussions in other resources, for example,
Stack Overflow, would need to be done to demonstrate the
generality of our results.

Reliability refers to whether the study yields the same
results if other researchers replicate this study, which is related
to data collection and analysis in GitHub projects. To alleviate
this threat, we made explicit the process of our study design,
and we believe that this work can be replicated.

VI. RELATED WORK

This section introduces the related works from two aspects,
i.e., accessibility development and design and empirical stud-
ies of mining repositories.

A. Accessibility Development and Design

Recently, studies have investigated accessibility issues in
mobile apps. For example, Alshayban et al. [12] presented
a large-scale empirical study, which aimed at understanding
accessibility issues of Android apps from three complementary
perspectives. The authors analyzed the prevalence of accessi-
bility issues in over 1,000 Android apps. The authors then
investigated the developer sentiments through a survey, which
aimed at understanding the root causes of accessibility issues.
The authors presented the findings of a survey involving 66
practitioners. The results of the survey show that developers
are generally unaware of the accessibility principles, and the
existing analysis tools are not sufficiently sophisticated to be
used. Finally, the authors investigated the user ratings and
comments on app stores. Our study is similar to their work,
but we not only focus on accessibility issues in Android apps
but also on other projects (e.g., web applications). In addition,
we provide empirical evidence that shows what accessibility
issues have been discussed across different software domains.
We also provide a set of recommendations for addressing and
handling accessibility issues. Our previous work et al. [13]
conducted 15 interviews and an online survey to investigate
how developers perceive accessibility and how accessibility
incorporates into general projects. In that work, we also
reported the critical challenges and benefits of incorporating
accessibility into software development and design.

Paiva et al. [14] conducted a literature review on accessibil-
ity in software engineering processes. The authors presented
94 relevant publications from 2011 to 2019. Their study

showed the distributions of publications on different phases of
the software development life cycle, mainly focus on design
and testing phases. In addition, the results of their study show
that most of the studies focus on complete or partial visual
impairment in terms of accessibility development, and few
papers discuss other disabilities, such as hearing and cognitive
disabilities. The authors found challenges discussed in the
literature for addressing accessibility in software development;
for example, studies focus on requirements and vocabulary,
and the actual demand is to evolve from designing devel-
opment and test of accessible games considering different
disabilities. Their work presented the incorporation of acces-
sibility to agile methodologies and open source development.
This idea motivated us to investigate accessibility issues in
OSS projects and potential solutions discussed by developers
to address accessibility issues. Bai et al. [36] presented an
evaluation of nine accessibility testing methods that fit in the
agile software process, and during the evaluation, the authors
have investigated different accessibility testing. The authors
also discussed the benefit and cost of the accessibility software
development process and recommended methods of applying
accessibility testing. Nganji et al. proposed a disability-aware
software engineering process model that considers the needs of
people with disabilities. The model can be used for improving
accessibility and usability of the designed system. Shinohara
et al. [37] conducted a survey to investigate the prevalence
of higher education teaching about accessibility and faculties’
opinions on the barriers to teaching accessibility. The results
show that teaching accessibility is prevalent but shallow among
the U.S. faculty as broad. The authors also reported that the
most critical barrier to clear and discipline-specific accessibil-
ity learning objectives is the lack of faculty knowledge about
accessibility.

B. Mining and Analyzing Developers’ Discussions in GitHub

Millions of software developers and GitHub repositories
are active, and developers provide an abundance of valu-
able discussions about different development aspects. Such
knowledge has been extensively utilized to conduct studies
in the field of software engineering. For example, Rahman
et al. [38] provided a comparative study between successful
and unsuccessful pull requests in 78 GitHub projects. The
authors analyzed pull request discussion texts (e.g., domain
and maturity). Eight topics are labeled discussed in the texts of
pull request discussion. The results of their study would help
developers overcome the issues with pull requests in GitHub
and project administrators with informed decision making.

Tsay et al. [39] presented a study of how developers in
open work environments evaluate and discuss pull requests.
The authors also conducted a set of interviews with GitHub
project developers about pull requests. Their study got several
conclusions; for example, the authors found that when devel-
opers raised issues in pull requests, either the problem was
attempting to solve or the solutions implemented, and full
requests provide an occasion to discuss alternative solutions
or negotiate requirements. In addition, the results of their

study also inform the design of notification and discussion
mechanisms for large-scale collaboration where a wide variety
of stakeholders participate in evaluation discussion around
code contributions. Casalnuovo et al. [40] investigated how
well do people work together in GitHub teams, and the authors
explored the evidence for socialization as a precursor to joining
a project. The results of their study show that the presence
of past social connections combined with prior experience
languages dominate in the project leads to higher productivity
both initially and cumulatively.

VII. CONCLUSION

In this study, we collected 11,820 accessibility issues that
developers discussed in popular GitHub projects, and we
grouped the accessibility issues into seven topics. We have
provided empirical evidence to confirm that accessibility issues
are frequently discussed between developers in practice, and
we analyzed the reasons that potentially cause accessibility
issues and provided general recommendations for addressing
accessibility issues. In this paper, we also provided practical
lessons about applying standards, tools, and APIs to ensure
and facilitate accessibility design and development.

Further studies could put more effort into investigating the
different accessibility design elements in different domains and
generalizing existing tools, standards, or APIs, which could be
helpful for developers in accessibility design, development,
and improvement.

VIII. ACKNOWLEDGMENT

The authors would like to thank John Grundy for his great
help on this work.

REFERENCES

[1] J. T. Nganji and S. H. Nggada, “Disability-aware software engineering
for improved system accessibility and usability,” International Journal
of Software Engineering and Its Applications, vol. 5, no. 3, pp. 47–62,
2011.

[2] S. Sanchez-Gordon, M. Sánchez-Gordón, M. Yilmaz, and R. V.
O’Connor, “Integration of accessibility design patterns with the soft-
ware implementation process of iso/iec 29110,” Journal of Software:
Evolution and Process, vol. 31, no. 1, p. e1987, 2019.

[3] P. Acosta-Vargas, L. Salvador-Ullauri, J. Jadán-Guerrero, C. Guevara,
S. Sanchez-Gordon, T. Calle-Jimenez, P. Lara-Alvarez, A. Medina,
and I. L. Nunes, “Accessibility assessment in mobile applications for
android,” in International Conference on Applied Human Factors and
Ergonomics. Springer, 2019, pp. 279–288.

[4] D. Hoffman, E. Grivel, and L. Battle, “Designing software architectures
to facilitate accessible web applications,” IBM Systems Journal, vol. 44,
no. 3, pp. 467–483, 2005.

[5] T. Jokela, N. Iivari, J. Matero, and M. Karukka, “The standard of
user-centered design and the standard definition of usability: analyzing
iso 13407 against iso 9241-11,” in Proceedings of the Latin American
conference on Human-computer interaction, 2003, pp. 53–60.

[6] C. Siebra, M. Anjos, F. Florentin, T. Gouveia, A. Filho, W. Correia,
M. Penha, F. Q. Silva, and A. L. Santos, “Accessibility devices for
mobile interfaces extensions: A survey,” in Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile
Devices and Services Adjunct, 2015, pp. 644–651.

[7] M. Elias, S. Lohmann, and S. Auer, “Fostering accessibility of open-
courseware with semantic technologies–a literature review,” in Interna-
tional Conference on Knowledge Engineering and the Semantic Web.
Springer, 2016, pp. 241–256.

[8] C. M. Baker, Y. N. El-Glaly, and K. Shinohara, “A systematic analysis
of accessibility in computing education research,” in Proceedings of the
51st ACM Technical Symposium on Computer Science Education, 2020,
pp. 107–113.

[9] J. Lazar, D. F. Goldstein, and A. Taylor, Ensuring digital accessibility
through process and policy. Morgan kaufmann, 2015.

[10] D. Buhalis and E. Michopoulou, “Information-enabled tourism destina-
tion marketing: addressing the accessibility market,” Current Issues in
Tourism, vol. 14, no. 2, pp. 145–168, 2011.

[11] A. Holzinger, G. Searle, and M. Wernbacher, “The effect of previous
exposure to technology on acceptance and its importance in usability and
accessibility engineering,” Universal Access in the Information Society,
vol. 10, no. 3, pp. 245–260, 2011.

[12] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android
apps: state of affairs, sentiments, and ways forward,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE,
2020, pp. 1323–1334.

[13] T. Bi, X. Xia, D. Lo, J. Grundy, T. Zimmermann, and D. Ford,
“Accessibility in software practice: A practitioner’s perspective,” arXiv
preprint arXiv:2103.08778, 2021.

[14] D. M. B. Paiva, A. P. Freire, and R. P. de Mattos Fortes, “Accessibility
and software engineering processes: A systematic literature review,”
Journal of Systems and Software, p. 110819, 2020.

[15] J. Gunderson, “W3c user agent accessibility guidelines 1.0 for graphical
web browsers,” Universal Access in the Information Society, vol. 3,
no. 1, pp. 38–47, 2004.

[16] S. Harper and A. Q. Chen, “Web accessibility guidelines,” World Wide
Web, vol. 15, no. 1, pp. 61–88, 2012.

[17] M. Vigo, A. Kobsa, M. Arrue, and J. Abascal, “User-tailored web
accessibility evaluations,” in Proceedings of the eighteenth conference
on Hypertext and hypermedia, 2007, pp. 95–104.

[18] J. Han, S. Deng, X. Xia, D. Wang, and J. Yin, “Characterization and
prediction of popular projects on github,” in 2019 IEEE 43rd annual
computer software and applications conference (COMPSAC), vol. 1.
IEEE, 2019, pp. 21–26.

[19] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 454–464.

[20] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285–
311.

[21] G. Rodriguez, J. Pérez, S. Cueva, and R. Torres, “A framework for
improving web accessibility and usability of open course ware sites,”
Computers & education, vol. 109, pp. 197–215, 2017.

[22] R. F. de Oliveira, A. M. da Mota Moura, and J. C. S. P. Leite, “Reengi-
neering for accessibility: A strategy based on software awareness,” in
Proceedings of the 17th Brazilian Symposium on Software Quality, 2018,
pp. 180–189.

[23] N. Kesswani and S. Kumar, “Accessibility analysis of websites of
educational institutions,” Perspectives in Science, vol. 8, pp. 210–212,
2016.

[24] T. Bi, P. Liang, and A. Tang, “Architecture patterns, quality attributes,
and design contexts: How developers design with them,” in 2018 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018,
pp. 49–58.

[25] C. Putnam, M. Dahman, E. Rose, J. Cheng, and G. Bradford, “Best
practices for teaching accessibility in university classrooms: cultivating
awareness, understanding, and appreciation for diverse users,” ACM
Transactions on Accessible Computing (TACCESS), vol. 8, no. 4, pp.
1–26, 2016.

[26] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki,
“Github projects. quality analysis of open-source software,” in Interna-
tional Conference on Social Informatics. Springer, 2014, pp. 80–94.

[27] T. Bi, X. Xia, D. Lo, J. Grundy, and T. Zimmermann, “An empirical
study of release note production and usage in practice,” IEEE Transac-
tions on Software Engineering, 2020.

[28] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, 2013, pp. 188–197.

[29] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[30] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[31] D. Walker and F. Myrick, “Grounded theory: An exploration of process
and procedure,” Qualitative health research, vol. 16, no. 4, pp. 547–559,
2006.

[32] M.-L. Sánchez-Gordón and L. Moreno, “Toward an integration of web
accessibility into testing processes,” Procedia Computer Science, vol. 27,
pp. 281–291, 2014.

[33] R. Ismailova, “Web site accessibility, usability and security: a survey
of government web sites in kyrgyz republic,” Universal Access in the
Information Society, vol. 16, no. 1, pp. 257–264, 2017.

[34] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 334–344.

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[36] A. Bai, H. C. Mork, and V. Stray, “A cost-benefit analysis of accessibility
testing in agile software development: results from a multiple case
study,” International Journal on Advances in Software, vol. 10, no. 1&2,
pp. 96–107, 2017.

[37] K. Shinohara, S. Kawas, A. J. Ko, and R. E. Ladner, “Who teaches
accessibility? a survey of us computing faculty,” in Proceedings of the
49th ACM Technical Symposium on Computer Science Education, 2018,
pp. 197–202.

[38] M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 364–367.

[39] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of the 22nd
ACM SIGSOFT international symposium on foundations of software
engineering, 2014, pp. 144–154.

[40] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer
onboarding in github: the role of prior social links and language expe-
rience,” in Proceedings of the 2015 10th joint meeting on foundations
of software engineering, 2015, pp. 817–828.

