
An Empirical Study of the Dependency Networks
of Deep Learning Libraries

Junxiao Han∗, Shuiguang Deng∗†, David Lo‡, Chen Zhi∗†, Jianwei Yin∗, Xin Xia§
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China
†Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
‡School of Information Systems, Singapore Management University, Singapore, Singapore

§Faculty of Information Technology, Monash University, Melbourne, Australia
{junxiaohan, dengsg, zjuzhichen, zjuyjw}@zju.edu.cn, davidlo@smu.edu.sg, xin.xia@monash.edu

Abstract—Deep Learning techniques have been prevalent in
various domains, and more and more open source projects
in GitHub rely on deep learning libraries to implement their
algorithms. To that end, they should always keep pace with the
latest versions of deep learning libraries to make the best use
of deep learning libraries. Aptly managing the versions of deep
learning libraries can help projects avoid crashes or security
issues caused by deep learning libraries. Unfortunately, very few
studies have been done on the dependency networks of deep
learning libraries. In this paper, we take the first step to perform
an exploratory study on the dependency networks of deep learn-
ing libraries, namely, Tensorflow, PyTorch, and Theano. We study
the project purposes, application domains, dependency degrees,
update behaviors and reasons as well as version distributions of
deep learning projects that depend on Tensorflow, PyTorch, and
Theano. Our study unveils some commonalities in various aspects
(e.g., purposes, application domains, dependency degrees) of deep
learning libraries and reveals some discrepancies as for the
update behaviors, update reasons, and the version distributions.
Our findings highlight some directions for researchers and also
provide suggestions for deep learning developers and users.

I. INTRODUCTION

An emerging branch of machine learning algorithms known
as deep learning (DL) algorithms has attracted considerable at-
tentions in both academia and industry recently [17]. Due to its
high accuracy and advanced performance when handling var-
ious tasks, it has obtained enormous success in many cutting-
edge domains, e.g., image processing [6], [10], [20], disease
diagnosis [31], [32], natural language processing (NLP) [34],
auto-driving [8], [22], speech and audio processing [21], and
strategy gaming [30].

Deep learning algorithms convert the input to output by
using multiple layers of transformation functions, where each
layer successively learns information flows from front neural
layers to the rear ones [23]. To implement deep learning
algorithms, DL libraries (e.g., Tensorflow and PyTorch) are
provided to help realize the demands of intelligent software,
which in turn, allows practitioners and researchers use deep
learning technologies better.

Due to the popularity of deep learning, there are many
empirical studies in software engineering domains that look
into deep learning code, e.g., detecting and locating code
mistakes in DL applications [41], understanding the bugs

*Shuiguang Deng is the corresponding author.

types, root causes, impacts, and common antipatterns in buggy
software [23], characterizing the internal behaviors of RNNs
via quantitative analysis of RNN-based DL systems [14],
and characterizing deep learning development and deployment
across different frameworks and platforms [17]. Among them,
very few studies have quantitatively analyzed the dependency
management of deep learning ecosystems, not to mention the
commonalities and discrepancies of deep learning projects that
depend on different deep learning libraries.

Deep learning libraries are constantly evolving to add new
features and fix bugs. To take full advantage of deep learning
libraries, users should always keep up to date with the latest
versions of deep learning libraries. Therefore, an exploratory
study to understand the evolution of dependency management
of deep learning libraries can shed light on the development
and improvement of deep learning libraries, and provide
practical suggestions to developers, users, and researchers.

To achieve this goal, in this paper, we analyze the project
purposes, application domains, dependency degrees, update
behaviors, and update reasons as well as the version distribu-
tions of deep learning projects that depend on different deep
learning libraries, namely Tensorflow, PyTorch, and Theano.
All three deep learning libraries are typical and widely studied.
[19], [23], [41].

Consequently, some of the key findings include: 1)
Tensorflow-dependent and PyTorch-dependent projects that
provide replication packages of research papers (purpose =
“paper experiments”) have more contributors and stars; 2) the
image and video processing, NLP, model theory (i.e., related to
the basic deep learning model, such as model implementation,
model improvement, etc.), and efficiency library (i.e., pro-
vide effective environments, libraries, packages, frameworks
to accelerate the development process) applications are the
most common application domains; 3) projects account for a
higher proportion of direct dependencies (e.g., depend on deep
learning library directly) than transitive dependencies (e.g.,
rely on other deep learning projects to implement algorithms)
on deep learning libraries; 4) only a small percentage of
projects have upgraded deep learning libraries out of various
reasons, e.g., to address severity vulnerability, to be compatible
with existed frameworks or libraries, etc.

In summary, we have the following main contributions:



• To the best of our knowledge, we are the first to perform
an empirical study of the dependency management of
open source projects that depend on Tensorflow, PyTorch,
and Theano.

• We provide avenues for deep learning developers, users,
and researchers to have a comprehensive understanding
of the purposes, applications, dependency degrees as well
as dependency versions of open source projects that rely
on Tensorflow, PyTorch, and Theano.

• Our analysis highlight some practical implications for
deep learning developers, users, and software engineer-
ing researchers, e.g., developers and researchers should
make more efforts to provide more effective automatic
tools to help manage the library versions, and can also
provide empirical evidence of upgrade success to foster
the upgrade behaviors.

Paper Organization. The remainder of this paper is organized
as follows. We introduce the research methodology in Section
2, and present the findings of research questions in Section 3.
Section 4 discusses implications and threats to validity of our
study and Section 5 reviews related work. Finally, Section 6
concludes this paper and gives directions to future work.

II. METHODOLOGY

To study the dependency networks of deep learning li-
braries, we collected the open source projects that depend on
Tensorflow, PyTorch, and Theano in GitHub. The collected
data will be analyzed in the rest of the paper.

A. Research Questions

Our study aims at providing answers for the following four
research questions:

• RQ1. What are the purposes and applications of deep
learning projects that depend on Tensorflow, PyTorch, and
Theano?
In this RQ, we want to investigate the reasons why users
use deep learning libraries and which domain issues they
aim to solve, so that we can provide insights into the
distributions and impacts of purposes and applications.

• RQ2. To what extent do deep learning projects depend
on Tensorflow, PyTorch, and Theano?
Some deep learning projects are apt to rely on deep
learning libraries to achieve their functionality directly,
but there are also some deep learning projects that depend
on other deep learning projects to avoid reimplementing
the same functionality. This kind of inter-project depen-
dence may increase the risk of maintainability issues and
failures. For instance, if a deep learning project do not
manage the deep learning library and the current version
of the deep learning library has a security vulnerability,
then, other deep learning projects that depend on this
project will also be affected. Therefore, we aim to answer
this RQ to reveal the dependence degrees of deep learning
projects and compare if there exists a difference of deep
learning projects that depend on Tensorflow, PyTorch, and
Theano.

TABLE I
THE STATISTICS OF THE DATASET FOR OPEN SOURCE PROJECTS IN

GITHUB THAT DEPEND ON TENSORFLOW, PYTORCH, AND THEANO.
Library All projects Remained

projects
Studied
projects

Tensorflow-
dependent

46,930 14,328 708

PyTorch-dependent 15,812 6,831 339
Theano-dependent 5,620 2,063 103

• RQ3. How are the update behaviors of deep learn-
ing projects that depend on Tensorflow, PyTorch, and
Theano?
This research question concerns library migration of deep
learning projects. We aim to understand and compare the
update behaviors and update reasons for deep learning
projects that depend on Tensorflow, PyTorch, and Theano.
Therefore, we can help deep learning library users man-
age their projects better and provide insights for deep
learning developers to improve deep learning libraries.

• RQ4. How often do deep learning projects use the latest
versions of Tensorflow, PyTorch, and Theano?
This research question aims to study the distribution
of dependency versions of deep learning libraries. By
finding out the usage status of deep learning libraries,
it can help improve deep learning projects better.

B. Data Collection

We extracted open source projects in GitHub that belong to
the “used by” list of Tensorflow, PyTorch, and Theano via the
dependency graph provided by GitHub API. As a result, we
obtained 46,930, 15,812, and 5,620 projects that depend on
Tensorflow, PyTorch, and Theano, respectively. All the data
were collected up to December 2019.

We then removed projects that were forked, non-starred,
and deleted [29] to further refine the projects in our dataset.
We did not limit our projects to the most popular ones,
so that we can have a comprehensive understanding of the
dependency management status. Ultimately, for Tensorflow-
dependent projects, 32,602 projects were dropped and 14,328
projects remained. For PyTorch-dependent projects, 8,981
projects were discarded and 6,831 projects remained. And for
Theano-dependent projects, we excluded 3,557 projects and
2,063 projects remained.

Next, to deeply understand the characteristics of the col-
lected projects, we conducted a sampling process by selecting
5% of the remained projects and stratified selection process
according to the popularity. Notably, by manually checking, it
is sufficient to select 5% of the remained projects to perform
our study. As a result, we obtained 708, 339, and 103 projects
for Tensorflow-dependent, PyTorch-dependent, and Theano-
dependent projects, respectively. The extracted sample projects
will be studied in the rest of the paper. The statistics of the
projects can be seen in Table I.

We used the GitHub API to extract more information about
the deep learning projects: full name, description, readme
content, main programming language, number of stars, number
of contributors, etc.



C. Classification and Labeling

To determine the purposes and applications of open source
projects that depend on Tensorflow, PyTorch, and Theano, we
look into the project name, description, label, readme content,
and information of owner’s homepage to manually categorize
these extracted sample projects by the card sorting approach
[23], [36], [37].

Classification. To classify the purposes of sample projects, we
referred to the purposes of projects defined in Kalliamvakou
et al.’s study [24] (e.g., software development, experimental,
academic, etc.) and adapted on top of that to fit our dataset
better.

We first used the 708 sample projects that depend on
Tensorflow to manually determine its purpose categories. We
divided the 708 sample projects into different collections
according to their purposes. Next, the first and fourth authors
discussed each collection to determine a suitable name for each
collection. Consequently, we determined 5 purposes, which is
shown in Table II. Specially, we use the “Other” category to
represent the projects that cannot determine their purposes or
projects that cannot fit any other categories.

Different projects always have various applications. We also
used the 708 sample projects that depend on Tensorflow to
identify their applications. We have adapted the applications
for deep learning from [13], [27] (e.g., speech and audio,
natural language processing, image, video, and multimodality,
etc.) and added on top of that to characterize our dataset
better. Two experts from natural language processing and
computer vision domains supported our work and came up
with the application categories jointly with the first and fourth
authors. The projects were also put into application categories
following a card sorting approach [23], [36], [37]. As a result,
13 application categories were derived, which is shown in
Table III. Particularly, we also use the “Other” category to
represent the projects that cannot determine their applications
or projects that cannot fit any other categories.

Labeling. Since we have obtained the classification criteria,
we used those criteria to label all other sample projects that
depend on PyTorch and Theano. The first and fourth authors
independently label the projects. After that, we use Fleiss
Kappa [15] to understand the agreement between the two
labelers. As a result, the Kappa values between two label-
ers of purpose categories on Tensorflow-dependent, PyTorch-
dependent, and Theano-dependent projects are 0.73, 0.76, and
0.78, respectively, which all represent a substantial agreement.

Meanwhile, the Kappa values between two labelers of
application categories on Tensorflow-dependent, PyTorch-
dependent, and Theano-dependent projects are 0.93, 0.89,
0.99, respectively, where all reach an almost perfect agree-
ment. We then discussed the results with ambiguous categories
and reached the final decision.

D. Dependency Analysis

To determine to what extent deep learning projects depend
on deep learning libraries, we check the import statements

Fig. 1. Tensorflow updating in requirement.txt.

in deep learning programs to identify whether those projects
directly depend on deep learning libraries or not. If there exists
at least one import statement of deep learning libraries in deep
learning programs, we then defined it as a direct dependence.
Otherwise, we defined it as a transitive dependence. That is,
the transitive dependence indicates that deep learning projects
totally transitively depend on other deep learning projects to
implement their functions.

E. Version Analysis

To record the historical dependency changes of deep learn-
ing projects towards deep learning libraries, we applied the
following steps. We first cloned the studied projects from
GitHub. Then, we obtained all the commits to a project’s
requirement.txt file (a requirement.txt file is a package man-
agement file that used to manage the versions of dependency
libraries) and manually analyzed the version differences to-
wards deep learning libraries (as exemplified in Fig. 1). Next,
we extracted the version pairs towards deep learning libraries
of different projects, as well as many other information,
including the file path, commit sha, and timestamp. Finally,
we manually determined the type of version changes (i.e.,
upgrade, downgrade, no change) according to the version pairs
and timestamp. Notably, a project may have more than one
requirement.txt files at different file paths, and sometimes a
project may even have no requirement.txt file. For projects
without requirement.txt file, we classify them to the type of
no version changes.

Moreover, we also analyzed how often deep learning
projects used the latest versions of deep learning libraries. To
figure it out, we gathered the newest version statements defined
in projects’ requirement.txt files and manually extracted the
newest version statements of deep learning libraries. It is worth
noting that there may exist more than one requirement.txt
files in a project, and different requirement.txt files may have
different version statements. In our study, we gathered all the
version statements under all requirement.txt files of those deep
learning projects. Therefore, the sum of the version types may
be more than the number of the deep learning projects.

For example, specifying project priya-
dwivedi/Deep-Learning, its version statement in
requirement.txt file with path priya-dwivedi/Deep-
Learning/mask rcnn damage detection/requirements.txt
is tensorflow >= 1.3.0, while its version statements



TABLE II
CLASSIFICATION CATEGORIES OF PURPOSES.

Category of Purpose Description Examples
Competition Projects that store code for the purpose of competitions,

such as Bitcamp2019, Kaggle competitions, etc.
Project name: krantirk/kaggle-competition-solutions; Description:

kaggle-competition-solutions; Url:
https://github.com/krantirk/kaggle-competition-solutions

Knowledge Learning
and Teaching

Projects that are used to learn, practice, or teach deep
learning knowledge, containing code samples, demos,

tutorials, etc.

Project name: microsoft/ai-edu; Description: AI education materials for
Chinese students, teachers and IT professionals; Url:

https://github.com/microsoft/ai-edu
Paper Experiments Projects that are related to the research papers, such as

experiment replication and algorithms reproduction of
research papers.

Project name: tonybeltramelli/pix2code ; Description: pix2code: Generating
Code from a Graphical User Interface Screenshot; Url:

https://github.com/tonybeltramelli/pix2code
Software Development Projects that are systems or tools of different applications,

it usually includes projects of frameworks, libraries,
plugins, tools, etc.

Project name: opencv/cvat; Description: Powerful and efficient Computer
Vision Annotation Tool (CVAT); Url: https://github.com/opencv/cvat

Other Projects that cannot determine their purposes or projects
that cannot fit any other categories.

Project name: SelinaIrra/Diploma; Description: null; Url:
https://github.com/SelinaIrra/Diploma

TABLE III
CLASSIFICATION CATEGORIES OF APPLICATIONS.

Category of
Applications

Description Examples

Code Analysis Projects related to code processing, such as cross-language
API mappings, software defect reports analyzing, etc.

Project name: bdqnghi/SAR API mapping; Description: FSE 2019, Learning
Cross-Language API Mappings with Little Knowledge; Url:

https://github.com/bdqnghi/SAR API mapping
Control Projects related to the control system, such as continuous

control, auto driving, robotics, etc.
Project name: aweeraman/reinforcement-learning-continuous-control; Description:

Continuous Control with deep reinforcement learning where the agent must reach a
moving ball with a double jointed arm; Url:

https://github.com/aweeraman/reinforcement-learning-continuous-control
Efficiency Library Projects that provide effective environment, libraries,

packages, frameworks to accelerate the development of
deep learning systems.

Project name: zurutech/ashpy; Description: TensorFlow 2.0 library for distributed
training, evaluation, model selection, and fast prototyping; Url:

https://github.com/zurutech/ashpy
Entertainment Projects that develop games or just for fun. Project name: michael-pacheco/deep-learning-bullet-hell-environment; Description:

A reinforcement learning environment and agent for a Touhou/bullet hell inspired
game: Sacred Curry Shooter; Url:

https://github.com/michael-pacheco/deep-learning-bullet-hell-environment
Graph Projects related to graph processing, such as graph

representation learning, etc.
Project name: twjiang/graphSAGE-pytorch; Description: A PyTorch implementation
of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE;

Url: https://github.com/twjiang/graphSAGE-pytorch
Image and Video Projects related to image processing or video processing,

such as image classification, image generation, image
denoising, video processing, etc.

Project name: mkocabas/EpipolarPose; Description: Self-Supervised Learning of 3D
Human Pose using Multi-view Geometry (CVPR2019); Url:

https://github.com/mkocabas/EpipolarPose
Model Theory Projects related to the basic model, such as model

implementation, model improvement, etc.
Project name: L0SG/relational-rnn-pytorch; Description: An implementation of

DeepMind’s Relational Recurrent Neural Networks in PyTorch; Url:
https://github.com/L0SG/relational-rnn-pytorch

Multimodality Projects that process more than two kinds of data
modalities, such as text to image, image to code, etc.

Project name: tonybeltramelli/pix2code; Description: pix2code: Generating Code
from a Graphical User Interface Screenshot; Url:

https://github.com/tonybeltramelli/pix2code
NLP Projects related to text processing, such as text

classification, text generation, sentiment analysis, chatbot,
etc.

Project name: apcode/tensorflow fasttext; Description: Simple embedding based
text classifier inspired by fastText, implemented in tensorflow; Url:

https://github.com/apcode/tensorflow fasttext
Security Projects related to security problems, such as SQL

injection detection, DDOS detection, etc.
Project name: Aetf/tensorflow-tbcnn; Description: Tree-based Convolutional Neural

Network for SQL Injection Detect; Url: https://github.com/Aetf/tensorflow-tbcnn
Time Series Projects that used to process time-series data, such as real

estate price prediction, stock prediction, etc.
Project name: Rishub21/ml Finance; Description: Various machine learning tools to
predict and analyze stock movements; Url: https://github.com/Rishub21/ml Finance

Speech and Audio Projects related to speech and audio processing, such as
speech classification, speech recognition, music

classification, etc.

Project name: IBM/MAX-Audio-Classifier; Description: Identify sounds in short
audio clips; Url: https://github.com/IBM/MAX-Audio-Classifier

Other Projects that cannot be determined the applications,
projects that have no applications, or projects that cannot

fit any other categories, such as a crawler, etc.

Project name: ivannz/mlss2019-bayesian-deep-learning; Description: MLSS2019
Tutorial on Bayesian Deep Learning; Url:

https://github.com/ivannz/mlss2019-bayesian-deep-learning

in requirement files with paths priya-dwivedi/Deep-
Learning/sentiment classification RNN/requirements.txt and
priya-dwivedi/Deep-Learning/word2vec skipgram/requirements.txt
are all tensorflow == 1.0.0. We thus recorded
tensorflow == 1.0.0 twice and tensorflow >= 1.3.0
once. There also exist some projects without requirement files
or did not state versions in their requirement files; we defined
the versions of these kinds of projects as “No-statement”. In
this way, we generate the distribution of versions for studied
deep learning projects.

III. RESULTS

In this section, we present the results of our analysis on the
sample projects to answer the four research questions.

A. Overall Impressions

Fig. 2 illustrates the box plots with the distribution of
the number of stars, the number of contributors, and project
size of the studied projects. Results show that PyTorch-
dependent projects are more popular than Theano-dependent
and Tensorflow-dependent projects (4 vs. 3 vs. 2, median
measures), but have fewer contributors than Theano-dependent
and Tensorflow-dependent projects (1 vs. 2 vs. 1, median
measures), and also have smaller project size than Theano-
dependent and Tensorflow-dependent projects (4,052 vs. 8,112
vs. 8,248, median measures), which is aligned with previous
studies that PyTorch-dependent projects are more lightweight
and easier to implement and use [4].



To investigate whether the distributions of different group-
s are statistically significant, we performed the Wilcoxon
Signed-Rank test [39] at the confidence level of 95% and
computed Cliff’s delta [11] to show the effect size of the
difference. Indeed, the distributions of different groups on stars
and contributors are statistically different, and the effect sizes
are non-negligible, while the distributions of different groups
on project size have no statistical difference.

B. RQ1: What are the purposes and applications of open
source projects that depend on Tensorflow, PyTorch, and
Theano?

In this section, we present and compare the distribu-
tions of 5 purpose categories and 13 application categories
on Tensorflow-dependent, PyTorch-dependent, and Theano-
dependent projects, respectively.

1) Purpose Category Distribution: Fig. 3 demonstrates the
distributions of purpose categories on Tensorflow-dependent,
PyTorch-dependent, and Theano-dependent projects. It shows
that the software development purpose is accompanied with
the highest number of occurrences for Tensorflow-dependent
projects, and the knowledge learning and teaching purpose
has the second-highest number of occurrences. For PyTorch-
dependent projects, paper experiments purpose accounts for
the overwhelming majority. As for Theano-dependent projects,
software development and paper experiments purposes take up
more than half of the total.

We can find that the commonality is that the vast ma-
jority of the purposes of projects distribute at software
development, paper experiments, and knowledge learning
and teaching, which accounts for at least 86% of the
total. The discrepancy is that Tensorflow-dependent projects
concentrate more on software development, while PyTorch-
dependent projects concentrate more on paper experiments,
which is in line with the previous study that Tensorflow
does well in industrial production capabilities, while PyTorch
deeply plows the research community [4]. To examine whether
the distribution of purposes of open source projects that
depend on different deep learning libraries are statistically
different, we applied Kolmogorov-Smirnov test [28], [38]. The
null hypothesis is that open source projects that depend on
different deep learning libraries have the same distribution
of each purpose category. Results show that there exists no
significant difference in the distribution.

2) Application Category Distribution: Fig. 4 illustrates
the distributions of application categories on Tensorflow-
dependent, PyTorch-dependent, and Theano-dependent
projects. Fig. 4(a) shows that the most common application
of Tensorflow-dependent projects is image and video, which
takes up 28% of the total, and the NLP application ranked at
the second with 14% of the total. One potential explanation
for this finding may be due to that the image and video
and NLP applications comprise various sub-applications
and each sub-application has attracted many users involved,
e.g., the image and video application encompasses face
recognition (e.g., accessai/access-face-vision), semantic

Competitio
n

Knowledge Learning and Teaching

Paper Experim
ents

Softw
are Development

Other0

100

200

300

N
um

be
r o

f P
ro

je
ct

s

tensorflow
pytorch
theano

Fig. 3. Distributions of purpose categories of Tensorflow/PyTorch/Theano-
dependent projects.

segmentation (e.g., Acciorocketships/FCN), human pose
estimation (e.g., MrEliptik/HandPose), and healthcare (e.g.,
saigerutherford/fetal-code), while the NLP application
contains chatbot (e.g., Chriszhangmw/ChatBots), sentiment
analysis (e.g., lixin4ever/BERT-E2E-ABSA), and name entity
recognition (e.g., uhh-lt/microNER).

Simultaneously, Fig. 4(b) for PyTorch-dependent projects
and Fig. 4(c) for Theano-dependent projects also reveal that
the most common two applications are image and video and
NLP. For Tensorflow-dependent projects, we can also observe
that the least common applications are code analysis and
graph, which only takes up 2% of the total, while the least
common applications for PyTorch-dependent projects are code
analysis, graph, and multimodality, which only accounts for
3% of the total. As for the Theano-dependent projects, code
analysis, graph, and entertainment applications are the least
common applications, which account for 3% of the total. A
reasonable explanation for these findings may be attributed to
that the code analysis and graph applications have limited sub-
applications and fewer users are engaged in the two domains.

As a result, our analysis reveals that the image and video,
NLP, model theory, and efficiency library applications
are the four most common applications for Tensorflow-
dependent, PyTorch-dependent, and Theano-dependent
projects, which accounts for 55%, 71%, and 51% of the total,
respectively. Meanwhile, the code analysis and graph appli-
cations are the two least common applications for those
projects. It is also worth noting that Tensorflow-dependent
projects have the widest distribution at all the applications,
while PyTorch-dependent projects have no distribution at
security and time series applications, and Theano-dependent
projects have no distribution at multimodality and security
applications. It may imply that Tensorflow does better at
multimodality, security, and time series applications.

We then performed Kolmogorov-Smirnov test [28], [38]
to check whether the distribution of applications of open
source projects that depend on different deep learning libraries
is statistically different. The null hypothesis is that open
source projects that depend on different deep learning libraries
have the same distribution of application categories. As a
result, we observe that there exists a significant difference
in the distribution between Tensorflow-dependent projects and
Theano-dependent projects. Apart from this, there exists no



Tensorflow PyTorch Theano
10

0

10
1

10
2

10
3

10
4

10
5

St
ar

s

(a) Stars

Tensorflow PyTorch Theano
10

0

10
1

10
2

10
3

C
on

tri
bu

to
rs

(b) Contributors

Tensorflow PyTorch Theano
10

0
10

1
10

2
10

3
10

4
10

5

10
6

10
7

si
ze

(c) Size
Fig. 2. Distributions of (a) stars, (b) contributors, and (c) size of studied projects that depend on different deep learning libraries.

Code Analysis
Control

Effici
ency Library

Entertainment
Graph

Image and Video

Model Theory

Multim
odality NLP

Security

Speech and Audio

Time Series
Other0

25
50
75

100
125
150
175
200

3
22

38

12 9

195

59

14

100

10
22 22

202

(a) Tensorflow

Code Analysis
Control

Effici
ency Library

Entertainment
Graph

Image and Video

Model Theory

Multim
odality NLP

Security

Speech and Audio

Time Series
Other0

20

40

60

80

100

120

140

4
13

26

9 4

122

32

3

60

0
14

0

52

(b) PyTorch

Code Analysis
Control

Effici
ency Library

Entertainment
Graph

Image and Video

Model Theory

Multim
odality NLP

Security

Speech and Audio

Time Series
Other0

5
10
15
20
25
30
35
40

1 2

8

1 1

27

7

0

11

0

6
4

35

(c) Theano

Fig. 4. Distributions of application categories of Tensorflow/PyTorch/Theano-
dependent projects.

other significant difference in the distribution.

C. RQ2: To what extent do deep learning projects depend on
Tensorflow, PyTorch, and Theano?

Deep learning projects can directly or transitively depend
on deep learning libraries to implement their algorithms. To
understand the extent to which they depend on deep learning
libraries, we discuss the dependency degrees of deep learning

Direct Transitive0

100

200

300

400

N
um

be
r o

f P
ro

je
ct

s

tensorflow
pytorch
theano

Fig. 5. Distribution of direct and transitive dependencies of
Tensorflow/PyTorch/Theano-dependent projects.

projects on Tensorflow, PyTorch, and Theano, respectively.
In this section, we introduce the distribution of the number
of direct and transitive dependencies, and analyze how other
factors influence the distributions.

Fig. 5 shows the distribution of the number of direct and
transitive dependencies on Tensorflow, PyTorch, and Theano.
We can find that all deep learning projects have a higher
proportion of direct dependencies than transitive de-
pendencies, Tensorflow-dependent projects show 103% more
direct dependencies comparing to transitive dependencies,
PyTorch-dependent projects show 827% more direct depen-
dencies comparing to transitive dependencies, while Theano-
dependent projects only show 15% more direct dependencies
comparing to transitive dependencies.

Then, we present the percentage of deep learning projects
with various application domains across different dependency
degrees, as exemplified in Fig. 6. We notice that Tensorflow-
dependent projects with security, model theory, and graph
applications are the top three groups that directly rely on
Tensorflow, while projects with code analysis, time series,
and image and video applications are the top three groups
that transitively rely on Tensorflow. Meanwhile, PyTorch-
dependent projects with multimodality, graph, and model the-
ory applications are the top three groups that directly rely on
PyTorch, while projects with entertainment, code analysis, and
control applications are the top three groups that transitively
rely on PyTorch. As for Theano, projects with model theory,
code analysis, and graph applications are the top three groups
that directly rely on Theano, while projects with entertainment,
time series, and NLP applications are the top three groups that
transitively rely on Theano.



All

Se
cur

ity

Mod
el 

Th
eo

ry
Grap

h

Con
tro

l

Mult
im

od
alit

y

Sp
ee

ch 
an

d A
ud

io NLP

En
ter

tai
nm

en
t

Eff
icie

ncy
 Lib

rar
y

Othe
r

Im
ag

e a
nd

 Vide
o

Tim
e S

eri
es

Cod
e A

na
lys

is
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

474

9
48 7 16 10 15 68 8 25 132 126

9
1

234

1
11 2 6 4 7 32 4 13 70 69

13
2

Direct Transitive

(a) Tensorflow

All

Mult
im

od
alit

y
Grap

h

Mod
el 

Th
eo

ry

Eff
icie

ncy
 Lib

rar
y

Im
ag

e a
nd

 Vide
o

Sp
ee

ch 
an

d A
ud

io NLP

Con
tro

l
Othe

r

Cod
e A

na
lys

is

En
ter

tai
nm

en
t0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

306
3 4 31 25 114 13 54 11 42 3

6

33 1 1 8 1 6 2 10 1
3

Direct Transitive

(b) PyTorch

All

Mod
el 

Th
eo

ry

Cod
e A

na
lys

is
Grap

h

Sp
ee

ch 
an

d A
ud

io

Eff
icie

ncy
 Lib

rar
y

Con
tro

l

Im
ag

e a
nd

 Vide
o

Othe
r

NLP

Tim
e S

eri
es

En
ter

tai
nm

en
t0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

55

7 1 1 6
7

1 12 15 4
1

0

48

1

1 15 20 7
3

1

Direct Transitive

(c) Theano

Fig. 6. Distributions of Tensorflow/PyTorch/Theano-dependent projects of
dependency degrees across different application categories.

We also performed the Kolmogorov-Smirnov test [28], [38]
to examine whether the distribution of dependence degree
on various applications is statistically significant. The null
hypothesis is that deep learning projects with different ap-
plications have the same distribution of direct or transitive
dependence on deep learning libraries. Consequently, we ob-
serve that there exists a significant difference in the distri-
bution between Tensorflow-dependent projects and Theano-
dependent projects as for direct dependence and transitive
dependence, and there also exists a significant difference in
the distribution between Tensorflow-dependent projects and
Pytorch-dependent projects as for the transitive dependence.
Apart from this, there is no other significant differences.

D. RQ3: How are the update behaviors of deep learning
projects that depend on Tensorflow, PyTorch, and Theano?

Developers may update deep learning libraries for various
reasons. In this RQ, we aim to understand how different
deep learning projects manage their dependencies on deep

TABLE IV
THE STATISTICS OF THE UPDATE BEHAVIORS FOR DEEP LEARNING

PROJECTS THAT DEPEND ON TENSORFLOW, PYTORCH, AND THEANO.
Upgrade Downgrade No

Change
Update

Time Lag
Release

Time Lag
Tensorflow 79 9 645 143 104
PyTorch 41 5 313 117 81
Theano 1 1 101 0 379

* The update time lag means the lag between dependency updates, while the release
time lag means the lag between library release time and dependency update time.

learning libraries, and why and how difficult they update the
dependencies.

1) Type of Version Changes: There exist three types of
version changes – upgrade, downgrade, and no change.
Tensorflow, PyTorch, and Theano have been upgraded for 79
(11%), 41 (11%), and 1 (1%) times, respectively. Meanwhile,
there also exist some downgrade behaviors, Tensorflow, Py-
Torch, and Theano have been downgraded for 9 (1%), 5 (1%),
and 1 (1%) times, respectively. We can find that there only
a small percentage of projects have upgraded deep learning
libraries.

Note that the sum of the three types of version changes
is larger than the number of projects, which is due to that
some projects may upgrade deep learning libraries for more
than one time. For example, the Tensorflow-dependent project
spotify/spotify-tensorflow has upgraded Tensorflow versions
for 9 times from Tensorflow 1.2.0 to Tensorflow 1.15.x during
15, September 2017 to 30, October 2019.

To investigate why these projects upgraded or downgraded
deep learning libraries, we manually analyzed the commits of
these projects to find the update reasons. Results show that
Tensorflow-dependent projects upgrade Tensorflow out of the
following reasons: 1) addressing critical severity vulnerability,
2) merging an automatic pull request derived by an automatic
dependency update tool – Dependabot to update the outdated
or insecure libraries, 3) upgrading to ensure their Tensorflow
dependency version less than 2.0, for that Tensorflow 2.0
has some pretty big API changes and they do not want to
use it, 4) upgrading the Tensorflow version to include more
features, e.g., the project alessiamarcolini/MyQ upgraded the
Tensorflow version from 1.12.0 to 1.13.1 to incorporate with
GPU support, etc, 5) upgrading the Tensorflow version to make
it compatible with existing frameworks or libraries, e.g., the
project IBM/MAX-Audio-Classifier upgraded the Tensorflow
version from 1.12.2 to 1.13.1 to ensure Tensorflow work on
ARM. PyTorch-dependent projects upgrade PyTorch version to
make it compatible with existed frameworks or libraries, e.g.,
the project lidq92/CNNIQA upgraded the PyTorch version
from 0.4.0 to 0.4.1 to satisfy the minimum need of ignite
library.

Besides, Tensorflow-dependent projects downgrade Tensor-
flow to stop using Tensorflow 2.0, PyTorch-dependent projects
downgrade PyTorch to address the issues that reported the cur-
rent version could not work, while Theano-dependent projects
downgrade Theano due to that they believe that more recent
versions of Theano may cause conflicts.

2) Time Lag: We find that, on average, the update time lag
of Tensorflow-dependent projects is longer than PyTorch-



dependent and Theano-dependent projects. They had about
22% longer lag between dependency updates comparing to
PyTorch-dependent projects. The longest update time lag
of Tensorflow-dependent projects is 853 days, which be-
longs to the project chxj1992/captcha cracker, this project
upgraded the Tensorflow version from Tensorflow 1.1.0 to
Tensorflow 1.12.2. The longest update time lag of PyTorch-
dependent projects is 480 days, which belongs to the project
ixaxaar/pytorch-dnc, this project upgraded the PyTorch version
from PyTorch 0.2.0 to PyTorch 1.0.1. They all have a big
update as for the deep learning library version. To examine
whether the distribution of update time lag is significantly
different, we performed the Wilcoxon Signed-Rank test at a
p-value of 0.05 [39] and computed Cliff’s delta [11]. Results
show that there exists no significant difference.

Besides, we also find that on average, the release time lag
of Tensorflow-dependent projects is longer than PyTorch-
dependent projects, they had about 28% longer time lag com-
paring to PyTorch-dependent projects. Interestingly, the re-
lease time lag of Theano-dependent projects is longer than
Tensorflow-dependent and PyTorch-dependent projects,
which had about 264% and 368% longer lag than them.
To examine whether the distribution of release time lag is
significantly different, we performed the Wilcoxon Signed-
Rank test at a p-value of 0.05 [39] and computed Cliff’s
delta [11] again. Results show that the release time lag
of Tensorflow-dependent projects is statistically significantly
longer than PyTorch-dependent projects, and the effect size is
medium. Besides, the release time lag of Theano-dependent
projects is statistically significantly longer than Tensorflow-
dependent projects, and the effect size is large.

E. RQ4: How often do deep learning projects use the latest
versions of Tensorflow, PyTorch, and Theano?

Different deep learning projects are apt to use different
versions of deep learning libraries. To comprehend how often
deep learning projects use the latest versions of deep learning
libraries, we present the distributions of dependency versions
of Tensorflow, PyTorch, and Theano.

1) Version Distribution: Our results are displayed in Fig.
7. We can notice that Theano-dependent projects had the
highest percentage of the latest versions. That is, 20%
of the Theano-dependent projects used Theano 1.0, vs. 3%
for Tensorflow 2.0, and 0.3% for PyTorch 1.4. A reasonable
explanation may be attributed to that the official release dates
of the latest versions of Tensorflow 2.0 and PyTorch 1.4 are too
close that the latest versions have not been widely adopted. As
Tensorflow 2.0 was released in September 2019 [5], the latest
version of PyTorch 1.4 was released in January 2020 [2], while
the latest version Theano 1.0 was released in November 2017.

Besides, we also observe that most Tensorflow-dependent
projects use the versions of Tensorflow 1.0, Tensorflow 1.12,
and Tensorflow 1.13, and most PyTorch-dependent projects
use the versions of PyTorch 0.4 and PyTorch 1.0. As for
Theano-dependent projects, most of them use the latest ver-
sions of Theano 0.8, Theano 0.9, and Theano 1.0. An intrigu-

ing phenomenon is that Tensorflow-dependent and PyTorch-
dependent projects are apt to use a recent but not the latest
versions. It may be due to that Tensorflow and PyTorch have
way more versions and are releasing new versions frequently,
more versions lead to more choices and the newest versions
are apt to exist big API changes or compatibility issues, thus
users are prone to select a recent but not the latest version to
avoid various unexpected problems.

Moreover, another reason may be attributed to that many
users have used TensorFlow and PyTorch for a long time.
Despite TensorFlow and PyTorch released the latest version,
they are unwilling to spend extra time and energy to upgrade,
for that the upgrading process always involves various perspec-
tives and many extra efforts (e.g., the syntactic and stylistic
changes). Similar views were expressed by Kula et al. [25],
i.e., they claimed that “developers do not prioritize updates for
that they cited it as an added effort to be performed in their
spare time.”

Simultaneously, It is also worth noting that at least one-fifth
of the projects have no statement (including no requirement
files or no version statements in requirement files). 34%, 35%,
and 21% of the Tensorflow-dependent, PyTorch-dependent,
and Theano-dependent projects have no statement, respective-
ly. Results indicate that there are too many deep learning
projects that have no version management of deep learning
libraries, which is detrimental to themselves and those projects
that depend on them, and are prone to yield crashes or security
issues.

IV. DISCUSSION

In this section, we discuss and provide some practical im-
plications for deep learning library developers, deep learning
library users, and software engineering researchers, and also
discuss the threats to validity.

A. Implications

Implications for developers of deep learning libraries.
Our results reveal that some deep learning users upgrade
Tensorflow to ensure their dependency version less than 2.0,
they avoid using Tensorflow 2.0 for that Tensorflow 2.0 has
some pretty significant API changes. Although Tensorflow
communities have provided an automatic upgrade script (t-
f upgrade v2) to help migrate TensorFlow from 1.x to Tensor-
Flow 2.0, there are still very few users adopt it. A reasonable
explanation may be due to that the script cannot perform the
syntactic and stylistic changes [1], so that it is still time-
consuming for users to perform a big update. Deep learning
library developers should develop a more complete automatic
tool or script to improve the efficiency of version migration.

Besides, they should not only explain why an update should
be made to a deep learning project, but also take into account
confidence measures that users can use to estimate the risk
of performing a big update. For instance, they can calculate
how many upgrades to TensorFlow 2.0 are performed and how
many downgrades from TensorFlow 2.0 are tracked to give a
confidence score for upgrade success.



0.7 0.8 0.90.100.110.12 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.101.111.121.131.141.15 2.0

No-sta
tement0

50

100

150

200

250

300

3 1 1 1 1
19

99

26 14
36 38

8 8 17 24
8 17 20

57 55
29

15 23

273

(a) Tensorflow

0.1 0.2 0.3 0.4 1.0 1.1 1.2 1.3 1.4

No-sta
tement0

20

40

60

80

100

120

140

3 6 5

94

56

23
30

17

1

126

(b) PyTorch

0.6 0.7 0.8 0.9 1.0

No-sta
tement0

5

10

15

20

25

30

35

2
5

32 32

24 25

(c) Theano

Fig. 7. Distributions of dependency versions of Tensorflow/PyTorch/Theano-dependent projects.

Implications for users of deep learning libraries. Our
findings also reveal that some users upgrade deep learning
libraries to address critical severity vulnerabilities or to make
it compatible with existed frameworks or libraries. However,
there exists a relatively large ratio of transitive dependencies
on deep learning libraries of deep learning projects. For this
kind of projects, users cannot directly manage the dependen-
cies of deep learning libraries, which may result in security
vulnerabilities or code crashes due to the issues existed in
deep learning libraries of dependent projects. Therefore, deep
learning users may need to utilize tools such as Software
Composition Analysis (SCA) [9] products (e.g., Foo et al.’s
SCA design [16], Veracode [3], etc.) to deal with transitive
dependencies of vulnerable versions of deep learning libraries.
SCA can automatically identify the vulnerable versions of the
dependencies used in a project, so that users can transitively
depend on deep learning libraries and keep away with security
issues.

Implications for software engineering researchers. We find
that there exist various purposes of deep learning projects,
therefore, researchers should also consider the purposes
to fit their research needs when they select deep learn-
ing projects to analyze. Meanwhile, the code analysis and
graph applications are the least two common applications
for Tensorflow-dependent, PyTorch-dependent, and Theano-
dependent projects, which indicates that there still too few
works that have been open sourced in these two domains.
Researchers in these two domains should pay more efforts to
propagate and promote their works to attract more attention,
e.g., open source their works in GitHub and introduce their
works thoroughly in the readme files. By opening source
their works in GitHub, they can attract more contributors and
researchers and provide avenues for them to contribute, which
can bring a more extensive development of these two domains.

Besides, As most of the Tensorflow-dependent and PyTorch-
dependent projects are apt to use a recent but not the latest
versions, and sometimes, even if the projects have been
upgraded to the latest version, they will still downgrade it
back. Developers and researchers should make more efforts
to provide more details about the update process, such as
providing empirical evidence of success, e.g., other users with
similar versions have updated to the latest versions and only
spent fifteen minutes. Meanwhile, developers and researchers
can also provide thorough tutorials to help users effectively
understand the update changes of their libraries.

Moreover, our results also reveal that there exist many

projects that do not have version statements, some of them
even do not have requirement file. Users and researchers
should pay more attention to the version management and
form a good habit, including creating requirement files and
managing the library versions. Besides, developers and re-
searchers can also provide automatic tools to help users
generate requirement files and record versions automatically.

B. Threats to Validity

Internal Threats. We gathered open source projects that de-
pend on Tensorflow, PyTorch, and Theano via the dependency
graph provided by GitHub API. Since we are the first to use
the dependency graph to extract the data, there is no guarantee
that this API can generate correct results. To mitigate this
threat, we verified the correctness of the extracted data by
manually checking the sample projects, and results claimed
the correctness of our dataset.

Another threat can be attributed to the trustworthiness of our
sample projects. To ameliorate this threat, we first removed
projects that were forked, non-starred, and deleted. After that,
we performed a sampling process on the filtered projects
and stratified selection process according to the popularity.
In this way, we guaranteed the quality of the dataset and the
consistency of the data structure to the maximum extent.

Ultimately, the third internal threat related to the classi-
fication categories. To mitigate this threat, we adapted the
purpose categories based on Kalliamvakou et al.’s study [24]
and adapted the application categories on top of Liu et al.
and Deng et al.’s studies. In this process, two experts from
natural language processing and computer vision domains also
involved our study and determined categories jointly with all
the authors following a card sorting approach.
External Threats. The results in our paper may not generalize
to all deep learning libraries. Although we studied a large
sample of open source projects that depend on Tensorflow,
PyTorch, and Theano, results of this paper may not extend to
all deep learning libraries. However, due to that the three deep
learning libraries are all typical and popular, we believe that
our findings can also bring some revelations to developers,
users, and researchers that use other deep learning libraries.
Besides, another external threat involves that the findings in
this paper may not adapt to proprietary DL systems, since
we only obtained the open source projects in GitHub, but not
gathered the proprietary projects, where proprietary projects
may have different dependency management patterns with
open source projects.



V. RELATED WORK

In this section, we review the related works in two aspects:
studies on deep learning (DL) systems and studies on depen-
dency networks. To the best of our knowledge, we initiate
the first step towards the dependency management of deep
learning systems.

A. Studies of Deep Learning Systems

The deep learning ecosystem has grown in leaps and bounds
in the past few years, which has led to a tremendous amount
of research effort. Du et al. [14] made a quantitative analysis
of RNN-based DL systems. They proposed a general-purpose
quantitative analysis framework DeepStellar to characterize
the internal behaviors of RNN-based DL systems. Guo et
al. [17] conducted a systematic study on four deep learning
frameworks (Tensorflow, PyTorch, CNTK, and MXNET) and
two platforms (mobile and web) to characterize the impacts
of current DL frameworks and platforms on DL software
development and deployment processes. Han et al. [19] applied
Latent Dirichlet Allocation (LDA) to derive and compare
the discussion topics concerning three popular deep learning
frameworks (Tensorflow, PyTorch, and Theano) on two plat-
forms (GitHub and Stack Overflow).

Moreover, the study of the performance of deep learning
frameworks also has been subject to numerous investigations.
Ha et al. [18] proposed an approach called DeepPerf to predict
performance values of highly configurable software systems.
They performed it by using a deep feedforward neural network
(FNN) combined with a sparsity regularization technique.
Liu et al. [26] presented design considerations, metrics, and
challenges towards developing an effective benchmark for DL
software frameworks, and conducted a comparative study on
three popular DL frameworks, namely, TensorFlow, Caffe, and
Torch. Shams et al. [35] attempted to analyze the performance
of different deep learning frameworks (Caffe, TensorFlow,
and Apache SINGA) in different hardware environments. To
investigate it, they compared the time per training iteration and
the number of images trained within a millisecond. Bahram-
pour et al. [7] performed a comparative study of four deep
learning frameworks, namely Caffe, Neon, Theano, and Torch
on three aspects, which are extensibility, hardware utilization,
and speed.

In addition to the above studies on deep learning frame-
works, there also exist many studies focus on bug detection
and localization of deep learning frameworks. For instance,
Zhang et al. [41] studied deep learning applications built on top
of TensorFlow and collected their program bugs to determine
the root causes and symptoms of these bugs. Islam et al.
[23] studied 2,716 high-quality posts from Stack Overflow
and 500 bug fixing commits from Github to understand the
bugs types, root causes, impacts, bug-prone stages as well as
the common antipatterns in buggy software. Besides, Pham
et al. [33] proposed a new approach - CRADLE to find and
localize bugs in DL software libraries and performed it by
cross-checking multiple backends.

B. Studies of Dependency Networks

There also existed many research works towards dependen-
cy and maintainability issues across different programming
language ecosystems. For example, Wittern et al. [40] studied
the evolution of the npm JavaScript library ecosystem and
analyzed their characteristics such as dependencies, popularity,
version distribution, etc. While Decan et al. [12] captured the
growth, changeability, reusability, and fragility of dependency
networks on seven packaging ecosystems: Cargo for Rust,
CPAN for Perl, CRAN for R, npm for JavaScript, NuGet
for the .NET platform, Packagist for PHP, and RubyGems for
Ruby. Kula et al. [25] conducted an empirical study on library
migration to investigate the extent to which developers update
their library dependencies.

Although there have been subject to many efforts on depen-
dency networks across various programming language ecosys-
tems, there have not yet existed studies to study dependency
networks of deep learning systems. Our study can shed light
on the dependency management for deep learning ecosystems
and provide new research directions such as how deep learning
systems migrate to new versions of libraries.

VI. CONCLUSION

In this paper, we take the first step to perform a comparative
study to explore the dependency networks of deep learning li-
braries, i.e., Tensorflow, PyTorch, and Theano. In our study, we
investigated 708 Tensorflow-dependent projects, 339 PyTorch-
dependent projects, and 103 Theano-dependent projects to
identify the purposes and applications (RQ1), dependency
extents (RQ2), and update behaviors (RQ3) as well as depen-
dency versions (RQ4) of deep learning projects. Our analysis
reveals that there exist some commonalities as for the purpose
distributions, application distributions, and dependency extents
of Tensorflow-dependent, PyTorch-dependent, and Theano-
dependent projects. There also have some discrepancies as for
the update behaviors, update reasons, update time lag, and
dependency version distributions of Tensorflow-dependent,
PyTorch-dependent, and Theano-dependent projects.

In the future, we plan to encompass more deep learning
libraries and incorporate proprietary projects to expand the
generalization of our results. Moreover, we also encourage
further studies to analyze more additional questions and extend
our work, e.g., to analyze the relationship between direc-
t/transitive dependencies and upgrade/downgrade behaviors.

ACKNOWLEDGMENT

This research was partially supported by the National Key
Research and Development Program of ChinaNo. 2017YF-
B1400601), National Science Foundation of China (No.
61772461), Natural Science Foundation of Zhejiang Province
(No. LR18F020003) and also was supported by Alibaba-
Zhejiang University Joint Research Institute of Frontier Tech-
nologies.



REFERENCES

[1] “Automatically upgrade code to tensorflow 2,” https://www.tensorflow.
org/guide/upgrade.

[2] “Pytorch 1.4 released, domain libraries updated,” https://pytorch.
org/blog/pytorch-1-dot-4-released-and-domain-libraries-updated/,
accessed: 2020-01-15.

[3] “Software composition analysis veracode.” https://www.veracode.com/.
[4] “The state of machine learning frameworks in 2019,” shorturl.at/lsu26,

accessed: 2019-10-10.
[5] “Tensorflow 2.0 is now available!” https://blog.tensorflow.org/2019/09/

tensorflow-20-is-now-available.html, accessed: 2019-09-30.
[6] D. Acuna, A. Kar, and S. Fidler, “Devil is in the edges: Learning

semantic boundaries from noisy annotations,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 11 075–11 083.

[7] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative
study of caffe, neon, theano, and torch for deep learning,” 2016.

[8] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[9] Y. Chen, A. E. Santosa, A. Sharma, and D. Lo, “Automated identification
of libraries from vulnerability data,” 2020.

[10] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE conference on com-
puter vision and pattern recognition. IEEE, 2012, pp. 3642–3649.

[11] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[12] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, 2019.

[13] L. Deng, “A tutorial survey of architectures, algorithms, and applications
for deep learning,” APSIPA Transactions on Signal and Information
Processing, vol. 3, 2014.

[14] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 477–487.

[15] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[16] D. Foo, J. Yeo, H. Xiao, and A. Sharma, “The dynamics of software
composition analysis,” arXiv preprint arXiv:1909.00973, 2019.

[17] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 810–822.

[18] H. Ha and H. Zhang, “Deepperf: performance prediction for configurable
software with deep sparse neural network,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 1095–1106.

[19] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers
discuss about deep learning frameworks.”

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[22] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[23] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[24] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92–101.

[25] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[26] L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking
deep learning frameworks: Design considerations, metrics and beyond,”
in 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1258–1269.

[27] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[28] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[29] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 84–94.

[30] M. Nica, “Optimal strategy in guess who?: Beyond binary search,”
Probability in the Engineering and Informational Sciences, vol. 30,
no. 4, pp. 576–592, 2016.

[31] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Attention
u-net: Learning where to look for the pancreas,” Conference on Medical
Imaging with Deep Learning (MIDL), 2018.

[32] J. Petersen, P. F. Jäger, F. Isensee, S. A. Kohl, U. Neuberger, W. Wick,
J. Debus, S. Heiland, M. Bendszus, P. Kickingereder et al., “Deep
probabilistic modeling of glioma growth,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2019, pp. 806–814.

[33] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[34] R. Pryzant, R. D. Martinez, N. Dass, S. Kurohashi, D. Jurafsky, and
D. Yang, “Automatically neutralizing subjective bias in text,” arXiv
preprint arXiv:1911.09709, 2019.

[35] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different hpc architectures,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 1389–1396.

[36] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[37] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories (MSR). IEEE,
2017, pp. 413–424.

[38] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Perceptions,
expectations, and challenges in defect prediction,” IEEE Transactions on
Software Engineering, 2018.

[39] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[40] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, 2016, pp. 351–361.

[41] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129–140.


