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Abstract—Software Quality model is a well-accepted way for
assessing high-level quality characteristics (e.g., maintainability)
by aggregation from low-level metrics. Aggregation method in a
software quality model denotes how to aggregate low-level metrics
to high-level quality characteristics. Most of the existing quality
models adopt the weighted linear aggregation method. The main
drawback of weighted linear method is that it suffers from a lack
of consensus in how to decide the correct weights. To address this
issue, we present an automated aggregation method which adopts
a kind of probabilistic weight instead of the subjective weight
in previous aggregation methods. In particular, we leverage a
topic modeling technique to estimate the probabilistic weight
by learning from a software benchmark. In this manner, our
approach can enable automated quality assessment by using the
learned probabilistic relationship without manual effort.

To evaluate the effectiveness of proposed aggregation ap-
proach, we conduct an empirical study on assessing one typical
high-level quality characteristic (i.e., maintainability) which is
regarded as an important characteristic defined in ISO 9126.
The achieved results on 10 open source projects with totally 269
versions show that our method can reveal maintainability well
and it outperforms a weighted linear aggregation method baseline
in most of the projects.

Keywords-Software Quality Modeling, Aggregation Method,
Topic Model

I. INTRODUCTION

It is crucial for both developers and managers to under-

stand and assess quality of a software product. Although the

quality standards (e.g., ISO 9126 and ISO 25010) provide the

definition for the quality characteristics, they do not provide

a detailed approach to measure them. A software quality

model aims to provide the specific assessment results about

different high-level quality characteristics (e.g., functionality,

reliability, usability, efficiency, maintainability and portability

defined in ISO 9126) by aggregation from low-level software

metrics (e.g., number of source lines of code) [1]. This quality

assessment result is mainly used for quality assurance, decision

making, costs estimating and risk evaluation during software

development and maintenance.

The aggregation method is an important part of any quality

model and a reoccurring task in any measurement method.

However, decisions of the aggregation method for software

quality model are rarely justified in this line of research.

�Corresponding authors.

The most commonly used aggregation approach is weighted

linear equations (WLE). Although this approach is simple to

calculate and easy to interpret by practitioners, there is an issue

which remains in the WLE method, i.e., how to decide the

correct weights. A weight represents the relative importance

contributed to the associated element in relation to its brother

nodes. A usual way is to adopt empirical values or expert

opinions by using Analytic Hierarchy Process. Unfortunately,

software quality is a multifaceted and vague concept which

has different meanings for different people [2]. Introducing

the expert opinions, which depends on their experience, knowl-

edge or intuition, may make the aggregation subjective [3] and

prevent the model from being applied automatically.

To address this issue, we present an automated aggregation

method which adopts a probabilistic weight learning from

a benchmark instead of the subjective weight in previous

aggregation methods. In particular, our approach is inspired

by the success of transferring the generative topic model (e.g.,

Probabilistic Latent Semantic Analysis [4]) into different field-

s, including computer vision and software text classification

[5]–[8]. The transferring power of the topic model derives

from its fundamental purpose, namely, finding the probabilistic

correlation between the hidden layer and the observed layers.

For instance, the fundamental purpose of the topic model in

text mining is to find the probabilistic correlation between the

hidden topic and the observed words and documents.

Similarly, we treat each code file as a document, each metric

as a word and the quality of the characteristic as the “topic”

hidden in the code file as presented in Figure 1. Under this

manner, we propose an automated aggregation method based

on Probabilistic Latent Semantic Analysis (PLSA) which

captures the hidden probabilistic correlation between quality

characteristics, metrics, and code files by modeling from a

benchmark. Subsequently, we construct “badness” function by

adopting the probabilistic correlation to perform the aggrega-

tion step. As a result, we can assess the quality characteristics

automatically, and it overcomes the ambiguity and subjective

interpretations from previous methods.

To evaluate the effectiveness of proposed method, we target

on one typical high-level quality characteristic, namely Main-

tainability by following the work of Bakota et al. [9]. The

reason for choosing maintainability is that it is regarded as

an important characteristic defined in ISO 9126 owing to its
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Fig. 1. Similarity between text analysis and quality modeling. The filled entry
represents the observed layer while the blank entry represents the hidden layer.

direct impact on development and maintenance costs [9]. In

summary, the main contributions of this paper are as follows:

• We propose an automated aggregation approach for as-

sessing high-level software quality characteristics. It en-

ables automated quality modeling by using the leaned

probabilistic correlation without manual effort.

• In order to evaluate the effectiveness of proposed method,

we conduct an empirical study for maintainability model-

ing on 10 open source projects with totally 269 versions.

The achieved results show that our method can reveal

maintainability well and it outperforms a baseline in most

of the projects.

II. RELATED WORK

Along with the widely accepted standards (e.g., ISO/IEC

9126), a multitude of diverse models for assessing software

quality have been proposed [10], such as QMOOD [2], Squale

[11], SQALE [12] and SIG model [13]. One common issue

in the above-mentioned models is that the aggregation step

from metrics towards characteristics is conducted by weighted

linear equations (WLE). The weights in these works are deter-

mined by experts opinions which may make the aggregation

subjective due to lack of consensus among experts [8]. There

are other studies which adopt new methods in the aggregation

step, such as fuzzy logic based approach [14], outrank relation

[3], [15], and geometric mean [16]. One issue in these works

is that they are suitable for a particular semantic context. For

example, the geometric mean method is suitable for requiring

all the child nodes to have a high score which may not suitable

for other conditions. Besides, Bakota et al. [9] proposed a

probability quality model which emphasized the probabilistic

distribution in the aggregation step. However, a weight of each

node in their model is still required which is determined by a

manual survey in their work. It is difficult for reoccurring their

work due to the manual effort. While in our work, we adopt

the weight which is automatically learned from benchmark to

replace the manual effort.

III. APPROACH

We divide the approach into three phases as Figure 2

shows. In the first phase, we construct a benchmark which

consists of abundant projects with multiple release versions.

After that, we obtain the risk profiles in the benchmark and

normalize the metric values of each code file to ordinal ratings

in a certain range. In the second phase, we adopt a topic

modeling technique to estimate the probabilistic correlations

between quality characteristic, metric and code file. In the third

phase, we construct a “badness” function for each metric of

a system. The outcome represents the badness of the quality

characteristic in a system.

A. Benchmark Normalization Phase

This section describes the process of benchmark normaliza-

tion. The goal of normalization is to transform the different

metric values with different ranges into a same scale. For

simplification, we divide the process into two steps. The first

step is to build risk profiles according to the benchmark

thresholds. The risk profile denotes the percentage of overall

code that falls into each of the four risk categories: Low,

Moderate, High and Very-High. Concretely, the four risk

categories are determined by four intervals which are based

on the distribution of a metric. Many authors have shown that

the distributions of software metrics are heavily skewed [17]–

[19], thus a typical approach to obtain the intervals is to adopt

the threshold set which represents the values at the quantile

<70%,10%,10%,10%> [13], [18].

After deciding the thresholds, the second step is to build

the co-occurrence table by transforming the risk level of each

code file into an ordinal number. Formally, let di denotes the

i-th code file in the benchmark, wj denotes the j-th metric,

and n(di, wj) denotes the risk level of the wj in di. Similar

to text mining, the input of the topic modeling should be

a co-occurrence table which consists of integers. Thus, we

transform n(di, wj) into 1, 2, 3, 4 which correspond to the

intervals <70%, 10%, 10%, 10%> respectively. As a result,

the numbers 1, 2, 3, 4 denote Low, Moderate, High and Very-

High risk respectively.

B. Topic Modeling Phase

This section presents how to learn the probabilistic correla-

tion between quality characteristic, metric and code file. We

adopt a topic modeling technique DPLSA (an extension of

PLSA), which assigns a concrete meaning to a topic by a

special initialization method [20], [21]. The input of DPLSA

model is the co-occurrence table which is derived from pre-

vious subsection and an initial weight table. In text analysis,

one feature of the DPSLA model is that the topic has a one-

to-one correspondence with the categories of words due to the

initial table. Similarly, since the metrics are directly connected

with sub-characteristics, the topic has a one-to-one corre-

spondence with the sub-characteristic by using DPLSA. The

initialization table provides an initialized connection between

the metrics and the sub-characteristics. It derives from prior

knowledge which represents the connections of a metric and

a sub-characteristic. Once the initialization table is provided,

the DPLSA model estimates two probabilistic correlations

by learning from the benchmark, namely the probabilistic

correlation between metrics and sub-characteristics and the

probabilistic correlation between sub-characteristic and code

file. The two probabilistic correlations form the base of our

approach.
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Fig. 2. Overview of proposed approach

C. Badness Calculation Phase

This section presents how to perform aggregation by con-

structing badness functions at the following three levels.

Level 1. The first level is the badness of a metric wj in the

system. Let B(wj) represent the badness function of metric

wj . The calculation method of this level is derived from the

work of Alves et al. [17] which aggregates the individual

metric value of each class to the whole rating of a system.

Level 2. The second level is the badness of a quality sub-

characteristic (e.g., changeability is a sub-characteristic of

maintainability as ISO 9126 defined) in a system. Earlier,

we have obtained two variables which are correlated with

the badness of a quality sub-characteristic: the badness of

each metric wj in the first level and the learned probability

correlation P (w | zk) between the target sub-characteristic

zk and each metric w by DPLSA. Thus, suppose there are

N metrics in total, we construct the badness function of the

quality sub-characteristic B(zk) as follows:

B(zk) =
N∑

j=1

B(wj)P (wj | zk) (1)

Level 3. The third level is the badness of a quality char-

acteristic (e.g., maintainability). The badness of the quality

characteristic in a system is correlated with the badness of

its children nodes (i.e., sub-characteristic). In addition, the

probability weight between the code file and the children nodes

is also an impacting factor. Thus, we construct the badness

function of the quality characteristic B(Q) of a system as

follows:

B(Q) =
K∑

k=1

B(zk)P (zk | s) (2)

In (2), P (zk | s) represents the probability weight between

the system and the topic zk. However, we only learn the

P (zk | di) which is not a system-level representation, it is

the probability correlation between the topic zk and code file

di in the system s. Since the correlation between a system and

a topic is determined by all of the code files, we calculate the

system-level P (zk | s) by using the average P (zk | di) of all

its code files. With the three levels of the badness function, we

can assess the high-level quality characteristic of a system.

IV. EXPERIMENTAL SETUP

In this section, we attempt to apply the approach for assess-

ing a typical high-level characteristic, namely maintainability,

which is regarded as an important characteristic defined in ISO

9126 [9].

A. Maintainability Model Description

Similar to the existing maintainability models [9], [13], we

adopt a three-layer quality framework including the target

characteristic maintainability, sub-characteristics (i.e., change-

ability, analyzability, testability, stability as ISO 9126 defined)

and metrics. Considering the metrics, we adopt the typical

metrics which are identical with the relevant studies of main-

tainability evaluation [22], [23]. In detail, five Chidamber and

Kemerer metrics: WMC, DIT, NOC, RFC, and LCOM; four

Li and Henry metrics [24]: MPC, DAC, NOM, and SIZE2;

and one traditional lines of code metric (SIZE1) are adopted.

SIZE1 represents the number of lines of code excluding

comments, and SIZE2 represents the total count of the number

of data attributes and local methods in a class.

Note that although the proposed approach is independent

with metrics and characteristics, the prior knowledge which

represents the connection between characteristics and metrics

is required to determine the initialization step in DPLSA. In

this application, the prior knowledge contains two aspects.

The first is that the maintainability is correlated with four

sub-characteristics, changeability, analyzability, testability and

stability. The second is that each sub-characteristic is correlat-

ed with all of the selected 10 metrics (i.e., a fully connected

framework) as the work of [22], [23] stated. The projection

on the topic model of this quality framework is visualized

as presented in Figure 3. In detail, the class file is regarded

as the document, the sub-characteristics have a one-to-one

correspondence with topics and the metrics are normalized as

words. The goal is to infer the probabilistic correspondence

P (w | z) and P (z | d).
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Fig. 3. The projection on topic model of the maintainability model

B. Dataset

Currently, we adopt the public dataset Qualitas Corpus

[25] (Qualitas Corpus version is 20130901e) to construct the

benchmark. All the systems in the benchmark are written

in Java programming language and have multiple evolution

versions. For each system, the distributions of metrics over

each code file (i.e., class) and the normalized values are stored

in our benchmark.

C. Performance Measure

The result of the application is the badness value of the

maintainability. In order to validate the effectiveness of our

approach, we adopt a proxy measure of maintainability to e-

valuate the consistency with the badness value. In past studies,

the maintainability can be measured in many ways, such as

the time required to make changes or the number of lines of

changed code. In this work, we adopt the number of lines of

changed code to measure maintainability by following Elish’s

work [22]. We assume that the badness value has a consistency

with the changed lines of code (i.e., the bigger of the badness

value, the worse of the maintainability, and the more lines

of code need to be changed). Then, we adopt the Spearman

rank-correlation coefficient to evaluate the consistency.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present empirical results of the following

two research questions.

RQ1: How effective is our approach for assessing software

maintainability?

RQ2: What insights can we observe from the maintainabil-

ity evolution of sequential release versions in a project?

A. RQ1: Effective Analysis

Motivation. Our objective is to provide an automated aggrega-

tion method for software quality modeling. The first question

for using the proposed approach is to evaluate how effective

it is for quality modeling. Since a holistic quality modeling

is a complex task, we attempt to evaluate our approach for

maintainability modeling [9].

Results. Table I shows the correlation analysis results of

10 projects randomly selected from the benchmark. The S-

pearman correlation coefficient and the confidence level p-

value are listed. For each project, the correlation coefficient

represents the consistency degree between the badness value

and the lines of changed code by considering all the versions.

TABLE I
THE SPEARMAN COEFFICIENT WITH P-VALUE (IN BRACKETS) IN

DIFFERENT CASES.(*REPRESENTS MEDIUM CORRELATION SIZE; **
REPRESENTS LARGE CORRELATION SIZE)

Project #of versions Our method AWLE
Ant 22 0.406*(0.041) 0.500(0.018)

ArgoUml 15 0.693**(0.005) 0.527(0.043)
FreeCol 31 0.438*(0.014) 0.414(0.020)

Hibernate 51 0.581**(0.000) 0.523(0.000)
Jung 22 0.674**(0.001) 0.616(0.002)
Antlr 21 0.526**(0.016) 0.5341(0.013)

Azureus 32 0.349*(0.049) -0.359(0.044)
FreeMind 15 0.607**(0.019) 0.221(0.429)

JGraph 37 0.223(0.184) 0.132(0.434)
JUnit 23 0.639**(0.001) 0.443(0.034)

To indicate the correlation size, we follow Cohen’s guideline

that the correlation coefficient = 0.1, 0.3, and 0.5 represent

having small, medium and large correlation sizes [16]. There

is only one case whose correlation coefficient is smaller than

0.3. In this case, there is no significant correlation between

maintainability badness and changed lines. However, in the

remaining cases, the correlations have a medium or large

correlation size and they are significant with at least 95%

confidence (p-value < 0.05) level.

In addition, we implement a typical average weighted linear

equation (AWLE) method which is adopted in the SIG main-

tainability model [13] as a baseline. It assigns each metric

and sub-characteristic with equal weight. In Table I, the better

correlation between the two methods are in bold. The results

show that our approach reveal the maintainability better than

the AWLE model in most of the projects.

B. RQ2: Evolution Analysis

Motivation. The output of our approach is a maintainability

badness value which can provide an overall assessment of a

project version. In our experiment, each project consists of

many sequential versions. We are interested in how does the

maintainability evolve along with the release versions. The

expected usage scenario is: if the upcoming release version has

an unusual maintainability which does not match the previous

evolution pattern, it is time to conduct more software quality

assurance activities, such as code review or refactoring.

Results. Figure 4 presents the badness evolution with the

release versions of two projects (Argouml and Hibernate)

randomly selected in our dataset. There are 15 versions in

Argouml and 51 versions in Hibernate. Overall, our approach

reveals that the badness of maintainability and its four sub-

characteristics become smaller along with the release versions.

It suggests that there is an overall trend in the two projects:

maintainability is better along with the version evolution in the

two projects. In summary, our approach can provide a overall

trend of maintainability evolution along with release versions.

VI. THREATS TO VALIDITY

Threats to internal validity relates to the setting in our

experiments. First, we adopt a widely used proxy measurement

(i.e., changed lines of code) as the ground truth selection of

maintainability in our experiments. This might be a threat

since the maintainability effort may be impacted by other
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(a) Argouml

(b) Hibernate

Fig. 4. The maintainability badness evolution of two projects (15 versions
of Argouml and 51 versions of Hibernate)

factors (e.g., time elapsed between two versions). Second,

the baseline selection in the comparison of the experiments

might be bias. We adopt a typical method AWLE as the

baseline, since it is an automated method without the need

of manual effort. This might be a threat since we do not

consider other aggregation methods. A more refined work is

needed by comparing with more aggregation methods. Third,

we adopt the threshold set which represents the values at the

quantile <70%,10%,10%,10%>. This might be a threat since

the distribution of different metrics may differ in their types.

Threats to external validity relates to the generalization of

our approach. We have evaluated our aggregation method on

the maintainability model by conducting the experiments on

Java open source projects. In the future, we plan to mitigate

this threat further by evaluating our method on more kinds of

quality model and software systems.

VII. CONCLUSION

In this paper, we propose an aggregation method for au-

tomating software quality modeling. We leverage a topic

modeling technique to learn the probabilistic correlation be-

tween code files, quality characteristics and metrics from a

benchmark which consists of numerous release versions of

open source projects. By using the learned probabilistic cor-

relation, our approach enables quality modeling automatically

and overcomes the difficulty in determining weight in previous

weighted linear methods. To evaluate the effectiveness of

proposed approach, we conduct an empirical study for one

typical software quality characteristic (i.e., maintainability)

modeling by using a lot of release versions of open source

projects. The experimental results show that our approach can

reveal maintainability well and it performs better in most of

the projects than a previous weighted linear method baseline.

In addition, our approach can reveal the overall trend of main-

tainability evolution considering sequential release versions in

a project. This evolution trend can be used to identify release

version with unusual low maintainability.
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