
UIS-Hunter: Detecting UI Design Smells in
Android Apps

Bo Yang∗,Zhenchang Xing†,Xin Xia‡,Chunyang Chen†,Deheng Ye§,Shanping Li∗
∗Zhejiang University, Hangzhou, China

†Australian National University, Canberra, Australia
‡Monash University, Melbourne, Australia
§Tencent AI Lab, Shenzhen, China

imyb@zju.edu.cn,zhenchang.Xing@anu.edu.au,xin.xia@monash.edu,
chunyang.chen@monash.edu,dericye@tencent.com,shan@zju.edu.cn

Abstract—Similar to code smells in source code, UI design has
visual design smells that indicate violations of good UI design
guidelines. UI design guidelines constitute design systems for a
vast variety of products, platforms, and services. Following a
design system, developers can avoid common design issues and
pitfalls. However, a design system is often complex, involving
various design dimensions and numerous UI components. Lack
of concerns on GUI visual effect results in little support for
detecting UI design smells that violate the design guidelines
in a complex design system. In this paper, we propose an
automated UI design smell detector named UIS-Hunter (UI
design Smell Hunter). The tool is able to (i) automatically process
UI screenshots or prototype files to detect UI design smells
and generate reports, (ii) highlight the violated UI regions and
list the material design guidelines that the found design smells
violate, and (iii) present conformance and violation UI design
examples to assist understanding. This tool consists of a Material
Design guidelines gallery website and a tool website. The gallery
website is a back-end knowledge base that attaches conformance
and violation examples to abstract design guidelines and allows
developers and designers to explore the multi-dimensional space
of a complex design system in a more structured way. As a
front-end application, the tool website takes a UI design as input,
returns a detailed UI design smell report, and marks the violation
regions (if any). Moreover, the tool website presents conformance
and violation examples based on the gallery website.

Demo URL: https://uishunter.net.cn/
https://uishuntergallery.net.cn/
Demo Video: https://youtu.be/7UZ0jtD_1gM
Index Terms—GUI testing, UI design smell, Violation detection,

Material design

I. INTRODUCTION

Graphical User Interface (GUI) supports the interaction be-
tween users and software applications. With a poorly designed
Android GUI, users would feel frustrated and uninstall the
application. We refer to poorly designed UIs as UI design
smells. For example, truncating the full title of the top app
bar in Fig. 1(a) hinders the access of key information (i.e.,
end time of a trip). In Fig. 1(b), the background image makes
illegible foreground buttons/text. In Fig. 1(c), the confirmation
dialog provides only a single action, and cannot be dismissed.
Attaching tabs to bottom navigation in Fig. 1(d) can cause
confusion about what action or tab controls which content.

Similar to code smells that indicate violations of good
software design guidelines [1], UI design smells violate good

(a) Text truncation (b) Illegible
buttons/text

(c) Single button in
confirmation dialog

(d) Tab attached to
bottom navigation

Fig. 1: UI design smells (1st row) vs non-smell UIs (2nd row)
(issues highlighted in red boxes)

UI design guidelines. For a vast variety of products, platforms,
and services, design systems are organized with UI design
guidelines. We take Google Material Design as a case study of
design systems. We investigate 130 guidelines for 23 UI com-
ponents (e.g., app bar, banner, button, tab, and dialog) from
Material Design documentation. These guidelines are crucial
for creating intuitive and consistent user experience [2], and
for improving digital accessibility [3]. The design guidelines
go far beyond UI aesthetics.

However, previous research show little concern for detect-
ing UI design smells that violating the design guidelines.
Many tools have been developed to detect and remedy code
smells [1], [4], [5], [6] and other programming or stylistic
errors [7], [8]. Some techniques focus on detecting the in-
consistencies between UI mockups and implemented UIs [9],
or discern abnormal designs from normal ones [10], [11].
To the best of our knowledge, no technique can check the
violation of a UI design against the visual guidelines in a
design system. First, the design examples used to explain
the guidelines are different from the actual UI designs (e.g.,
Fig. 1), so examples cannot be directly contrasted to determine
the guideline violation. Second, checking a UI design against
certain design guidelines requires to examine multi-modal
information, including a wide range of component informa-

https://uishunter.net.cn/
https://uishuntergallery.net.cn/
https://youtu.be/7UZ0jtD_1gM
https://material.io/components

tion (e.g., type, instance count, size/position, color, and text
content) and the actual rendering of text and images.

In this work, we develop an automated tool (called UIS-
Hunter) for detecting UI design smells against guidelines
of Material Design. The tool is able to (i) automatically
process UI screenshots or prototype files to detect UI design
smells and generate reports, (ii) highlight the violated UI
regions and list the material design guidelines that the design
smells violate, and (iii) present conformance and violation UI
design examples to assist understanding. The tool consists of
Material Design guideline gallery and a tool website. The
gallery website is a back-end knowledge base that collects
a set of conformance and violation UIs from real Android
apps for each supported visual guideline. Through the gallery
website, users can explore the multi-dimensional space of
material design system in a structured way. The tool website
is used as a front-end application. Given a UI design, the
tool website reports UI design smells when the corresponding
guideline violation conditions are satisfied. The tool website
also produces a detailed violation report (see Fig. 2) that lists
the violated guidelines, highlights the regions violating these
guidelines, and provides conformance and violation examples
to assist developers understanding.

We evaluate UIS-hunter on a dataset of 60,756 unique UI
screenshots of 9,286 Android apps. UIS-Hunter achieves a
precision of 0.81, a recall of 0.90, and F1-score of 0.87. We
also conduct two user studies to evaluate the utility of UIS-
Hunter. Our studies show that UIS-Hunter can detect UI design
smells more effectively than human checkers, and most of the
UI design smells reported by UIS-Hunter are rated as severe
by the majority users.

II. APPROACH

A. Approach Overview
Fig. 2 show an overview of our approach framework. Our

approach composes by two main components: a knowledge
base of UI design guidelines and a UI design smell detector
including input UI design parser, atomic UI information
extractors, and UI design validator.

B. Constructing Guideline Knowledge Base
Material design are well-structured and adopt consistent

writing conventions. To construct a knowledge base of UI
design guidelines, we collect and examine guidelines explicitly
marked as “don’t” and “caution” and illustrated with at least
one UI design example. Then, we identify the information
about primary component, component design aspects, and
design dimensions from document headings. Finally, we read
the description and the example(s) of each guideline, and
iteratively summarize the types of atomic UI information
involved. The purpose of these steps is to index each guideline
and organize them in multi-dimensional perspective.

C. Parsing Input UI
Our approach takes a UI design image without source code

as input. The input UI shall be parsed to extract five types of
component metadata, including component type, component

bounding box (top–left coordinate and bottom-right coordi-
nate), the number of component instances (of a specific type
or within a container component), component composition
hierarchy, and text content. For an app UI screenshot, the
corresponding UI component metadata can be exported in
JSON file. For mockups, design tools can export SVG file.
When the input UI design is a pixel image, we provide
an interactive tool for users that can manually annotate UI
components. This annotation tool can support computer-vision
based UI component detection techniques [12]. This tool aims
to reduce the manual annotation effort. The user then only
needs to modify or correct some detected UI components.

D. Extracting Atomic UI Information
The tool extracts four types of atomic UI information that

are iconography, typography, color, and edge.
• Iconography. The iconography extractor detects the pres-

ence of icons and images in the input UI. To simulate how
app users perceive the text, widget and image in the UI,
we use the UI widget detection tool [13] to detect non-
text UI widget regions (e.g., icon, button), and use EAST
to detect text regions.

• Typography. The typography extractor aims to recognize
how text content (e.g., app bar title, button label, tab
label) is actually rendered in the UI. We use EAST [14] (a
deep learning based scene text detection tool) to detect
text region in the UI, and then use Tesseract OCR to
covert the cropped text images into text strings.

• Color. The color extractor aims to identify primary color
of the UI components and their constituent parts. Primary
color is important for detecting color-related UI design
smells. In detail, we adopt the HSV color space [15] to
determine the primary color of the UI components.

• Edge. The edge extractor aims to detect the rendered
edges of a UI component or the divider lines within a UI
component. Divider- and shape-related guidelines often
need edge information to validate. We adopt Canny edge
detection [16] to detect the edges surrounding or with
a UI component. We require that the pixels must have
sufficient horizontal and vertical connectivity.

E. Validating UI Design against Guidelines
The validator would match the retrieved information of the

input UI design with the guidelines’ violation condition from
the knowledge base. For each design guideline, the validator
enters the relevant atomic UI information of components into
the guideline’s violation condition. When the condition is
satisfied, the component of the input UI would be reported
as violation. Fig. 2 illustrates the validation of the three
guidelines of navigation drawer.

After validating all UI components in the input UI with
related guidelines , the validator produces a UI design smell
report. The report shall summarizes the list of design guide-
lines being violated. For each guideline being violated, the
report highlights the corresponding component part(s) on the
input UI in a red (i.e., error) or orange box (i.e., warning).
Conformance and violation UI examples are also attached to

https://tesseract-ocr.github.io/

Demographic

Study

Guideline

Conditions to be

Validated

Typography

extractor

Edge extractor

Color extractor

Iconography

extractor
Knowledge base of

design guidelines

Primary Component

Guideline Category

Violation Conditions

Examples

Parsing Input UI Design Image

Constructing Knowledge Base of UI Design Guidelines

Extracting Atomic UI Information

UI Design Validator

Error#1: Don't apply icon to some destinations but not others.

Primary Component: Navigation Drawer

Guideline Category: Single, Anatomy, Iconography, Error

Example(s):

Warning#1: Don't shrink text size in a navigation drawer.

Example(s):

Warning#2: Don't use dividers to separate individual destinations.

Example(s):

UI Design Smell Report

Generating UI design smell report

Material Design Pages

Metadata of top bar

Text: "Tutorials",

Bounds: [252,135,528,228],

Type: Top bar

Disassemble

Components
Metadata of navdrawer

Children: [{

Text: "Home", },

Text: "Tutorials", },

],

Bounds: [0,280,1440,2392],

Type: Navigation drawer

Real-app

Conformance

and Violation

UIs

. .

textline navigationdrawer

textline height textline averageheight

. . 2

(. .

. 1)

destination navigationdrawer

navdrawer detectededge num

navdrawer detectededge num

destination num

. . 0

(. . .)

destination navdrawer

navdrawer icon num

navdrawer icon num destination num

Fig. 2: Approach overview (illustrating the validation of a navigation drawer as an example)

each guideline to assist the developers in understanding each
reported guideline violation. The corresponding component
parts on the violation UI examples are also boxed to attract
the attention.

III. TOOL IMPLEMENTATION AND USAGE

A. Material Design Guideline Gallery and Knowledge Base
Material Design guidelines gallery is a back-end knowledge

base for UIS-Hunter. Each design guideline is indexed by the
type of primary component involved in the guideline, and
annotates the guideline with multi-dimensional information
such as component design aspect, design dimension, guideline
severity, and needed atomic UI information. The gallery at-
taches conformance and violation examples to abstract design
guidelines and records the violation condition can be defined
as the first-order logic over the relevant types of atomic UI
information. The gallery collects 130 guidelines for 23 types
of UI components and accesses users to explore the multi-
dimensional space of the material design in a structured way.

The website are implemented on Vue.js framework. Users
can filter interested guidelines with primary component, gen-
eral design dimension, component design aspect, and severity
or send a textual keyword query like Fig. 3 shows.

Fig. 3: The homepage of Material Design Guidelines Gallery
B. UIS-Hunter Implementation

UIS-hunter is implemented as a web application. Users
can upload their UI data in two types: 1) a UI mockup
created in design tools (e.g., Figma) or GUI builders (e.g.,
Android Studio Layout Editor); 2) an app UI screenshot taken
at the runtime by UI testing framework (e.g., Android UI
Automator). The tool shall process the input UI data in the
background and return a UI design smell report, including a

list of violated guidelines, violated regions, conformance and
violation examples, and timing. A UI design smell report lists
each violated guideline with detailed information. First, the
color of violated design guidelines indicates the severity of
the UI design smell. The primary component and category
information illustrate the result of our demographic study.
Then, UIS-Hunter snapshots a violated region on the origin UI
and highlights the key elements for validating. Finally, UIS-
Hunter queries the knowledge base and exhibits corresponding
conformance and violation examples from real apps. When UI
examples are more than two, examples shall be displayed in
a carousel.
C. Usage Scenarios

We present several examples to illustrate how UIS-Hunter
would help developers and designers. For example, someone
like A is a newcomer to Android development and A wants
to develop his/her own interface consisting of a top bar, a
navigation drawer, and several buttons. First, A doesn’t know
how to design this interface and whether need to follow some
design conventions. In this case, A can refer to Material Design
guideline gallery, filter guidelines by primary component, and
get inspiration from conformance examples in guideline of
navigation drawer. Then, A has an initial idea and chooses
Figma to prototype this idea. After prototyping, A is not sure
whether there are design violations in the interface, but A
could upload their mockup data to validate the initial design. In
another situation, someone like B is confident in his/her work
and implement the interface without checking the mockup. B
can also upload the UI screen and hierarchy file from source
code to get improvement suggestions. Following the preceding
procedure, A and B can finally design a user-friendly interface
without an experienced UI designer’s check.

IV. EVALUATION

A. Quantitative Evaluation
We conduct two experiments to investigate the efficiency of

UIS-Hunter on the real-app UIs from the Rico dataset [17]. We
build a dataset of real-app UIs by filtering out 60,756 unique
UI screenshots of 9,286 apps. We remove UI screenshots
like home screens that do not contain any components, and

landscape UI screenshots. We manually examine the reported
12,621 violations instances and adopt a statistical sampling
technique [18] to examine the minimum number MIN of
the rest of 50,829 app UIs without reported violations. The
estimated accuracy has 0.05 error margin at 95% confidence
level and we sample and examine 3,490 app UIs in total. UIS-
Hunter achieves 0.81, 0.90, and 0.87 for the precision, recall
and F1, respectively. Based on the manually validated detec-
tion results, UIS-Hunter detects 7,497 unique UIs that contain
true-positive design violations for the 45 don’t-guidelines of
10 types of UI components. UIS-Hunter detects all violation
examples in Fig. 1. The results indicate 12.3% of the 60,756
app UIs contains more than one confirmed design violation.
In addition, 16% of 7,497 contain more than one violations.
Among the 9,286 apps, 6,699 (72%) apps have more than two
design violations.
B. User Study

To further investigate whether developers can effectively de-
tect UI design smells and how ordinary app users consider the
reported UI design smells, we recruit 5 front-end developers
to distinguish 27 identified violation UIs from total of 40 UIs,
and ask 3 male and 2 female app users to independently rate
the severity of each violation in the 27 UIs. The results can be
concluded that manual detection of UI design smells has lower
overall precision and recall than automated detection and 15
out of 18 guidelines are considered affecting the experience
seriously by majority of users. Five guidelines have recall
less than 0.4. The result indicates developers fail to detect
these five guidelines. For example, “an outlined button’s width
shouldn’t be narrower than the button’s text length” needs to
check whether the button is outlined and then compare lengths.
14 guidelines are considered severe like “don’t mix tabs that
contain only text with tabs that contain only icons”. We
also find some controversial guidelines (i.e., close non-severe
versus severe ratings ratios). For example, booking.com’s
Android app does apply icons to some destinations but not
others in the navigation drawer. Some users think without
icons actually helps to distinguish auxiliary features (e.g., help,
contact us) from main booking-related features.

V. CONCLUSION AND FUTURE WORK
In this paper, we present UIS-Hunter, a tool for automat-

ically detecting UI design smells against a wide range of
design guidelines in Material Design, along with a Material
Design guidelines gallery, a gallery presenting a demographic
study results of Material Design guidelines and instantiating
each guideline with conformance and violation UIs examples.
Through the UIS-Hunter tool, developers can upload their
UI designs in two formats (SVG from design tools and
JSON from UI testing framework) and receive a detailed UI
design smell report. Material Design guidelines gallery allows
designers and developers to search and filter the guidelines and
examples users are interested in and reduce the time cost on
browsing the complex Material Design website. In the future,
we plan to extend UIS-Hunter to support implicit guidelines in
Material Design and de-facto guidelines emerging from real-
world apps, as well as other design systems that describe visual

do/don’t-guidelines for a library of UI components in a similar
vein. We shall also integrate UIS-Hunter with UI design tools
to support just-in-time UI design smell detection.

Acknowledgement. This research was partially sup-
ported by the National Key R&D Program of China (No.
2019YFB1600700), Australian Research Council’s Discovery
Early Career Researcher Award (DECRA) funding scheme
(DE200100021), ARC Discovery grant (DP200100020), and
National Science Foundation of China (No. U20A20173).

REFERENCES

[1] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[2] “How google material design affects mobile app design,”
2018. [Online]. Available: https://www.businessofapps.com/news/
how-google-material-design-affects-mobile-app-design/

[3] “The designer’s guide to accessibility research,”
2018. [Online]. Available: https://design.google/library/
designers-guide-accessibility-research/

[4] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[5] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2013, pp. 268–278.

[6] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic feedback-
based threshold adaptation for code smell detection,” IEEE Transactions
on Software Engineering, vol. 42, no. 6, pp. 544–558, 2015.

[7] “Findbugs,” 2020. [Online]. Available: https://github.com/
findbugsproject/findbugs

[8] “Stylelint,” 2020. [Online]. Available: https://stylelint.io/
[9] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,

“Automated reporting of gui design violations for mobile apps,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 165–175.

[10] D. Zhao, Z. Xing, C. Chen, X. Xu, L. Zhu, G. Li, and J. Wang, “Seeno-
maly: Vision-based linting of gui animation effects against design-don’t
guidelines,” in 42nd International Conference on Software Engineering
(ICSE’20). ACM, New York, NY, 2020.

[11] Z. Wu, Y. Jiang, Y. Liu, and X. Ma, “Predicting and diagnosing user
engagement with mobile ui animation via a data-driven approach,”
in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1–13.

[12] M. Xie, S. Feng, J. Chen, Z. Xing, and C. Chen, “Uied: A hybrid tool
for gui element detection,” in Proceedings of the 2020 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020.

[13] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, and L. Zhu, “Object
detection for graphical user interface: Old fashioned or deep learning
or a combination?” in Proceedings of the 2020 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

[14] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: an efficient and accurate scene text detector,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 5551–5560.

[15] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery
dc: Design search and knowledge discovery through auto-created gui
component gallery,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–22, 2019.

[16] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[17] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 845–
854.

[18] R. Singh and N. S. Mangat, Elements of survey sampling. Springer
Science & Business Media, 2013, vol. 15.

https://www.businessofapps.com/news/how-google-material-design-affects-mobile-app-design/
https://www.businessofapps.com/news/how-google-material-design-affects-mobile-app-design/
https://design.google/library/designers-guide-accessibility-research/
https://design.google/library/designers-guide-accessibility-research/
https://github.com/findbugsproject/findbugs
https://github.com/findbugsproject/findbugs
https://stylelint.io/

	Introduction
	Approach
	Approach Overview
	Constructing Guideline Knowledge Base
	Parsing Input UI
	Extracting Atomic UI Information
	Validating UI Design against Guidelines

	Tool Implementation and Usage
	Material Design Guideline Gallery and Knowledge Base
	UIS-Hunter Implementation
	Usage Scenarios

	Evaluation
	Quantitative Evaluation
	User Study

	Conclusion and Future Work
	References

