
Don’t Do That! Hunting Down Visual Design
Smells in Complex UIs against Design Guidelines

Bo Yang∗,Zhenchang Xing†,Xin Xia‡¶,Chunyang Chen†,Deheng Ye§,Shanping Li∗
∗Zhejiang University, Hangzhou, China

†Australian National University, Canberra, Australia
‡Monash University, Melbourne, Australia
§Tencent AI Lab, Shenzhen, China

imyb@zju.edu.cn,zhenchang.Xing@anu.edu.au,xin.xia@monash.edu,
chunyang.chen@monash.edu,dericye@tencent.com,shan@zju.edu.cn

Abstract—Just like code smells in source code, UI design has
visual design smells. We study 93 don’t-do-that guidelines in the
Material Design, a complex design system created by Google.
We find that these don’t-guidelines go far beyond UI aesthetics,
and involve seven general design dimensions (layout, typography,
iconography, navigation, communication, color and shape) and
four component design aspects (anatomy, placement, behavior
and usage). Violating these guidelines results in visual design
smells in UIs (or UI design smells). In a study of 60,756 UIs of
9,286 Android apps, we find that 7,497 UIs of 2,587 apps have
at least one violation of some Material Design guidelines. This
reveals the lack of developer training and tool support to avoid
UI design smells. To fill this gap, we design an automated UI
design smell detector (UIS-Hunter) which extracts and validates
multi-modal UI information (component metadata, typography,
iconography, color and edge) for detecting the violation of diverse
don’t-guidelines in Material Design. The detection accuracy of
UIS-Hunter is high (precision=0.81, recall=0.90) on the 60,756
UIs of 9,286 apps. We build a guideline gallery with real-world
UI design smells that UIS-Hunter detects for developers to learn
best Material Design practices. Our user studies show that UIS-
Hunter is more effective than manual detection of UI design
smells, and the UI design smells that are detected by UIS-Hunter
have severely negative impacts on app users.

I. INTRODUCTION

Graphical User Interface (GUI) should allow app users to
naturally figure out the app’s information structure and action
flow. Unfortunately, an Android GUI may be poorly designed.
According to the Appiterate survey [1], 42% of users would
uninstall an app with a poorly designed UI. Fig. 1 presents
some examples of poorly designed Android app UIs (issues
highlighted in red boxes). In Fig. 1(a), truncating the full
title of the top app bar hinders the access of information.
The background image in Fig. 1(b) makes the foreground
buttons/text illegible. The confirmation dialog in Fig. 1(c)
provides only a single action, and cannot be dismissed. In
Fig. 1(d), attaching tabs to bottom navigation can cause
confusion about what action or tab controls which content.
We refer to such poorly designed UIs as UI design smells.

Just like code smells that indicate violations of good soft-
ware design guidelines [2], UI design smells violate good UI

¶Corresponding author.

(a) Text truncation (b) Illegible
buttons/text

(c) Single button in
confirmation dialog

(d) Tab attached to
bottom navigation

Fig. 1: UI design smells (1st row) vs non-smell UIs (2nd row)
(issues highlighted in red boxes)

design guidelines. UI design guidelines constitute design sys-
tems for a vast variety of products, platforms and services [3].
In this work, we use Material Design as a case study of design
systems. In Material Design documentation, we investigate
93 explicit don’t-guidelines for 17 UI components (e.g., app
bar, banner, button, tab and dialog) (see Section II-A). These
design guidelines go far beyond UI aesthetics. They involve
seven general design dimensions (i.e., layout, typography,
iconography, navigation, communication, color and shape)
and four component design aspects (i.e., anatomy, placement,
behavior and usage).

However, there has been little support for detecting UI
design smells violating the design guidelines. Many tools have
been developed to detect and remedy code smells [2], [4],
[5], [6] and other programming or stylistic errors [7], [8],
[9]. Some techniques can detect the inconsistencies between
UI mockups and implemented UIs [10], or discern abnormal
designs from normal ones [11], [12], [13]. But these tech-
niques cannot check the violation of a UI design against
the visual guidelines in a design system. First, the design

http://120.26.177.47:81/
https://deviohunter.github.io/
https://material.io/components

examples used to explain the guidelines (e.g., Fig. 2) are
very different from the actual UI designs to be checked (e.g.,
Fig. 1), so they cannot be directly contrasted to determine
the guideline violation. Second, checking a UI design against
certain design guidelines requires to examine multi-modal
information, including a wide range of component information
(e.g., type, instance count, size/position, color and text content)
and the actual rendering of text and images (see Section II).

In this work, we develop an automated tool (called UIS-
Hunter) for detecting UI design smells against the don’t-
guidelines of Material Design. The design of UIS-Hunter is
informed by a demographic study of the don’t-guidelines in
Material Design documentation (see Section II). The study
identifies five types of atomic UI information for checking
visual guideline violations, including component metadata, ty-
pography, iconography, color and edge. Each visual guideline
is then defined as a violation condition over the relevant type(s)
of atomic UI information. UIS-Hunter currently supports 71
don’t-guidelines, covering seven general design dimensions
and 11 types of UI components. For each supported visual
guideline, we collect a set of conformance and violation UIs
from real Android apps. Given a UI design, our tool reports
UI design smells if the corresponding guideline violation con-
ditions are satisfied. It produces a violation report (see Fig. 4)
that lists the violated visual guidelines, highlights the UI
regions violating these guidelines, and provide conformance
and violation UI examples to help developers understand the
reported UI design smells.

We evaluate UIS-hunter on a dataset of 60,756 unique UI
screenshots of 9,286 Android apps. UIS-Hunter achieves a
precision of 0.81 and a recall of 0.90. And F1-score is 0.87.
We also conduct two user studies to evaluate the utility of
UIS-Hunter. Our studies show that UIS-Hunter can detect UI
design smells more effectively than human checkers, and most
of the UI design smells reported by UIS-Hunter are rated as
severe by the majority of 5 app users.

In this paper, we make the following contributions:
• We conduct a demographic study of visual guidelines in

Material Design documentation, which informs the design
of automated UI design smell detection tools.

• We develop the UIS-Hunter tool that can validate the
design of 11 types of UI components against 71 visual
guidelines of Material Design.

• We confirm the detection accuracy of UIS-Hunter on a
large dataset of real Android app UIs, and the utility of
UIS-Hunter for front-end developers and app users.

• Based on the UIS-Hunter’s detection results, we build a
Material Design guideline gallery to assist the learning
of abstract visual guidelines with real-app UI design
smells. We also release our manually validated dataset
as a benchmark for studying UI design smells.

II. GOOGLE MATERIAL DESIGN GUIDELINES:
A DEMOGRAPHIC STUDY

Our study examines three perspectives of visual design
guidelines in Material Design documentation: component type

(a) Text truncation (d) Tab attached to
bottom navigation

(b) Illegible buttons/text
(c) Single button in
confirmation dialog (e) Two icons in a button

Fig. 2: Examples of don’t-guidelines in Material Design

(a) Distribution by Component Type

(b) Distribution by

Component Design Aspects

63
11

12
7

(c) Distribution by

General Design Dimensions

5
14

36

23

5
9 1

Fig. 3: Distribution of don’t-guidelines

and count, component design aspect, and general design
dimension. In the study, we identify the types of atomic UI
information required for determining the violation of the visual
guidelines, which lays the foundation to develop the automated
tool for detecting UI design smells violating these guidelines.

A. The Collection of Material Design Guidelines

In this work, we examine the official documentation of
Material Design Component (as of May 2020). The docu-
mentation contains over 1,000 web pages and over 5,000
UI design examples. Material design webpages (and many
other design systems) are well-structured and adopt consistent
writing conventions. In this study, we focus on explicit don’t-
guidelines that explicitly marked as “don’t” and “caution”
with at least one illustrative UI example. Fig. 2 shows five
examples of such don’t guidelines. The four examples in
Fig. 2(a-d) correspond to the design smells in Fig. 1(a-d)
respectively. Fig. 2 shows one more guideline “don’t use
two icons in a button”. Although some guidelines involve
multiple types of components, they will not be repeated for
all involved components. For example, “don’t attach tab to
bottom navigation” in Fig. 2(d) is described as a guideline for
tab but not for bottom navigation. We refer to tab as primary
component, and bottom navigation as related component for
this design guideline.

We collect 126 explicit don’t-guidelines for 23 types of UI
components. Three types of components (backdrop, navigation

http://120.26.177.47:81/
http://120.26.177.47:81/
https://deviohunter.github.io/
https://drive.google.com/drive/folders/1iey4qVqgRm6UYwv7LBGlMwqI2Yd0W6cr?usp=sharing
https://drive.google.com/drive/folders/1iey4qVqgRm6UYwv7LBGlMwqI2Yd0W6cr?usp=sharing
https://material.io/components

rail and side sheet) are in beta status. We exclude 14 don’t-
guidelines of these three beta UI components. As this study
focuses on Android app UI design smells, we exclude five
don’t-guidelines for web or desktop app UI design. We exclude
15 animation don’t-guidelines of 10 types of components,
such as card flipping and scrolling, bottom sheet sliding up.
Analyzing UI animation effects requires sophisticated video
embedding techniques [12], which is beyond the scope of this
work. Finally, we collect 93 don’t-guidelines for 17 types of
UI components for the subsequent demographic analysis.

B. Demographic Analysis of Design Guidelines

1) Component Type and Count: Fig. 3(a) shows these 17
types of UI components and the number of don’t-guidelines
they have. Three types of UI components (floating action
button (FAB), banner and snackbar) have 9 or more don’t-
guidelines. Two types of UI components (chip and divider)
have only one don’t-guidelines. The remaining 12 types of UI
components have 2 to 8 don’t guidelines.

We divide the 93 don’t-guidelines into single-type and
multiple-type. 66 guidelines are single-type as they involve
only one type of UI component. Single-type guidelines gener-
ally require the count of certain component instance. Some
guidelines need to verify the number of destinations in a
bottom navigation matches the limitation. Since the right navi-
gation drawer is prohibited, certain guidelines need component
coordinates to decide the left and right of a navigation drawer.
Also, some single-type guidelines require text rendering results
to validate improper text usage (Fig. 1(a)). 27 don’t-guidelines
are multiple-type as they involve multiple types of UI compo-
nents, for example, background image and foreground button-
s/text (Fig. 1(b)), tab and bottom navigation (Fig. 1(c)), dialog
and button (Fig. 1(d)). To validate a multiple-type guideline,
we need to examine not only the primary UI component but
also related components interacting with or being composed
in the primary component.

2) Component Design Aspects: Material Design describes
the design of a UI component from four aspects: anatomy,
placement, behavior and usage. Fig 3(b) shows the distribution
of the 93 don’t-guidelines across these four component design
aspects. Anatomy, placement, behavior and usage guidelines
account for about 68%, 13%, 12% and 7%, respectively.

Validating anatomy guidelines requires the information
about component composition, text content and actual render-
ing of text/images/edges of a component’s constituent parts.
For example, an app bar may be composed of a navigation
button, a title, some action items and an overflow menu. The
title has guidelines regarding improper text usage, such as
text wrapping, truncation and shrinking (Fig. 1(a)). Validating
behavior guidelines requires to examine the metadata (e.g.,
count) of the primary component after certain interaction
and the icons of action button (e.g., navigation button). For
example, the number of destinations that a float action button
can display has a minimum and maximum limitation, or
“don’t place a navigation button in both top and bottom
bar”. Usage guidelines describe typical usage scenarios of a

UI component. For example, Material Design suggests using
bottom navigation when there are three to five destinations. If
the destinations are fewer than three, Material Design suggests
using tab or navigation drawer respectively, rather than bottom
navigation. Usage guidelines also describe the use of different
variants of the component. For example, a dialog can be a
simple dialog or a confirmation dialog. When using a simple
dialog, an action button is not needed. But a confirmation
dialog needs two actions to dismiss or confirm the dialog
(Fig. 1(c)). To validate usage guidelines, we typically need
to examine the component type and its constituent elements.
Placement guidelines specify the location of a UI component
on the screen or relative to other UI components, such as
“don’t attach tab to bottom navigation” (Fig. 1(d)). Vali-
dating placement guidelines requires the information about
component type/size/position, and usually need to examine the
relative position of multiple UI components on the screen.

3) General Design Dimensions: Material Design describes
the principles of 11 design dimensions (so called Material
Foundation). We focus on non-animation guidelines and ex-
clude four dimensions: environment, sound, motion and inter-
action. 93 don’t-guidelines can be divided into the remaining
seven design dimensions: layout, typography, iconography,
navigation, communication, color and shape, as summarized
in Fig. 3(c). Layout guidelines account for 39%, typography
and iconography for 40%, and rest four dimensions for 21%.

Layout specifies the organization of UI components on
the screen. It includes all 11 placement guidelines, and 18
anatomy guidelines, such as maximum number of FAB and
banner, minimum number of buttons in a bottom bar, and the
usage of divider between destinations in a navigation drawer. 8
layout guidelines are about component behavior, and 3 layout
guidelines are about component usage which specifies the
improper usage of text field, divider and tooltip. Typography
specifies the style and usage of text labels, such as text length,
wrapping, truncation and shrinking. Validating typography
guidelines requires not only text content (e.g., button label
“Cancel”), but also the appearance of the displayed text, such
as the presence of “...” in Fig. 1(a), the number of text lines, the
height/width of text. Iconography specifies the use of images
and icons in UI design, such as avoid imagery that makes
button or text illegible in Fig. 1(b), and “don’t apply icons to
some destinations but not others in a navigation drawer”.

Navigation regulates how users should move through an
app. They mainly include guidelines for navigation com-
ponents (top/bottom bar, bottom navigation, tab and FAB),
such as “don’t place a navigation button in both top and
bottom bar”. Communication defines guidelines that ask for
confirmation before taking action and acknowledge successful
actions. For example, confirmation dialog should not provide
only a confirmation button (Fig. 1(c)) Color specifies the use
of meaningful colors. For example, “don’t use multiple colors
in bottom navigation”, as they make it harder for users to
distinguish the status of destinations. As another example,
using primary color as the background color of a text field
may make it be mistaken as buttons and harm text legibility.

https://material.io/design/foundation-overview
https://material.io/design/foundation-overview

Finally, we have one shape guideline “don’t alter the shape of
a snackbar”, which needs to check the edge of snackbar.

C. Types of Atomic UI Information

The demographic analysis of Material Design don’t-
guidelines identifies five types of atomic UI information
required for detecting guideline violations. First, compo-
nent metadata includes component coordinates, type, instance
count, composition hierarchy and text content. Text content
is used to determine component semantics. For example, the
button label “Cancel” or “Discard” indicates a dismissive
action. The label “Sorry..”, “Warning!”, or “Are you sure?”
indicates ambiguous dialog title. We collect a common label
glossary mentioned in the Material Design documentation
for validating the guidelines that need to check component
semantics. Second, typography refers to the actual appearance
of the displayed text. Although component metadata provides
text content, the actual appearance of the displayed text is
required to detect improper text usage, such as text wrap,
resize and truncation. Third, iconography refers to the presence
of images/icons and their visual effects. Fourth, the primary
color refers to the color displayed most frequently across
an app’s screen and components. Fifth, edge information is
needed for divider- and shape-related guidelines.

48 of 93 don’t-guidelines require one type of atomic UI
information to validate. Most of these guidelines are about text
usage and limitation of component instances. The remaining
45 guidelines require two or more types of information. For
example, the guideline “don’t apply icons to some destinations
but not others in a navigation drawer” requires component
metadata (the component type and coordinate information,
the number of destinations in the drawer) and iconography
information (the number of icons used in the drawer). When
the two numbers do not match, the guideline is violated.

III. UI DESIGN SMELL DETECTION

As shown in Fig. 4, our approach consists of two main
components: a knowledge base of UI design guidelines and a
UI design smell detector including input UI design parser,
atomic UI information extractors and UI design validator.
In this section, we first give an overview of our approach
for UI design smell detection, and then detail the design and
construction of its main components.

A. Approach Overview

The knowledge base of UI design guidelines contains a set
of visual design guidelines extracted from a design system
(Section III-B). Each guideline is indexed by the type of
primary UI component involved and is accompanied by a set of
conformance and violation UI examples from the design sys-
tem and real-world applications. The UI design smell detector
takes as input a UI design mockup or an app UI screenshot
(Section III-C). It validates the design of each component
in the input UI against the guidelines of the corresponding
component type. In addition to component metadata obtained
from the input UI, the validation examines four types of atomic

UI information (Section III-D) (typography, iconography, color
and edge) against each guideline’s violation condition. If
certain guideline violations are detected, the detector produces
a UI design smell report (Section III-E).

B. Constructing Knowledge Base of UI Design Guidelines

A design system, such as Google’s Material Design [14] is
usually documented in semi-structured documentation. To con-
struct a knowledge base of UI design guidelines, we conduct
a demographic study of the design guidelines in the design
system documentation, such as the study reported in Section II.
The knowledge base indexes each design guideline by the
type of primary component involved in the guideline, and
annotates the guideline with multi-dimensional information
such as component design aspect, general design dimension
and guideline severity. This allows the developers to explore
the multi-dimensional space of a complex design system
in a more structured way, as demonstrated in our Material
Design guideline gallery. The guidelines are often abstract.
Attaching conformance and violation UI design examples to
the design guidelines allows the developers to compare and
learn from concrete UI designs. Those examples come from
two sources: first, the illustrative UI mockups provided in
the design system documentation, and second, the real-world
app UI screenshots analyzed by the UI design smell detector.
For detecting UI design smells against design guidelines, a
critical task is to define atomic UI information required for
validating guideline violations. The violation condition can be
defined as the first-order logic over the relevant types of atomic
UI information. Fig. 4 shows three guideline conditions for
navigation drawer. Atomic UI information can be extracted
from the input UI design (see Section III-D), and validated
against these guideline conditions (see Section III-E).

C. Parsing Input UI Design Image

The input to our UI design smell detector is a UI design
image. Our detector does not need source code for analysis.
The UI design image may come from two sources: 1) a UI
mockup created in design tools (e.g., Figma [15]) or GUI
builders (e.g., Android Studio Layout Editor [16]); 2) an app
UI screenshot taken at the runtime by UI testing framework
(e.g., Android UI Automator [17] or Selenium [18]).

In this work, we are concerned with five types of compo-
nent metadata in the UI design, including component type,
component bounding box (top–left coordinate and bottom-
right coordinate), the number of component instances (of a
specific type or within a container component), component
composition hierarchy, and text content. The input UI design
image may contain such component metadata. For example,
design tools can export UI mockups in vector graphics (e.g.,
SVG) with metadata. When taking an app UI screenshot, the
corresponding UI component metadata can be exported in
JSON file. Given an input UI design image with metadata, a
file parser can be developed to extract the needed component
metadata. When the input UI design is a pixel image, the user
can manually annotate UI components and their metadata with

https://deviohunter.github.io/
https://deviohunter.github.io/

Demographic

Study

Guideline

Conditions to be

Validated

Typography

extractor

Edge extractor

Color extractor

Iconography

extractor
Knowledge base of

design guidelines

Primary Component

Guideline Category

Violation Conditions

Examples

Parsing Input UI Design Image

Constructing Knowledge Base of UI Design Guidelines

Extracting Atomic UI Information

UI Design Validator

Error#1: Don't apply icon to some destinations but not others.

Primary Component: Navigation Drawer

Guideline Category: Single, Anatomy, Iconography, Error

Example(s):

Warning#1: Don't shrink text size in a navigation drawer.

Example(s):

Warning#2: Don't use dividers to separate individual destinations.

Example(s):

UI Design Smell Report

Generating UI design smell report

Material Design Pages

Metadata of top bar

Text: "Tutorials",

Bounds: [252,135,528,228],

Type: Top bar

Disassemble

Components
Metadata of navdrawer

Children: [{

Text: "Home", },

Text: "Tutorials", },

],

Bounds: [0,280,1440,2392],

Type: Navigation drawer

Real-app

Conformance

and Violation

UIs

. .

textline navigationdrawer

textline height textline averageheight

. . 2

(. .

. 1)

destination navigationdrawer

navdrawer detectededge num

navdrawer detectededge num

destination num

. . 0

(. . .)

destination navdrawer

navdrawer icon num

navdrawer icon num destination num

Fig. 4: Approach overview (illustrating the validation of a navigation drawer as an example)

an interactive tool. This annotation tool can support computer-
vision based UI component detection techniques [19], which
reduces the manual annotation effort. The user then only needs
to modify or correct some detected UI components.

D. Extracting Atomic UI Information

For each UI component in the input UI design, four types of
atomic UI information will be extracted, including typography,
iconography, color, and edge.

1) Typography Extraction: The typography extractor aims
to recognize how text content (e.g., app bar title, button label,
tab label) is actually rendered in the UI. When the input UI
comes with the component metadata, the text content can be
directly obtained from the component metadata. However, to
validate the guidelines regarding text appearance (e.g., wrap,
resize, truncation), we must know the number of text lines, the
font size, and the presence of special characters (e.g., ‘...’),
when the text is rendered on the UI. Inspired by a recent
study on UI widget detection [19], we use EAST [20], [21]
(a deep learning based scene text detection tool) to detect text
region in the UI, and then use Tesseract OCR [22] to covert
the cropped text images into text strings. If the text content
is obtained from the component metadata, we match this text
content with the OCRed strings to correct OCR errors. Finally,
based on the detected text regions and the OCRed texts, we
determine the number of text lines, the font height/width, and
the presence of special character.

2) Iconography Extraction: The iconography extractor has
two goals. First, it detects the presence of icons and images
in the input UI. Second, it attempts to simulate how app
users perceive the text, widget and image in the UI. We use
computer-vision techniques to achieve these two goals. In par-
ticular, we use the UI widget detection tool [23] to detect non-
text UI widget regions (e.g., icon, button), and use EAST [20]
to detect text regions. The detected icons and images help
to validate the guidelines regarding icon usage, such as “don’t
use same icons to represent different destinations in navigation
drawer”. Furthermore, by comparing the detected text, widget

and image regions with the component bounding boxes in
the metadata, we can determine illegibility-related UI design
smells, for example, the two illegible buttons computer vision
fails to detect in Fig. 1(b).

3) Color Extraction: The color extractor aims to identify
primary color of the UI components and their constituent parts.
In Fig. 4, we illustrate the primary color of the navigation
drawer (white), and that of the icons (brown) and the text
(gray) in the navigation drawer. Primary color is important
for detecting color-related UI design smells, such as “don’t
use multiple colors in a bottom navigation bar”, or “don’t
use primary color as the background color of text fields”.
To determine the primary color of the UI components, we
adopt the HSV color space [24]. Unlike the RGB color
model, which is hardware-oriented, the HSV model is user-
oriented [25], based on the more intuitive appeal of combining
hue, saturation, and value elements to create a color.

4) Edge Extraction: The edge extractor aims to detect the
rendered edges of a UI component or the divider lines within
a UI component. The detected edges help to validate divider-
and shape-related guidelines. Although the coordinates of a
component always form a rectangle, the actual edge of the
component may not be a rectangle. We adopt Canny edge
detection [26] to detect the edges surrounding or with a UI
component. We require that the pixels must have sufficient
horizontal and vertical connectivity. The edge extractor outputs
the start and end coordinates of the detected edges.

E. Validating UI Design against Visual Design Guidelines

For each UI component in the input UI design, the validator
first retrieves the relevant design guidelines by the component
type from the knowledge base. For each design guideline, it
enters the relevant atomic UI information of the primary com-
ponent and other related UI components into the guideline’s
violation condition. If the condition is satisfied, the design
of the primary component violates this design guideline.
Fig. 4 illustrates the validation of the three guidelines of
navigation drawer, “don’t apply icons to some destinations

but not others”, “don’t shrink text label”, and “don’t use
dividers to separate individual destinations”. The validation
uses the component metadata, typography, iconography and
edge information, and detects one error and two warning
violations for the input navigation drawer.

After validating all UI components in the input UI, the
validator produces a UI design smell report. Fig. 4 shows the
UI design smell report for the input UI. For each component
that has at least one design guideline violation, the report
summarizes the list of design guidelines being violated. For
each guideline being violated, the report highlights the corre-
sponding component part(s) on the input UI in a red or orange
box, depending on the violation severity (error or warning)
of the design guideline. To assist the developers in under-
standing each reported guideline violation, the report presents
conformance and violation UI examples. The corresponding
component parts on the violation UI examples are also boxed
to attract the attention.

IV. DETECTION ACCURACY BY UIS-HUNTER

We conduct two experiments to investigate the detection
accuracy of UIS-Hunter on the real-app UIs from the Rico
dataset [27] and the high-quality UI mockups from the Figma
design kit. The two experiments also allow us to compare the
severity of UI design smells in real-app UIs and UI mockups.

A. Detection Accuracy for Real-App UIs

1) Dataset: We build a dataset of real-app UIs from the
Rico dataset [27]. The Rico dataset contains 66,261 app UI
screenshots collected from 9,286 Android apps. These app
UI screenshots were collected mainly by the automated UI
exploration tool [17]. A small portion was collected during
manual exploration by human users. A UI screenshot is
exported as a pixel image, together with the corresponding
component metadata in a JSON file. In this work, we filter
out UI screenshots that do not contain any of the 17 types
of UI components to be validated, home screens that do not
belong to any apps, and landscape UI screenshots. We obtain
60,756 unique app UI screenshots from 9,286 apps.

In these 60,756 app UIs, six types of components (divider,
chip, date picker, tooltip, snackbar and bottom sheet) are
used much less frequently than the other 11 types. Divider
and chip are small decorative components, which have only
two usage don’t-guidelines. Date picker, tooltip, bottom sheet
and snackbar usually need proper user interaction to trigger,
which is hard to simulate by automated UI exploration. Date
picker has only two guidelines. Tooltip, bottom sheet and
snackbar have four, five and nine guidelines respectively, but
there are only 264, 213 and 330 instances in the collected
UIs. We manually examine the instances of these six types of
components against their don’t-guidelines, and do not find any
guideline violations. Of course, this does not mean these six
types of components are smell proof. But considering the data
scarcity, we leave out these six types of components as future
work.

TABLE I: Performance of detecting UI design smells for
the 11 types of components in 60,756 real-app UIs (See
Section IV-A2 for the explanation of column abbreviations)

Component #INST #GL #GLw
RV #RV Prec. Rec. F1

Button 32,988 6 5 2,872 78% 78% 0.78
Top Bar 21,615 4 4 1,704 82% 85% 0.83
Text Field 15,297 4 2 1,575 88% 96% 0.92
NavDrawer 14,399 7 6 2,829 71% 88% 0.78
List 9,455 3 0 0 - - -
Tab 8,426 7 5 586 91% 89% 0.90
BottomNav 5,029 7 5 397 92% 84% 0.88
Banner 3,721 10 7 382 86% 100% 0.92
FAB 3,442 11 4 399 91% 92% 0.91
Dialog 2,837 5 5 1,740 86% 99% 0.92
Bottom Bar 1,790 7 2 137 92% 89% 0.90
Total 118,999 71 45 12,621 81% 90% 0.87

2) Evaluation Method: We apply UIS-Hunter to all in-
stances of the 11 types of components in the 60,756 app
UIs. As shown in Table I, these 11 types of components
have 118,999 instances (#INST) and 71 guidelines (#GL).
#RV shows the number of reported violations. Each reported
violation identifies a primary component and the violated
guideline. #GLwRV shows the number of guidelines with
reported violation instances. We manually check the correct-
ness of all reported violations. A reported violation is correct
only if the reported component actually violates the reported
guideline. Precision is the percentage of correctly reported
violations (#TP) among all reported violations.

We have 50,829 app UIs for which UIS-Hunter does not
report any violations. It requires significant manual effort to
identify the missing violations in all these 50,829 app UIs.
Therefore, we adopt a statistical sampling method [28] to
sample and examine the minimum number MIN of app UIs
that contain a particular type of component. We set e = 0.05
at 95% confidence level for determining MIN. That is, the
estimated accuracy has 0.05 error margin at 95% confidence
level. In total, we sample and examine 3,490 app UIs for the 11
types of components in Table I. Let FN be the violations in the
sampled UIs (i.e., false negative) for a type of component. We
estimate the number of false positive violations in all app UIs
by #EstFN=#FN/SampleRatio. SampleRatio is the number of
sampled UIs divided by the total number of app UIs containing
a type of component. Recall is #TP/(#TP+#EstFN). F1-score
is the harmonic mean of precision and recall.

3) Results: As shown in Table I, UIS-Hunter achieves 0.81,
0.90 and 0.87 for the overall precision, recall and F1. The
F1 for 6 types of components are above 0.9. The F1 for
top bar and bottom navigation is 0.83 and 0.88 respectively.
The F1 is below 0.8 for only button and navigation drawer.
For the 3 guidelines of list, UIS-Hunter does not report any
violations. Our manual examination of the sampled UIs with
list components does not find any violations either.

Button has four variant types - text button, outlined button,
contained button and toggle button. We rely on a button’s
metadata and visual appearance to determine the button type,
which may not be always correct. The incorrect button type
subsequently leads to the misjudgment of the applicability

https://www.figma.com/
https://www.figma.com/

TABLE II: Performance of detecting UI design smells for the
nine types of components in 493 editing UI mockups

Component #INST #GLwIV #RV Prec Rec F1
Button 272 1 4 100% 100% 1
Text Field 182 2 7 100% 100% 1
BottomNav 104 2 6 100% 100% 1
List 80 3 9 78% 78% 0.78
NavDrawer 70 1 4 100% 100% 1
Bottom Bar 66 5 16 88% 93% 0.90
FAB 59 7 21 95% 100% 0.97
Tab 46 2 6 100% 100% 1
Banner 31 3 9 100% 100% 1
Total 910 26 82 94% 0.95 0.95

of some guidelines, for example, “don’t use too long text
label in a text button” versus “an outlined button’s width
shouldn’t be narrower than the button’s text length”. We find
that UIS-Hunter may still accurately identify the buttons with
some design smells (e.g., long text), but it may apply the
wrong guideline. In our accuracy evaluation, we consider such
reported violations as wrong. In fact, our user study (see
Section V-A) shows that button variants often confuse human
too when manually validating button designs.

The design of a navigation drawer can be rather complex,
for example, with many icons and text labels, and sometimes
even with search box or tabs. This poses the challenges
of accurate extraction of typography, iconography and edge
information. Consequently, UIS-Hunter may misjudge design
violations. For example, if the iconography extractor fails to
identify some icons in the navigation drawer, UIS-Hunter will
misreport the violation of the guideline “don’t apply icons
to some destinations but other others”. In fact, this guideline
has the lowest precision (0.63). As another example, it is also
challenging to accurately detect thin divider edges used in the
navigation drawer. Inaccurate divider edges may lead to the
wrong judgment of the guidelines like “don’t use divider to
separate individual destinations”.

We finally obtain 7,497 unique UIs that contain true-positive
design violations for the 45 don’t-guidelines of 10 types of
components. That is, 12.3% of the 60,756 app UIs contains
at least one confirmed design violation against material design
guidelines. 16% of 7,497 UIs contain more than one violations.
Among the 9,286 apps, 2,587 (28%) apps have at least one
UI design violation against Material Design guidelines. 24%
of these 2,587 apps contain two design violations, and 45%
of these 2,587 apps contain 3 or more design violations.

B. Detection Accuracy for UI Design Mockups

1) Dataset: We download the Material Design Kit from the
Figma website. Figma is a popular web-based UI design tool.
This design kit contains 413 UI mockups that demonstrate the
best Material Design practices. These design mockups contain
all 17 types of UI components that UIS-Hunter can validate.
The design mockups and their constituent components are all
editable. We export these design mockups with component
metadata in SVG (Scalable Vector Graphics) format.

In our evaluation on real-app UIs, UIS-Hunter does not
report any violations for the 26 don’t-guidelines of the nine

types of UI components (see Table II). Our manual examina-
tion of the sampled UIs does not find the violations of these
26 guidelines either. Among these 26 guidelines, 6 guidelines
are about improper text styles, 6 are about icon usage, 5 are
about button usage inside a component, 4 are about styles
when bottom bar and FAB are used together, 3 are about the
count of certain component instances, 2 are about space and
placement. For 17 of these 26 guidelines, UIS-Hunter actually
reports the same-flavor guideline violations for other types of
components. For example, although there are no violations
of truncating text in bottom navigation, we find the text-
truncation violations for top bar.

To confirm the UIS-Hunter’s capability for the 26 guidelines
without violations in real-app UIs, we take advantage of the
editable UI mockups to inject UI design smells that violate
these 26 guidelines in the UI mockups. For each guideline,
we choose 2-4 UI design mockups that contain the primary
component(s) involved in the guideline. We modify primary
component(s) to simulate the guideline violation example
illustrated in the Material Design documentation. Depending
on the guideline, the modification may include changing text
content and style, adding relevant components/icons, resizing
or moving components, etc. We finally obtain 80 edited UI
mockups that violate the 26 don’t-guidelines. We combine
these 80 edited UI mockups and the original 413 UI mockups
for the accuracy evaluation on UI design mockups.

2) Evaluation Method: We manually examine all the origi-
nal 413 UI mockups for the violation of the 71 guidelines of 17
types of components. We do not find any guideline violations.
This is not surprising because these 413 UI mockups are
created by professional designers for demonstrating the best
Material Design practices. Nevertheless, we apply UIS-Hunter
to these 413 original UI mockups and the 80 edited UI
mockups for detecting the injected violations of the 26 don’t-
guidelines of the 9 types of components. We include the
original UI mockups to increase the test cases, and see if
UIS-Hunter may erroneously report the violations that do not
actually exist in these high-quality UI mockups.

3) Results: Table II presents the results. Overall, UIS-
Hunter achieves F1=0.95. It detects 77 of the 80 injected
design violations, and reports five erroneous violations. UIS-
Hunter achieves F1=1 for 11 guidelines of six types compo-
nents. It also detects all injected violations for the seven FAB
guidelines and the three banner guidelines. Three undetected
violations are due to the failure of recognize relevant UI
components (e.g., keyboard, icons). Five erroneously reported
violations are due to the erroneous recognition of non-existent
icons and the unusual distance between components.

V. UTILITY OF UIS-HUNTER

Having confirmed the high precision and recall of our UIS-
Hunter tool, we want to further investigate the utility of
automated UI design smell detection from two aspects:

• How effective can front-end developers manually detect
UI design smells reported by UIS-Hunter?

https://www.figma.com/

• How do app users rate the severity of UI design smells
reported by UIS-Hunter?

A. Effectiveness of Manual UI Design Smell Detection

1) Motivation: Using our UIS-Hunter, we identify a large
number of UI design smells in real-world Android apps.
This could be because developers are not aware of relevant
Material Design guidelines. In this study, we want to further
investigate whether developers can effectively detect UI design
smells when they are made aware of relevant don’t-guidelines.
By contrasting this manual effectiveness with the detection
capability of our tool, we will understand the importance and
necessity of automated, consistent detection method.

2) User Study Design: We select from our Rico dataset
app UIs according to the following four criteria. First, we
want to cover as diverse primary UI components as possible.
The selected app UIs should contain not only UI components
with violations but also those without violations. Second, in
addition to UIs with violation(s), there should also be UIs
without any violations. Third, the violated guidelines should
cover as many component design aspects and general design
dimensions as possible, roughly with the similar proportion of
the guidelines in each category (see Section II). They should
also cover both warning and error severity. Finally, validating
the selected app UIs against these guidelines should involve
all types of atomic UI information. We also need to control
the number of UIs to be examined in order to avoid fatigue
effect by human annotators.

As a result, we select 40 app UIs, among which 27 UIs
with violations (referred to as dirty UIs) and 13 UIs without
any violations (clean UIs). These 40 UIs contain 1 to 5 types
of UI components (median 3). 24 dirty UIs have one violation
each, and 3 dirty UIs have two violations each, i.e., in total 30
instances of violations. We manually confirm that UIS-Hunter
correctly identifies all violations, and reports no erroneous
violations for the selected 40 app UIs. The 30 violations vio-
late 18 don’t-guidelines (see Table III), which in combination
cover nine types of primary components, all four component
design aspects, all six general design dimensions (except
shape), and all five types of atomic UI information. 1 guideline
(G7) has 6 violation instances, 2 guidelines (G12 and G13)
have 3 violation instances each, 3 guidelines (G10, G16, and
G17) have 2 violation instances each, and 12 guidelines have
one violation instance each. Each type of involved primary
component has both violation and conformance instances,
denoted as #IWV and #INV respectively.

We recruited 5 front-end developers from a local company.
These developers have at least 1 years web and/or mobile app
development experience. None of the developers are involved
in the development of UIS-Hunter. Before the study, we ask the
developers to review and familiarize themselves with the 18
don’t-guidelines and their conformance and violation examples
(different from the 40 UIs to be examined). Then, we ask
these 5 developers to independently examine the 40 app UIs
and identify the violations of the 18 guidelines if they believe
there are any. The developers do not know which UIs are dirty

TABLE III: Don’t-guidelines examined in user studies and
the results of detection effectiveness and severity rating
(#IWV/#INV: the number of instances with/without violations)

GID
Primary

Component
(#IWV, #INV)

Detection
Effectiveness

Severity Rating
#(Ratio%)

Prec. Rec. F1 #1-2(%) #3(%) #4-5(%)
G1 Button

(3, 17)

0.57 0.8 0.67 4(80%) 1(20%) 0(0%)
G2 0.2 0.2 0.2 2(40%) 0(0%) 3(60%)
G3 0.2 0.4 0.3 0(0%) 0(0%) 5(100%)
G4 Top Bar

(3, 24)

1 1 1 2(40%) 2(40%) 1(20%)
G5 0.8 0.8 0.8 1(20%) 0(0%) 4(80%)
G6 0.2 0.2 0.2 1(20%) 0(0%) 4(80%)
G7 NavDrawer

(8, 3)

0.93 0.9 0.91 11(37%) 3(10%) 16(53%)
G8 0.83 1 0.91 2(40%) 0(0%) 3(60%)
G9 0.57 0.8 0.67 0(0%) 1(20%) 4(80%)
G10 Tab

(6, 9)

0.64 0.7 0.67 2(20%) 3(30%) 5(50%)
G11 0.5 0.6 0.5 0(0%) 0(0%) 5(100%)
G12 1 1 1 0(0%) 2(13%) 13(87%)

G13 Text Field
(3, 4) 0.75 0.8 0.77 1(7%) 1(7%) 13(87%)

G14 BottomNav
(1, 5) 0.4 0.4 0.4 1(20%) 2(40%) 2(40%)

G15 Dialog
(1, 4) 0.8 0.8 0.8 0(0%) 1(20%) 4(80%)

G16 Banner
(2, 6) 0.05 0.1 0.07 1(10%) 3(30%) 6(60%)

G17 FAB
(3, 4)

1 1 1 3(30%) 5(50%) 2(20%)
G18 1 1 1 2(40%) 1(20%) 2(40%)

* G1: don’t use too long text label in a text button, G2: don’t use two icons in a button, G3:
an outlined button’s width shouldn’t be narrower than the button’s text length, G4: don’t
shrink text in a top bar, G5: don’t truncate text in a top bar, G6: don’t wrap text in a regular
top bar, G7: don’t apply icons to some destinations but not others in a navigation drawer,
G8: don’t use the same icon to represent different primary destinations in a navigation
drawer, G9: don’t shrink text size in a navigation drawer, G10: don’t mix tabs that contain
only text with tabs that contain only icons, G11: don’t truncate labels in a tab, G12: don’t
nest a tab within another tab, G13: don’t use primary color as the background color of text
fields, G14: don’t use a bottom navigation bar for fewer than three destinations, G15: don’t
use dialog titles that pose an ambiguous question, G16: don’t use a single prominent button
in a banner, G17: don’t display multiple FABs on a single screen, G18: don’t include less
than two options in a speed dial of FAB.

or clean, which guidelines have how many violation instances
or may not have violations at all. The developers can use as
much time as they wish to examine a UI. They complete the
examination in 50 to 80 minutes (median 64 minutes).

The developers are asked to report the identified violations
in terms of the involved primary components and the violated
guidelines. An identified violation is considered correct only
if both the involved primary component and the violated
guideline are correct. We compute precision and recall to
evaluate manual detection effectiveness. Let VR be the bag
of the reported violation components for a don’t-guideline
by the 5 developers, and VT be the bag of the ground-truth
violation components for this don’t guideline (we duplicate
each component five times). Precision is (|VR∩VT |)/|VR|, and
recall is (|VR ∩ VT |)/(|VT |), where |.| is the bag cardinality.

3) Results: The Detection Effectiveness column in Table III
shows the results. If the 5 developers detect all 30 vio-
lation instances, we expect 150 (30*5) reported violations,
i.e.,

∑30
i=1 |VT |i=150. The five developers report in total 154

violations (i.e.,
∑30

i=1 |VR|i=154), among which only 117
reported violations are true violations (i.e.,

∑30
i=1 |VR ∩ VT |i

= 112). Therefore, the overall detection precision 75.5%, and
the overall recall is 71.9%. Both precision and recall are worse
than respective metrics of our UIS-Hunter (see Table I).

Among 18 don’t-guidelines, only 5 guidelines (G4, G8,
G12, G17 and G18) have all violation instances detected by
all five developers (i.e., recall=1). 8 guidelines (G1, G5, G7,
G9, G10, G11, G13 and G15) have their violations detected
by three or more developers (i.e., recall≥0.6). When primary

components are large UI components (e.g., navigation drawer,
tab) or distinct components (e.g., FAB), their design violations
are easier to notice by human, for example, a navigation
drawer uses the same icons for different destinations (G8),
one tab component is nested in another tab (G12), some tabs
contain only text while others contain only icons (G10), and
multiple FABs in a single screen (G17). Some improper text
styles, for example too long text (G1), text shrinking (G4, G9),
text truncation (G5, G11), are also relatively easier to notice.
Color-relation violations, such as using primary color as the
background color of text fields (G13), are also infamous, and
easy to spot from illegible components.

For the 5 guidelines (G2, G3, G6, G14 and G16), the ma-
jority of the developers fail to detect their violation instances
(i.e., recall≤0.4). For G2, G6 and G16, only one developer
detects one violation instance. Compared with the guidelines
whose violations are easy to spot, these five guidelines demand
careful examination of a component’s type and its constituent
parts. For example, G2 and G14 require counting the number
of icons in a button and the number of destinations in a bottom
navigation, respectively. G3 needs to check if the button is
an outlined button and then compare the button’s outline box
and the text length. G5 requires to determine if the top bar
is a regular or prominent top bar. Wrapping text is fine in
prominent top bar, but not in regular top bar. G16 requires to
check the presence of dismiss button in a banner. Furthermore,
we find that the developers may overlook some components in
a complex UI. For example, 4 developers did not notice that
a button has two icons, because they were distracted by other
components like the banner on the UI.

Two guidelines (G12 and G17) have all reported violations
correct (i.e., precision=1). The precision for G4, G5, G7,
G8, G13 and G15 is also high (≥0.7). All these guidelines
have clear distinction between violation and conformance. For
example, G12 is about nested tab and G17 is about multiple
FABs on a single screen. It is unlikely to mistake conformance
as violation, and vice versa. It is also not difficult to distinguish
proper text styles (G4 and G5), icon usage (G7 and G8), color
usage (G13) and actions (G15) from style, usage and action
violation. But when a component has variant types, developers
often misjudge a guideline’s applicability, and report erroneous
violations. For example, G1 and G3 are similar, but G1 is for
text button while G3 is for outlined button. The developers
often mistake the two types of buttons and report violations
for the wrong button type. Or when a prominent top bar is
mistaken as a regular top bar, the developers may report text
wrapping in top bar as a violation of G6.

Manual detection of UI design smells is less effective than
automated detection, especially when multiple pieces of
information need to be integrated or there are component-
variant-sensitive guidelines.

B. Severity Ratings of UI Design Smells

1) Motivation: Material Design guidelines are a natural
response to many poor app UI designs that lead to low-quality

user experiences. In this study, we want to investigate how
ordinary app users think of the UI design smells reported by
our UIS-Hunter. This helps us understand the potential impact
on app users by the tools like UIS-Hunter which can flag these
UI design smells and inform developers to take actions.

2) User Study Design: We use the 27 UIs with violations
from the first user study. We highlight the primary components
with violations on these UIs and annotate the violation with
the guideline explanation. We recruit 3 male and 2 female
regular Android users from our school, the age of these users
ranges from 21 to 30. We ask the 5 users to independently rate
the severity of each violation in the 27 UIs. We use 5-point
Likert scale, with 1 being the least severe and 5 being the
most severe. For each guideline, we summarize the number of
1-2 ratings as non-severe, 3 ratings as neural, and 4-5 ratings
as severe.

3) Results: The Severity Ratings column in Table III shows
the results. Only three guidelines (G1, G4 and G17) have 1-
2 ratio higher than 4-5 ratio. Among these three guidelines,
only G1 has a large ratio difference (0.8 versus 0). That is,
80% ratings are non-severe, and there are no severe ratings.
Although long text label is not recommended, it does not
severely affect the visual effect and the usage of the text
button. Therefore, 4 out of 5 users do not consider the G1
violation as severe, 1 user rates it as neural.

In contrast, 14 guidelines have 4-5 ratio higher than 1-
2 ratio, among which 9 guidelines (G3, G5, G6, G9, G11,
G12, G13, G15 and G16) have large ratio difference (at least
4 times higher). For 8 of these 9 guidelines, less than 20%
ratings are non-severe. For 5 guidelines (G3, G9, G11, G12,
G15), there are no non-severe ratings at all. We summarize
three factors that often lead to severe-rating violations. First,
some violations significantly affect the UI look and feel. For
example, when G3 is violated, the text label goes outside
the box of the outlined button. Second, improper text style
(e.g., text truncation (G5, G11), text wrapping (G6)) and
color usage (e.g., primary color text fields (G13)) significantly
affect the text legibility and the understanding of important
information, which are treated as severe issues by most users.
Third, some violations significantly affect the interaction with
the applications, such as nested tab (G12), ambiguous dialog
title (G15), and single prominent button in a banner (G16).

There are seven guidelines (G2, G7, G8, G10, G14, G16,
and G18) that we could consider as controversial, because
these guidelines have close non-severe versus severe ratings
ratios. Indeed, the manual detection efficiency for some contro-
versial guidelines (e.g., G2, G14 and G16) is relatively lower.
This was some developers do not even consider them as UI
design smells because the violations of these guidelines do not
significantly affect UI look and feel or app usage. For example,
use two icons in a button (G2), display multiple FABs (G17),
have one option in the speed dial of FAB (G18), mix tabs with
only text and only icons (G10), use bottom navigation for two
destinations (G14). So it is not surprising that the users have
mixed opinions. Having said that, we believe Material design
puts up these guidelines (albeit seemingly controversial) for

good reasons. Our automatic guideline conformance checking
tool can raise the developers’ attention to potential UI design
smells, contrast these smells against specific design guidelines,
and then the developers can make the informed decision
whether they are smells to fix or some unique designs to keep.

We also find apps from big companies also violate some
of these guidelines. For example, booking.com’s Android
app does apply icons to some destinations but not others
in the navigation drawer (G7). Those destinations without
icons are auxiliary features (e.g., help, contact us). Without-
icons actually helps to distinguish auxiliary features from main
booking-related features.

We find that severity ratings may be context-sensitive. For
example, both G4 and G9 are about text shrinking. The users
consider the shrinking of app bar title (G4) less severe, because
it does not interfere with other components and the text may
still be large enough to read. But they consider the shrinking
text in a navigation drawer (G9) much more severe, because
it leaves the text label inconsistent with other text labels in
the drawer. Severity ratings may also be app sensitive. For
example, the UI we select for G8 uses the same icon for three
different calculators the app supports. As they are all about
calculator, some users believe it is fine to use the same icon.

VI. RELATED WORK

UX Check [29] identifies usability issues against Nielsen’s
ten usability heuristics. Wu et al. [13] diagnose user engage-
ment issues caused by mobile UI animation.These tools check
only general principles. In contrast, UIS-Hunter checks spe-
cific guidelines. Checkman [30] also checks specific guidelines
but only iOS layout guidelines. Both seenomaly [12] and
our UIS-Hunter detect Material Design guideline violations.
Seenomaly validates only UI animation guidelines, while UIS-
Hunter checks design guidelines across five component design
aspects and seven general design dimensions.

Many tools focus on specific UI issues, such as icon
tapability [31], image accessibility [32], [33], limited types of
display issues (e.g., component occlusion, text overlap, blurred
screen) [34], or mismatch between intension and practice [35],
[36]. To the best of our knowledge, our tool is the first of
its kind. The issues reported by these tools and the guideline
coverage are not really comparable to our tool. Consider
entering the navigation drawer design in Fig 4 into Google
Accessibility Scanner. That scanner reports issues: increase
text contrast and enlarge small touch targets. These two issues
are similar to our guideline violation “don’t shrink text size”.
But our tool can detect many other guideline violations such
as “don’t apply icons to some destination but not others”,
“don’t use dividers to separate individual destinations”, while
the scanner cannot. Also, all these tools rely on deep learning
models, which demand large datasets of labeled UI issues for
model training. It is impractical to collect sufficient training
data for all 71 guidelines of 11 types of components UIS-
Hunter validates. Furthermore, some guidelines (e.g., mini-
mum/maximum destinations in a bottom navigation, repeated
icons in top and bottom bar, mixing icons/text in tabs) require

aggregating specific component information explicitly. Our
UIS-Hunter only uses deep learning tools to extract atomic
typography and iconography information, and then use explicit
logic formulas to aggregate the extracted information.

Many GUI testing tools [37], [38], [39] test system func-
tionalities through automated GUI exploration, some meth-
ods [40], [41], [42] compare the rendered DOM trees to
detect cross-browser compatibility issues, but UI visual defects
receive little attention. Some tools touch text inconsistencies
and defects [35], [36], [43], similar to some text style don’t-
guidelines our tool supports. Moran et al. [10], [44] develops
techniques for detecting presentation inconsistencies between
UI mockups and implemented UIs, and the UI changes during
evolution. Their methods contrast two similar UIs and find
their differences. This setting is not applicable to detecting
guideline violations where illustrative UIs for the guidelines
and the UIs to be checked bear no similarity.

Our UIS-Hunter is remotely related to code linters for
detecting program errors and code smells. For example, Find-
Bugs [7] identified common program errors, such as null
reference, useless control flow. Stylelint [7] is a linter that
detects errors and inconsistencies in Cascading Style Sheets.
Some tools have been developed to detect code smells for
refactoring, for example, code clones [45], [46] and feature
envy [47]. All these code linters detect issues in source code,
while UIS-Hunter detects visual design smells in UIs.

VII. DISCUSSION

This work focuses on explicit don’t-guidelines. But we
find many implicit design guidelines (e.g., “icons should be
placed to the left of text labels in an extended FAB”) without
illustrative violation examples. Explicit and implicit guidelines
differ only in how they are described in material design docu-
mentation, but not in component design aspects, general design
dimensions, and atomic UI information involved. Therefore,
implicit design guidelines, once discovered, can be supported
in the same way as those explicit guidelines. Furthermore, we
could derive some de-facto design guidelines from real apps
based on the principles of official guidelines. For example,
Material Design describes 4 guidelines regarding the incon-
sistent use of icons and text labels in bottom navigation. In
our observation of real-app UIs, we find some inconsistent
icon/text usage beyond these guidelines. For example, one
destination uses a notification badge to indicate an update,
while the other destination uses normal text for the same
purpose. UIS-Hunter can be extended to support such de-facto
guidelines just like those official guidelines.

Material Design components are backed by Android GUI
APIs. Although these APIs support well the visual effects
and interactions of material design, only few APIs enforce
the don’t-guidelines of the corresponding components. For
example, TabLayout does not support vertical tab, which is
a don’t-guideline of tab component. Furthermore, Banner API
does not support displaying several banners on a single screen,
which is a don’t-guideline of banner component. In fact,
neither UIS-Hunter nor our manual examination identifies the

violation of these two guidelines in our dataset of real-app
UIs. This indicates that well designed GUI APIs could prevent
developers from making mistakes. We could back-trace UI
design smells reported by UIS-Hunter to the source code and
summarize visual-design related code smells (a new type of
code smells that have never been explored). Studying such
code smells could inform the design of GUI APIs that can
better enforce UI design guidelines.

Last but not least, in addition to be an after-fact detector,
UIS-Hunter could also be integrated with UI design tools
and GUI builders to support just-in-time UI design smells
analysis, in the similar way as just-in-time code smell analysis
and refactoring [48]. For example, at the time the developer
designs a bottom navigation with two or five destinations, the
tool could raise the issue and suggest to use tab or navigation
drawer instead. This could avoid significant redo cost or leave-
it-as-is regret after the design has been implemented.

VIII. CONCLUSION AND FUTURE WORK

This paper presents an automated UI design smell detector
(UIS-Hunter). The design of UIS-Hunter is informed by a
demographic study of Material Design guidelines. The eval-
uation on real-app UIs and UI mockups confirms the high
detection accuracy of UIS-Hunter, and the user studies provide
initial evidence of the UIS-Hunter’s utility for developers and
app users. We release our UIS-Hunter tool, Material Design
guideline gallery, manually validated UI design smell dataset
for public use and evaluation. In the future, we will extend
UIS-Hunter to support implicit and de-facto guidelines in
Material Design, as well as other design systems that describe
visual do/don’t-guidelines for a library of UI components in
a similar vein. We will investigate visual-design related code
smells and better GUI API design to enforce visual design
guidelines in code. We will integrate UIS-Hunter with design
tools to support just-in-time UI design smell detection. More
user studies will be conducted to evaluate the usefulness of
the UIS-Hunter tool and its extensions.

ACKNOWLEDGEMENTS

This research was partially supported by the National Key
R&D Program of China (No. 2019YFB1600700), Australian
Research Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE200100021), ARC Discovery
grant (DP200100020), and National Science Foundation of
China (No. U20A20173).

REFERENCES

[1] “Funkyspacemonkey,” 2020. [Online]. Available: https://www.
funkyspacemonkey.com/7-reasons-people-uninstall-apps

[2] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[3] “Design systems gallery,” 2020. [Online]. Available: https:
//designsystemsrepo.com/design-systems/

[4] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[5] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2013, pp. 268–278.

[6] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic feedback-
based threshold adaptation for code smell detection,” IEEE Transactions
on Software Engineering, vol. 42, no. 6, pp. 544–558, 2015.

[7] “Findbugs,” 2020. [Online]. Available: https://github.com/
findbugsproject/findbugs

[8] “Checkstyle,” 2020. [Online]. Available: https://checkstyle.sourceforge.
io/

[9] “Stylelint,” 2020. [Online]. Available: https://stylelint.io/
[10] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,

“Automated reporting of gui design violations for mobile apps,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 165–175.

[11] “ebay gui testing,” 2020. [Online]. Available: https://tech.ebayinc.com/
research/gui-testing-powered-by-deep-learning/

[12] D. Zhao, Z. Xing, C. Chen, X. Xu, L. Zhu, G. Li, and J. Wang, “Seeno-
maly: Vision-based linting of gui animation effects against design-don’t
guidelines,” in 42nd International Conference on Software Engineering
(ICSE’20). ACM, New York, NY, 2020.

[13] Z. Wu, Y. Jiang, Y. Liu, and X. Ma, “Predicting and diagnosing user
engagement with mobile ui animation via a data-driven approach,”
in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1–13.

[14] “Material design,” 2020. [Online]. Available: https://material.io/
[15] “Figma: the collaborative interface design tool,” 2020. [Online].

Available: https://www.figma.com//
[16] “Android studio layout editor,” 2020. [Online]. Available: https:

//developer.android.com/studio/write/layout-editor
[17] “Android ui automator,” 2020. [Online]. Available: https://developer.

android.com/training/testing/ui-automator
[18] “Selenium,” 2020. [Online]. Available: https://www.selenium.dev/
[19] M. Xie, S. Feng, , J. Chen, Z. Xing, and C. Chen, “Uied: A hybrid tool

for gui element detection,” in Proceedings of the 2020 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020.

[20] “East text detection,” 2020. [Online]. Available: https://github.com/
argman/EAST/

[21] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: an efficient and accurate scene text detector,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 5551–5560.

[22] “Tesseract ocr,” 2020. [Online]. Available: https://tesseract-ocr.github.io/
[23] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, and L. Zhu, “Object

detection for graphical user interface: Old fashioned or deep learning
or a combination?” in Proceedings of the 2020 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

[24] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery
dc: Design search and knowledge discovery through auto-created gui
component gallery,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–22, 2019.

[25] S. Douglas and T. Kirkpatrick, “Do color models really make a differ-
ence?” in Proceedings of the SIGCHI conference on Human factors in
computing systems, 1996, pp. 399–ff.

[26] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[27] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 845–
854.

[28] R. Singh and N. S. Mangat, Elements of survey sampling. Springer
Science & Business Media, 2013, vol. 15.

[29] “Ux check,” 2017. [Online]. Available: https://www.uxcheck.co/
[30] “Checkman,” 2018. [Online]. Available: https://apps.apple.com/us/app/

checkman-the-mobile-app-design-checker/id1247361179?ls=1
[31] A. Swearngin and Y. Li, “Modeling mobile interface tappability using

crowdsourcing and deep learning,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 2019, pp. 1–11.

[32] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, 2013, pp. 67–77.

http://120.26.177.47:81/
https://deviohunter.github.io/
https://deviohunter.github.io/
https://drive.google.com/drive/folders/1iey4qVqgRm6UYwv7LBGlMwqI2Yd0W6cr?usp=sharing
https://www.funkyspacemonkey.com/7-reasons-people-uninstall-apps
https://www.funkyspacemonkey.com/7-reasons-people-uninstall-apps
https://designsystemsrepo.com/design-systems/
https://designsystemsrepo.com/design-systems/
https://github.com/findbugsproject/findbugs
https://github.com/findbugsproject/findbugs
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/
https://stylelint.io/
https://tech.ebayinc.com/research/gui-testing-powered-by-deep-learning/
https://tech.ebayinc.com/research/gui-testing-powered-by-deep-learning/
https://material.io/
https://www.figma.com//
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://www.selenium.dev/
https://github.com/argman/EAST/
https://github.com/argman/EAST/
https://tesseract-ocr.github.io/
https://www.uxcheck.co/
https://apps.apple.com/us/app/checkman-the-mobile-app-design-checker/id1247361179?ls=1
https://apps.apple.com/us/app/checkman-the-mobile-app-design-checker/id1247361179?ls=1

[33] “Google accessibility scanner,” 2020. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=com.google.android.
apps.accessibility.auditor&hl=en

[34] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang, “Owl eyes:
Spotting ui display issues via visual understanding,” in Proceedings of
the 35th International Conference on Automated Software Engineering,
2020.

[35] S. Mahajan and W. G. Halfond, “Detection and localization of html
presentation failures using computer vision-based techniques,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2015, pp. 1–10.

[36] S. Mahajan, B. Li, P. Behnamghader, and W. G. Halfond, “Using visual
symptoms for debugging presentation failures in web applications,” in
2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 2016, pp. 191–201.

[37] A. Swearngin, C. Wang, A. Oleson, J. Fogarty, and A. J. Ko, “Scout:
Rapid exploration of interface layout alternatives through high-level
design constraints,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–13.

[38] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in android apps,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 408–419.

[39] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-duplicate detection in
web app model inference,” in ACM, 2020, p. 12.

[40] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proceedings of the 33rd International Conference on Soft-
ware Engineering, 2011, pp. 561–570.

[41] S. R. Choudhary, M. R. Prasad, and A. Orso, “Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibilities
in web applications,” in 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, 2012, pp. 171–180.

[42] S. R. Choudhary, H. Versee, and A. Orso, “Webdiff: Automated iden-
tification of cross-browser issues in web applications,” in 2010 IEEE
International Conference on Software Maintenance. IEEE, 2010, pp.
1–10.

[43] R. Mahajan and B. Shneiderman, “Visual and textual consistency check-
ing tools for graphical user interfaces,” IEEE Transactions on Software
Engineering, vol. 23, no. 11, pp. 722–735, 1997.

[44] K. Moran, C. Watson, J. Hoskins, G. Purnell, and D. Poshyvanyk,
“Detecting and summarizing gui changes in evolving mobile apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 543–553.

[45] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[46] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 1157–1168.

[47] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 385–396.

[48] P. Alves, D. Santana, and E. Figueiredo, “Concernrecs: finding code
smells in software aspectization,” in 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 2012, pp. 1463–1464.

https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en

	Introduction
	Google Material Design Guidelines: A Demographic Study
	The Collection of Material Design Guidelines
	Demographic Analysis of Design Guidelines
	Component Type and Count
	Component Design Aspects
	General Design Dimensions

	Types of Atomic UI Information

	UI Design Smell Detection
	Approach Overview
	Constructing Knowledge Base of UI Design Guidelines
	Parsing Input UI Design Image
	Extracting Atomic UI Information
	Typography Extraction
	Iconography Extraction
	Color Extraction
	Edge Extraction

	Validating UI Design against Visual Design Guidelines

	Detection Accuracy by UIS-Hunter
	Detection Accuracy for Real-App UIs
	Dataset
	Evaluation Method
	Results

	Detection Accuracy for UI Design Mockups
	Dataset
	Evaluation Method
	Results

	Utility of UIS-Hunter
	Effectiveness of Manual UI Design Smell Detection
	Motivation
	User Study Design
	Results

	Severity Ratings of UI Design Smells
	Motivation
	User Study Design
	Results

	Related Work
	Discussion
	Conclusion and Future Work
	References

