Demystify Official APl Usage Directives with Crowdsourced API
Misuse Scenarios, Erroneous Code Examples and Patches

Xiaoxue Ren" T
Zhejiang University
Hangzhou, Zhejiang, China
xxren@zju.edu.cn

Xin Xial
Monash University
Melbourne, VIC, Australia
xin.xia@monash.edu

ABSTRACT

API usage directives in official API documentation describe the con-
tracts, constraints and guidelines for using APIs in natural language.
Through the investigation of API misuse scenarios on Stack Over-
flow, we identify three barriers that hinder the understanding of
the API usage directives, i.e., lack of specific usage context, indirect
relationships to cooperative APIs, and confusing APIs with subtle
differences. To overcome these barriers, we develop a text mining
approach to discover the crowdsourced API misuse scenarios on
Stack Overflow and extract from these scenarios erroneous code
examples and patches, as well as related API and confusing APIs
to construct demystification reports to help developers understand
the official API usage directives described in natural language. We
apply our approach to API usage directives in official Android API
documentation and android-tagged discussion threads on Stack
Overflow. We extract 159,116 API misuse scenarios for 23,969 API
usage directives of 3138 classes and 7471 methods, from which
we generate the demystification reports. Our manual examination
confirms that the extracted information in the generated demystifi-
cation reports are of high accuracy. By a user study of 14 developers
on 8 API-misuse related error scenarios, we show that our demysti-
fication reports help developer understand and debug API-misuse
related program errors faster and more accurately, compared with
reading only plain API usage-directive sentences.

*Also with Ningbo Research Institute.
T Also with PengCheng Laboratory.
*Contribute equally as co-first author.
S Also with Data61, CSIRO.
ICorresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380430

Jiamou Sun¥
Australian National University
Canberra, ACT, Australia
Jiamou.Sun@anu.edu.au

Zhenchang Xing§
Australian National University
Canberra, ACT, Australia
zhenchang. Xing@anu.edu.au

Jianling Sun
Zhejiang University
Hangzhou, Zhejiang, China
sunjl@zju.edu.cn

CCS CONCEPTS

« Software and its engineering — Software libraries and reposi-
tories.

KEYWORDS

API usage directive, API misuse, Stack Overflow, Open information
extraction

ACM Reference Format:

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. 2020.
Demystify Official API Usage Directives with Crowdsourced API Misuse
Scenarios, Erroneous Code Examples and Patches. In 42nd International
Conference on Software Engineering (ICSE °20), May 23-29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3377811.3380430

1 INTRODUCTION

Application Programming Interfaces (APIs) provide the access to
the features or data of an operating system, framework, or other
service. Official API documentation, such as Java API Specification
and Android API reference, describes the important API knowledge.
Among different types of API knowledge, API usage directives are
contracts, constraints, and guidelines that specify what developers
are allowed/not allowed to do with the APL A recent work by
Li et al. [9] calls such directives as API caveats because they are
the knowledge that developers should be aware of to avoid API
misuse. They extract a large number of API caveats from official API
documentation and organize them into an API caveats knowledge
graph to improve the accessibility of API caveats knowledge.

In this work, we are concerned with another important aspect
of API usage directives in official API documentation, i.e., the un-
derstandability of API usage directives. Our investigation of the
misuse scenarios of Android APIs in Stack Overflow questions re-
veal three correlated barriers that hinder the understanding of API
usage directives. First, API usage directives are often abstract and
lack specific usage context to illustrate when they are applicable.
Second, an API usage directive often involve several cooperative
APIs, but it may be described in just one or some APIs, and its rela-
tionships to other APIs, especially newly introduced APIs, may not
be explicitly documented. Third, several APIs may support similar
but different features, but their subtle differences are often hard to

https://doi.org/10.1145/3377811.3380430
https://doi.org/10.1145/3377811.3380430
https://doi.org/10.1145/3377811.3380430
https://docs.oracle.com/javase/7/docs/api/
https://developer.android.com/reference

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

spot or understand from API usage directives. We identified the
three barriers by observing 1000 randomly-sampled Stack Overflow
questions that mention some Android APIs. As Stack Overflow
has over 1 million Android questions, it is hard to collect accurate
statistics. But the results of our approach could provide a rough
estimation of the potential impact of the three barriers on correct
APl usage: we had extracted 159,116 API misuse scenarios for 23,969
APT usage directives of 3138 classes and 7471 methods. Section 2
will illustrate these three barriers with concrete examples.

As our examples show, these barriers often result in the over-
look or misunderstanding of certain API usage directives, which in
turn results in API misuses. In face of unexpected program errors
caused by API misuses, a common practice nowadays is to ask for
help on community question and answering (Q&A) websites like
Stack Overflow. Over time, such websites have become a repository
of crowdsourced API misuse scenarios, erroneous code samples,
and patches for fixing the misuses, which, once discovered and
attached to the corresponding official API usage directives, will
help to demystify convoluted official API usage directives.

In this work, we design a text mining approach to achieve this
objective. We first use the API caveat extraction patterns devel-
oped in [9] to extract the sentences describing API usage direc-
tives in official API documentation. Considering each extracted
API usage-directive sentence as a search query, we combine the
BM25 ranking [20] and a word-embedding [13, 14] based sentence
matching to measure the macro-level and micro-level relevance of
the API usage-directive sentences and the Stack Overflow discus-
sion threads (a discussion thread is a question plus all its answers).
Next, we consider the relevant Stack Overflow discussion threads
as the API misuse scenarios for a given API usage directive, and
heuristically extract high-quality erroneous code examples from
the questions, the patches from the answers, and related APIs and
confusing APIs from the extracted erroneous code examples and
patches. Finally, a demystification report is generated which sum-
marizes relevant API misuse scenarios, erroneous code examples
and patches, and related and confusing APIs for a given API usage
directive.

We apply our approach to official Android API documentation
and Android-tagged discussion threads on Stack Overflow. We ex-
tract 102,831 API usage directive sentences for 3,969 API classes and
36,627 API methods. We identify 159,116 API misuse scenarios for
23,969 API usage directive sentences of 3,139 API classes and 7,471
APImethods. For 28,068 API misuse scenarios, we are able to extract
erroneous code examples and patches. By the statistical sampling
method [23], we confirm that the accuracies (with the error margin
0.05 at 95% confidence level) of the extracted API misuse scenarios,
erroneous code examples and corresponding patches, related APIs,
and confusing APIs are 81.34%, 72.88%, 96.23%, 77.01%, respectively.
We design a user study to evaluate the usefulness of the generated
demystification report for API usage directives in help developers
understand API usage directives and debug relevant API misuses.
Our user study involves 14 developers and 8 erroneous code snip-
pets caused by API misuses. Our results show that participants,
assisted by our demystification report, can identify and debug API
misuses faster and more accurately, especially for complex API
usage directives, compared with those who are given only plain
API usage-directive sentences.

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

Table 1: Example of Lack of Specific Usage Context

Concerned API SynchronousQueue
They are well suited for handoff designs, in
Concerned AP which an object running in one thread must

sync up with an object running in another

Usage Directive . . : .
& thread in order to hand it some information,

event, or task.

API Mi
1syse Synchronize handler creation and accessing
Scenario
Related API(s) Loopper, Handler, Runnable

Confusing API(s) None

Table 2: Example of Indirect API Usage Directives

Concerned API Intent.ACTION_CHOOSER
In this case the CHOOSER action should be
Concerned API used, to always present to the user a list of

Usage Directive the things they can do, with a nice title given

by the caller such as "Send this photo with:"

API MlsPse Android direct shared
Scenario
Intent.createChooser(),
Related API(s) SharedCompat.IntentBuilder.create-
ChooserIntent()
Confusing API(s) izizf(e;mompat. IntentBuilder.getIn-

This paper makes the following contributions:

e By investigating the API misuse scenarios regarding API
usage directives, we identify three correlated barriers that
hinder the understanding of API usage directives.

e We design an open information extraction method to extract
API misuse scenarios, erroneous code example and patches
from Stack Overflow to demystify API usage directives.

e We apply our method to large-scale API usage directives and
Stack Overflow discussions, and confirm the high accuracy of
our information extraction method and the usefulness of the
generated demystification reports for debugging API-misuse
related program errors.

2 MOTIVATING EXAMPLES

We now describe three examples! to illustrate the three barriers
that hinder the understanding of API usage directives respectively,
and how the API misuse scenarios on Stack Overflow can help
developers overcome these barriers by learning from “somebody
else’s unfortunate mistakes” related to API usage directives. It is im-
portant to note that we organize the discussion in terms of the main
barrier involved in each example, but the three barriers have com-
pound effects on API misuses. Furthermore, a API usage directive
may have several API misuse scenarios. Due to space limitation, we
show only one scenario for each example for illustration purpose.

2.1 Lack of Specific Usage Context

According to the API reference of SynchronousQueue, synchro-
nous queues support “handoff designs, in which an object running

IMore examples can be found in our github repository.

https://developer.android.com/reference/java/util/concurrent/SynchronousQueue
https://stackoverflow.com/questions/10225815
https://developer.android.com/reference/android/content/Intent#ACTION_CHOOSER
https://stackoverflow.com/questions/35760008
https://developer.android.com/reference/java/util/concurrent/SynchronousQueue
https://github.com/goodchar/public-package-about-Official-API-Usage-Directives-Demysitification-Report

Demystify Official APl Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code Examples and Patches ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

Table 3: Example of Confusing APIs with Subtle Differences

Concerned API Intent.FLAG_ACTIVITY_NEW_DOCUMENT
... whether the recent entry for it is kept after
the activity is finished is different than the
Concerned API use of FLAG_ACTIVITY_NEW_TASK — if this

Usage Directive flag is being used to create a new recents
entry, then by default that entry will be re-
moved once the activity is finished

How to create the same Activity Multiple

API Mi
1sse times to have an effect like Google Chrome
Scenario

Tabs?
FLAG_ACTIVITY_MULTIPLE_TASK

Related API(s) . - - ’
setFlags

Confusing API(s) FLAG_ACTIVITY_NEW_TASK

in one thread must sync up with an object running in another thread
in order to hand it some information, event, or task.” Reading this
abstract usage guideline, developers may not realize in which part
of Android applications the handoff design can be useful. The Stack
Overflow question “Synchronizing handler creation and accessing”
illustrates a specific erroneous scenario that demands the use of
the handoff design. In this scenario, the main UI thread uses the
handler created in another thread to post some processing task to
the message loop of that thread. As the handler is created asyn-
chronously to the main Ul thread, the handler will sometimes be
NULL at the time the main UI thread uses it. The accepted answer
suggests that SynchronousQueue is a perfect solution to solve this
problem. Inspecting this erroneous scenario, developers can learn
not only specific usage contexts of SynchronousQueue, but also
observe several APIs (Looper, Handler, Runnable) that are related
to the use of SynchronousQueue.

2.2 Indirect API Usage Directives

According to the API reference of Intent.ACTION_CHOOSER, it

“should be used, to always present to the user a list of things they

can do”. The API reference also points out a static helper function

Intent.createChooser() - “As a convenience, an Intent of this

form can be created with the createChooser () function”. However,
the API reference of Intent.createChooser () does not explicitly

mention when this helper function should be used. That is, develop-
ers may not realize the API usage directive associated with Intent.
createChooser (), which is only explained for Intent.ACTION_CH-
OOSER. Similarly, another helper function ShareCompat. IntentBu-
ilder.createChooserIntent() can also be used to create the in-
tent of ACTION_CHOOSER. It does not explicitly mention the relevant

APl usage directive either. Even worse, it was added in version 22.1.0.
The Intent.ACTION_CHOOSER description does not mention this

new helper function.

The Stack Overflow question Android direct shared illustrates
an API misuse scenario in which the developer uses the wrong API
ShareCompat.IntentBuilder.getIntent(), but what he should
use is ShareCompat.IntentBuilder.createChooserIntent(),as
suggested by the accepted answer. As a result, the developer can-
not achieve the goal “The share dialog must show the most used
contacts from messaging apps, like WhatsApp contacts”. As the
accepted answer only suggests the correct API to use, the other

answer complements the accepted answer by quoting the API us-
age directive of Intent.ACTION_CHOOSER to explain why creat-
eChooserIntent() should be used instead of getIntent(). In ad-
dition, there is another answer which solves the problem using
Intent.createChooser (). Inspecting this API misuse scenario, de-
velopers can observe two helper APIs (Intent.createChooser(),
ShareCompat.IntentBuilder.createChooserIntent())thatare
related to the API usage directive of Intent.ACTION_CHOOSER, as
well as a confusing API IntentBuilder.getIntent().

2.3 Confusing APIs with Subtle Differences

Then Intent class declares many flags, some of which have very
similar names, such as FLAG_ACTIVITY NEW_DOCUMENT and
FLAG_ACTI-VITY_NEW_TASK. Although they look very similar,
the API reference of FLAG_ACTIVITY_NEW_DOCUMENT warns that “...
whether the recent entry for it is kept after the activity is finished is
different than the use of FLAG_ACTIVITY_NEW_TA- SK — — if this
flag is being used to create a new recents entry, then by default that
entry will be removed once the activity is finished”. This warning
indicates some subtle difference between the two flags. First, this
warning is quite convoluted, Second, FLAG_ACTIVITY_NEW_TASK
does not have this warning.

The question “How to create the same Activity Multiple times to
have an effect like Google Chrome Tabs?” illustrates an exact sce-
nario in which the developer misuses FLAG_ACTIVITY_NEW_TASK,
but should use FLAG_ACTIVITY _NEW_DOCUMENT instead. This type
of misuse also occurs in other questions such as “How to make
tasks in Overview Screen looks like together like Chrome?”. In
the second scenario, the developer made another error. He did
not realize that he not only needs to use the right NEW_DOCUMENT
or NEW_TASK flag, but also needs to use that flag together with
FLAG_ACTIVITY_MULTIPLE_TASK. As a result, his program did not
work as expected, although he tried each flag individually. This co-
operative usage need is described in the API reference of the three
flags, but the descriptions lack specific usage context. Inspecting
these two APl misuse scenarios, developer can understand better the
subtle difference between the two confusing flags NEW_DOCUMENT
or NEW_TASK from the errors caused by their misuses. Furthermore,
they can understand better the cooperative need of using them with
the flag MULTIPLE_TASK.

3 APPROACH

Figure 1 shows an overview of our approach, which includes four
main steps: extract API inventory, API usage directives and dis-
cussion threads from official and crowdsourced documentation,
finding API misuse scenarios, extracting erroneous code examples
and patches, and generating demystification report.

3.1 Extracting API Inventory, API Usage
Directives and Discussion Threads

Our approach aims to finding API misuse scenarios in crowdsourced
documentation which can be used to demystify API usage direc-
tives in official API documentation. Therefore, the raw input to
our approach include both official API documentation and crowd-
sourced documentation. In this work, we exemplify and evaluate
our approach with official Android API documentation and Stack

https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_NEW_DOCUMENT
https://stackoverflow.com/questions/38119671/
https://stackoverflow.com/questions/38119671/
https://stackoverflow.com/questions/38119671/
https://stackoverflow.com/questions/10225815
https://developer.android.com/reference/android/content/Intent.html#ACTION_CHOOSER
https://developer.android.com/reference/android/content/Intent.html#createChooser(android.content.Intent,%20java.lang.CharSequence)
https://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html#createChooserIntent()
https://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html#createChooserIntent()
https://stackoverflow.com/questions/35760008
https://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html#getIntent()
https://developer.android.com/reference/android/support/v4/app/ShareCompat.IntentBuilder.html#createChooserIntent()
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_NEW_DOCUMENT
https://developer.android.com/reference/android/content/Intent#FLAG_ACTIVITY_NEW_TASK
https://stackoverflow.com/questions/38119671
https://stackoverflow.com/questions/38119671
https://stackoverflow.com/questions/34432220
https://stackoverflow.com/questions/34432220

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

~—
Official API
documentation

@ Extracting API Inventory, APl Usage
Directives and Discussion Threads

e
Stack Overflow
posts

Extracting API

usage directives
(by Lietal.)

Extracting
APl inventory

APl usage-
directive
sentences

APl inventory
<API name, URL>

Filtering candidate

Data processing
(remove tags, tokenize)

Discussion
threads

di ion threads
by API mentions

< APl usage sentence,
Concerned API, A list of

Selecting high-quality
code examples in
recognized answers

Recognized
answers

E

@ Generating demystification report

Demystification Repor\—@]

Concerned API: Intent ACTION_CHOOSER

Concerned API usage directives : In this case the CHOOSER action
should be used, to always present to the user a list of the things they can do..
Misuse Scenario-1:Android direct shared (#35760008)

Erroneous code example: intent sharelntent =

ShareCompat. ilder from(getActivity()) .setType("text/plain")
.setText(sTitle+ "\n" + urlPost) .getintent();

i)= null):
startActivity(sharelntent);

Patch: You should use .createcl
Related API: None

Confusing API None

Misuse Scenario-2: android intent action_send option to only once

(#18010042)

Erroneous code example:

Intent sendintent = new Intent();

sendlntent.setAction(Intent.ACTION_SEND);
EXTRA_TEXT, "te)

) instead of

Selecting high-quality

guestions

relevance checking

Macro- & Micro- level |

API misuse
scenarios

-)
sendintent.putExtra(Intent,EXTRA_SUBJECT, "subject");
sendIntent.setType("text/plain");

Patch:

Intent sharingintent = new Intent(android.content.Intent. ACTION_SEND);

sharinglntent.setType (“text/plain”);

sharinglntent.putExtra (android.content.Intent. EXTRA_TEXT, body.toString ())]
ivi i "Share using?"));

Related API: intent.ACTION_SEND, setType, putExtra, createChooser,

EXTRA_TEXT

tart) reateC

candidate discussion threads>

@ Finding API Misuse Scenarios

Confusing API: setAction

——] =

1
|
|
1
|
1
|
|
1
|
|
1
|
1
|
|
1

code examples in :
1
L

1
I
]
I
|
I
I
]

Figure 1: Main Steps of Our Approach

Overflow questions and answers. Android system has complex APIs,
and Android API documentation contains a large number of API
usage directives [9]. Stack Overflow is the most popular commu-
nity question and answering site for computer programming, and
it contains over 1.2 millions android-tagged questions that provides
a rich source for Android API misuse scenarios.

From the official Android Developers website, we crawl both
API Reference and Developer Guides web pages (as of 31 March
2019). We discard web page navigation content and retain the main
API reference and tutorial content. By parsing the semi-structured
API reference content, we build an inventory of Android APIs. The
API inventory stores the fully-qualified name of each API and its
URL in the Android API reference website. We use the API usage-
directive extraction patterns developed by Li et al. [9] to extract
API usage directives from the crawled Android API reference and
develop-guide documentation. These API usage-directive extraction
patterns essentially look for uage-directive-indicating sentence
patterns. Table 1, 2 and 3 shows some examples of the extracted
API usage-directive sentences in which the directive-indicators are
highlighted in red. Readers are referred to [9] for the complete list
of directive-indicating sentence patterns. We use the entity linking
method in [9] to link the extracted API usage-directive sentences
to the corresponding APIs in the API inventory.

From the latest Stack Overflow data dump of 4th March, 2019, we
collect the android-tagged questions and their answers as a corpus
of discussion threads. The content of a question and all its answers is
merged into a discussion thread. The questions with no answers are
discarded as they has little value for problem solving. We retain the
textual content and extract the long code snippets in <pre><code>,
but remove the content in <image>. Long code snippets are stored
separately from the textual content and are linked to the questions
and answers from which they are extracted. Note that short code
elements in <code> in text remain in text to keep the sentence
integrity. All HTML tags are removed from the text. We split the

text into sentences by punctuation, and use domain-specific to-
kenizer [30] to tokenize the sentences. This tokenizer preserves
the integrity of code-like tokens and the sentence structure. For
example, it treats the API ConnectedTread. cancel() mentioned
in text as a single token, rather than a sequence of 5 tokens: Con-
nectedTread . cancel (). This supports accurate detection of API
mentions in Stack Overflow text and accurate identification of API
misuse scenarios and corresponding erroneous code examples and
patches. For the extracted long code snippets, we use the API link-
ing method developed in [24] to determine the API(s) used in the
code snippets against the official API inventory. We use a modified
version of an ANTLR parser to tokenize code snippets.

3.2 Finding API Misuse Scenarios

Given a API usage directive, we try to find relevant API misuse
scenarios in the corpus of Stack Overflow discussion threads. The
API of this given API usage directive is referred to as the concerned
API. First, we detect the mentions of the concerned API in the dis-
cussion threads to narrow down the candidates. Then, we combine
the BM25 ranking [20] and the word-embedding [13, 14] based sen-
tence matching to estimate the macro- and micro-level relevance
of candidate discussion threads to the given API usage-directive
sentence, respectively. Each relevant discussion thread is consid-
ered as a API misuse scenario for the given API usage directive (see
Table 1, Table 2 and Table 3 for examples). A API usage directive
may have multiple API misuse scenarios as illustrative in Figure 1.

3.2.1 Filtering Candidate Discussion Threads by APl Mentions. We
detect the mentions of the concerned API in discussion threads
in two ways. First, if a token in a discussion thread matches the
name of the concerned API, this token is considered as a mention
of the concerned API. In the informal discussions on Stack Over-
flow, it is common that a class is mentioned without package name,
and a method is mentioned without package/class name or parame-
ters [30]. Therefore, we perform the partial name matching between

https://developer.android.com/
https://developer.android.com/reference
https://developer.android.com/guide

Demystify Official APl Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code Examples and Patches ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

the tokens and the API names. Second, a discussion thread may
not explicitly mention the API name, but it may reference the API
URL in the API reference website. Therefore, we also examine each
hyperlink in the discussion thread. If a hyperlink matches the URL
of the concerned API in the API inventory, this hyperlink is con-
sidered as a mention of the concerned API The discussion threads
that mention at least once the concerned API are the candidates for
finding API misuse scenarios.

3.2.2 Determining the Relevance of Discussion Threads to APl Usage-
Directive Sentence. We consider the given API usage-directive sen-
tence as a search query and each of the candidate discussion threads
as a document in the corpus of all android-tagged discussion threads.
Our relevance function combines the macro-level relevance by
the BM25 ranking and the micro-level relevance by the word-
embedding based sentence matching (SMyy2y). The relevance esti-
mation considers only the textual content of the discussion threads,
but not the large code snippets in the discussion threads.

Macro-level relevance by Okapi BM25: The Okapi BM25 [20],
aranking function based on the Term-Frequency/ Inverse-Document-
Frequency (TF/IDF) metric. It is simple to compute and has been
widely used by search engines to rank the documents according
to their relevance to the search query. In our application of BM25,
except removing regular stop words (e.g., is, the), we retain all other
tokens in text for indexing.

Let g; be a term in the search query Q and D be a document. The
correlation score of a term g; in Q and D is calculated by tf(g;, D),
i.e., the term frequency of g; in the document D. The higher the
term frequency is, the more relevant the document is to the query
term. The correlation score of Q and D is the weighted sum of the

correlation score of each query term and the document as follows:

_ ; . tf(gi,D)-(ki+1)
Scoregp2s(Q, D) = Z?:l idf (qi) - tf(q,-,D)+k1<(l—b+b1~|D|/avgdl) > W-

here |D| is the length of the document D in tokens, and avgd]
is the average document length in the corpus; ki and b are free
parameters, usually k; € [1.2,2.0] and b = 0.75. idf(q;) is the
Inverse Document Frequency weight of the query term g;, which

%, where N is the total

number of documents in the corpus, and n(g;) is the number of
documents containing g;. That is, the more documents contain the
query term, the less important the query term is towards the overall
query-document correlation. We use Scoregprzs(Q, D) to estimate
the macro-level relevance of a discussion thread D to a given API
usage-directive sentence Q.

Micro-level relevance by word-embedding based sentence
matching: We learn domain-specific word embeddings using the
continuous skip-gram model [13, 14] on the corpus of all android-
tagged discussion threads. The continuous skip-gram model learns
the word representation of each word that is good at predicting the
surrounding words in the sentences in a corpus. The learned word
embeddings can capture important syntactic and semantic features
of words and improve the performance of many natural language
processing tasks, including text retrieval [6, 7, 31] We learn domain-
specific word embeddings because recent studies [3, 29] show that
domain-specific word embedding outperforms general word embed-
ding for domains-specific text retrieval. We set the word embedding

is computed as idf(q;) = log

dimension at 200, as this setting has the best performance on similar
corpora in existing studies [4].

Given a sentence S, we obtain the sentence embedding Vs by
average pooling [2], i.e., average the word embeddings of the words
in the sentence. We measure the similarity of the two sentences by
the cosine similarity of the two sentence embeddings. Using this
method, we compute the similarity of the given API usage-directive
sentence Q and each of the sentences S in a discussion thread D,
and use the highest similarity score as the micro-level relevance
Scoreyy oy of the discussion thread to the given API usage-directive
sentence. That is, Scorew oy (Q, D) = maxsepcos(Vs, Vo).

Combined relevance: Given a API usage directive Q and a dis-
cussion thread D, the macro-level relevance Scoregpss(Q, D) indi-
cates the relevance of the whole discussion thread to the API usage
directive, while the micro-level relevance Scorey oy (Q, D) identi-
fies a sentence in the discussion thread that is the most relevant to
the API usage directive. Finally, we average the macro-level rele-
vance Scoregp2s(Q, D) and micro-level relevance Scorey 2y (Q, D)
as the overall relevance. We observe that when a discussion thread
is relevant to a API usage directive, the discussion thread likely
discusses some misuses of the concerned API Therefore, if the over-
all relevance of the API usage directive and the discussion thread
is above the user-specified threshold, we consider the discussion
thread as a API misuse scenario for the API usage directive. We
empirically set the threshold at 0.5 in our current implementation,
which achieves a good balance of accuracy and diversity in finding
API misuse scenarios on a small validation dataset of 100 randomly
sampled API usage directives.

3.3 Extracting Erroneous Code Examples and
Patches

Given a API misuse scenario on Stack Overflow for a API usage
directive, we attempt to extract the erroneous code example(s) from
the question and the patch(es) from the answer(s). We observe that
the question in a API misuse scenario usually contains erroneous
code example(s), which is a good practice advocated by the Stack
Overflow community, but the answers may provide code patch(es)
or just explain the patch(es) in natural language (e.g., “You should
use createChooserIntent() instead of getIntent()”). The demystifica-
tion report in Figure 1 illustrates some examples of the erroneous
code examples and patches (code or natural language) extracted
from the API misuse scenarios for Intent.ACTION_CHOOSER.

As not all code examples in Stack Overflow questions and an-
swers are of good quality [16], we adopt the heuristics developed
by Nasehi et al. [16] to extract high-quality erroneous code exam-
ples and patches in API misuse scenarios. First, we check if the
API misuse scenario has recognized answers. According to [16], a
recognized answer is an accepted answer, an answer with the vote
greater than 10, or an answer with the normalized vote greater than
0.4. The normalized vote is calculated by X’ = % where
X is the vote of an answer in a discussion thread.

If the API misuse scenarios has one or more recognized answers,
then we use the code filters developed in [16] to extract high-quality
code examples in both the question and the recognized answers.
The filters filter out too-long code (> 120 lines, roughly about 2
A4 pages) which has too much distractive information and code

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

fragments showing error information like stack traces. The retained
code snippets in the questions are candidate erroneous code exam-
ples, and the retained code snippets in the recognized answers are
candidate code patches. If a recognized answer does not contain
code snippets, but its length is less than 120 lines and it mentions
certain APIs (e.g., the accepted answer in the API misuse scenario
Android direct shared), we use the answer text (e.g., “You should
use createChooserIntent() instead of getIntent()”) as a candidate
natural language patch. However, if the answer already contains a
candidate code patch, its text is omitted.

Let Cane be a candidate erroneous code example and Cany, be a
candidate patch (code or natural language). We establish the cor-
respondence between Can, and Can,, based on their similarity by
bag-of-token matching. Bag-of-token matching is essentially the
same as the bag-of-words model [32] for Information Retrieval. We
call it bag-of-token in our work, because our tokenizer preserves
the integrity of code-like tokens, rather than split them into sepa-
rate English words (see Section 3.1). We use bag-of-token matching
rather than code differencing commonly used for comparing pro-
grams for two reasons. First, a candidate patch can be in natural
language, rather than code snippet. Second, code snippets on Stack
Overflow are rather informal, and often incomplete. For example,
a code patch may copy-modify only a small portion of erroneous
code. Thus, code differencing techniques designed for comparing
different versions of a complete program will not work for our
erroneous code examples and patches.

In this work, if the similarity of Cane and Can, by bag-of-token
matching is (0.5, 1], we consider Can, and Can,, as a pair of erro-
neous code example and patch (see Figure 1 for illustrative exam-
ples.) Some program errors are caused by wrong API call sequence,
and the answers sometimes copy the entire code snippet in the
question and change just the statement sequence. In such cases,
bag-of-token matching gives the similarity 1. However, we observe
that the answerers sometimes copy the entire code snippet in the
question, but they just discuss the copied code without changing
anything in code. In such cases, the code in the answer is not really
a patch to the erroneous code in the question. So when the simi-
larity of Cane and Can,, is 1, we further compute their sequence
similarity by the difflib tool. If the sequence similar is also 1, we
will discard Can,, but consider the corresponding answer text as a
candidate patch.

3.4 Generating Demystification Report

Finally, we compose the found API misuse scenario(s) and the ex-
tracted pairs of erroneous code example(s) and code patch(es) (if
any) into a demystification report for the given API usage direc-
tive and the concerned API Figure 1 shows an example of the
demystification report. To assist developers in understanding the
demystification report, we detect and highlight the code differences
between the erroneous code example and the corresponding code
patch if their similarity is > 0.7. If the patch is in natural language,
we highlight the API(s) in the erroneous code that are mentioned
in the natural language patch.

Furthermore, we extract related APIs and confusing APIs from
the code differences between the erroneous code example and the
corresponding code patch, and list these APIs in the demystification

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

report. We obtain three sets of APIs: Set1 contains all APIs extracted
from the code differences between the erroneous code and the corre-
sponding patch. Set2 contains all APIs extracted from the erroneous
code. Set3 contains all APIs mentioned in the API reference docu-
ment for the concerned API (e.g., FLAG_ACTIVITY_MULTIPLE_TASK
for FLAG_ACTIVITY_NEW_DOCUMENT, createChooser() for Intent.
ACTION_CHOOSER). We consider the APIs that the question askers
misuse in their erroneous code but the answerers do not use in their
patch as likely confusing APIs. So we identify confusing API(s) by
Set1 N Set2, ie., the APIs appear in the code differences at the erro-
neous code side. We further identify related APIs by Set1 N Set2,
excluding the concerned API and the confusing API(s). See Sec-
tion 2 and Figure 1 for examples of related APIs and confusing APIs
extracted from API misuse scenarios.

4 QUALITY OF EXTRACTED INFORMATION
FOR DEMYSTIFICATION REPORT

Our approach forms a demystification report to assist the under-
standing of a API usage directive. The content of the demystifica-
tion report is extracted from the community Q&A discussions on
Stack Overflow, which is informal, noisy software text. We care-
fully examine the quality of three types of extracted information
for the demystification reports: API misuse scenarios, erroneous
code examples and patches, and related API and confusing APIs.

4.1 Experiment Setup

4.1.1 Experimental Datasets. We build an API inventory from An-
droid API reference and Developer Guides. We carefully verify our
web crawler implementation to ensure its correctness in extracting
API information from the web documentation. Using the method
in [9], we extract 102,831 API usage-directive sentences for 3,969
API classes and 36,627 API methods. The accuracy of this API-usage-
directive-extraction method has been evaluated in the two previous
studies [9?], which extract the API usage-directive sentences from
the same Android documentation as our study. The reported accu-
racies are 98.85% and 99.2% in the two studies respectively.

We use the Stack Overflow data dump of 4th March, 2019 in this
study, which has 1,176,198 android-tagged questions and 1,692,686
answers. From these discussion threads, we identify 159,116 API
misuse scenarios for 23,969 API usage directive sentences of 3,139
API classes and 7,471 API methods. 11,823 API usage directives
have one API misuse scenario, 5,239 have two, and 6,907 have
three or more. For 28,068 API misuse scenarios, we are able to
extract erroneous code examples and patches. For 13,307 API misuse
scenarios, we extract some related APIs and/or confusing APIs.

4.1.2 Evaluation Method. As our approach extracts large numbers
of data instances (i.e., API misuse scenarios, erroneous code exam-
ples and patches, and related APIs and confusing APIs for API usage
directives), we adopt a statistical sampling method [23] to examine
the minimum number MIN of API usage directives for each type
of the extracted information in the demystification report. This
sampling method ensures that the estimated accuracy is in a certain
error margin at a certain confidence level. This MIN can be deter-
mined by the formula: MIN = ng/(1+ (ng — 1)/populationsize).
In the equation, ny depends on the selected confidence level and

https://stackoverflow.com/questions/35760008
https://docs.python.org/3/library/difflib.html

Demystify Official APl Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code Examples and Patches ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

the desired error margin: n0 = (Z2 % 0.25)/e?, where Z is a confi-
dence level’s z-score and e is the error margin. We use the error
margin 0.05 at 95% confidence level in our evaluation. Given large
numbers of API usage directives and API misuse scenarios, MIN is
approximately 384 at this statistical setting.

The two authors independently evaluate the accuracy of the
sampled data instances. They judge whether or not a data instance
(i.e., a API misuse scenario, a combination of an erroneous code
example and a patch, a related API, or a confusing API) is relevant
to the given API usage directive. We compute Cohen’s Kappa [8] to
evaluate the inter-rater agreement. For the data instances that the
two authors disagree, they have to discuss and come to a consensus.
Based on the consensus annotations, we evaluate the quality of
each type of the extracted information.

4.1.3 Evaluation Metrics. As the identification of API misuse sce-
narios and the identification of erroneous code examples and patches
are a ranking task, we use Mean Average Precision@k (MAP@k)
and Mean Reciprocal Rank (MRR) to evaluate the effectiveness
of our information extraction method for finding candidate items.
Although many candidate items could be found, we assume that
developers would be interested in only the top relevant ones. There-
fore, we compute MAP@k (k={1,3,5,10}). MAP@k can be computed

by MAP@k = le.gl AveP@k(Q;)/|Q|, where Q is the set of all API
usage directives, and AveP@k(Q;) is average precision@k for the
i-th API usage directive. AveP@k(Q;) is Z?:l P@jxrel(j)/rel@k
where P@j is the precision@j, rel(j) is 1 if the item at rank j is
relevant, 0 otherwise, and rel@ is the number of all relevant items
at and before rank k. If all relevant items are ranked at the top
of the list, the MAP@Kk is 1. Note that irrelevant items contribute
0 to the AveP@k(Q;). MRR is defined as MRR = 3% —L-/[0|,
where rank; is the rank position of the first relevant item. If the first
relevant item is ranked at the top 1 position for all Q, the MRR is 1.
In addition MAP@k and MRR, we compute the accuracy of each
type of the extraction information, which is the percentage of the
actually relevant data instances over all the extracted data instances.
Because our task is an open information extraction problem where
the set of all relevant items is unknown, we cannot compute recall.

4.2 Quality of Finding API Misuse Scenarios

4.2.1 Baseline Methods. To find relevant API misuse scenarios for
a given API usage directive, our approach combines the macro-level
relevance by the BM25 [20] ranking and the micro-level relevance
by the word-embedding based sentence matching (SMyy2y) (see
Section 3.2.2). We consider using only the BM25 or the SMyy 2y as a
baseline. These two baselines finds API misuse scenarios for a API
usage-directive sentence in the same database of Stack Overflow
discussion threads (filtered by API mentions) as our method. If the
similarity of a discussion thread and a API usage-directive sentence
is > 0.5 by the BM25 (or the SMyy2y), we consider the discussion
thread as a API misuse scenario.

Furthermore, we use Google search and the search engine of
the Stack Overflow website (SO search) as the other two baselines,
which simulate the situation when developers search API misuse
scenarios for a API usage-directive sentence on the Web. We limit
Google search to search only the Stack Overflow website. As this

study involves only android-tagged questions, we add the keyword
“android” to the query for the Google search, and add android tag
to the query for the SO search. Google search and SO search search
all android-tagged discussion threads, without filtering discussion
threads by API mentions. We consider the top-10 returned discus-
sion threads as the API misuse scenarios that developers would
find using these two public search engines.

4.2.2 Results. Table 4 reports the performance of different methods
for finding candidate API misuse scenarios for the sampled 384 API
usage directives. For these 384 API usage directives, our method
finds at least one API misuse scenario. The MAP@k and MRR
metrics are computed based on the consensus annotations by the
two annotators. The column Acc. (Improv.) reports the accuracy of
the API misuse scenarios extracted by different methods and the
improvement by our method over the baselines. The column Kappa
is the inter-rater agreement of the two annotator’s independent
annotations. As shown in Table 4, the Cohen’s kappa metrics for all
methods are > 0.600, which indicate at least substantial agreement
between the two annotators.

Stack Overflow search engine performs the worst (accuracy
25.5%) in finding API misuse scenarios, because it uses very primi-
tive keyword based search [5]. The two annotators mostly agree
(Kappa metric achieves 0.794) on the irrelevance of the SO search
results as the API misuse scenarios for API usage directives.

Google and the SMyy 2y (i.e, micro-level sentence matching) has
similar performance in ranking candidate API misuse scenarios, but
SMyy2v has a better accuracy due to its more strict selection thresh-
old (SMyy2y 62.06% versus Google Search 52.68%). The high MRR
of these two baselines suggest that the first return results are very
likely to be relevant API misuse scenario. However, the decreasing
MAP@Kk as k increases indicates that some relevant API misuse
scenarios are ranked low in the search results. Inspecting the search
results by Google search and the SMyy,y reveals that these two
baselines tend to return a diverse set of Stack Overflow questions
which may be related to the concerned API at the sentence level,
but these questions may not provide relevant API misuse scenarios
for the concerned API usage directive. For example, Google returns
at rank 1 the question “get CORRECT referrer application on deep
linking” for the API usage directive “Note that this is not a security
feature — you can not trust the referrer information, applications can
spoofit.” of the method Activity.getReferrer()”. Unfortunately,
only some part of this discussion thread explains how to use the
method in the code and references the API usage-directive sentence
as a caution. But this discussion thread itself is not a API misuse
scenario for the usage directive. Furthermore, due to the diversity of
Google search results, the two annotators have the least agreement
on whether the top ranked questions are API misuse scenarios.

In contrast, the BM25 and our Method perform much better
(BM25 73.88% and our method 81.34%), and the two annotators
have almost-perfect agreement on the relevance of API misuse
scenarios these two methods find. This suggests that the macro-level
relevance ranking by the BM25 is an effective method to find API
misuse scenarios for API usage-directive sentences. Furthermore,
although the micro-level sentence matching by SMyy 2y is not very
effective in finding API misuse scenarios, the much better MRR by
our method (0.957) than the BM25 (0.825) shows that combining the

https://stackoverflow.com/questions/47161195
https://stackoverflow.com/questions/47161195

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

BM25 and the SMyy,y (i.e., both macro- and micro-level relevance)
can rank significantly more correct API misuse scenarios to the rank
1 position, compared with using the BM25 only. For example, the
BM25 finds a correct API misuse scenario for the API usage directive
“If you do not require all camera features or can properly operate if
a camera is not available, then you must modify your manifest as
appropriate in order to install on devices that don’t support all camera
features”. However, it ranks this scenario at the 4th position. With
the help of sentence-level relevance, this API misuse scenario is
ranked at the first position by our method.

By combining macro- and micro-level relevance, our method outper-
forms the baselines using either macro-level or micro-level relevance
or using the public search engines for finding API misuse scenarios
for API usage directives.

4.3 Quality of Extracting Erroneous Code
Examples and Patches

4.3.1 Baseline Method. Our approach finds pairs of erroneous code
examples and patches by bag-of-tokens matching (Section 3.3). Here
we use bag-of-words as a baseline to compare with our method. Bag-
of-words treats candidate erroneous code examples and patches as
plain text. We apply common text preprocessing steps, including
splitting sentences, tokenization, and removing punctuation and
stop words. After getting a bag of words, we compute the similarity
score of a pair of erroneous code and patch and return the matching
pairs in the same way as our bag-of-tokens matching does.

4.3.2 Results. Table 5 shows the performance of the two methods
for ranking candidate pairs of erroneous code examples and patches
for the 384 sampled API misuse scenarios. For these 384 API misuse
scenarios, our method finds at least one pair of erroneous code
example and patch. The Kappa metrics are > 0.7 for both methods,
which indicates the substantial agreement between the two anno-
tators regarding the relevance of candidate pairs of erroneous code
examples and patches to the API usage directives.

The MRR and accuracy of the two methods are very close (MRR
0.774 versus 0.782, Accuracy 70.19% versus 72.88%), with our method
being slightly better. The close MRR indicates that bag-of-tokens
matching and bag-of-words matching do not make a big difference
in ranking the first relevant pair of erroneous code example and
patch. However, when looking into MAP@k, we find that bag-
of-tokens matching can better rank all relevant pairs to the top
of the list, compared with bag-of-words matching. Furthermore,
we find that the similarity score by our bag-of-tokens matching
is usually much higher than that by bag-of-words matching for
the same candidate pair of erroneous code and patch, because our
method preserve the integrity of code-like tokens. Unfortunately,
this higher similarity score makes many candidate pairs pass the
threshold, some of which are incorrect matchings that lowers the
accuracy of the recommended pairs of erroneous code examples and
patches. In contrast, the same threshold can actually filter out many
of these incorrect pairs for the bag-of-words matching, but at the
same time many correct pairs are filtered out too. That is, the bag-of-
words matching finds much fewer correct pairs of erroneous code
examples and patches (Bag-of-words 114 pairs versus our method
537 pairs), even though it has similar accuracy to our method.

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

Our bag-of-tokens matching can find much more correct pairs of
erroneous code examples and patches than bag-of-words matching,
with slightly better accuracy. Considering the superior ranking
capability of our method, filtering candidate pairs by both similarity
score and the top-k ranking could further improve the accuracy.

4.4 Quality of Identifying Related APIs and
Confusing APIs

To enrich the content of our demystification report, we identify
related API and confusing API from the error code examples and
corresponding patches for the API misuse scenarios (see Section 3.4).
As a API misuse scenario may not have both related APIs and con-
fusing APIs, we select two sets of 384 API misuse scenarios: those
in the Set-1 have at least one related API, and those in Set-2 have at
least have one confusing API. Table 6 shows the evaluation results.
The Kapps metric is 0.862 (i.e., almost perfect) for the relevance of
related APIs, but is lower (0.656, i.e, substantial agreement) for con-
fusing APIs. The accuracy (77.01%) for confusing APIs is very good,
but it is much lower than that (96.23%) for related APIs. We deter-
mine related APIs by contrasting APIs used in the code difference of
erroneous code examples and patches against the APIs mentioned
in the document of the concerned APIs. It is not surprising that
we have excellent accuracy and annotation agreement for related
APIs. However, our heuristic to identify confusing APIs seems a
bit simplistic, in face of the informal, noisy code snippets in Stack
Overflow discussions. Furthermore, the low Kappa for confusing
APIs indicates that human annotators often do not agree on what
are confusing APIs or not, because the definition of confusing is
rather context sensitive.

Our method can almost perfectly identify related APIs. The accu-
racy of identify confusing APIs is also acceptable, but it is more
challenging partially due to the code informality on Stack Overflow
and partially because the vague definition of confusing.

5 USEFULNESS OF DEMYSTIFICATION
REPORT

We conduct a user study to evaluate the usefulness of our gener-
ated demystification report for understanding API usage directives
and debugging API-misuse related program errors. Our user study
assumes that developers already identify the concerned API and
the concerned API usage directive related to a program error by
some means (beyond the scope of this work), and then want to
propose some plausible solution to fix the error scenario based on
the understanding of the concerned API usage directive (the focus
of this study), in a similar way to the Q&A on Stack Overflow.

5.1 User Study Design

5.1.1 Experimental Tasks. Table 7 lists the eight experimental tasks
in our study. We create these tasks from the demystification reports
that have two or more API misuse scenarios. To ensure the diversity
of our experimental tasks, we select the demystification reports
that concern different APIs and different API usage directives. Fur-
thermore, the concerned API usage directive in the report should
not be too straightforward or too convoluted, which will make the
experimental tasks very easy to answer even without any analysis

Demystify Official APl Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code Examples and Patches ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

Table 4: Performance of Finding API Misuse Scenarios

MAP@1 | MAP@3 | MAP@5 | MAP@10 | MRR Acc. (Improv.) Kappa
Google 0.718 0.655 0.606 0.557 0.739 52.68% (+54.40%) 0.658
SO Search 0.313 0.302 0.297 0.280 0.316 | 25.50% (+218.98%) 0.794
BM25 0.918 0.887 0.863 0.842 0.825 73.88% (+10.10%) 0.825
SMw2v 0.763 0.670 0.648 0.585 0.769 62.06% (+31.07%) 0.713
Our Method 0.934 0.903 0.899 0.882 0.957 81.34% (-) 0.846
Table 5: Performance of Erroneous Code Examples and Patches
MAP@1 | MAP@3 | MAP@5 | MAP@10 | MRR | Acc. (Improv.) | Kappa
Bag-of-words 0.650 0.639 0.595 0.557 0.774 | 70.19% (+3.83%) 0.724
Our Bag-of-tokens 0.902 0.897 0.884 0.865 0.782 72.88% (-) 0.758

Table 6: Accuracy of Related API(s) and Confusing API(s)

Collected Correct Accuracy Kappa
API API
Related 637 613 96.23% 0.862
Confusing| 548 422 77.01% 0.656

or investigation, or make them too hard to answer in a reasonable
time. We select the concerned API usage directives roughly at the
similar level of complexity as those discussed in Section 2. Based
on our own analysis of these error scenarios, we estimate that Q1/2
are easy, Q3/4/Q5 are medium, and Q6/Q7/Q8 are difficult.

We randomly select one of the API misuse scenarios in the report
and use the question of this scenario as the error scenario to be
answered by the participants. The question title and body is used
as the error scenario description. We generate the experimental
tasks for the selected error scenarios as follows. We discard the
selected error scenario from the demystification report, and modify
the report to keep only one of the other API misuse scenarios. We
combine the error scenario question and the modified demystifi-
cation report as a task for the experimental group that debug the
error scenario with our generated demystification report. We attach
the concerned API and the concerned API usage-directive sentence
to the error scenario question as a task for the control group that
debug the error scenario with only API usage-directive sentence. To
make the comparison fair, we ensure that the API misuse scenario
in the modified demystification report is different from the error
scenario, in the sense that they would not be marked as duplicated
questions on Stack Overflow.

5.1.2 Experiment Procedure. In our study, we want to simulate
an online Q&A forum where some developers (the authors in this
study) post questions and others (study participants) answer these
questions. We design a simple Q&A system?, which is similar to
Stack Overflow. In the system, participants can view the error sce-
nario description of an experimental task one at a time, and then
identify the root cause of the error and propose a solution to fix the
error scenario. An error scenario we gave the participants include:
an API usage directive sentence, concerned API, the URL of the API
doc containing the API usage directive sentence, the question title

http://49.233.184.42:8100

and body from Stack Overflow as the task to be answered, and a
demystification report generated by our approach (only for experi-
mental group). The control group are provided with only the API
usage-directive sentences, while the experimental group are pro-
vided with the modified version of our generated demystification
report.

We ask the participants to give answers in the way recommended
by Stack Overflow [17]. When attempting an error scenario, partici-
pants can search and read online materials (e.g., API documentation,
online blogs), but they are instructed explicitly to ignore the Stack
Overflow questions from which the error scenarios are derived.
As most of Stack Overflow questions provide only partial code [1]
or involve specific development environments, we do not ask the
participants to actually replicate the error scenarios and test their
suggested solutions. For the effectiveness of our user study, each
question can only be answered once and participants cannot go
back to revise their answers once submitted. We record the task
completion time for each error scenario, from the time participants
start a scenario to the time they submit the answer.

5.1.3 Participants. We recruit 14 developers from an IT company
that have over 2000 developers. These 14 developers have 1 to 5
years (on average 3.2 years) of Java and Android development ex-
perience on either commercial or open-source projects. Based on
the development experience of these developers, we divide them
into two “comparable”groups: G-1 and G-2. Each group has 7 devel-
opers. G-1 is the control group that are given only the concerned
API usage directives, while G-2 is the experimental group that are
given our demystification report.

5.1.4 Evaluation Metrics. We evaluate the participants’ perfor-
mance based on their task completion time and answer correctness.
Task completion time is automatically recorded during the study
and it evaluates how fast a participant can solve these error scenar-
ios. Answer correctness evaluates whether the answer submitted
by a participant is actually an appropriate solution to the question.
The two authors collaboratively determine the correctness of each
submitted answer by examining it against the answers to the origi-
nal Stack Overflow questions and relevant API documentation. If
the submitted answer to an error scenario can solve the problem,
the participant get 1 mark, otherwise 0 mark. To avoid annotation

http://49.233.184.42:8100

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

Table 7: Error Scenarios in Our User Study Tasks

NO. | Error Scenario Concerned API Concerned API Usage Directive Difficulty
Q1 | Android: Tint one of three icons AnimatedVectorDrawab- | ...especially useful when you need to modify proper- | Easy
le.mutate() ties of drawables loaded from resources...
Q2 | observable pattern not notify in android | observable.notifyobs- | ..then notify all of its observers and then call the | Easy
ervers clearChanged method to indicate that this object has
no longer changed
Q3 | Clear intent action default Intent.ACTION_CHOOSER | ... CHOOSER action should be used... present to the | medium
user a list of the things...
Q4 | Android/Java sequence of serally exe- | SynchronousQueue ...suited for handoff designs, in which an object run- | Medium
cuted tasks ning in one thread must sync up ...
Q5 | android, matcher. appendReplace- | String.replaceAll replaceAll (repl) Note that backslashes (\) and dollar | Medium
ment(sb, ‘$8’) through ArrayIndexOut- signs ($) in the replacement string...
OfBoundsException
Q6 | How can I animate a view in An- | R.attr.fillAfter When set to true, the animation transformation is | Difficult
droid and have it stay in the new po- applied after the animation is over
sition/size?
Q7 | Accessbility service description Manifest.permission- Must be required by an AccessibilityService... Difficult
.BIND_ACCESSIBILITY-
_SERVICE
Q8 | Facebook URI scheme to page post r.attr.scheme ...schemes here should always use lower case... Difficult
Table 8: Results on Task Completion Time and Answer Correctness
Metric Group 01 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Average | p-value
G-1 0.714 0.714 0.429 0.429 0.714 0.286 0.286 0.286 0.482 0.014
Answer Correctness G-2 0.857 1.000 0.714 0.714 0.857 1.000 0.571 0.429 0.768 ’
Improv. | 20.03% | 40.06% | 66.43% | 66.43% | 20.03% | 249.65% | 99.65% | 50.00% 59.34% -
G-1 11.68 13.67 17.88 16.81 14.25 18.70 18.42 14.93 15.79 0.030
Time Consumption (min) G-2 12.35 8.74 12.48 11.59 12.27 10.47 17.59 11.12 12.26 ’
Improv. | 5.73% | -36.06% | -30.20% | -31.05% | -13.89% | -44.01% | -4.51% | -25.52% | -22.36% -

biases, we mix together the answers of the two groups so the au-
thors do not know the ground id of the answers. We use Wilcoxon
signed-rank test [28] with Bonferroni correction [27] to determine
if the performance difference between the control and experimental
group is statistically significant at the confidence level of 95%.

5.2 Results

Table 8 shows average answer correctness and task completion
time consumption for each error scenario over all 7 participants.
The last two columns list the average results of each group over all
8 error scenarios and the p-value of the Wilcoxon signed-rank test
on the correctness difference and the completion time difference.
The results show that the answer correctness of the experimental
group is statistically significantly better than that of the control
group, and the experimental group participants complete the tasks
statistically significantly faster.

The control group answer reasonably well only for two easy
(Q1/Q2) and one medium (Q5) error scenarios. For these three error
scenarios, 5 participants in the control group submitted the correct
answers. The control group have the smallest correctness gap with
the experimental group on these three scenarios. But the control
group have poor answer correctness for the other 5 error scenarios,
especially for the different error scenarios (Q6/Q7/Q8).

In contrast, the experimental group can answer the three diffi-
cult questions much better, especially for Q6. Although the error
scenario in Q6 is different from the API misuse scenario in the
demystification report, the objective of the two questions are very
similar at the conceptual level. Thus, looking at the demystification
report, the experimental group can infer the appropriate solution
to the Q6 in a shorter period of time (about 10 minutes on average).
The concerned API usage-directive sentence for Q6 is rather ab-
stract “when set to true, the animation transformation is applied
after the animation is over”. Looking at just this sentence, it is not
straightforward to derive a solution for the problem in Q6. There-
fore, even though the control group spent on average about 18
minutes, only two participants submitted the correct answers.

For Q7 and Q8, the experimental group have the worse answer
correctness (although still better than the control group). The rea-
son is that the solution to a specific misuse scenario is often context
sensitive. For Q7 and Q8, although the solution in the API misuse
scenarios in the demystification report is related to the error sce-
nario, the solution in the report is not directly applicable to the
error scenario. Some participants in the experimental group did
not realize this context sensitivity and just reuse the solution in the
report as the answer to the error scenarios. Unfortunately, we do
not regard this solution as the correct answer.

In conclusion, participants suggest that demystification reports
help them in two aspects: summarize meaningful information scents

https://stackoverflow.com/questions/43043294
https://developer.android.com/reference/android/graphics/drawable/AnimatedVectorDrawable#mutate()
https://developer.android.com/reference/android/graphics/drawable/AnimatedVectorDrawable#mutate()
https://stackoverflow.com/questions/22976001
https://developer.android.com/reference/java/util/Observable#notifyObservers()
https://developer.android.com/reference/java/util/Observable#notifyObservers()
https://stackoverflow.com/questions/23592748
https://developer.android.com/reference/android/content/Intent#ACTION_CHOOSER
https://stackoverflow.com/questions/28682862
https://stackoverflow.com/questions/28682862
https://developer.android.com/reference/java/util/concurrent/SynchronousQueue
https://stackoverflow.com/questions/20532999
https://stackoverflow.com/questions/20532999
https://stackoverflow.com/questions/20532999
https://developer.android.com/reference/java/lang/String#replaceAll(java.lang.String,%20java.lang.String)
https://stackoverflow.com/questions/3345084
https://stackoverflow.com/questions/3345084
https://stackoverflow.com/questions/3345084
https://developer.android.com/reference/android/R.attr#fillAfter
https://stackoverflow.com/questions/19274154
https://developer.android.com/reference/android/Manifest.permission#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission#BIND_ACCESSIBILITY_SERVICE
https://stackoverflow.com/questions/50425978
https://developer.android.com/reference/android/R.attr#scheme

Demystify Official APl Usage Directives with Crowdsourced API Misuse Scenarios, Erroneous Code Examples and Patches ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

to find a solution, and enhance their confidence on the answers.
Although they had to spend time on reading the report, nobody
complained about this effort. It seems that they considered the help
offered by the report was worth the time spent.

6 THREATS TO VALIDITY

Threats to internal validity relate to errors in our experimental
data, tool implementation and personal bias in user studies. To
avoid errors in experimental data, we carefully checked our tool
implementation, and manually examine a large number of data
instances outputted by each step of our tool. To reduce the per-
sonal bias in the manual examination of the extracted information
in the demystification reports, the two authors annotate the data
instances independently and the Cohen’s Kappas indicates the sub-
stantial or almost perfect agreement between the two annotators.
Threats to external validity relate to the generalizability of our
demystification report. In this project, we use the data from Stack
Overflow community and Android API documentation. However,
there are many other Q&A sites with different data characteristics
and a variety of official documentations for different languages. Fur-
ther studies on other official and crowdsourced documentations are
required to generalize our results. We will also release our dataset
and tool for the public validation.

7 RELATED WORK

By sampling and manual analysis, Maalej and Robillard [12] con-
clude 12 patterns of knowledge in API documentation, including
usage directives we focus on in this study. They define the directive
knowledge as the key information that developers should execute
or avoid when using the specific APIs. They also discover that
the directives have high frequency in the API documentation, and
confirm that the directive knowledge is important. Monperrus et
al. [15] perform an empirical study on directive knowledge of API
documents. It divide API directives into 23 types, and analyze the
good and bad practices of describing API directives. It conclude that
a good practice of documenting API directives is to provide clear
examples, on the other hand, the bad documentation practice often
involve ambiguous descriptions that generate more questions than
they answer. The studies by Robillard and his colleagues [21, 22]
echo this observation. However, they find that most of API docu-
ments lack the high-quality examples. Our work aims to extract
high-quality API misuse scenarios from Stack Overflow to demys-
tify official API usage directives.

Parnin et al. [18] studied the complementary nature of crowd doc-
umentation for official API documentation. Techniques [10, 11, 26]
have been proposed to extract useful information such as undocu-
mented API usage directives from Stack Overflow to augment offi-
cial documentation. Li et al. [9] focuses on extracting API caveats
in official documentation into a knowledge graph to improve the ac-
cessibility of API caveats. Zhou et al. [33] check the inconsistencies
between the API usage-directive sentences and the corresponding
API implemetation. Our goal is different from these works: we ex-
tract API misuse scenarios to augment API usage directives, but
we reuse the API caveat extraction patterns in [9] to API usage
directives from official documentation.

Many other studies also tap on the knowledge repository on
Stack Overflow. BIKER [6] recommend code snippets on Stack
Overflow for API usage queries. Subramanian et al. [25] develop a
linking method to link the code element on Stack Overflow to offi-
cial APIs. We adopt this technique to detect API mention in Stack
Overflow text and code snippets. But these two techniques focus
on general traceability recovery between code and text. In contrast,
our work focuses on API-misuse related code in crowdsourced doc-
umentation and API usage-directive text in official documentation.
Ren et al. [19] discover and summarize the controversial discus-
sions on Stack Overflow. They use official API caveats to explain the
discovered controversies. In contrast, our work finds API misuse
scenarios to explain the API usage directives.

8 CONCLUSION AND FUTURE WORK

This paper present an approach for enhancing the understandability
of API usage directives with the API misuse scenarios, erroneous
code example and patches, as well as related APIs and confusing
APIs mined from the community Q&A site like Stack Overflow. Our
approach bridges the information gulf between the large number of
API usage directives described in official API documentation, which
often lack concrete examples, and the large number of API misuse
scenarios discussed on Stack Overflow, which contain concrete
errors caused by overlooking or misunderstanding the API usage
directives. Our demystification report links the two information
sources, which turns “somebody else’s unfortunate mistakes” into
a fortune to help developers learn the API usage directives. Our
evaluation confirms the accuracy of our open information extrac-
tion method, and our user study demonstrates the usefulness of our
demystification reports for debugging API-misuse related program
errors with respect to the concerned API usage directives.

9 ACKNOWLEDGEMENTS

This research was partially supported by the National Key Research
and Development Program of China (2018YFB1003904), NSFC Pro-
gram (No. 61972339), and the Australian Research Council;s Dis-
covery Early Career Researcher Award (DECRA) funding scheme
(DE200100021).

REFERENCES

[1] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
Sotorrent: Reconstructing and analyzing the evolution of stack overflow posts. In
Proceedings of the 15th International Conference on Mining Software Repositories.
ACM, 319-330.

[2] Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. 2010. Learning
mid-level features for recognition. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Citeseer, 2559-2566.

[3] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, 450-461.

[4] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a
dual-language vector space for domain-specific cross-lingual question retrieval. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 744-755.

[5] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. 2003.
XRANK: Ranked keyword search over XML documents. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data. ACM, 16-27.

[6] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 293-304.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

(71

[8

[9

=

[10]

(1]

[12

[13]

[14

[15

[16

[17]

[18

[19]

Tom Kenter and Maarten De Rijke. 2015. Short text similarity with word embed-
dings. In Proceedings of the 24th ACM international on conference on information
and knowledge management. ACM, 1411-1420.

J Richard Landis and Gary G Koch. 1977. An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple observers.
Biometrics (1977), 363-374.

Hongwei Li, Sirui Li, Jlamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving api caveats accessibility by mining api caveats
knowledge graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 183-193.

Jing Li, Aixin Sun, and Zhenchang Xing. 2018. To Do or Not To Do: Distill
crowdsourced negative caveats to augment api documentation. JASIST 69 (2018),
1460-1475.

Jing Li, Aixin Sun, Zhenchang Xing, and Lei Han. 2018. API Caveat Explorer - Sur-
facing Negative Usages from Practice: An API-oriented Interactive Exploratory
Search System for Programmers. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval (SIGIR ’18). ACM, New
York, NY, USA, 1293-1296. https://doi.org/10.1145/3209978.3210170

Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Trans. Softw. Eng. 39, 9 (Sept. 2013), 1264-1282.
https://doi.org/10.1109/TSE.2013.12

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What
Should Developers Be Aware Of? An Empirical Study on the Directives of API
Documentation. Empirical Software Engineering 17 (05 2012). https://doi.org/10.
1007/510664-011-9186-4

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In 2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
25-34.

Stack Overflow. 2019. How do I write a good answer? (2019).
https://stackoverflow.com/help/how-to-answer.

Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd documentation: Exploring the coverage and the dynamics of API discus-
sions on Stack Overflow. Georgia Institute of Technology, Tech. Rep 11 (2012).

X. Ren, Z. Xing, X. Xia, G. Li, and J. Sun. 2019. Discovering, Explaining and
Summarizing Controversial Discussions in Community Q A Sites. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).

IS
=

~
5,

I
&

S
=}

I
i

[30

(31]

[32

[33

Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun

151-162. https://doi.org/10.1109/ASE.2019.00024

Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3,4 (2009), 333-389.

M. P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from Developers.
IEEE Software 26, 6 (Nov 2009), 27-34. https://doi.org/10.1109/MS.2009.193
Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703-732. https://doi.org/10.
1007/s10664-010-9150-8

Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 643-652.

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
Documentation. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). ACM, New York, NY, USA, 643-652. https://doi.org/10.
1145/2568225.2568313

Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 392-403.

Eric W Weisstein. 2004. Bonferroni correction. (2004).

Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196-202.

Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 51-62.

Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket
Kapre. 2016. Software-specific named entity recognition in software engineering
social content. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. IEEE, 90-101.

Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft-

ware engineering. In Proceedings of the 38th international conference on software
engineering. ACM, 404-415.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learning and
Cybernetics 1, 1-4 (2010), 43-52.

Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs Documentation and Code to Detect Directive
Defects. In Proceedings of the 39th International Conference on Software Engineering
(ICSE °17). IEEE Press, Piscataway, NJ, USA, 27-37. https://doi.org/10.1109/ICSE.
2017.11

https://doi.org/10.1145/3209978.3210170
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1007/s10664-011-9186-4
https://doi.org/10.1007/s10664-011-9186-4
https://doi.org/10.1109/ASE.2019.00024
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1145/2568225.2568313
https://doi.org/10.1145/2568225.2568313
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE.2017.11

