
SATD Detector: A Text-Mining-Based Self-Admi�ed Technical
Debt Detection Tool

Zhongxin Liu
Zhejiang University, China

liu_zx@zju.edu.cn

Qiao Huang
Zhejiang University, China

tkdsheep@zju.edu.cn

Xin Xia
Monash University, Australia

xin.xia@monash.edu

Emad Shihab
Concordia University, Canada
eshihab@encs.concordia.ca

David Lo
Singapore Management University,

Singapore
davidlo@smu.edu.sg

Shanping Li
Zhejiang University, China

shan@zju.edu.cn

ABSTRACT
In software projects, technical debt metaphor is used to describe
the situation where developers and managers have to accept com-
promises in long-term software quality to achieve short-term goals.
There are many types of technical debt, and self-admitted technical
debt (SATD) was proposed recently to consider debt that is intro-
duced intentionally (e.g., through temporary �x) and admitted by
developers themselves. Previous work has shown that SATD can
be successfully detected using source code comments. However,
most current state-of-the-art approaches identify SATD comments
through pattern matching, which achieve high precision but very
low recall. That means they may miss many SATD comments and
are not practical enough. In this paper, we propose SATD Detector,
a tool that is able to (i) automatically detect SATD comments using
text mining and (ii) highlight, list and manage detected comments
in an integrated development environment (IDE). This tool consists
of a Java library and an Eclipse plug-in. The Java library is the
back-end, which provides command-line interfaces and Java APIs
to re-train the text mining model using users’ data and automati-
cally detect SATD comments using either the build-in model or a
user-speci�ed model. The Eclipse plug-in, which is the front-end,
�rst leverages our pre-trained composite classi�er to detect SATD
comments, and then highlights and marks these detected comments
in the source code editor of Eclipse. In addition, the Eclipse plug-in
provides a view in IDE which collects all detected comments for
management.
Demo URL: https://youtu.be/sn4gU2qhGm0
Java library download: https://git.io/vNdnY
Eclipse plug-in download: https://goo.gl/ZzjBzp

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
Self-admitted technical debt, SATD detection, Eclipse plug-in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183478

ACM Reference Format:
Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. 2018. SATD Detector: A Text-Mining-Based Self-Admitted Technical
Debt Detection Tool. In ICSE ’18 Companion: 40th International Conference
on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3183440.3183478

1 INTRODUCTION
In real-world software projects, developers and managers some-
times have to make tradeo�s between long-term code quality and
short-term revenue due to various reasons (e.g., cost reduction,
market pressure, and tight project schedule). Technical debt, which
is introduced by Cunningham [2], is a metaphor used to describe
this kind of situation. It has been shown by prior work that tech-
nical debt is common, unavoidable and may degrade code quality
and increase software complexity in the future [5, 11]. Moreover,
technical debt is not always visible, i.e., it may only be known to
some speci�c people but not those who eventually pay for it. There-
fore, many studies have been conducted to enable the detection
and management of technical debt.

The concept of self-admitted technical debt (SATD) is proposed
by Potdar and Shihab [8], which considers the technical debt that is
intentionally introduced (e.g., in the form of temporaryworkaround)
and admitted by developers themselves. In particular, self-admitted
technical debt is used to describe the situation where developers
know that current implementation is not optimal and record this
in source code comments. For example, one comment in the open
source project “JEdit” mentions that “Need some format checking
here”. This comment indicates that developers admitted that the
corresponding code is defective and requires format checking. A
previous study [11] shows that although the percentage of SATD in
a project is not high, it can negatively impact the maintenance of a
project. Detecting and managing SATD can remind developers and
managers about the existence of SATD, help them plan to discharge
it and hence result in software quality improvement.

Prior work also shows that SATD can be successfully detected
using source code comments [8]. However, most of the previous
studies detected SATD by manually classifying comments [8] or
using the 62 SATD comment patterns [1, 11] which are manually
derived by Potdar and Shihab [8]. Approaches that involve manual
classi�cation of comments require much human e�ort, and thus

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Liu et al.

Source
Projects Source

Project 1

Source
Project 2

Source
Project n

Feature
Subset 1

Feature
Subset 2

Feature
Subset n

Source Projects Feature Selection

C1

C2

Cn

Training
Sub-classifiers

Classifiers
Voting

Target Project

Text
Preprocessing

Predicted Labels
(With SATD or Not)

Prediction PhaseModel Building Phase

Text
Preprocessing

1
2 3 4

56

7

Figure 1: Overall Framework of Our Model

are not practical for real-world projects. Although pattern-based
approaches can achieve high precision, their recall is often very
low since they fail to detect SATD comments which do not match
any known patterns. This is the case since it is di�cult to extract all
potential SATD comment patterns. Most recently, Maldonado et al.
proposed an approach based on natural language processing (NLP)
to automatically identify di�erent types of SATD comments [6].
However, their work only focuses on certain types of SATD (i.e.,
design debt, requirement debt or non-SATD), while we care more
about whether a comment contains SATD or not, which also in-
cludes other types of SATD (i.e., defect debt, documentation debt
and test debt). Moreover, no prior work provides practical tools to
help developers detect and manage SATD in an IDE.

In this paper, we present SATD Detector, a tool based on our
previous work [4]. This tool is able to (i) automatically detect SATD
comments in source code through a text-mining-based approach
and (ii) list and manage detected comments inside an IDE. It con-
tains two parts: a Java library and an Eclipse plug-in. The Java
library provides command-line interfaces and Java APIs. Through
these interfaces, users can train the text mining model using their
own data and leverage either the build-in model or their own mod-
els to identify SATD comments. The Eclipse plug-in, which is the
front-end of our tool, uses our pre-trained composite classi�er to
make detection after a project is imported into Eclipse. Speci�cally,
whenever a developer opens Eclipse, our plug-in will automatically
parse all source code �les, detect and mark the comments which
contains SATD. Once some �les are modi�ed, it will re-detect SATD
comments and update markers in these �les immediately. More-
over, our plug-in also provides an Eclipse view in which all detected
SATD comments are listed for management. Our tool is easy to
deploy and use. With the help of the Eclipse plug-in, it would be
easy for developers and managers to manage SATD and pay back
it in time. In addition, using our Java library, users can train and
leverage their own model, and integrate SATD Detector into their
development tools (e.g., other IDEs or continuous integration tools).

To build and evaluate our tool, we use a manually classi�ed
dataset of source code comments from 8 open source projects with
212,413 comments, provided by Maldonado and Shihab [7]. The
experimental results show that, on every target project, our tool

outperforms Maldonado and Shihab’s approach [7] by a substantial
margin in terms of F1-score.

The remainder of the paper is organized as follows. In Section
2, we present the text-mining-based model used to detect SATD
comments by our tool. The details of SATD Detector, including the
usage of the Java library, the work�ow, life cycle and user interface
of the Eclipse plug-in, are described in Section 3. Section 4 shows
the experimental results of our evaluation. We conclude our work
and mention future work in Section 5.

2 APPROACH
2.1 Overall Framework
In general, SATD Detector leverages a pre-trained text mining
model to automatically predict whether a comment contains SATD
or not. The pre-trained model is the composite classi�er proposed
in our previous work [4]. Figure 1 presents the overall framework
of our model. It contains two phases: a model building phase and
a prediction phase. We refer to the projects which are used to
build the model as source projects, and the projects we want to
detect as target projects. In the model building phase, our approach
builds a sub-classi�er using data from each source project. In the
prediction phase, all sub-classi�ers are combined to jointly predict
SATD comments in the target project.

Our framework takes as input training comments with known
labels from di�erent source projects. For each source project, we
�rst preprocesses the text descriptions of comments and extracts
features (i.e., words) to represent each comment (Step 1). Then,
feature selection is applied to select features that are useful for
classi�cation and useless features are removed (Step 2). Next, we
use the selected features to train a sub-classi�er for the target
project (Step 3). Suppose there are n source projects, we end up
with n classi�ers which are combined to form a composite classi�er
for prediction (Step 4). For each new comment in the target project,
we �rst preprocess the comment to extract features (Step 5) and
then input features to the composite classi�er (Step 6). Finally, each
sub-classi�er will predict the label of the comment according to
its features, and the label with the largest number of “votes” will

SATD Detector: A Text-Mining-Based SATD Tool ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

be chosen as the �nal prediction result of the composite classi�er
(Step 7).

2.2 Model Details
Our model mainly contains four steps: text preprocessing, feature
selection, sub-classi�ers training and classi�ers voting. The follow-
ing paragraphs elaborate the details of the four steps:
Text Preprocessing: We preprocess the text description of com-
ments to extract features (i.e., words) in 3 steps: tokenization, stop-
word removal, and stemming. While tokenizing, we only keep
English letters in a token and convert all words to lowercase. As
for stop-word removal, since some stop words are useful for clas-
si�cation (e.g., “should”), we manually build a list of stop-words
to �lter stop-words. Words whose lengths are no more than 2 or
no less than 20 are also treated as stop-words. Finally, each token
is stemmed (i.e., reduced to its root form) using the well-known
Porter stemmer1.
Feature Selection: After preprocessing and tokenizing the com-
ments, we use the Vector Space Model (VSM) [10] to represent each
comment with a word vector. In total, we have a large number of
features for each source project (e.g., there are 3,661 features in
ArgoUML project). Feature selection is applied to identify a subset
of features that are most useful in di�erentiating di�erent classes
(i.e., SATD comment or not). In this model, we employ Information
Gain (IG) [9, 13] to select useful features. Only the features whose
feature selection scores are in the top 10% of the ranked list are
retained, and the other features are removed.
Sub-classi�ers Training: In our tool, we train each sub-classi�er
using Naive Bayes Multinomial (NBM), which is widely used to
analyze text data in software engineering [12, 14–16]. We use the
implementation of NBM in Weka [3] with default settings. Note
that our approach can also work with other classi�ers.
Classi�ers Voting: In our model, the composite classi�er is built
from all the sub-classi�ers, and it is responsible for predicting the
label of a new comment in the target project. The prediction process
is just like an election, and the prediction result of each sub-classi�er
is regarded as a “vote”. The comment label which gets the largest
number of “votes” will be the �nal prediction result of the composite
classi�er.

2.3 Dataset
We use the dataset provided by the authors of [7] to build our model
and evaluate its performance. The dataset contains comments ex-
tracted from 8 open source projects, which are ArgoUML, Columba,
Jmeter, JFreeChart, Hibernate, JEdit, JRuby, SQuirrel, and the label
of each comment, i.e., SATD comment or not. All the labels are
manually labeled by the authors of [7], who reported a high level of
agreement on the classi�cation results. Therefore, we are con�dent
in the quality of the provided dataset. More information about the
dataset can be found in our previous work [4].

1http://tartarus.org/martin/PorterStemmer

Extract

Source Code Comments Normal
Comments

Filter

Pre-trained Model SATD Post-process

Figure 2: Work�ow of Our Eclipse Plug-in

3 SATD DETECTOR
3.1 The Java Library
The Java Library in our tool provides command-line interfaces
as well as Java APIs. Both of them provide the ability to re-train
the model using user-speci�ed data and detect SATD comments
through our pre-trained model or models re-trained by users. The
detailed manual of this library can be found in our GitHub reposi-
tory2.

3.2 The Eclipse Plug-in
3.2.1 Workflow. Figure 2 shows the work�ow of our Eclipse

plug-in. First of all, it parses the source code �les in the workspace,
and extracts comments from them. Then, it leverages regular ex-
pressions to remove irrelevant comments which mainly include the
following two types:

(1) Automatically generated comments with �xed format (i.e.,
Auto-generated constructor stubs, auto-generated method
stubs and auto-generated catch blocks), which are inserted
as part of code snippets by Eclipse to generate constructors,
methods, and try catch blocks.

(2) Javadoc and license comments which do not contain any
task annotation (i.e., “TODO”, “FIXME”, or “XXX”) [9].

Next, the rest of comments are inputted to the pre-trained text
mining model which is described in Section 2 and implemented in
our back-end library. Each comment will be classi�ed by the model.
Finally, for comments which are predicted to contain SATD, our
plug-in will post-process them in the source code editor of Eclipse,
e.g., highlight them and add markers for them.

3.2.2 Life Cycle. After installation, our plug-in will start with
Eclipse and then parse source code �les in the whole workspace
in background. Since in most cases, users only care about SATD
in their own projects, our plug-in ignores the �les in the third
party libraries. In our current implementation, the Eclipse plug-in
only supports Java projects, and it will not parse non-Java source
code �les. But our back-end library only cares about source code
comments, so it is not limited to Java projects. Once source code
�les are modi�ed, they will be re-parsed and our plug-in will re-
detect SATD in these �les immediately. The markers created by
our plug-in for SATD comments will not be persisted; hence while
users are exiting Eclipse, these markers will be deleted and SATD
Detector will then stop.

3.2.3 User Interface. Figure 3 presents the user interface (UI) of
our Eclipse plug-in. It follows the work�ow shown in Figure 2 to
detect SATD comments. Once it identi�es one comment with SATD,
it will highlight this comment (1� in Figure 3) and add a marker for
this comment (2� in Figure 3) in the editor. At the same time, we
can check currently detected SATD comments in an Eclipse view
2https://github.com/Tbabm/SATDDetector-Core

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Liu et al.

①

②

③

④

⑤

Figure 3: User Interface of Our Eclipse Plug-in

①

②

Figure 4: Re-detecting SATD in Background
(3� in Figure 3). This Eclipse view displays details of each detected
comment, which includes Description (i.e., the text description of a
comment), Resource (i.e., in which �le a comment is located), Path
(i.e., the path of a comment’s corresponding �le), Location (i.e., at
which line(s) a comment is located) and Type (i.e., the type of a
comment’s marker). The marker type of SATD comments is set to
“Technical Debt” by default. If a user double clicks some comment in
the view, Eclipse will open the �le in which this comment is located
and focus on this comment in the editor (4� in Figure 3). This Eclipse
view also provides some basic features for SATD management, e.g.,
�ltering and sorting.

In addition, our plug-in provides a toolbar button (5� in Figure 3),
which is used to trigger complete SATD detection. This tool will
re-analyze the comments in the whole workspace if a user clicks
this button. The time spent by this detection process depends on
the size of the target project. In order to improve user experience,
detection process always runs in background and the real-time
detection progress will be displayed in the Progress view (1� 2� in
Figure 4).

4 EVALUATION
The dataset used to evaluate the performance of our tool is de-
scribed in Section 2.3. We compare our tool with 4 kinds of baseline
approaches:

(1) Pattern: In this approach, a comment is regarded as SATD
comment if and only if it matches one of the 62 patterns
published by Potdar and Shihab [8].

(2) NBM, SVM and kNN: We build simple classi�ers using di�er-
ent text mining techniques (i.e., NBM, SVM and kNN), and
classify comments with these classi�ers respectively.

(3) BestSub: For each target project, we choose the sub-classi�er
with best performance as our baseline.

(4) NLP: We follow Maldonado et al.’s work [6] and build a
maximum entropy classi�er to predict whether a comment
contains SATD or not.

The experimental results show that, on every target project
our approach achieves the best performance in terms of F1-score,
and outperforms the baseline approaches by a substantial margin.
After observing the dataset, we �nd that di�erent projects write
SATD comments in di�erent ways. Training sub-classi�ers and
combining them through the voting mechanism can reduce the
bias to certain kind of SATD comments, and thus improve the
performance. Readers can refer to our previous work [4] for more
details of our evaluation and experimental results.

5 CONCLUSION & FUTUREWORK
In this paper, we present SATD Detector, a tool that is able to
automatically detect SATD comments, and help developers manage
them in an IDE. This tool consists of a back-end Java library and a
front-end Eclipse plug-in. Through the back-end library, users can
re-train the text mining model and integrate SATD Detector into
other development tools easily. The Eclipse plug-in is able to remind
developers and managers of existing SATD and help them pay for
SATD in time.We are also interested in providing visualization tools
to help developers further analyze SATD comments in di�erent
kinds of software projects.

ACKNOWLEDGMENT
This work was partially supported by NSFC Program (No. 61602403
and 61572426).

REFERENCES
[1] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on

self-admitted technical debt. In MSR.
[2] Ward Cunningham. 1993. The WyCash portfolio management system. ACM

SIGPLAN OOPS Messenger (1993).
[3] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter (2009).

[4] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2017. Identifying
self-admitted technical debt in open source projects using text mining. EMSE
(2017).

[5] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A balancing act: what
software practitioners have to say about technical debt. IEEE software (2012).

[6] Everton Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural
language processing to automatically detect self-admitted technical debt. TSE
(2017).

[7] Everton da S Maldonado and Emad Shihab. 2015. Detecting and quantifying
di�erent types of self-admitted technical debt. In MTD.

[8] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In ICSME.

[9] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning (1986).
[10] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model

for automatic indexing. Commun. ACM (1975).
[11] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact

of self-admitted technical debt on software quality. In SANER.
[12] Xin Xia, David Lo, Denzil Correa, Ashish Sureka, and Emad Shihab. 2016. It takes

two to tango: Deleted stack over�ow question prediction with text and meta
features. In COMPSAC.

[13] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Bo Zhou. 2015. Automatic,
high accuracy prediction of reopened bugs. Automated Software Engineering
(2015).

[14] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review
this change?: Putting text and �le location analyses together for more accurate
recommendations. In ICSME.

[15] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013. Tag recommendation in
software information sites. In MSR.

[16] Xin-Li Yang, David Lo, Xin Xia, Qiao Huang, and Jian-Ling Sun. 2017. High-
impact bug report identi�cation with imbalanced learning strategies. Journal of
Computer Science and Technology (2017).

