
Learning to Aggregate: An Automated Aggregation
Method for Software Quality Model

Meng Yan1, Xiaohong Zhang1, Chao Liu1, Jie Zou1, Ling Xu1, Xin Xia2

1School of Software Engineering, Chongqing University, Chongqing, China
2Department of Computer Science, University of British Columbia, Canada

Email: {meng.yan, xhongz, liu.chao, zoujie, xuling}@cqu.edu.cn, xxia02@cs.ubc.ca

Abstract—Quality models are regarded as a well-accepted
approach for assessing high-level abstract quality characteristics
(e.g., maintainability) by aggregation from low-level metrics.
However, most of the existing quality models adopt the weighted
linear aggregation method which suffers from a lack of consensus
in how to decide the correct weights. To address this issue, we
present an automated aggregation method which adopts a kind of
probabilistic weight instead of the subjective weight in previous
aggregation methods. In particular, we utilize a topic modeling
technique to estimate the probabilistic weight by learning from
a software benchmark. In this manner, our approach can enable
automated quality assessment by using the learned knowledge
without manual effort. In addition, we conduct an application on
the maintainability assessment of the systems in our benchmark.
The result shows that our approach can reveal the maintainability
well through a correlation analysis with the changed lines of code.

I. INTRODUCTION

Software quality model aims to provide the specific in-

formation about different high-level abstract quality charac-

teristics (e.g., functionality, reliability, usability, efficiency,

maintainability and portability defined in ISO/IEC 9126) by

aggregation from the low-level concrete metrics of software

products (e.g., number of source lines of code) [1]. However,

decisions of the aggregation method for software quality model

are rarely justified in this line of research. The most com-

mon used aggregation approach is weighted linear equations

(WLE). Although this approach is simple to calculate and easy

to interpret by practitioners, there is an issue which remains

in the WLE method, i.e., how to decide the correct weights.

A weight represents the relative importance contributed to

the associated element in relation to its brother nodes. A

usual way is to adopt empirical values or expert opinions

by using Analytic Hierarchy Process. Unfortunately, software

quality is a multifaceted and vague concept which has different

meanings for different people [2]. Introducing the expert

opinions, which depends on their experience, knowledge or

intuition, may make the aggregation subjective [3] and prevent

the model from being applied automatically.

To address this issue, we present an automated aggregation

method which adopts a probabilistic weight learning from

a benchmark instead of the subjective weight in previous

aggregation methods. In particular, our approach is inspired

by the success of transferring the generative topic model (e.g.,

Probabilistic Latent Semantic Analysis [4]) into different field-

s, including computer vision and software text mining [5], [6],

[7], [8], [9]. The transferring power of the topic model derives

from its fundamental purpose, namely, finding the probabilistic

correlation between the hidden layer and the observed layers.

For instance, the fundamental purpose of the topic model in

text mining is to find the probabilistic correlation between

the hidden topic and the observed words and documents.

Similarly, we treat each code file as a document, each metric

as a word and the quality of the characteristic as the “topic”

hidden in the code file. Under this manner, we propose an

automated aggregation method based on Probabilistic Latent

Semantic Analysis (PLSA) which captures the hidden prob-

abilistic correlation between quality characteristics, metrics,

and code files by modeling from a benchmark. Subsequently,

we construct “badness” function by adopting the probabilistic

correlation to perform the aggregation step. As a result, we

can assess the quality characteristics automatically and it

overcomes the ambiguity and subjective interpretations from

previous methods.

II. APPROACH

We divide the approach into three phases. In the first phase,

we construct a benchmark which consists of abundant projects

with multiple release versions. After that, we obtain the risk

profiles in the benchmark and normalize the metric values of

each code file to ordinal ratings in a certain range. The risk

profile denotes the percentage of overall code that falls into

each of the four risk categories: Low, Moderate, High and

Very-High. Concretely, the four risk categories are determined

by four intervals which are based on the distribution of a

metric. Many authors have shown that the distributions of

software metrics are heavily skewed [10], [11], [12], thus

a typical approach to obtain the intervals is to adopt the

threshold set which represents the values at the quantile

<70%,10%,10%,10%> [11], [13].

In the second phase, we adopt a topic modeling technique

to estimate the probabilistic correlations between quality char-

acteristic, metric and code file. In particular, we adopt a

topic modeling technique DPLSA (an extension of PLSA),

which assigns a concrete meaning to a topic by a special

initialization method [5], [14]. The DPLSA model estimate

two probabilistic correlations by learning from the benchmark,

namely the probabilistic correlation between metrics and sub-

characteristics P (w | z) and the probabilistic correlation

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

 

DOI 10.1109/ICSE-C.2017.139

266

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

266

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

266

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.139

268



between sub-characteristic and code file P (z | d). The two

probabilistic correlations form the base of our approach.

In the third phase, we construct a “badness” function for

each metric of a system. The outcome represents the badness

of the quality characteristic in a system. In detail, we construct

badness function at three levels. The first level is the badness of

a metric wj in the system. Let B(wj) represents the badness

function of metric wj . The method of this level is derived

from the work of [10] which aggregates the individual metric

value of each class to the whole rating of a system. The

second level is the badness of a quality sub-characteristic (e.g.,

changeability is a sub-characteristic of maintainability) in a

system. It is calculated by using the badness of each metric

wj in the first level and the learned probability correlation

P (w | zk) between the target sub-characteristic zk and each

metric w by DPLSA. The third level is the badness of a quality

characteristic (e.g., maintainability). The badness of the quality

characteristic in a system is correlated with the badness of

its children nodes (i.e., sub-characteristic) and the probability

weight between the code file and the children nodes is also an

impacting factor. With the three levels of the badness function,

we can assess the high-level quality characteristic of a system.

III. APPLICATION

In this section, we attempt to apply the approach for

assessing a typical high-level characteristic, namely maintain-

ability on the Qualitas Corpus [15] dataset. The class file is

regarded as the document, the sub-characteristics is regarded

as topics and the metrics are normalized as words. The goal

is to infer the probabilistic correspondence P (w | z) and

P (z | d). Similar to the existing maintainability model [13],

[16], we adopt a three-layer quality framework including the

target characteristic maintainability, sub-characteristics (i.e.,

changeability, analyzability, testability, stability as ISO 9126

defined) and metrics. Considering the metrics, we adopt the

typical metrics which are identical with the relevant studies of

maintainability evaluation [17], [18]. In detail, five Chidambar

and Kemerer metrics: WMC, DIT, NOC, RFC, and LCOM;

four Li and Henry metrics [19]: MPC, DAC, NOM, and

SIZE2; and one traditional lines of code metric (SIZE1)

are adopted. SIZE1 represents the number of lines of code

excluding comments, and SIZE2 represents the total count of

the number of data attributes and local methods in a class.

The result of the application is the badness value of the

maintainability. In order to validate the effectiveness of our

approach, we adopt a proxy measure of maintainability to

evaluate the consistency with the badness value. In this work,

we adopt the number of lines of changed code to measure

maintainability by following Elish’s work [17]. We assume

that the badness value has a consistency with the changed

lines of code (i.e., the bigger of the badness value, the worse

of the maintainability, and the more lines of code need to

be changed). In particular, we adopt the Spearman rank-

correlation coefficient to evaluate the consistency. The main

advantage of the Spearman metric is that it does not require

the variables to meet a particular distribution.

TABLE I
THE SPEARMAN COEFFICIENT ρ WITH P-VALUE (IN BRACKETS) IN

DIFFERENT CASES.(*REPRESENTS MEDIUM CORRELATION SIZE; **
REPRESENTS LARGE CORRELATION SIZE)

Project #of versions Our method AWLE
Ant 22 0.406*(0.041) 0.500(0.018)

ArgoUml 15 0.693**(0.005) 0.527(0.043)
FreeCol 31 0.438*(0.014) 0.414(0.020)

Hibernate 51 0.581**(0.000) 0.523(0.000)
Jung 22 0.674**(0.001) 0.616(0.002)
Antlr 21 0.526**(0.016) 0.5341(0.013)

Azureus 32 0.349*(0.049) -0.359(0.044)
FreeMind 15 0.607**(0.019) 0.221(0.429)

JGraph 37 0.223(0.184) 0.132(0.434)
JUnit 23 0.639**(0.001) 0.443(0.034)

IV. RESULTS AND ANALYSIS

In this paper, we are interesting to answer the research ques-

tion: How effective is our model compared with previous
method? Table I shows the correlation analysis results from

the benchmark. The Spearman correlation coefficient and the

confidence level p-value are provided. For each project, the

correlation coefficient represents the consistency level between

the badness value and the lines of changed code by considering

all the versions. To indicate the correlation size, we follow

Cohen’s guideline that the correlation coefficient ρ = 0.1, 0.3,

and 0.5 represent having small, medium and large correlation

sizes [20]. There is only one case whose correlation coefficient

is smaller than 0.3. In this case, there is not a significant

correlation between maintainability badness and changed lines.

However, in the remaining cases, the correlations have a

medium or large correlation size and they are significant with

at least 95% confidence (p-value < 0.05) level.

In addition, we implement a typical average weighted linear

equation (AWLE) method which is adopted in the SIG main-

tainability model [13] as a baseline. It assigns each metric

and sub-characteristic with equal weight. In Table I, the better

correlation between the two methods are in bold. The results

show that our approach reveal the maintainability better than

the AWLE model in most of the projects. Overall, the result

suggests that the achieved badness value by using the proposed

aggregation method can reveal the maintainability well.

V. CONCLUSION

In this paper, we propose an aggregation method which

attempt to assess the high-level quality characteristic automat-

ically. In detail, we adopted a topic modeling technique to

learn the probabilistic correlation between code files, quality

characteristics and metrics from a benchmark which consists

of numerous release versions of open source projects. With

this method, it enables the assessment automatically and

overcomes the difficulty in determining the weight in previous

weighted linear methods. To evaluate the effectiveness, we

conduct an application on the maintainability assessment by

using a lot of release versions of open source projects. The

results show that our approach can reveal the maintainability

well and it performs better than a previous baseline through a

correlation analysis with the changed lines of code.

267267267269269269269269269269



REFERENCES

[1] S. Wagner, A. Goeb, L. Heinemann, M. Kls, C. Lampasona,
K. Lochmann, A. Mayr, R. Plsch, A. Seidl, J. Streit, and A. Trendowicz,
“Operationalised product quality models and assessment: The quamoco
approach,” IST, vol. 62, pp. 101–123, 2015.

[2] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” TSE, vol. 28, no. 1, pp. 4–17, 2002.

[3] M. Morisio, I. Stamelos, and A. Tsoukias, “Software product and process
assessment through profile-based evaluation,” IJSEKE, 2003.

[4] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Machine Learning, vol. 42, no. 1, pp. 177–196, 2001.

[5] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, “Auto-
matically classifying software changes via discriminative topic model:
Supporting multi-category and cross-project,” JSS, 2016.

[6] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” TSE,
2016.

[7] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer, “Automated
classification of software change messages by semi-supervised latent
dirichlet allocation,” IST, vol. 57, pp. 369–377, 2015.

[8] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “Which non-
functional requirements do developers focus on? an empirical study on
stack overflow using topic analysis,” in MSR. IEEE, 2015, pp. 446–449.

[9] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending
developers to resolve bugs,” JSEP, vol. 27, no. 3, pp. 195–220, 2015.

[10] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-based aggregation
of metrics to ratings,” in IWSM-MENSURA, 2011, pp. 20–29.

[11] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from
benchmark data,” in ICSM, 2010, pp. 1–10.

[12] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large
object-oriented software system,” TSE, 2007.

[13] R. Baggen, J. Correia, K. Schill, and J. Visser, “Standardized code
quality benchmarking for improving software maintainability,” Software
Quality Journal, vol. 20, no. 2, pp. 287–307, 2012.

[14] M. Yan, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, “A component
recommender for bug reports using discriminative probability latent
semantic analysis,” IST, vol. 73, pp. 37–51, 2016.

[15] E. Tempero, C. Anslow, J. Dietrich, T. Han, L. Jing, M. Lumpe,
H. Melton, and J. Noble, “The qualitas corpus: A curated collection
of java code for empirical studies,” in APSEC, 2010, pp. 336–345.

[16] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy, “A
probabilistic software quality model,” in ICSM, 2011, pp. 243–252.

[17] M. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on
predicting software maintainability using ensemble methods,” Soft Com-
puting, vol. 19, no. 9, pp. 2511–2524, 2015.

[18] C. van Koten and A. R. Gray, “An application of bayesian network for
predicting object-oriented software maintainability,” IST, 2006.

[19] W. Li and S. Henry, “Object-oriented metrics that predict maintainabil-
ity,” JSS, vol. 23, no. 2, pp. 111–122, 1993.

[20] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” TSE, 2014.

268268268270270270270270270270


