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ABSTRACT

Code completion, one of the most useful features in the Integrated

Development Environments (IDEs), can accelerate software de-

velopment by suggesting the libraries, APIs, and method names

in real-time. Recent studies have shown that statistical language

models can improve the performance of code completion tools

through learning from large-scale software repositories. However,

these models suffer from three major drawbacks: a) The hierar-

chical structural information of the programs is not fully utilized

in the program’s representation; b) In programs, the semantic re-

lationships can be very long. Existing recurrent neural networks

based language models are not sufficient to model the long-term

dependency. c) Existing approaches perform a specific task in one

model, which leads to the underuse of the information from related

tasks. To address these challenges, in this paper, we propose a self-

attentional neural architecture for code completion with multi-task

learning. To utilize the hierarchical structural information of the

programs, we present a novel method that considers the path from

the predicting node to the root node. To capture the long-term

dependency in the input programs, we adopt a self-attentional ar-

chitecture based network as the base language model. To enable the

knowledge sharing between related tasks, we creatively propose a

Multi-Task Learning (MTL) framework to learn two related tasks in

code completion jointly. Experiments on three real-world datasets

demonstrate the effectiveness of our model when compared with

state-of-the-art methods.
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1 INTRODUCTION

As the complexity and scale of the software development continue

to grow, code completion has become an essential feature of Inte-

grated Development Environments (IDEs). It speeds up the process

of software development by suggesting the next probable token

based on existing code. However, traditional code completion tools

rely on compile-time type information or heuristics rules to make

recommendations [21, 23], which is costly and could not capture hu-

man’s programming patterns well. To alleviate this problem, code

completion research started to focus on learning from large-scale

codebases in recent years.

Based on the observation of source code’s repeatability and pre-

dictability [14], statistical language models are generally used for

code completion. N-gram is one of the most widely used language

models [13, 14, 36]. Most recently, as the success of deep learning,

source code modeling techniques have turned to Recurrent Neural

Network (RNN)-based models [3, 21]. In these models, a piece of

source code is represented as a source code token sequence or an

Abstract Syntactic Tree (AST) node sequence. Given a partial code

sequence, the model computes the probability of the next token or

AST node and recommends the one with the highest probability.

However, these models are limited from three aspects:

a) The hierarchical structural information is not fully uti-

lized in the program’s representation. Existing code comple-

tion models mainly fall into two major categories, i.e., token-based

models and AST-based models. The token-based models [3, 13]

sequentially tokenize programs into token sequences as the input

of models. The syntax and structure of code are not explicitly con-

sidered, so this information is underused. To address this limitation,

AST-based neural network models are proposed [21, 23]. In these

models, programs are first parsed into ASTs. Then, ASTs are tra-

versed to produce the node sequence as the representation of the

programs. Although these models utilize ASTs in the program’s

representation, the hierarchical level of the AST nodes is ignored be-

cause the tree is traversed to flatten sequence. The tree’s structural

information is under-utilized.

b) In programs, the semantic relationships might be very

long. For example, when the model suggests calling a function that
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Figure 1: The AST of the given Python code snippet. Green node denotes the predicting node, i.e., Break. Solid arrows indicate

the nodes’ processing order. Orange dotted arrows show the path from the predicting node to the root node.

has been defined many tokens before (e.g., 500 tokens). The parse

tree of a program is typically much larger than that of a natural

language sentence [29]. There are approximately 1730 nodes on av-

erage in JavaScript dataset of our experiment. In such a case, recent

code completion work which builds LSTM-based language models

[3, 21] cannot work on modeling the very long-term dependency

in the source code well, since LSTM-based language models use

200 context words on average [19].

c) Current code completion models train a single model

to perform a specific task, e.g., predicting the next node’s value

in AST (i.e., predicting the next token of a program). In code com-

pletion, the node’s type and value are two closely related attributes,

where the type can serve as a constraint to the value, and vice

versa. However, this correlation is not well considered in existing

code completion models. Li et al. [21] built two models to predict

node’s type and value separately, and they treated these two tasks

independently. We argue that the relationship among related tasks

could provide effective constraints for each task’s learning process,

and knowledge obtained from one task might help the other task.

Therefore, these tasks should not be learned separately.

In this paper, we propose a self-attentional neural architecture

for code completion with Multi-Task Learning (MTL) [5] to address

the aforementioned three limitations. To bridge the gap between

the sequential node sequences and the hierarchical structure of

ASTs, we extract the path from the predicting node to the root

node, which indicates the hierarchical level of the predicting node.

Previous studies did not consider the hierarchical level into their

code completion models. Then we model the path information into

the representation of the contextual program. To capture the long-

term dependency in the input programs, we apply the Transformer-

XL network [8] as our base model. To enable the knowledge sharing

between related tasks, we adopt MTL to learn two tasks together,

i.e., predicting the next node’s type and value, which are two main

closely related tasks in code completion. MTL can help the model

focus its attention on the features that actually matter as other tasks

provide additional evidence for the relevance or irrelevance of those

features, thus can further improve the model’s performance.

To evaluate the performance of our proposed model, we conduct

experiments on three real-world datasets, including Python, Java,

and JavaScript, and compare our model with two state-of-the-art

models: Nested N-gram model [13] and Pointer Mixture Network

[21]. For the next node’s type prediction, our model achieves the

accuracy of 87%, 82%, and 91% on these three datasets respectively,

which improves Nested N-gram model by 51%, 40%, and 72%, and

improves Pointer Mixture Network by 33%, 24%, and 24%, in terms

of normalized improvement in accuracy. For the next node’s value

prediction, our model achieves the accuracy of 73%, 73%, and 83%

on three datasets, which improves Pointer Mixture Network by

16%, 15%, and 13%, in terms of normalized improvement in accuracy.

Statistical testing shows that the improvements over the baseline

methods are statistically significant, and the effect sizes are non-

negligible. The main contributions of this paper are summarized as

follows:

• We propose a novel method that models the hierarchical

structural information into the program’s representation.

• We invent a new multi-task learning model for code com-

pletion, which enables knowledge sharing between related

tasks. To the best of our knowledge, it is the first time that

a multi-task learning model is proposed to solve the code

completion problem.

• We introduce the Transformer-XL network as the language

model to capture the very long-range dependencies for code

completion.

• We evaluate our proposedmodel on three real-world datasets.

Experimental results show that our model achieves the best

performance compared with the state-of-the-art models.

Paper Organization The remainder of this paper is organized as

follows. We give a motivating example in Section 2 and provide

background knowledge on statistical language model and multi-

task learning in Section 3. Then we introduce our proposed model

in Section 4. Section 5 presents experimental results. Section 6

analyzes the efficiency and quality of our model and discusses

threats to validity. Section 7 highlights the related work. Finally,

we conclude our study and mention future work in Section 8.

2 MOTIVATING EXAMPLE

Figure 1 shows an AST of a Python code snippet. Each node in

the AST contains a Type attribute, and the leaf nodes also contain

an optional Value attribute. We use “Type[Value]" to represent

each node. To make full use of the structural information of the

AST in the program’s representation, we take the path from the

predicting node to the root node into consideration, which indicates

the hierarchical level of the predicting node. For example, in Figure

1, when predicting the node Break, the contextual sequence contains

all the nodes in the tree except Break if the tree is flattened in the in-

order depth-first traversal [21, 23] (marked by solid black arrows in

the figure). The hierarchical level of the predicting node is ignored.
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If the path from the predicting node Break to root node (marked

by orange arrows in the figure) is introduced into the program’s

representation explicitly, i.e., {body, If, body, While, Module}, the

structural level of the predicting node can be utilized. The model

will realize that the predicting node is in the If statement which is

nested in theWhile statement. This information would be helpful

in code completion.

For the model’s learning mechanism, training different models

to predict node’s type and value separately ignores the correlations

between these tasks. These two tasks are closely related. For ex-

ample, in Figure 1, when the model is going to predict the node

Num[0], the node’s type “Num" conveys the message that the node’s

value is a number. The model will probably predict a number as

the node’s value. Likewise, if the model knows the node’s value

is a number, the model will probably predict “Num" as its type.

Similarly, when predicting the node NameLoad[count], the type

“NameLoad" implies the information of variable accessing, which

helps the model to predict a variable that has been defined as the

node’s value. Based on the above analysis, we believe that related

tasks should be learned jointly. In such a way, the model could learn

their common features and achieve better performance.

3 BACKGROUND

In this section, we present the background knowledge which will

be used in this paper, including the statistical language model and

multi-task learning.

Statistical Language Model Statistical language models capture

the statistical patterns in languages by assigning occurrence proba-

bilities to a sequence of words in a particular sequence. Program-

ming languages are kind of languages that contain predictable statis-

tical properties [14], which can be modeled by statistical language

models. Given a token sequence S = 𝑠1, 𝑠2, ..., 𝑠𝑡 , the probability of
the sequence is computed as:

𝑝 (𝑆) = 𝑝 (𝑠1)𝑝 (𝑠2 |𝑠1)𝑝 (𝑠3 |𝑠1𝑠2), ..., 𝑝 (𝑠𝑡 |𝑠1𝑠2, ..., 𝑠𝑡−1) (1)

The probabilities are hard to estimate when the number of the con-

text tokens 𝑠1, 𝑠2, ..., 𝑠𝑡−1 is tremendous. The N-gram model based

on the Markov assumption is proposed to address this challenge.

In the N-gram model, the probability of a token is dependent only

on the 𝑛 − 1 most recent tokens:

𝑝 (𝑠𝑡 |𝑠1, 𝑠2, ..., 𝑠𝑡−1) = 𝑝 (𝑠𝑡 |𝑠𝑡−𝑛+1, ..., 𝑠𝑡−1) (2)

N-gram based models have been generally applied to code com-

pletion [13, 14, 36]. These models have been proved to capture the

repetitive regularities in the source code effectively. In recent years,

deep recurrent neural networks have shown great performance

on modeling programming languages [3, 21, 23]. By using recur-

rent connections, information can cycle inside these networks for

a long time, which loosens the fixed context size and can capture

longer dependencies than the N-gram model. LSTM [15] and GRU

[6] are two common variants of RNN, which ease the vanishing

gradient problem in RNN by employing powerful gate mechanisms

to remember and forget information about the context selectively.

However, the introduction of gating in LSTMs might not be

sufficient to address the gradient vanishing and explosion issue

fully. Empirically, previous work has found that LSTM language

models use 200 context words on average [19], indicating room

for further improvement. To ease this issue, attention mechanisms

[2, 37], which add direct connections between long-distance word

pairs, are proposed. For example, the Transformer [37] is an ar-

chitecture based solely on attention mechanism. It uses a multi-

headed self-attention mechanism to replace the recurrent layers

to reduce sequential computation and capture longer-range de-

pendency. However, the Transformer networks are limited by a

fixed-length context in the setting of language modeling. To ad-

dress this issue, Transformer-XL [8] is proposed by introducing the

notion of recurrence into the deep self-attention network. Thus it

enables the Transformer networks to model the very long-term de-

pendency. In our model, we adopt Transformer-XL as the language

model for the purpose of capturing the long-term dependency in

programs.

Multi-task LearningMulti-task learning is an approach for knowl-

edge transfer across related tasks. It improves generalization by

leveraging the domain-specific information contained in the train-

ing signals of related tasks [5]. It acts as a regularizer by introducing

an inductive bias. As such, it reduces the risk of over-fitting [34].

There are two most commonly used ways to perform multi-task

learning in deep neural networks: hard or soft parameter sharing

of hidden layers. In soft parameter sharing, each task has its own

hidden layers and output layer. To ensure the parameters of each

task to be similar, the distance between the parameters of each

task is regularized. Hard parameter sharing is the most commonly

used way, where the hidden layers are shared among all tasks, and

the output layers are task-specific. The shared hidden layers can

capture the common features among all the tasks. Furthermore,

by preferring the representation that all tasks prefer, the risk of

over-fitting is reduced, and the model can be more general to new

tasks in the future. To the best of our knowledge, MTL has not been

applied to modeling source code. In this paper, we invent a novel

MTL model to improve the performance of code completion.

4 PROPOSED MODEL

In this section, we first present an overview of the network archi-

tecture of our proposed model. Then we introduce each component

of the model in detail.

4.1 Overall Architecture

Figure 2 shows the architecture of our proposed model. At every

point in the code (AST), our model gives a list of possible next nodes

along with their probabilities that are estimated from the training

corpus. We adopt Transformer-XL based language model as the

partial AST encoder, which enables the Transformer network [37]

to model very long-term dependency in the AST node sequence by

introducing the recurrence into the deep self-attention network. We

design a path2root encoder to capture the hierarchical information

of the predicting node. Then we combine the output of the partial

AST encoder and the path2root encoder together and use it to make

predictions on the next node’s type and value. MTL is adopted

to learn these two tasks jointly. We argue that there exist some

common features between these two tasks, and these features can

be learned simultaneously. Thus, we employ the hard parameter

sharing in our MTL framework, where the partial AST encoder
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Figure 2: The architecture of our model, including partial AST encoder, path2root encoder and task-specific output layers.
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and the path2root encoder are shared between tasks, and the task-

specific output layers are used to produce task-specific outputs.

4.2 Program Representation

The programming language has an unambiguous context-free gram-

mar, where each program can be parsed into a unique AST. ASTs

are widely used for processing programs to extract the syntax and

structure of programs [21, 29, 32]. We use ASTs to represent pro-

grams in our model and traverse them to node sequences. As shown

in Figure 3, we use “Type[value]" to represent each node. For non-

leaf nodes that do not have the value attribute, we use a special

symbol “EMPTY” to represent their value. We first flatten each AST

in in-order depth-first traversal to produce a sequence of nodes.

Then we represent both the Type and Value as real-valued vec-

tors, and concatenate them as the final representation of the nodes

𝑥𝑖 = [𝑇𝑖 ;𝑉𝑖 ], where 𝑇𝑖 is the type vector, 𝑉𝑖 is the value vector, and
“;” denotes the concatenation operation.

4.3 Partial AST Encoder

In our training and test datasets, the programs are represented as

node sequences. The completion happens at every point in the

node sequence, and the nodes before the point form as the contex-

tual partial AST. 1 We adopt the Transformer-XL network [8] to

encode the partial AST, which captures the long-range dependen-

cies in the sequence. In the vanilla Transformer language model,

1In practice, we can use existing tools such as jdt to parse the incomplete programs
into incomplete ASTs by replacing the problematic nodes with some placeholders

the length of the context is fixed. To address the limitations of

using a fixed-length context, Transformer-XL is proposed to in-

troduce a recurrence mechanism to the Transformer architecture.

In Transformer-XL architecture, the hidden states of each new

input segment are obtained by reusing that of the previous seg-

ments, instead of computing from scratch. In this way, the recurrent

connection is created, and the reused hidden states can serve as

memories for the current segment, which enables the information

to propagate through the recurrent connections. Thus the model

can capture very long-term dependency.

Formally, let 𝑠𝜏 = [𝑥𝜏,1, 𝑥𝜏,2, ..., 𝑥𝜏,𝐿] and 𝑠𝜏+1 = [𝑥𝜏+1,1, 𝑥𝜏+1,2,
..., 𝑥𝜏+1,𝐿] represent two consecutive segments of length 𝐿. For the
𝜏-th segment 𝑠𝜏 , the 𝑛-th layer hidden state sequence is denoted
as ℎ𝑛𝜏 ∈ R

𝐿×𝐻 , where 𝐻 is the dimension of the hidden units. The

𝑛-th layer hidden state for segment 𝑠𝜏 is computed as:

ℎ̃𝑛−1𝜏+1 = [𝑆𝐺 (ℎ𝑛−1𝜏 ) ◦ ℎ𝑛−1𝜏+1 ]

𝑞𝑛𝜏+1, 𝑘
𝑛
𝜏+1, 𝑣

𝑛
𝜏+1 = ℎ𝑛−1𝜏+1𝑊

𝑇
𝑞 , ℎ̃𝑛−1𝜏+1𝑊

𝑇
𝑘 , ℎ̃𝑛−1𝜏+1𝑊

𝑇
𝑣

ℎ𝑛𝜏+1 = Transformer-Layer(𝑞𝑛𝜏+1, 𝑘
𝑛
𝜏+1, 𝑣

𝑛
𝜏+1)

(3)

where 𝑆𝐺 (·) stands for stop-gradient, that is, we don’t calculate
gradients for the 𝜏-th segment. The notation [ℎ𝑢 ◦ℎ𝑣] indicates the
concatenation of two hidden sequences along the length dimension,

and 𝑊𝑇
. denotes model parameters. Compared to the standard

Transformer, the critical difference lies in that the key 𝑘𝑛𝜏+1 and

value 𝑣𝑛𝜏+1 are conditioned on the extended context ℎ̃
𝑛−1
𝜏+1 and hence

ℎ𝑛−1𝜏+1 cached from the previous segment. The Transformer-layer

consists of multi-head self-attention mechanism and a position-

wise fully connected feed-forward network. Besides, to keep the

positional information coherent when we reuse the states, relative

positional embedding is adopted, and the detailed computation

procedure can be found in Dai et al. [8].

4.4 Path2root Encoder

To model the hierarchical structural information of the predicting

node, we extract the path from the predicting node to the root node,

i.e., 𝑝1𝑡 , 𝑝
2
𝑡 , ..., 𝑝

𝑚
𝑡 , where𝑚 is the length of the path, 𝑝𝑖𝑡 is the type of
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the 𝑖-th node in the path at time step 𝑡 . 2 Taking the AST in Figure 3
as an example, when predicting the last nodeNameLoad[b], the path

from it to the root node contains the nodes {BinOp, Return, body,

FunctionDef}. As shown in Figure 2, we design a bidirectional-LSTM

[35] based path2root encoder, which encodes the nodes in the path

to produce a path vector. The hidden states for both directions of

the bi-LSTM are computed as follows:

−→
ℎ𝑖𝑡 =

−−−−→
𝐿𝑆𝑇𝑀 (𝑝𝑖𝑡 ,

−−−→
ℎ𝑖−1𝑡 )

←−
ℎ𝑖𝑡 =

←−−−−
𝐿𝑆𝑇𝑀 (𝑝𝑖𝑡 ,

←−−−
ℎ𝑖−1𝑡 )

(4)

−→
ℎ𝑚𝑡 and

←−
ℎ𝑚𝑡 contain the path’s forward information and backward

information. We concatenate
−→
ℎ𝑚𝑡 and

←−
ℎ𝑚𝑡 to obtain the final path

vector 𝑃𝑡 for each time step, i.e., 𝑃𝑡 = [
−→
ℎ𝑚𝑡 ;

←−
ℎ𝑚𝑡 ]. In this way, we can

reduce the chance that the model might forget the information of

the top nodes or the bottom nodes when the path is long.

4.5 Task-specific Output Layers

Tasks. Given a sequence of AST nodes, the code completion model

is adopted to predict the next node, including node’s type and value.

These two attributes are closely related and interacted. Therefore,

in our model, we adopt MTL to learn these two tasks together.

Output Layers. In our model, we adopt task-specific output layers

to produce task-specific outputs. The output of the partial AST

encoder ℎ𝑛𝑡 and path vector 𝑃𝑡 are concatenated to compute the

task-specific output vector𝑂𝑘
𝑡 . Sotfmax function can takes as input

a vector of 𝑁 real numbers, and normalizes it into a probability

distribution consisting of 𝑁 probabilities proportional to the ex-

ponentials of the input numbers. We use the softmax function to

produce the probability distribution of the outputs 𝑌𝑘
𝑡 :

𝑂𝑘
𝑡 = tanh(𝑊 𝑜 (ℎ𝑛𝑡 ; 𝑃𝑡 ))

𝑌𝑘
𝑡 = softmax(𝑊 𝑦𝑂𝑘

𝑡 + 𝑏𝑦)
(5)

where 𝑊 𝑜 ∈ R𝐻×(𝐻+𝐻𝑝 ) ,𝑊 𝑦 ∈ R𝑉×𝐻 , 𝑏𝑦 ∈ R𝑉 are trainable

parameters. 𝑉 is the vocabulary size, 𝐻𝑝 is the hidden size of the

path2root encoder, and “;” denotes the concatenation operation.

4.6 Training

To learn the related tasks jointly, we adopt a weighted sum over

the task-specific losses as the final loss:

𝑙𝑜𝑠𝑠 =
𝑁∑
𝑘=1

𝛼𝑘 × 𝑙𝑜𝑠𝑠𝑘 (6)

where N is the number of tasks. 𝛼𝑘 is the weight of the loss for the

𝑘-th task, and 𝛼𝑘 ≥ 0,
∑𝑁
𝑘=1 𝛼𝑘 = 1. In this paper, by default, we

set the weights for the two tasks as 0.5 and 0.5, respectively. The

effect of different weight settings will be discussed in Section 6.

5 EXPERIMENTS AND ANALYSIS

In this section, we present the experiments and analysis. Firstly,

we introduce the datasets and the experimental setup. Then we

2The nodes in the path are non-leaf nodes, and they do not have the value attribute.
Thus, we use the node’s type as the representation for the nodes in the path.

Table 1: Detailed information of datasets.

Python Java JavaScript

# of Type 330 175 95

# of Value 3.4 × 106 2.1 × 106 2.6 × 106

# of Training Queries 6.2 × 107 2.6 × 107 10.7 × 107

# of Test Queries 3.0 × 107 1.3 × 107 5.3 × 107

Avg. nodes in AST 623 266 1730

propose the two research questions and conduct experiments to

answer them.

5.1 Dataset and Metrics

Weevaluate ourmodel on three datasets: Python, Java, and JavaScript.

Python and JavaScript datasets are collected from GitHub reposito-

ries by removing duplicate files, removing project forks, keeping

only programs that parse and have at most 30,000 nodes in the

AST, and they are publicly available.3 Each dataset contains 100,000

training programs and 50,000 test programs. Both source code files

and their corresponding ASTs are provided. These two datasets

have been used in Li et al. [21] and Raychev et al. [32]. Java dataset

comes from Hu et al. [17], where the programs are also collected

from Github. We randomly sample 100,000 Java programs for train-

ing and 50,000 for test. We use javalang 4 to parse the programs into

ASTs, and we make it public available.5 For all the datasets, each

program is represented in its AST format, and the AST is serialized

in in-order depth-first traversal to produce the AST node sequence.

Then we generate queries used for training and test, one per AST

node, by removing the node and all the nodes to the right from the

sequence and then attempting to predict the node. The number of

type attributes and value attributes of AST nodes, the queries of the

programs, and the average length of the AST nodes in programs

are shown in Table 1.

We use accuracy to evaluate the performance of our model. In

the code completion task, the model provides an ordered list of sug-

gestions for each node’s type or value in the source code file given

the context. We compute the top-1 accuracy, i.e., the fraction of

times the correct suggestion appears in the first of the predicted list.

Directly comparing accuracies by the difference or direct propor-

tion may lead to inflated results (>100% improvement). Therefore,

we also use normalized improvement in accuracy (Imp. Accuracy)

[7] to measure the “the room for improvement”:

𝐼𝑚𝑝. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐴𝑐𝑐𝑥 −𝐴𝑐𝑐𝑦

𝐴𝑐𝑐𝑢𝑏 −𝐴𝑐𝑐𝑦
, if 𝐴𝑐𝑐𝑥 > 𝐴𝑐𝑐𝑦

𝐴𝑐𝑐𝑥 −𝐴𝑐𝑐𝑦

𝐴𝑐𝑐𝑦
, otherwise

(7)

where 𝐴𝑐𝑐𝑥 represents the accuracy obtained by model 𝑥 , 𝐴𝑐𝑐𝑦
represents the accuracy obtained by model 𝑦, and 𝐴𝑐𝑐𝑢𝑏 represents
the upper bound of the accuracy 6. Thus, this metric can measure

the room for improvement of model 𝑥 over model 𝑦.

3in http://plml.ethz.ch
4https://github.com/c2nes/javalang
5https://drive.google.com/open?id=1xxnYAu8L5i6TpNpMNDWxSNsOs3XYxS6T
6For the next node’s type prediction, the upper bound of the accuracy is 100%. For the
next node’s value prediction, since the UNK targets are treated as wrong predictions,
the upper bound of the accuracy is less than 100%, which depends on the OoV rate of
the dataset.
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Table 2: Accuracy comparison of state-of-the-art approaches and our proposed model. The numbers in the bracket following

the results of the baseline models show the normalized improvement accuracy of our model over the baselines.

Python Java JavaScript

Type Value Type Value Type Value

Nested Cache N-gram 73.2% (51.2%) - 69.3% (40.4%) - 69.5% (71.5%) -

Pointer Mixture Network 80.6% (32.5%) 70.1% (16.4%) 75.9% (24.1%) 70.7% (14.7%) 88.6% (23.7%) 81.0% (12.5%)

Our Model 86.9% 73.2% 81.7% 73.1% 91.3% 82.5%

5.2 Experimental Setup

To make a fair comparison with Li et al. [21], we use the same pa-

rameters proposed in their paper, including embedding size, hidden

size of the AST encoder, vocabulary size, etc. The embedding sizes

for type and value are 300 and 1,200, respectively. Hence, the size of

the AST node vector is 300 + 1200 = 1500. As shown in Table 1, the

number of the value attribute is large. Followed by Li et al. [21], we

choose the 50,000 most frequent values to build value’s vocabulary

for all the three datasets. For those values outside the vocabulary,

we use UNK (unknown values) to represent them. The UNK rate

for Python, Java, and JavaScript are 11%, 13%, and 7%, respectively.

All the types are used to build type’s vocabulary.

For the partial AST encoder, we use a 6-layer Transformer-XL

network [8]. We employ ℎ = 6 parallel heads, and the dimension

of each head 𝑑ℎ𝑒𝑎𝑑 is set to 64. We set the segment length to 50,

which is the same as the LSTM’s unrolling length (the length of

the input sequence) in Li et al. [21]. The dimensionality of the

hidden unit is 𝐻 = 1500. Through the recurrent mechanism, we can

cache previous segments and reuse them as the extra context when

processing the current segment. Considering the GPU memory and

training time, we set the length of cached hidden states 𝑀 to 256.

In our experiment, as we increase 𝑀 , the accuracy also increases.

When 𝑀 is increased to 1024, the accuracy stops increasing, which

demonstrates that our model can use up to about 1024 context

tokens. For the LSTM-based model, the accuracy stops increasing

when the unrolling length increases to 256, which demonstrates

that LSTM language models can only use less than 256 contextual

tokens in this experiment, which is consistent with the findings in

[19].

The dimension of the feed-forward layer in the Transformer is

set to 1024. For the path2root encoder, we employ a single layer

bidirectional-LSTM. In our model, we set the length of the path

to𝑚. For the nodes whose length is over𝑚, we preserve𝑚 nodes

in the path from the predicting node to the root. For the nodes

whose length is less than𝑚, we pad the path to the length of𝑚.

Considering the trade-off between time cost and performance, we

set the length of path 𝑚 to 5 and the hidden size of path2root

encoder and path vector size to 300, which can offer a considerable

improvement and would not increase much time cost.

To train the model, we employ the cross-entropy loss and Adam

optimizer [20]. In both the training and test process, the predictions

of the UNK targets are treated as wrong predictions as in Li et al.

[21]. Each experiment is run for three times, and the average result

is reported. The hyper-parameters are selected on the validation

set, that is, we choose the hyper-parameters settings associated

with the best validation performance. We implement our model

using Tensorflow [1] and run our experiments on a Linux server

with the NVIDIA GTX TITAN Xp GPU with 12 GB memory.

5.3 Research Questions and Results

To evaluate our proposed approach, in this section, we conduct

experiments to investigate the following research questions:

RQ1: How does our proposed approach perform in code com-

pletion when compared with state-of-the-art models? To an-

swer this research question, we compare our model with the fol-

lowing state-of-the-art models:

• Nested Cache N-gram model [13]: an improved N-gram

model which considers the unlimited vocabulary, nested

scope, locality, and dynamism in source code.

• Pointer Mixture Network [21]: an attention and pointer-

generator network-based code completion model.

The results are shown in Table 2. Hellendoorn and Devanbu

[13] offers jar7 to run their model. The input of their model is the

token sequence, and the output is the accuracy of the next token’s

prediction on the whole dataset. In our datasets, the source code

is represented as the AST node sequence. Each node has a type

attribute, and the non-leaf nodes do not have a value attribute. We

can only get the complete type sequence as input data for their

model. So there are no results on the next value prediction.

As can be seen from the results, on all the three datasets, our

model outperforms all the baselines on both the next node’s type

and value prediction. For the next node’s type prediction, our model

achieves the accuracy of 87%, 82%, and 91% on these three datasets

respectively, which improves Nested N-gram model by 51%, 40%,

and 72%, and improves Pointer Mixture Network by 33%, 24%, and

24%, in terms of normalized improvement in accuracy. For the next

node’s value prediction, our model achieves the accuracy of 73%,

73%, and 83% on three datasets, which improves Pointer Mixture

Network by 16%, 15%, and 13%, in terms of normalized improvement

in accuracy. In the value prediction, the predictions of the UNK

targets are treated as wrong predictions. The UNK rates for Python,

Java, and JavaScript are 11%, 13%, and 7%. Therefore, when comput-

ing the normalized improvement in accuracy, the upper bounds of

the accuracy for the three datasets are 89%, 87%, and 93%, not 100%.

In Li et al. [21]’s model, Pointer Network is adopted to address the

OoV issue in the value prediction. Different from their model, our

model does not introduce the pointer network and can still outper-

form them. We apply the Wilcoxon Rank Sum Test (WRST) [39] to

test whether the improvements of our model over baselines are sta-

tistically significant, and all the p-values are less than 1e-5, which

indicates significant improvements. We also use Cliff’s Delta [28]

to measure the effect size, and the values are non-negligible. From

7https://github.com/SLP-team/SLP-Core/releases
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Table 3: Effectiveness of each component in our proposed model.

Python Java JavaScript

Type Value Type Value Type Value

Full model 86.9% 73.2% 81.7% 73.1% 91.3% 82.5%

- MTL 84.2% 71.8% 79.7% 71.6% 89.5% 80.8%

- Path2root Encoder 84.8% 72.2% 80.1% 72.4% 90.6% 81.6%

- Recurrence 80.4% 67.6% 76.1% 67.6% 85.8% 77.9%

vanilla Transformer-XL 82.3% 69.8% 78.0% 70.6% 88.5% 80.1%

Table 2, we also notice that the improvements on the JavaScript are

not as good as the other two datasets. The reason might lie in that

the correlation between the node’s type and value in JavaScript is

weaker than Python and Java. As shown in Table 1, the category of

the node’s type for JavaScript is much less (only 95 types) compared

with Python or Java, but one type can correspond to many values,

which could result in the limited improvement.

RQ2: What is the effectiveness of each component for our

proposed model? We perform an ablation study to examine the ef-

fects of two proposed components used in our model: the Multi-task

Learning mechanism and the new path2root encoder. We conduct

experiments without either MTL or path2root encoder, and we also

conduct experiments on the vanilla Transformer-XL network by

removing both of these two components. Besides, to verify whether

capturing the long-range dependency from the input programs

helps, we also conduct an experiment of removing the recurrent

mechanism from the Transformer-XL architecture. The results are

shown in Table 3. The first row shows the results of our full model.

The second row presents the results of removing MTL from the

full model, and the third row removes the path2root encoder from

the full model. The results of removing the recurrent mechanism

from the Transformer-XL architecture are shown in the fourth

row. The results of the vanilla Transformer-XL are shown in the

last row. As seen from the results, removing either MTL or the

path2root encoder results in a drop in the accuracy, and remov-

ing MTL drops more, which demonstrates that both the Multi-task

Learning mechanism and the path2root encoder are necessary to

improve the performance, and MTL contributes more to the im-

provements. When removing the recurrent mechanism from our

full model, the accuracy drops a lot, even lower than the vanilla

Transformer-XL network. These results demonstrate that capturing

long-range dependency is of great importance and necessity for

language modeling, and it serves as the basis of other improve-

ments made in this paper. The statistical testing also shows that

the improvements are statistically significant, and the effect sizes

are non-negligible.

6 DISCUSSION

6.1 Learning Process Analysis.

To find out why our proposed model performs better, we analyze

the learning process of the state-of-the-art baseline model (Pointer

Mixture Network [21]) and our proposed model. Figure 4 shows

the loss of predicting the next node’s type after every epoch on

Python’s training and test set for the two models. As seen from the

figure, the difference between the training loss and test loss is large

in the baseline model, which is obviously the result of over-fitting.

2 4 6 8
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1.6

1.8

2

Epoch

L
o
ss

Train: baseline

Test: baseline

Train: our model

Test: our model

Figure 4: The cross-entropy loss on training and test set for

baseline model and our model.

While in our model, the difference is much smaller. Furthermore,

the test loss of our model is lower than the baseline model at each

epoch. The reason lies in three aspects: (1) by utilizing the hierarchi-

cal structural information of AST and the information contained in

the training signals of related tasks, our proposed model can extract

more accurate and common features from programs, and thus can

achieve better performance; (2) adopting the Transformer-XL archi-

tecture to model the long-range dependency in the programs helps

our model capture more information from the context and thus

improves model’s performance; (3) multi-task learning provides an

effective regularization method through knowledge sharing among

tasks, thus can improve the model’s performance by decreasing

the difference between training and test loss, which to some extent

prevents the model from over-fitting. For another two datasets, i.e.,

Java and JavaScript, we have the same observations and findings.

6.2 Training Cost Analysis

To evaluate the cost of the improvements, we count the number of

parameters and record the training time of our model and Li et al.

[21]’s model. To evaluate the cost of our proposed components,

we also present these statistics data of the vanilla Transformer-XL

network and removing one of the components from our model.

Due to the page limitation, we take the training time in the Python

dataset as an example. The run-time in the test process is very fast

(about 0.1 milliseconds per query), and the difference in the test

time among different models is little. Thus, we do not compare the

test time. The number of trainable parameters and the training time

are presented in Table 4.

For the number of training parameters, the 6-layer Transformer-

XL network uses only 59% of the parameter budget compared to

Pointer Mixture Network [21] but can achieve comparable perfor-

mance with them. In our model, we adopt Transformer-XL as the

language model and apply Multi-task Learning to learn two tasks

jointly and propose a new path2root encoder, which leads to an
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Table 4: Training cost analysis in the Python dataset.

Model # of Parameters Training Time

Pointer Mixture Network 162.6M 34 hours

vanilla 6-layer Transformer-XL 95.8M 15 hours

our model 98.9M 25 hours

- MTL 96.8M 22 hours

- Path2root Encoder 97.6M 20 hours

increase of the trainable parameters compared with the vanilla

Transformer-XL networks. In our framework, the partial AST en-

coder, path2root encoder are shared among all tasks, and only the

output layers are task-specific. Thus, the parameter increasing is

slight, only by 3.2% (from 95.8M to 98.9M). But the number of

trainable parameters of our model is only 60.8% of the number of

trainable parameters in Pointer Mixture Network. Besides, we also

count the number of the parameters of removing MTL or Path2root

encoder from our model, and the results are presented in the last

two rows in Table 4. The results demonstrate that the additional pa-

rameters of integrating these two components into Transformer-XL

increase a small number of parameters.

For the training time, our full model spends 74% of the time

compared to Pointer Mixture Network [21]. In Pointer Mixture

Network, they adopt LSTM as the language model, where most of

the recurrent computations are performed during the hidden states’

updating process.While in ourmodel, Transformer-XL [8] is used as

the language model. In Transformer-XL, the representations of each

input for each segment are computed relying on the self-attention

layers, and the recurrence only happens between segments. Thus,

it allows for substantially more parallelization and requires less

time to train. When removing MTL, the training time decreases

slightly (from 25 hours to 22 hours) because most of the parameters

are shared between tasks. Thus, applying MTL will not introduce

much additional training time during the training process. Adding

a path2root encoder into our model is an improvement towards

the model’s structure. It increases the model’s complexity, which

leads to increased training time. When removing the path2root

encoder from our full model, the training time is reduced by 5

hours. Compared to vanilla Transformer-XL, applying the MTL and

Path2root encoder will increase the training time, but considering

the improvements, the increase is acceptable.

In summary, our model uses 59% of the parameter budget and

spends 74% of the run-time to train compared to Pointer Mixture

Network [21], and can still outperform them statistically significant

and by a substantial margin. We also have the same observations

and results for the other two datasets, i.e., Java and JavaScript.

6.3 Effect of Weights for Task-specific Loss.

In our MTL-based model, we use a weighted sum over task-specific

losses as the final loss. By default, we set the weights for the two

tasks as 0.5 and 0.5. The performance of the model is related to

the choice of weighting between the tasks’ loss. To show the effect

of the weights, we present the results of different weight settings

on our model in Table 5. 𝛼1 is the weight of the loss for the next
node’s type prediction task, and 𝛼2 is the weight of the loss for the
next node’s value prediction task. When one of the weights is set

to 0, the model becomes a single-task model. As expected, when

Table 5: The results of differentweight settings in ourmodel.

𝛼1 𝛼2
Python Java JavaScript

Type Value Type Value Type Value

Li et al. [21] 80.6% 70.1% 75.9% 70.7% 88.6% 81.0%

1.0 0 84.2% - 79.7% - 89.5% -

0.7 0.3 86.9% 71.5% 81.7% 71.6% 91.3% 80.3%

0.5 0.5 85.4% 72.0% 80.8% 72.7% 90.8% 81.0%

0.3 0.7 83.9% 73.2% 79.8% 73.1% 89.5% 82.5%

0 1.0 - 71.8% - 71.6% - 80.1%

Table 6: Difficult type predictions on JavaScript

Difficult Type Pointer Mixture Network Our Model

ContinueStatement 65.6% 88.5%

ForStatement 65.5% 89.0%

WhileStatement 79.8% 88.9%

ReturnStatement 61.4% 89.0%

SwitchStatement 45.9% 88.2%

ThrowStatement 54.1% 88.0%

TryStatement 57.3% 88.9%

IfStatement 68.3% 89.0%

giving more weight to a task’s loss, the accuracy of this task will

be increased. However, when assigning a high weight to one task

(e.g., set 𝛼1 or 𝛼2 as 1), the advantage of the MTL would be affected,
which results in poor performance.

6.4 Qualitative Analysis

Difficult type predictions. Predicting the structure of the code,

such as loops, if statements, and exception handling statements,

is overall a very hard task [32]. Raychev et al. [32] define a set

of types on JavaScript that are hard to predict and name them as

“difficult type prediction”. We evaluate our model’s performance

on these types’ prediction and compare our model with Pointer

Mixture Network [21] on the same test set. The results are shown

in Table 6. As seen from the table, our model outperforms Pointer

Mixture Network by a large margin in all these types. Besides, in

our model, the variance of the accuracies for predicting each token

is much smaller than the Pointer Mixture Network. The accuracies

are mostly distributed in the range of 88% - 93%. In Pointer Mixture

Network, the accuracies of those low-frequency tokens are very

low. For example, “SwitchStatement” only appears 2625 times in

the test set, the accuracy is only 45.9% in Pointer Mixture Network.

While in our model, the accuracy is 88.2%, which is much higher

than the Pointer Mixture Network. These results demonstrate that

our model can discover the structure of programs and achieve an

excellent generalization performance on structure predictions.

Example completion. Here, we present code completion exam-

ples on Python to analyze the performance of our proposed model.

We take several positions in a Python code snippet to test the per-

formance of our model and the baseline model. We show the top

three predictions of our model and the baseline model of Pointer

Mixture Network [21]. The results are shown in Figure 5. We divide

the cases of the prediction into two situations:

a) The effect of the path information. In the first example, the

target prediction __name is a parameter for the function __init__,

and its corresponding node’s type is NameParam. The path from it
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Figure 5: Code completion examples.

to the root node (shown on the right side of the example) implies

the information that the prediction is a parameter of a function,

thus it can help our model to make the correct prediction on the

node’s type. For the baseline model, it can only learn from the

sequential context and fail to produce the right prediction. Similarly,

in the third example, the target prediction def means a function

definition, where its corresponding node’s type is FunctionDef. With

the information contained in the path, our model can make the

correct prediction, while the baseline model fails. In the fourth

example, both of our model and the baseline model fail to produce

the correct prediction return. In this case, the path cannot offer

accurate information because there exist many possible children

for a function’s body. Thus, our model produces Expr, which is also

a grammatical child. The correct prediction is ranked second in our

model and is ranked third in the baseline model. In cases like this,

our model might make wrong predictions.

b) The effect of MTL. In the second example, the target prediction

self is not a new variable and has been used in the previous context.

By correctly predicting NameLoad in the node’s type prediction

task, our model can realize the value of the node is an already used

value in the previous context. Thus it can identify the value from

the context through the pointer. For the baseline model, it may not

realize the prediction is a variable accessing operation without the

help of the auxiliary task. Thus, it just predicts EMPTY which is

the most frequent node’s value in our corpus. The last example is

also in the same way.

6.5 Threats to Validity

Threats to external validity relate to the quality of the datasets

we used and the generalizability of our results. Python and JavaScript

are two benchmarked datasets that have been used in previous
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code completion work [21, 23, 32]. Java dataset we used is from Hu

et al. [17]. All of the programs in the datasets are collected from

GitHub repositories, and each dataset contains 100,000 training

programs and 50,000 test programs. However, further studies are

needed to validate and generalize our findings to other program-

ming languages. Furthermore, our case study is small scale. More

user evaluation is needed to confirm and improve the usefulness of

our code completion model.

Threats to internal validity include the influence of the weight-

ings between each task’s loss i.e., 𝛼𝑘 . The performance of our model
would be affected by the different weights (discussed in Section

6.3), which are tuned by hand in our experiments. However, the

default weight settings of 0.5 and 0.5 for the next node’s type and

value prediction loss can still achieve a considerable performance

increase. Take the experiments on the Python dataset as an example,

default weight setting achieves 5% (from 80.6% to 85.4%) improve-

ments in accuracy on the next node’s type prediction compared

with Li et al. [21], which are only 1.5% lower than the best weight

settings. And the results in the next node’s value prediction are also

similar. Another threat to internal validity relates to the errors in

the implementation of the baseline methods. For Hellendoorn and

Devanbu [13], we directly used their published jars. Thus, there is

little threat to approach implementation.

Threats to construct validity relate to the suitability of our eval-

uation measure. We use accuracy as the metric which evaluates the

proportion of correctly predicted next node’s type or value. It is

a classical evaluation measure for code completion and is used in

almost all the previous code completion work [13, 14, 21, 32, 36].

7 RELATEDWORK

Code Completion Code completion is a hot research topic in

the field of software engineering. Early work in code completion

bases on on heuristic rules and static type information to make sug-

gestions [16], or bases on similar code examples [4] and program

history data [33]. Since Hindle et al. [14] found that source code con-

tained predictable statistical properties, statistical language models

began to be used for modeling source code [13, 21, 30, 36], where

N-gram is the most widely used model. [36] observed that source

code has a unique property of localness, which could not be cap-

tured by the traditional N-gram model. They improved N-gram by

adding a cache mechanism to exploit localness and achieved better

performance than other N-gram based models. Hellendoorn and De-

vanbu [13] introduced an improved N-gram model that considered

the unlimited vocabulary, nested scope, locality, and dynamism in

source code. Their evaluation results on code completion showed

that their model outperformed existing statistical language models,

including deep learning based models. Thus we choose their model

as a baseline. Raychev et al. [32] proposed a probabilistic model

based on decision tree and domain-specific grammars. They per-

formed experiments to predict AST nodes on Python and JavaScript

datasets.

In recent years, deep recurrent neural network-based language

models have been applied to learning source code and have made

great progress [3, 21, 38]. Liu et al. [23] proposed a code completion

model based on a vanilla LSTM network. Bhoopchand et al. [3]

proposed an RNN model with a sparse pointer mechanism aiming

at capturing long-range dependencies. Li et al. [21] proposed a

pointer mixture network to address the OoV issue. For the next

node’s type prediction, their model outperforms Raychev et al. [32]

on both Python and JavaScript datasets. For the next node’s value

prediction, their model outperforms Raychev et al. [32] on Python

and achieves comparable performance on JavaScript. Li et al. [21]

has achieved state-of-the-art results, which is used as a baseline in

this paper. In the above work, RNNs, in particular, LSTM neural

network-based language models are adopted to model the programs.

However, these techniques are found not sufficient to model the

long-term dependencies in the sequential data [19]. In our model,

we adopt Transformer-XL [8] as the language model to capture the

long-range dependencies in the programs. Besides, we also propose

a novel method to introduce the hierarchical structural information

into the program’s representation, which is not well considered in

previous code completion work.

Multi-task LearningMulti-task learning has been used success-

fully across many fields including natural language processing

[10, 12, 24], speech recognition [9] and computer vision [25, 26]. In

the natural language processing area, MTL has been proven effec-

tively in many tasks, such as machine translation [11, 27, 40], text

summarization [12, 18], and sequence labeling [22, 31]. However,

to the best of our knowledge, MTL has not been applied to pro-

gramming language processing yet. In code completion, there exist

several related tasks. For example, predicting the next node’s type

and value in AST. Existing code completion models perform a spe-

cific task in one model, which leads to the underuse of information

from related tasks. In this paper, we apply MTL to code completion

to predict the next node’s type and value jointly and improve the

state-of-the-art statistically significant and substantially.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we propose an MTL-based self-attentional neural

architecture for code completion. For code representation, we pro-

pose a novel method to model the hierarchical information of the

predicting node explicitly. To capture the long-term dependency in

the programs, we apply the Transformer-XL network as the base

language model. For the model’s learning process, we apply MTL

to enable knowledge sharing between related tasks. Experimental

results demonstrate that the proposed model achieves better results

than previous state-of-the-art models. To the best of our knowl-

edge, we are the first to apply MTL and Transformer-XL to code

completion. We believe this work represents a significant advance

in programming language modeling, which will be beneficial as a

building block for many other applications in this area.

In the future, we plan to improve the effectiveness of our pro-

posed model by introducing domain-specific constraints such as

grammar rules.
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