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ABSTRACT
Searching and reusing existing code from a large-scale codebase,
e.g, GitHub, can help developers complete a programming task effi-
ciently. Recently, Gu et al. proposed a deep learning-based model
(i.e., DeepCS), which significantly outperformed prior models. The
DeepCS embedded codebase and natural language queries into
vectors by two LSTM (long and short-term memory) models sep-
arately, and returned developers the code with higher similarity
to a code search query. However, such embedding method learned
two isolated representations for code and query but ignored their
internal semantic correlations. As a result, the learned isolated rep-
resentations of code and query may limit the effectiveness of code
search.

To address the aforementioned issue, we propose a co-attentive
representation learning model, i.e., Co-Attentive Representation
Learning Code Search-CNN (CARLCS-CNN). CARLCS-CNN learns
interdependent representations for the embedded code and query
with a co-attention mechanism. Generally, such mechanism learns
a correlation matrix between embedded code and query, and co-
attends their semantic relationship via row/column-wisemax-pooling.
In this way, the semantic correlation between code and query can
directly affect their individual representations. We evaluate the ef-
fectiveness of CARLCS-CNN on Gu et al.’s dataset with 10k queries.
Experimental results show that the proposed CARLCS-CNN model
significantly outperforms DeepCS by 26.72% in terms of MRR (mean
reciprocal rank). Additionally, CARLCS-CNN is five times faster
than DeepCS in model training and four times in testing.

CCS CONCEPTS
• Software and its engineering → Search-based software engi-
neering.
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1 INTRODUCTION
During software development, developers often spend 19% of their
time searching some reusable code examples to save their devel-
opment efforts [6, 24, 43]. To improve the development efficiency,
developers frequently search and reuse existing code from large-
scale open source repositories [33, 42, 64], such as GitHub [1].

However, developing a satisfactory code search engine is chal-
lenging [11, 24, 40]. Early studies start by leveraging Information
Retrieval (IR) techniques, such as the Lucene-based models Koders1,
Krugle2, and Google code search [28, 33, 46]. But these models sim-
ply treat code and search query as plain texts as common web
search engine, and miss the programming information in the con-
text [38]. To capture programming semantics in code and query,
researchers proposed many models [5, 9, 15, 17, 19, 31]. One of the
representative models is Sourcerer proposed by Erik et al. [28] that
integrated Lucene with code structural information. And the other
is CodeHow proposed by Fei et al. [32], which recognized a user
query as relevant APIs, and performed code retrieval by using an
Extended Boolean model.

Nevertheless, the aforementioned models fail to bridge the se-
mantic gaps between programming language in code and natural
language in query [14, 15, 41]. To tackle this issue, Gu et al. [56]
proposed a deep learning-based model called DeepCS3 (Deep Code
Search). It is one of the state-of-the-art approaches. DeepCS embed-
ded code and query into vector spaces by two independent LSTM
(long and short-termmemory) models, learned a joint embedding to
align two vector spaces, and finally returned the code with higher
cosine similarity to an embedded search query. Their experimen-
tal results showed that DeepCS outperforms traditional models
significantly [56], including Sourcerer [28] and CodeHow [32].
1www.koders.com
2www.krugle.com
3https://github.com/guxd/deep-code-search
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In spite of the DeepCS’ advantages over traditional models, we
observe that its joint embedding cannot fully capture the seman-
tic correlations between code and query. For example, in Fig. 1,
DeepCS can only relate the word "file" in query to two APIs in code,
"createNewFile()" and "FileWriter()", because they both contain the
keyword "file". However, in developers’ understanding, four other
APIs should also strongly correlate to the keyword "file", includ-
ing "BufferedWriter()", "write()", "flush()", and "close()". In practice,
there will be semantic gaps between the words used in the task (or
query) description and the APIs relevant to the task. [8, 11]. There-
fore, we assume that without fully understanding such semantic
correlations, DeepCS is unlikely to return an expected code to a
developer’s query.
 /**

  *  query: how to append string to file

  */

 protected void append (String s, File LogFile) {

 if (!LogFile.exists()) {

LogFile.createNewFile();

}

try { 

FileWriter fw = new FileWriter(LogFile, true);

 BufferedWriter writer = new BufferedWriter(fw);

      writer.write(s); 

  writer.flush();

  writer.close();

  } catch (Exception e) {

e.printStackTrace(); 

} 

}

Figure 1: The correlated words between query and code
In order to address the limitation of DeepCS, we propose a

co-attentive representation learning model, called Co-Attentive
Representation Learning Code Search-CNN (CARLCS-CNN). Specif-
ically, it first embeds code and query respectively using a Convolu-
tional Neural Network (CNN) [26] instead of LSTM used in DeepCS
since CNN can capture the informative keywords in query and code
than LSTM better [61], which is also verified in Section 5. Then,
CARLCS-CNN learns interdependent representations for the em-
bedded code and query by a co-attention mechanism. Generally, the
co-attention mechanism learns a correlation matrix based on the
embedded code and query, and leverages row/column-wise max-
pooling on the matrix to enable model focusing on the strongly
correlated keywords between code and query. In this way, their
semantic correlations can directly influence respective representa-
tions.

To evaluate the effectiveness of the proposed CARLCS-CNN
model, we conduct experiments on Gu et al.’s [56] dataset with 10k
queries. Experimental results show that CARLCS-CNN significantly
outperforms DeepCS by 26.72% in terms of MRR (mean reciprocal
rank). Additionally, running CARLCS-CNN is 4 times faster than
DeepCS in code search, and 5 times faster in model training under
the same optimization settings.

In summary, the main contributions of this paper are as follows.
• Wepropose a new co-attentive representation learning-based
model for code search named CARLCS-CNN. It learns inter-
dependent representations for code and query by leveraging
the CNN and the co-attention mechanism.

• We evaluate the effectiveness of CARLCS-CNN on a public
dataset. The results show that CARLCS-CNN outperforms
the state-of-the-art model DeepCS significantly.

The remainder of the paper is structured as follows. Section 2
introduces the background of code search. Section 3 presents our
proposed model CARLCS-CNN in detail. Section 4 describes our
experiment setup, followed by the experimental results in Section
5 and discussion in Section 6. Section 7 presents the related works
and Section 8 concludes the study and presents future works.

2 BACKGROUND
Our goal is to build an improved deep learning-based model for
code search. This section presents the background on how to lever-
age deep learning models like DeepCS to embed code and query
respectively, build a code search engine with embedded code and
query, and evaluate the model in the practical scenario.

2.1 Code and Query Embedding
In code search, code in programming language and query in nat-
ural language are required to be transformed into vector space
so that their semantic similarity can be measured. In specific, the
embedding is conducted as follows.

Code Embedding. A code like Fig. 1 can be divided into three
components: 1) method name, a list of camel split tokens; 2) API
sequence, a list of API words in method body; 3) tokens, a bag of
words in method body. Before embedding, tokens in components
are first encoded by a vocabulary with top-n frequently appeared
words in context, then transformed them into vectors with the same
dimension (vname , vAPI , vtoken ). Finally, each component vector
is processed by a neural network model for embedding. Usually, the
method name and API sequence are embedded by an LSTM model
because it memorizes the sequential relationship between words.
Meanwhile, the tokens are embedded by a common multilayer
perceptron (MLP) due to the bag-of-words assumption. Then, the
embedded code (vcode ) can be represented by Eq. (1).

vcode = LSTM1(vname ) + LSTM2(vAPI ) +MLP(vtoken ). (1)

Query Embedding. Similarly, the query in natural language, such
as "how to append string to file" in Fig. 1, is treated as a list of words.
The list is encoded by a vocabulary with a fixed length, transformed
into a same dimensional vector (vq ), and finally embedded by an
LSTM model. Therefore, the embedding result (vquery ) can be
represented by Eq. (2).

vquery = LSTM3(vq ). (2)

2.2 Deep Learning for Code Search
In code search, a deep learning-based model learns a joint embed-
ding between code (vcode ) and query (vquery ), so that the code
relevant to a query can be measured by their cosine similarity,

cos =
vcode · vquery
| |vcode | | | |vquery | |

. (3)
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To optimize the parameters (θ ) of LSTM and MLP in code/query
embedding, the loss function aims to maximize the similarity be-
tween a code (vcode ) and a relevant query (v+query ) while minimize
the similarity with an irrelevant query (v−query ). Therefore, the
loss function can be denoted by Eq. (4), where β is a small margin
constraint.

L(θ ) =max(0, β − cos(vcode , v+query ) + cos(vcode , v
−
query )). (4)

In the model training, Gu et al.[56] extracted over 18 million
commented Java code methods from GitHub to generate query-
code pairs, where the first line in Javadoc comment is regarded as
a query.

2.3 Evaluating Code Search
To simulate the code search in practices, for a developer’s query, a
code search model recommends a list of code from the codebase.
Then the model effectiveness can be estimated by analyzing the
rank of the code relevant to the query. In DeepCS’ dataset shared by
Gu et al. [56], there are more than 10k queries with corresponding
ground-truth code.

3 THE PROPOSED MODEL: CARLCS-CNN
In this section, we present the design and implementation details
of our proposed model.

3.1 Overall Structure
Fig. 2 illustrates the overall structure of the proposedmodel CARLCS-
CNN. This model takes a commented code as model inputs. Then,
it performs individual embedding on code and corresponding de-
scription (i.e., the comment) respectively, where code components
(method name, API sequence, and tokens) are processed separately.
Afterwords, CARLCS-CNN learns co-attentive representations.

The following subsections present the model details. Specifically,
Section 3.2 and 3.3 describe the individual embedding for code and
description respectively. Section 3.4 presents the co-attentive repre-
sentation learning for embedded code and query. Section 3.5 and 3.6
provide the details on model optimization and testing separately.

3.2 Code Embedding
Each code consists of three features: method name, API sequence,
and tokens. We implement the code embedding according to the
following four steps:

3.2.1 Method Name Embedding. The word sequence for method
name is extracted by splitting it on the camel-case4. For example,
the method name "readFile" is split into words "read" and "file".
It is easy to find that the size of the split method name is short.
We empirically find that the average length of each method name
sequence is 2.3 in our training data. Therefore it is difficult to utilize
LSTM to extract the sequential features for each method name.
However, the split method name sequence is a brief but exhaustive
summarization of the code’s functionality, which means that the
method name sequence contains the abstract semantic features
of the code. As CNN is supposed to be good at extracting robust

4Camel case, https://en.wikipedia.org/wiki/camelcase

and abstract features, we carry out the method name embedding
through CNN instead of LSTM.

Letmi ∈ R
k be the k-dimensional word vector corresponding to

the i-th word in the method name sequence. A sequence of length
n is represented as

m1:n = m1 ⊕m2 ⊕ ... ⊕mn, (5)
where ⊕ is the concatenation operator. In general, let mi :i+j refers
to the concatenation of words mi , mi+1, ..., mi+j . A convolution
operation involves a filter WM ∈ Rk×h , which is applied to a
window of h words to produce a feature. For example, a feature ci
is generated from a window of wordsmi :i+h−1 by

ci = f (WM ∗mi :i+h−1 + b), (6)
where b ∈ R is a bias term, ∗ is the convolution operator and f is
a non-linear function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the method name
sequence m1:h , m2:h+1, ...,mn−h+1:n to produce a feature map.

Mh = [c1, c2, ..., cn−h+1]. (7)
We have described the process by which one feature is extracted

from one filter. Our model use three types of filters with varying
window size h from 2 to 4. The number of each type of filter is
d. We implement the convolution operation through these filters
to extract three distinctive feature maps namely Mh1 , Mh2 , Mh3
∈ Rd×(n−h+1), respectively. Then, three feature maps are concate-
nated into a summarized one. In other words, method name is
finally embedded to a feature matrix M:

M = Mh1 ⊕ Mh2 ⊕ Mh3 . (8)

3.2.2 Tokens Embedding. Tokens are bags of words that are parsed
from the method body. We notice that duplicate words, stop words,
and Java keywords have been removed during the data preprocess-
ing, which means, tokens are the informative keywords of code.
According to the above considerations, tokens embedding is imple-
mented by using CNN.

A set of k-dimensional tokens of length n are concatenated as
t1:n . We use three types of filters WT ∈ R

k×h with various window
size h from 2 to 4 to perform the convolution. The number of each
type of filter is d. Three types of filters are applied to a window of
h words to derive three feature maps Th1 , Th2 , Th3 ∈ R

d×(n−h+1).
Likewise, tokens are eventually embedded into a feature matrix T:

ci = f (WT ∗ ti :i+h−1 + b), (9)

Th = [c1, c2, ..., cn−h+1] , (10)
T = Th1 ⊕ Th2 ⊕ Th3 . (11)

3.2.3 API Sequences Embedding. Considering the dynamic sequen-
tial features of the API sequence, we implement LSTM to do the
embedding. ai ∈ Rk is the k-dimensional word vector of the i-th
word in the API sequence. An API sequence of length n is concate-
nated as a1:n . The hidden state hi ∈ Rd denotes the representation
of time step i can be obtained by the bi-directional LSTM. Here, d is
the units of each hidden state. Normally, in the bi-directional LSTM,
the hidden state

−→
hi of the forward LSTM is updated by considering

its former memory cell −−→ci−1, the preceding hidden state
−−−→
hi−1 and



ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei

open
a

file

and
output

the
contents

Code Method

Description  

Word Vector Matrix   

 Parameter 

Matrix U

Merged Description

Feature Matrix  D  

/**

 * open a file and output the contents

 */

public void readFile (String path) {

File file = new File(path);

FileReader fr = new FileReader(file);

BufferedReader br = new BufferedReader(fr);

String line = " ";

while (null != (line = br.readLine())) {

System.out.println(line);

}

}

A

CNN

 Embedding

5 Description 

Features 

B
Description Embedding

read
file

Method Name 

Word Vector Matrix   

CNN 

Embedding

1 Method Name 

Feature

1
Method Name Embedding

file

path
buffer

read
line

reader

Tokens 

Word Vector Matrix   

CNN

Embedding

4 Tokens

 Features 

Tokens Embedding

API Sequence 

Word Vector Matrix   

LSTM 

Embedding

2 API Sequence

 Features

API Sequence Embedding

File.new
FileReader.new

BufferedReader.new
BufferedReader.readline

C
Code Embedding

2

3

Merge 

Merge 

Merge 

Merge 

Merged Code

Feature Matrix  C  

Correlation Matrix 

F = tanh(C
T
UD)

Column-Wise 

Maxpooling

&

Softmax  

Row-Wise 

Maxpooling

&

Softmax  

Description 

Attention Vector  

 aD 

Code 

Attention Vector   

aC 

 Dot Product 

 C   aC = rC      

Dot Product 

 D   aD =  rD 

Cosine Similarity 

of 

r
D
 and r

C

Description 

Representation  

rD 

Code 

Representation 

rC 

D
Co-Attentive Representation Learning

Figure 2: overall structure of CARLCS-CNN

the current input word vector ai . Meanwhile, the hidden state
←−
hi

of the backward LSTM is formed by its later memory cell←−−ci+1, next
hidden state

←−−−
hi+1 and the input word vector ai . We can separately

formulate the hidden stats as follows:
−→
hi = tanh

(
−−→ci−1,

−−−→
hi−1, ai

)
, (12)

←−
hi = tanh

(
←−−ci+1,

←−−−
hi+1, ai

)
. (13)

Then, the ultima hidden state hi of time step i is the concatena-
tion of both forward LSTM and backward LSTM:

hi =
−→
hi ⊕

←−
hi . (14)

Finally, the API sequence is embedded by concatenating all the
output hidden states to a feature matrix A ∈ Rd×n :

A = h1 ⊕ h2 ⊕ ... ⊕ hn, (15)

where n is the number of hidden states.

3.2.4 Code Features Fusion. After embedding three code features
to three matrixes. We eventually merge them into one matrix C
∈ Rd×p as the feature matrix for code:

C = M ⊕ T ⊕ A. (16)

3.3 Description Embedding
We find that the length of the description is usually short. In Section
4.2, we perform statistical research over the 10k evaluation data
and find that 95.48% of the descriptions contain no more than 20
words. However, the description contains informative keywords
that reflect the intention of the developers. Under the circumstances,
we implement CNN in description embedding. di ∈ Rk is the k-
dimensional word vector corresponding to the i-th word in the

description. A description of length n is represented as d1:n . The
same as method name embedding and tokens embedding, we use
three types of filters WD ∈ R

k×h , whose number is d, to get three
corresponding feature maps Dh1 , Dh2 , Dh3 ∈ R

d×(n−h+1). The win-
dow size h of each type of filter is varied from 2 to 4. Description
embedding is accomplished by merging three feature maps into
one feature matrix D ∈ Rd×q :

ci = f (WD ∗ di :i+h−1 + b), (17)

Dh = [c1, c2, ..., cn−h+1], (18)

D = Dh1 ⊕ Dh2 ⊕ Dh3 . (19)

3.4 Co-Attention Mechanism
After embedding code and its paired description, we can get two
feature matrices C ∈ Rd×p and D ∈ Rd×q for code and description.
Here p and q represent the sizes of the embedded code and descrip-
tion, respectively. By introducing a parameter matrix U ∈ Rd×d ,
which is to be learned by neural networks, we compute the correla-
tion matrix F ∈ Rp×q as follows:

F = tanh(CTUD). (20)

The correlation matrix F is able to have a co-attentive sight
on embedded code and description’s words semantic correlations.
Note that, each element Fi , j in F represents the semantic correlation
between two aligned vectors, i.e., Ci for the i-th code word and
Dj for the j-th description word. Specifically, the i-th row in F
represents the semantic correlations of each word in description to
the i-th code word. Likewise, the j-th column in F represents the
semantic correlations of each word in code to the j-th description
word.
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Next, we conductmax-pooling operations along rows and columns
over F to obtain semantic vectors gC ∈ Rp and gD ∈ Rq for code
and description. The i-th element of gC represents importance score
between the i-th word in code C and its most relevant word in de-
scription D. Likewise, the i-th element of gD represents importance
score between the i-th word in description D and its most rele-
vant word in code C. According to our experiments, max-pooling
performs better than mean-pooling. This can be interpreted that
max-pooling can capture the most important semantic correlation
(one with the highest value) between each word in code and de-
scription. Thus, we employ max-pooling operation as follows:

gCi =maxpoolinд[Fi ,1, ..., Fi ,q ],

gDi =maxpoolinд[F1,i , ..., Fp,i ].
(21)

The semantic vectors gC and gD are obtained as follows:

gC = [gC1 , ..., g
C
p ]

T ,

gD = [gD1 , ..., g
D
q ]

T .
(22)

After that, we employ softmax function on semantic vectors gC
and gD to generate attention vectors aC ∈ Rp and aD ∈ Rq for
code and description. The softmax function transforms the j-th
element gCj and gDj to the attention ratio aCj and aDj . For instance,
the j-th element in aC and aD are computed as follows:

aCj =
exp(gCj )∑p
l=1 exp(g

C
l )
,

aDj =
exp(gDj )∑q
l=1 exp(g

D
l )
.

(23)

Finally, we implement dot product between the feature matri-
ces C, D and attention vectors aC , aD to generate co-attentive
representations rC ∈ Rd and rD ∈ Rd for code and description,
respectively:

rC = CaC ,

rD = DaD .
(24)

3.5 Model Optimization
Now we describe how to train CARLCS-CNN to learn co-attentive
representations for code and description. The basic assumption is
to learn a mapping that produces more similar representations for
description and the corresponding code, which moves the repre-
sentations for description and correct code closer together while
minimizing the pairwise ranking loss:

L(θ ) =
∑

⟨c,d+,d− ⟩∈G

max(0, β − sim(c, d+) + sim(c, d−)), (25)

where θ denotes the model parameters, G denotes the training
dataset. For each code snippet c, there is a positive description
d+ (a correct description of c) and a negative description d− (an
incorrect description of c) randomly chosen from the pool of d+’s.
sim denotes the similarity score between code and description. β is a
small margin constraint. We conduct the cosine similarity measure
and set the fixed β value to 0.05.

we use the Adam algorithm [25] to minimize the loss function.
At training time, the co-attention mechanism learns the similarity
measure over the representations of code and description. Such a
similarity measure is used to compute attention vectors for code
and description in both directions. Next, the attention vectors are
used to guide the pooling layer to perform column-wise and row-
wise maxpooling over correlation matrix F. In the gradients descent
phase, the model parameters θ is updated by back propagation and
the representations rC and rD for code and description are learned
simultaneously.

3.6 Model Prediction for Code Search
After the model optimization, we can deploy CARLCS-CNN online
for code search by embedding a large-scale codebase, where each
code is represented by a vector (c). For a developer’s search query,
such as “how to append string to file”, the CARLCS-CNN model
embeds the query as a vector (q). Then, the semantic similarity
between a query (q) and a code (c) can be measured by their cosine
similarity, as Eq. (26). Finally, the model recommends the top-k
code highly related to the query for code search.

cos(c, q) =
cT q
∥c∥∥q∥

(26)

4 EXPERIMENT SETUP
This section presents five investigated research questions, our ex-
perimental dataset, the compared baseline models, and two widely
used evaluation measures.

4.1 Research Questions
This study investigates the following five research questions (RQs):

RQ1. How effective is our proposed CARLCS-CNN?

The first RQ investigates whether the proposed model CARLCS-
CNN outperforms the state-of-the-art code search model DeepCS
[56]. If CARLCS-CNN shows advantages over DeepCS, then the
co-attentive representations learned by CARLCS-CNN is beneficial
for code search.

RQ2. How efficient is our proposed CARLCS-CNN?

RQ2 compares the training and testing time between our CARLCS-
CNN and the DeepCS, and tests if the proposed model can save
computation resources substantially. Faster model indicates more
valuable application in practices.

RQ3. How does the CNN component affect the model effective-
ness?

As described in Section 3.2 and 3.3, we utilized the CNN to embed
code and description instead of the LSTM used by DeepCS. This
RQ aims to evaluate if CNN can better understand word semantics
in query and code, comparing with LSTM.

RQ4.How do three code features affect the model effectiveness?
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Table 1: Thirty examples of 10k queries in the automatic
evaluation

No. Description No. Description

1 start the statistics timer 16 get header portion of packet
2 handle a key pressed event 17 sort an int array into ascending order
3 convert a string to char 18 release a direct buffer
4 close a writer object 19 write an attribute with the prefix
5 read a string from the stream 20 check if list contains the given

attribute name
6 delete a folder on the hdfs 21 concatenate two byte arrays
7 create a new instance 22 log the details of a file
8 initialize the standard objects 23 create the ancestor listener
9 read the next line 24 initialize this key store from the

provided input stream
10 extract url of the request 25 load the activities
11 format a label as a title 26 unwrap a key
12 retrieve an email list 27 print out the classifier
13 build a new cache 28 filter an error event
14 parse a version string 29 close the proxy
15 download json data from url 30 test if the file exists

In the CARLCS-CNN, a code method is respectively represented
by three features (i.e., method name, API sequence, and tokens), as
detailed in Section 3.2. To analyze their impacts on model effective-
ness, we run CARLCS-CNN with individual feature separately, and
investigate whether using these three features together is the best
choice.

RQ5. How do different parameter settings affect the model
effectiveness?

CARLCS-CNN contains two important parameters that affect
the model effectiveness substantially. One is the number of filters
in CNN that learns deep representations from code and query, as
described in Section 3.2 and 3.3. The other is the description length
that determines how much information in code description can be
used for model optimization, as shown in Section 3.3.

4.2 Dataset
Following Gu et al. [56], we conducted experiments on their training
and testing data5. The training data contains 18,233,872 commented
Java code methods from GitHub repositories created from August,
2008 to June, 2016 with at least one star. In Gu et al.’s [56] testing
data, there are 10,000 code-query pairs. To evaluate CARLCS-CNN,
the 10k queries are used as model inputs while the corresponding
codes are regarded as the ground-truth. This automatic evaluation
can avoid the bias in manual checking and ensure the testing scale.
Table 1 shows 30 query examples and Fig. 3 illustrates two corre-
sponding code examples. Table 2 presents the distribution of word
count in queries. We can observe that 95.48% of queries contain
no more than 20 words because developers prefer to informative
keywords for code search [46].

4.3 Baseline Models
This study compares the following models:

DeepCS, the state-of-the-art model proposed by Gu et al.[56] that
embeds code and query separately with two LSTM models, as de-
scribed in Section 2. We re-ran the DeepCS by using the source
code shared on the GitHub.

5https://pan.baidu.com/s/1U_MtFXqq0C-Qh8WUFAWGvg

Table 2: Word statistics of 10k queries in the automatic eval-
uation

#Words in Query #Query %Query

1-20 9,548 95.48%
20-40 399 3.99%
40-60 30 0.30%
60-80 23 0.23%

/**

 * convert a string to a char

 */

public void stringToChar (String str, char[] ch) { 

int j = 0; 

for (int i = 0; i < str.length(); i++) 

{

ch[i] = str.charAt(j++);

}  

}

(a) The code method of the query "convert a string to a char"

/**

 * close a writer object

 */

private void closeWriter (Writer objWriter) { 

if (objWriter == null) return; 

try {

objWriter.close(); 

} catch (IOException e) {

e.printStackTrace();

} 

}

(b) The code method of the query "close a writer object"

Figure 3: Two code examples with queries in the automatic
evaluation

CARLCS-LSTM, the proposed model that incorporates the co-
attentive representation learning (as detailed in Section 3.4) to
DeepCS with the same LSTM embedding as DeepCS.

CARLCS-CNN, the proposed model that replaces the LSTMmodel
in CARLCS-LSTMby the CNNmodel and uses the same co-attention
mechanism as detailed in Section 3.4. CARLCS-CNN is the full so-
lution to our model proposed in Section 3.

4.4 Evaluation Metrics
To evaluate the effectiveness of the proposed model CARLCS-CNN,
we utilize two common evaluation metrics, recall and MRR (mean
reciprocal rank). Details show as follows.

Recall@k, the proportion of queries that the relevant code method
could be found in the top-k ranked lists. In specific, Recall@k is
calculated as follows:

Recall@k =
1
|Q |

|Q |∑
i=1

σ (Qi ≤ k) , (27)

where Q is the 10,000 queries in our automatic evaluation, as re-
ferred to in Section 4.2; σ is an indicator function that returns 1 if
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the i-th query (Qi ) could be found in the top-k ranked list, other-
wise it returns 0. Following Gu et al. [56], we evaluate Recall@1,
Recall@5 and Recall@10 respectively.

MRR, the average of the reciprocal ranks of all queries. The com-
putation process of MRR is:

MRR =
1
|Q |

|Q |∑
i=1

1
RankQi

, (28)

where Q is the 10k queries in the automatic evaluation; RankQi is
the rank of the ground-truth code related to the i-th query (Qi ) in
the ranked list. Different from recall, MRR uses the reciprocal rank
as the weight of measurement. Meanwhile, as developers prefer to
find the expected code method with short code inspection, we only
test MRR on the top-10 ranked list following Gu et al. [56]. In other
words, when the rank of Qi is out of 10, then 1/RankQi equals to 0.

5 RESULTS
This section presents the experimental results on the five research
questions, as described in Section 4.1, in sequence.

5.1 RQ1: Model Effectiveness
Table 3 compares the code search effectiveness between the state-
of-the-art model DeepCS and our CARLCS-CNN model described
in Section 3. Results show that DeepCS obtains an MRR of 0.408,
a Recall@1/5/10 of 0.413/0.591/0.683 respectively. CARLCS-CNN
achieves an MRR of 0.517 and a Recall@1/5/10 of 0.528/0.698/0.773.
Our proposed CARLCS-CNN improves DeepCS by 27.84%, 18.10%,
13.17%, and 26.72% in terms of Recall@1, Recall@5, Recall@10, and
MRR. Furthermore, to analyze the statistical difference between
CARLCS-CNN and DeepCS, we apply the Wilcoxon signed-rank
test [55] on MRR between CARLCS-CNN and DeepCS at a 5% sig-
nificance level. The p-value is less than 0.01, indicating the improve-
ments of CARLCS-CNN over DeepCS are substantial in statistical
significance. These results indicate that the co-attentive represen-
tation learning is beneficial for code search.

Table 3: Effectiveness comparison of DeepCS and CARLCS-
CNN in terms of Recall@1/5/10 and MRR

Model Recall@1 Recall@5 Recall@10 MRR

DeepCS 0.413 0.591 0.683 0.408
CARLCS-CNN 0.528 0.698 0.773 0.517

Result 1: Our proposed CARLCS-CNN improves DeepCS in
terms of MRR and Recall@1/5/10 substantially.

5.2 RQ2: Model Efficiency
Table 4 compares the training and testing time on Gu et al.’s [56]
dataset. The efficiency comparison is conducted under the same
experimental setup. Results show that DeepCS takes about 50 hours
for optimization and 1.2 seconds for responding each code search
query. Meanwhile, the proposed model CARLCS-CNN takes 10

hours for training and 0.3 second for each query. Thus, comparing
with DeepCS, CARLCS-CNN is 5 times faster in model training and
4 times faster in model testing. These results imply that CARLCS-
CNN is a better choice considering practical usage. CARLCS-CNN
is faster because it is a CNN-based model. Its network structure
is simpler than LSTM-based DeepCS so that the whole working
process can be faster [3, 59, 61, 62]. All the experiments are im-
plemented on a server with one Nvidia Titan V GPU with 256 GB
memory.
Table 4: Time cost for model training and testing of DeepCS
and CARLCS-CNN

Model Training Testing

DeepCS 50 hours 1.2s/query
CARLCS-CNN 10 hours 0.3s/query

Result 2: Comparing with DeepCS, CARLCS-CNN is 5 times
faster in model training and 4 times faster in model testing.

5.3 RQ3: The Impact of CNN Component
CNN is an important component to embed code and query for
CARLCS-CNN as shown in Section 3. Different from DeepCS, we
replace LSTM by CNN. Because we assume that CNN can better
capture the informative words in query and code. To investigate the
impact of the aforementioned replacement on the model effective-
ness, we also implement a Co-Attentive Representation Learning
model with the original LSTM as DeepCS. We name such a model
as CARLCS-LSTM.

Table 5 shows that CARLCS-LSTM achieves an MRR of 0.482, a
Recall@1/5/10 of 0.490/0.661/0.741, respectively. We can also notice
that the MRR of CARLCS-LSTM decreases by 6.77% comparing
with CARLCS-CNN, indicating that combining CNN embedding
with co-attentive representation learning can further enhance the
code search effectiveness. Moreover, we can observe that although
CARLCS-LSTM and DeepCS share the same embedding framework,
the co-attentive representation in CARLCS-LSTM shows advanta-
geous, whose MRR outperforms that of DeepCS by 18.14%.

Table 5: Effectiveness comparison of CARLCS-LSTM and
CARLCS-CNN in terms of Recall@1/5/10 and MRR

Model Recall@1 Recall@5 Recall@10 MRR

CARLCS-LSTM 0.490 0.661 0.741 0.482
CARLCS-CNN 0.528 0.698 0.773 0.517

Result 3: For Co-Attentive Representation Learning-based code
search, CNN is a better choice for word embedding than LSTM.

5.4 RQ4: The Impact of Code Features
All the compared models DeepCS, CARLCS-LSTM, and CARLCS-
CNN use three code features as their inputs, includingmethod name
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(M), API sequence (A), and tokens (T). To investigate the relative
importance of these three features, we ran three models with one
individual feature at a time. From Table 6, we can observe that the
three models show similar results. Specifically, when only using one
feature as model input, their effectiveness decrease substantially,
where the MRR of DeepCS (M/A/T) drops by more than 26.72%
comparing with DeepCS (M+A+T) from 0.408; the MRR of CARLCS-
LSTM (M/A/T) decreases by at least 30.71% vs. CARLCS-LSTM
(M+A+T) from 0.482; and the MRR of CARLCS-CNN (M/A/T) slides
by over 27.66% comparing with CARLCS-CNN (M+A+T) from 0.517.
Hence, combining three code features is advantageous over using
only one. Also, we can notice that the feature M (method name)
affects the model effectiveness most. This is because method name
is a brief summary of a code and it usually uses the same words as
query [20, 38].

Furthermore, to investigate the necessity of these three features,
Table 7 shows the sensitivity analysis on them by removing one
feature at a time. We can observe that all features are beneficial to
the model effectiveness because when removing the features on
the method name, API sequence, and tokens, the MRR decreased
by 39.07%, 20.12%, and 11.80% respectively.

Table 6: Effectiveness comparison of DeepCS, CARLCS-
LSTM, and CARLCS-CNN with four different feature set-
tings (M,method name; A, API sequence; T, tokens) in terms
of Recall@1/5/10 and MRR

Model Recall@1 Recall@5 Recall@10 MRR

DeepCS(M) 0.297 0.426 0.498 0.299
DeepCS(A) 0.118 0.223 0.368 0.169
DeepCS(T) 0.177 0.300 0.387 0.186
DeepCS(M+A+T) 0.413 0.591 0.683 0.408

CARLCS-LSTM(M) 0.334 0.484 0.571 0.334
CARLCS-LSTM(A) 0.132 0.252 0.369 0.184
CARLCS-LSTM(T) 0.237 0.391 0.484 0.245
CARLCS-LSTM(M+A+T) 0.490 0.661 0.741 0.482

CARLCS-CNN(M) 0.375 0.523 0.601 0.374
CARLCS-CNN(A) 0.144 0.261 0.382 0.213
CARLCS-CNN(T) 0.285 0.442 0.533 0.290
CARLCS-CNN(M+A+T) 0.528 0.698 0.773 0.517

Table 7: Sensitivity analysis of CARLCS-CNNon three differ-
ent features (M, method name; A, API sequence; T, tokens)
in terms of Recall@1/5/10 and MRR

Model Recall@1 Recall@5 Recall@10 MRR

CARLCS-CNN(A+T) 0.309 0.479 0.574 0.315
CARLCS-CNN(M+A) 0.416 0.582 0.670 0.413
CARLCS-CNN(M+T) 0.465 0.637 0.717 0.456
CARLCS-CNN(M+A+T) 0.528 0.698 0.773 0.517

Result 4: It is necessary to use three code features (method name,
API sequence, and tokens) together for model inputs, while the
method name affects the effectiveness most.

5.5 RQ5: The Impact of Parameter Settings
In the CNN of CARLCS-CNN, the description length and the num-
ber of filters are two important parameters influence the code search
effectiveness, as described in Section 3. The length determines how
much information in description is considered for model optimiza-
tion. Fig. 4 shows that the MRR of CARLCS-CNN reaches the opti-
mum when the length is set to 60. As increasing the length will no
longer improve the effectiveness but raise the model complexity,
60 is the best choice for description length. As to the DeepCS, we
can observe that the ideal description length is 30, but not like
CARLCS-CNN adding the length has a negative effect on model
effectiveness. This comparison implies CARLCS-CNN’s robustness
to the noises in the description. Fig. 5 presents the effectiveness
of CARLCS-CNN with various number of filters in CNN. We can
observe that, in most cases, CARLCS-CNN shows a stable effective-
ness regardless of the dramatically increased number of filters, but
it obtains the best effectiveness when the number of filters is 250.
Therefore, choosing an appropriate number of filters is necessary
for model optimization.

Result 5: For CARLCS-CNN, the best choice for description
length is 60 while setting the number of filters to 250 is beneficial
to code search effectiveness.

6 DISCUSSION
This section first discusses the strength of the proposed CARLCS-
CNN model with examples in Section 6.1, followed by the threats
to model validity in Section 6.2.

6.1 Why does CARLCS-CNN work?
Fig. 6 shows the first retrieved result of our CARLCS-CNN vs.
DeepCS for the query "detect network connection status". We can
notice that in Fig. 6 (a) DeepCS returned an irrelevant code, al-
though its method name and API contain the keyword "connec-
tion" in query. However, the DeepCS’ simple joint embedding be-
tween code and query is not enough. In contrast, our CARLCS-CNN
can retrieve the expected code in Fig. 6 (b) because it involves a
lot of query related programming words, such as "checkConnect",
"socket", "host", and etc. This result implies that the co-attentive rep-
resentation learning is advantageous over simple joint embedding
like DeepCS.

6.2 Threats to Validity
The proposed model CARLCS-CNN may suffer from three valid-
ity. One is the baseline replication. Replicating the state-of-the-art
model DeepCS may contain some errors. To mitigate this threat,
we re-ran the source code provided by the author in GitHub with
shared training and testing data. The second threat is the evalua-
tion metrics. In the experiment, we did not use the commonly used
metrics like precision and NDCG (Normalized Discounted Cumula-
tive Gain) [40, 52], because the automatic evaluation only has one
ground-truth code for each query. However, manually identifying
other ground-truth code will not only cost many efforts but also
introduce human bias. To make a fair comparison, we use the other
two standard metrics including recall and MRR as Gu et al. [56].
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Figure 4: The effectiveness comparison of CARLCS-CNN and DeepCS with various description length in terms of Re-
call@1/5/10 and MRR
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Figure 5: The effectiveness of CARLCS-CNN with various
number of filters in CNN

The third threat lies in the model generalizability. The testing data
provided by Gu et al. [56] only involve about 10k Java open-source
projects from GitHub. The experimental results and conclusions
may be different for enterprise projects or open source projects in
other programming languages. We plan to extend the dataset in
the near future.

7 RELATEDWORK
This section provides the related works on code search in Section
7.1, code embedding in Section 7.2, and attention mechanism in
Section 7.3.

7.1 Code Search
Currently, many code search models have been proposed to help
users find relevant code [5, 9, 15, 17–19, 23, 31–33, 39, 49]. General
web search engines such as Ohloh6, Krugle and Google can return
code snippets containing the keywords (or Regular Expressions)
specified in a query. The major limitation of these general web
search engines is that they simply treat code and search query as
plain texts so they cannot capture the programming semantics in
context and support specific programming tasks [49].

To capture the programming semantics in code and query, re-
searchers proposed many models [5, 9, 15, 17, 19, 31]. Given a
natural language query, Portfolio [33] retrieved functions and their
usage chains that perform the task specified in the query. Sourcerer
[28] is a code search framework over open–source projects avail-
able on the Internet. It worked by extracting fine–grained structural
features from source code and using Lucene to manage the search.
Chan et al. [9] proposed an approach that returned code represented
6https://code.ohloh.net/

Figure 6: The retrieved first result of DeepCS and CARLCS-
CNN for the query "detect network connection status"

public static Connection getConnection (String url, String user, 

String password) { 

 Properties p = new Properties(); 

if (user != null) {

 p.setProperty("user", user);

} 

if (password != null) {

p.setProperty("password", password);

} 

return getConnection(url, p); 

}

(a) DeepCS’s first retrieved result for query "detect network connection status"

public void checkConnect (String host, int port, Object context) { 

  if (!(context instanceof AccessContext)) {          

throw new SecurityException("Missingcontext");

} 

AccessContext ac = (AccessContext)context;

if (port == -1) {

 ac.check(new Socket(host, "resolve"));

} else {

ac.check(new Socket(host.toString() + ":" + port));

}

}

(b) CARLCS-CNN’s first retrieved result for query "detect network connection status"

as a graph whose nodes denote keyword-matched classes or meth-
ods and whose edges represent the invocation relationship between
the nodes. CodeHow is a search engine proposed by Fei et al. [32],
which recognized a user query as relevant APIs, and performed
code retrieval by using an Extended Boolean model. However, the
above traditional approaches fail to bridge the semantic gaps be-
tween programming language in code and the natural language in
query.

In order to overcome the above issue, Gu et al. [56] proposed
a deep learning-based model called DeepCS (deep code search). It
is one of the state-of-the-art search engines that embedded code
and query into vector spaces by two independent LSTM models. It
learned a joint embedding to align two vector spaces, and finally
returned the codewith high cosine similarity to an embedded search
query. However, DeepCS’ independent embedding only learned
two isolated representations for code and query but ignored their
internal relationships. To address this challenge, this paper proposes
an improved model called CARLCS-CNN. It learns interdependent
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representations for code and query by leveraging the CNN and
the co-attention mechanism. Section 5 proved the CARLCS-CNN’s
substantial advantages over DeepCS.

Based on the DeepCS, researchers recently proposed two im-
proved models [50, 60]. One is the MMAN (multi-model attention
network) model proposed by Wan et al. [50], which enhanced the
code representation by incorporating a tree-based RNN model and
forming a fusion of two code representations. The other is the Coa-
Cor model developed by Yao et al. [60], which brought the loss
function of code summarization [53] to improve the representation
of query in natural language. However, both of them only focused
on one representation improvement, code or query, ignoring their
interaction. In this study, our CARLCS-CNN aims to learn inter-
dependent representations for code and query. Our experimental
results also show a substantial advantage over DeepCS. Therefore,
we believe that it would be valuable to incorporating the benefits
of MMAN and CoaCor into CARLCS-CNN. We plan to confirm this
in the near future.

7.2 Code Embedding
Bilingual embedding has widely studies in natural language pro-
cessing (NLP) area [2, 10, 12]. In recent years, researchers proved
that it is promising to apply this technique for code embedding in
software engineering [4, 21, 22, 45]. For example, Sachdev et al. [45]
developed an unsupervised embedding model NCS for code search,
where code/query embedding were derived from a large-scale code
corpus. Meanwhile, Gu et al. [56] leveraged LSTM models to em-
bed code and query independently, which showed an advantage
over NCS on code search [7]. Other than code search, code embed-
ding also becomes prevalent. In a code clone study, White et al.
[54] proposed a learning-based detection algorithm that embedded
tokens and fragments in source code. Liu et al. [29] proposed an
ordinal embedding hashing, which embedded given ordinal rela-
tions among data points to learn the ranking-preserving binary
codes. In code summarization, Wan et al. [51] proposed a hybrid
embedding approach which consists of an LSTM model and an
AST-based LSTM model to represent the lexical level and syntactic
level of code. Nguyen et al. [37] embedded source code to discover
programmodifications and did prediction tasks such as propagating
feedback. Bayou [35] is a system that used deep neural networks
to synthesize code programs by embedding API calls and natural
language descriptions.

7.3 Attention Mechanism
Attention mechanism allows deep learning-based models learning
to focus on the most important parts in data [13, 34, 47, 48, 57, 58].
It has been successfully applied in image generation [13], image
classification [34, 48], visual question answering [47, 57, 58], etc.
In the NLP area, the attention mechanism also earns its value and
popularity. For example, to overcome the difficulty of the long sen-
tence translation, Bahdanau et al. [3] proposed attention-based
model RNNSearch to learn an alignment over sentences. Hermann
et al. [16] proposed an attention model to circumvent the bottleneck
caused by fixed-width hidden vector in text reading and comprehen-
sion. And a more fine-grained attention mechanism was proposed
by Rocktäschel et al. [44], who employed a word-by-word neural at-
tention mechanism to reason about the entailment in two sentences.

However, these attention approaches use separate attention distri-
butions for each modality, such as image or sentence, neglecting
their interactions [30, 36].

To address the above issue, researchers began to work on the co-
attention mechanism [30, 36]. Lu et al. [30] proposed a hierarchical
co-attention model for visual question answering which is able to
attend to different regions of the image as well as different frag-
ments of the question. Li et al. [27] proposed a context-aware neural
network that leveraged a co-attention mechanism to characterize
the degree of matching between users’ contextual preferences and
items’ context-aware aspects. Recently, Yu et al. [63] reduced the
co-attention method into two steps, self-attention for a question
embedding and the question-conditioned attention for a visual em-
bedding. We applies the co-attention mechanism to address the
semantic gap between code and query. And our experiment re-
sults indicate this appliance is valuable and promising for the code
search.

8 CONCLUSION AND FUTUREWORK
Developing a satisfactory code search engine for developers has
long been a challenging problem. Recently, a deep learning-based
code search model DeepCS provided by Gu et al. [56] is proved to be
advantageous over traditional IR-based models, such as Sourcerer
[28] and CodeHow [32]. Generally, DeepCS embeds code and query
separately by two LSTMmodels and optimizes the model with com-
bined embedding, so that the code search can be done by returning
the code with higher cosine similarity to a search query. However,
the individual embedding can hardly capture the interdependent
relationship between code and query.

To overcome this challenge, we propose an improved model
named CARLCS-CNN7, which leverages CNN associated with a
co-attention mechanism to learn interdependent representations
for code and query after the individual embedding. An automatic
evaluation shows that the proposed CARLCS-CNN significantly
outperforms DeepCS by 26.72% in terms of MRR. Moreover, running
CARLCS-CNN is 5 times faster than DeepCS on model training
and 4 times faster on model testing, due to its much less complex
network structure. Therefore, co-attentive representation learning
is beneficial for the code search.

We consider two future works. First, we plan to enhance the
code representation by leveraging tree-based embedding as Wan et
al. [50] and improve the query representation by incorporating the
loss function of code summarization as Yao et al. [60]. Second, we
plan to improve the quality of training data, as the code comment
is not always representing the ground-truth of developers’ queries.
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