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ABSTRACT
When contributing code to a software system, developers are often
confronted with the hard task of understanding and adhering to the
system’s design. This task is often made more difficult by the lack
of explicit design information. Often, recorded design information
occurs only embedded in discussions between developers. If this
design information could be identified automatically and put into a
form useful to developers, many development tasks could be eased,
such as directing questions that arise during code review, tracking de-
sign changes that might affect desired system qualities, and helping
developers understand why the code is as it is. In this paper, we take
an initial step towards this goal, considering how design information
appears in pull request discussions and manually categorizing 275
paragraphs from those discussions that contain design information
to learn about what kinds of design topics are discussed.
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1 INTRODUCTION
When working on a project, developers constantly struggle with
the balance between writing the code required to provide desired
behaviour and respecting the design of a system. This task is made
even harder because, at least in the case of open source systems,
design information is rarely documented explicitly. Instead, it is
scattered across different kinds of artifacts, including discussions
taking place on issue tracker systems and on pull requests. For
instance, Brunet et al. found that a large number of discussions are
about design [2]. The work of Tsay et al. reinforced this finding,
showing how these discussion can often take a leading role on how
the design of a system evolves [16].

Newcomers particularly struggle with determining and adhering
to the current design of the project [3, 12]. If it was possible to
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identify where design was being discussed, and then to represent and
make use of such information, many software development tasks
could be eased. For instance, if during a pull request discussion, we
could determine automatically the design topics being examined, we
could invite core project members with appropriate design expertise
to participate. Such invitations might in turn decrease the time and
effort that goes into reviewing a pull request. As another example,
we envision tools to help developers understand why a piece of code
is designed in a particular way, by identifying and extracting design
information from discussions about related past code changes.

Listing 1: Paragraph that contains design information.
1 leaky abstraction in the sense that your abstraction is
saying too much about the implementation -- you’re
declaring to the world that you had to make compromises
on your API to get other outcomes (performance), there
has to be a tradeoff between pure perf and the best
internal implementation and the API we expose to users
and I’m here representing the API and this is that
tradeoff discussion

Listing 2: Paragraph not related to design.
1 Ok. I was pretty keen on getting 1.7.2 within a week or
so with a fix to a shared build. Guessing 2.0 might make
that easier since we’d branch off to master/1.x/2.x?

Written developer discussions captured in issue trackers and pull
requests can contain a wide range of information, not all of which
touches on system design. The discussion snippets in listings 1 and 2
provide a sense of the range of information in such discussions.
On the one hand, the snippet in listing 1 discusses the structure
of a method, and thus considers the implications of the method’s
design. On the other hand, the snippet in listing 2 (part of the same
pull request discussion) considers build and release information; we
therefore do not consider the information in it as part of the system
design.

As a step towards the identification of design information in
discussions, we propose and investigate the concept of a design
point (DP), defined as a piece of a discussion relating to a decision
about a software system’s design that a software development team
needs to make. We investigated the presence of such design points
in pull request discussions (Section 2). These discussions consist of
a sequence of comments made by different individuals where each
comment can consist of a number of paragraphs and code snippets.
We found that paragraphs are a useful level of granularity at which
to localize design points. We annotated the presence of design points
in 10,790 paragraphs from 3 large open source projects, discovering
2,378 paragraphs that contain design points.1

1The dataset is available at https://www.cs.ubc.ca/∼vivianig/icpc18dataset
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We then wondered whether there are certain kinds of design infor-
mation that appear consistently in these discussions. To investigate
this question, we applied an open coding approach on 275 para-
graphs selected from the 2,378 paragraphs identified as containing
design information from the dataset to try to identify design top-
ics (Section 3). The two coders agreed on 8 design topics ranging
from Implementation issues to Performances discussions. This short
paper makes three contributions: (1) it introduces the concept of a
design point to capture where design information appears in written
developer discussions, (2) it provides a dataset of 2,378 paragraphs
from 10,790 pull request discussions where design points have been
identified, and (3) it reports on the categories of design topics found
in 275 paragraphs with design points coded by two individuals.

The two facts that design information occurs within paragraphs
of a pull request discussion and that there are consistently recur-
ring design topics lend credibility to the vision of automatically
identifying design information in written developer discussions and
building tools to usefully build upon this information. In Section 4,
we explore some of the next steps to make the identification and use
of design points reality.

2 DESIGN POINTS
What constitutes design for a software system is not well defined
in the literature. For example, the term design is used to refer to
how to structure aspects of a system, whether at a coarse scale ar-
chitecturally [7] or at a finer grained scale, such as with a design
pattern [5]. Its use is diverse and ranges from the creation of standard-
ized documents [1] to the choice of a particular sorting algorithm [4].
To capture the breadth of design information, we choice a broad
definition for design points: a design point (DP) is a piece of a dis-
cussion relating to a decision about a software system’s design that
a software development team needs to make. This broad definition is
useful as we explore how design occurs in discussions so as not to
prematurely limit the range of design information considered.

We chose to investigate design points in pull request discussions
because pull requests have been shown to include design infor-
mation [2]. To understand what characteristics might indicate the
presence of DPs in discussion, we applied an iterative annotation
process to pull request discussions from three open source systems.
We chose pull requests with lengthy discussions to maximize the
likelihood that design would be discussed, as opposed to a pull re-
quest that might be quickly accepted by a development team with
little discussion. We chose to focus on the Node.js, Rust and
Rails projects because they are large open source projects of dif-
ferent kinds, underlying technologies, and levels of maturity, thus
allowing us a diverse perspective on design.

In an initial phase, two of the authors independently annotated
the same pull request discussion looking for paragraphs containing
DPs. Each one created an annotation guide to document annotations
used, steps taken and assumptions made. This was followed by a
consolidation phase, where the two independently created annotation
guides were merged. During the consolidation phase, we opted to
restrict the search of DPs to paragraphs. On the one hand, working
with entire comments is too coarse, since different paragraphs within
a comment sometimes discuss different topics. On the other hand,

Table 1: Statistics for the annotated pull requests

Pull Request #Paragraphs #DPs % Paragraphs with DPs
Node.js 3,963 985 24%
Rails 3,201 722 22%
Rust 3,626 770 20%

Total 10,790 2,475 22%

working with single sentences is too fine, as a DP can easily span
over multiple sentences.

Following the consolidation phase, two of the authors annotated
four pull requests. We computed the Cohen’s Kappa Coefficient
across the annotations, resulting in a value of 0.52. Given this “mod-
erate agreement” level [8, 9] in the annotations, we then proceeded
to apply the annotation process to more pull requests.

In all, three of the authors annotated a total of 34 pull requests:
14 from Node.js, 10 from Rails and 10 from Rust. Of these
pull requests, 18 were successfully merged into the project; 16 were
rejected by project developers. The annotated pull request data set
consists of 10,790 paragraphs of which 2,378 contained at least
one DP, for a total of 2,475 DPs. We summarize the collected da-
ta in Table 1. For each project, we list the number of paragraphs
(#Paragraphs), the number of DPs (#DPs), and the percentage of
paragraphs containing at least one DP (% Paragraphs with DPs).

Our results match the finding of Brunet et al. that, in a larger study
of 102,122 discussions, found out that roughly 25% of discussions
in a project are about design [2].

3 DESIGN TOPICS
Knowing that a substantial number of paragraphs in pull requests
across three projects include DPs, we then wondered what topics
relevant to design were being discussed.

Initially, from the 2,378 paragraphs identified as containing a
design point in the previous step, we randomly sampled 50 para-
graphs. We then applied open coding [13] to determine the design
topics being discussed. Two of the authors coded the paragraphs
separately, followed by a meeting where the two authors discussed
the differences in their coding. 50 additional paragraphs were then
randomly sampled and coded. We repeated this process three times,
for a total of 150 paragraphs. Between each iteration, the two coders
discussed the difference in topics, until a common set of of topic-
s was determined and no new design topic appeared. Finally, the
two coders, sampled a last set of 75 paragraphs, which they then
coded and for which we measured the inter-rater agreement using
Cohen’s Kappa Coefficient. The inter-rater agreement was 0.64, a
value considered to be “substantial agreement” [8, 9].

Table 2 summarizes topics that were considered during the pro-
cess. The left side of the table (after the double line) list the main
topics that two coders considered over the entire set of 275 para-
graphs. The number of times each coder found each topic is indicated.
For brevity, we do not include topics that appeared less than 5 times.
Although there are similar numbers for some topics, many topics
have a fairly large difference. These differences can be explained by
the fact that Coder #2 tended to differentiate more between design
topics, thus spreading the observations to a larger set of topics. In
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other words, Coder #2 tended to have more topics that were used
only once or twice, and therefore not shown in the Table.

The right side of Table 2 shows the final set of design topics
found in the dataset, each with a short description of its meaning.
Specifically, we list the results of the coding of the last 75 paragraphs,
which took place after the two coders had finalized the common set
of topics with significant inter-rater agreement. We show only the
number of occurrences for which both coders agreed. Therefore, the
total number of occurrences is 53, rather than 75. Given the size of
the sample, some of the topics are present only in small numbers,
we observe that in the larger set, on the left side, those topics are
represented in a more significant number of cases. We thus consider
them as relevant. Some of the topics of the left side had been grouped
in single categories, as shown in the Table: for example, Robustness
also includes Safety.

The determination of design topics presented multiple challenges.
First of all, developers rarely explicitly state the topic of a paragraph.
Thus, the coders often had to rely on their own intuition to understand
what topic the paragraph was about. The decision of topic was
made harder by the fact that paragraphs may not always make sense
without the context of paragraphs around them.

The coding process also required a large amount of time. Our
investigation was made possible thanks to the reduced sample size,
but the amount of work that would be required to obtain enough data
to use with an automated tool would make a manual categorization
infeasible. We discuss in Section 4 the possibility to automatize this
process.

4 BUILDING ON DESIGN POINTS
Developers discuss design in written asynchronous communication
channels, such as issues and pull requests. In this paper, we have
identified that a paragraph is a useful granularity of a discussion in
which to identify design. We refer to such a paragraph as having
a design point. We sampled a number of design points from pull
request discussions to consider whether there was any consistency
in the design topics discussed by developers. All of this work relied
on manual annotations. To make our vision of creating tools and
techniques that can make use of design points, the determination
of whether a paragraph is a design point and what kind of design
is discussed at a design point requires automation. We describe the
kinds of automation we envision (Sections 4.1 and 4.2) and sketch,
as one example, how such automated detection could be applied to
help with recommending contributors to a discussion (Section 4.2).
We finally also hypothesize how useful could be investigating more
the relation between design points (Section 4.3).

4.1 Design Point Detection
Previous work has considered how to identify automatically which
discussions are about design. Brunet et al.[2] and Shakiba et al.[11]
used supervised learning techniques to determine whether entire
discussions were about design or not.

We believe that design points provide a way to lower the granulari-
ty and directly identify which paragraphs contain design information.
We are currently working on developing an automatic approach to
detect the presence of design points in paragraphs of discussions
among developers. In comparison to earlier approaches, this method

would enable the more accurate identification of the location of
design information in discussions. The more accurate and granular
the detection method, the more likely it is that meaningful design
information can be extracted, represented and used by other tools.

We are working towards the goal of automated determination by
expanding our annotations to add additional labels to the design
points we have localized in the paragraphs analyzed. For example,
we are labelling if the author of that specific paragraph had previ-
ously been invited to the discussion, since it may be more likely that
he/she is going to make to meaningful comment if invited. Based on
such additional annotations, we will investigate whether a supervised
learning approach can identify which paragraphs contain a design
point.

4.2 Detection of Design Topics
To our knowledge, no existing work attempts to identify design
topics in discussions at the paragraph level.

We believe design-related keywords can be extracted from para-
graphs in discussions automatically, based on techniques such as
TextRank[10]. Those keywords can become associated with manual
annotations about design topics, and a supervised learning approach
can then be used to determine automatically the topic of a paragraph
with a design point.

If the topic of design could be identified automatically, this in-
formation could be used to build tools to help developers. Consider,
for instance, the fact that discussions for pull requests can become
lengthy. For example, pull request #4765 of the Node.js project
has a total of 223 comments. In such discussions, it is not uncommon
for there to be many back-and-forth comments between developers
about a design topic, such as performance. Resolving the design
issue in these cases can require the solicitation of another project
member who is more expert on the topic to weigh in. If the design
topic can be determined automatically as suggested above, a rec-
ommender tool could be provided to automatically introduce the
expert project member. Such a recommender would go beyond ex-
isting work that recommends reviewers only at the beginning of a
pull request based on the source code modifications [6, 14, 15, 17].
The recommender we propose would go beyond this existing work
to include information found in discussions about a code review;
information that we believe has been largely untapped.

4.3 Design Information Extraction
Even more meaningful tools to aid developers might be built if
the design information being discussed could be represented more
specifically. For example, instead of just determining the topic of the
design information, the actual design information could be extracted.
Imagine for listing 1 that in addition to determining the design point
is about API and performance, information from other parts of the
discussion (not shown in the listing) about the particular tradeoffs
with the method design could be determined. Often, such informa-
tion, requires synthesizing multiple arguments and positions raised
by several developers across multiple design points. By using the
structure of the discussion, a synthesis of more precise design infor-
mation could be determined and used to help describe to developers
what tradeoffs were made in the determination of the code as written.
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5 SUMMARY
To help developers cope with meeting simultaneous goals of adding
and modifying a system to meet desired behaviour and respecting
the system design, new tools are needed that enable a developer to
easily access design information. In this paper, we have taken some
initial steps towards the long-term goal of providing such tools. We
have introduced the new idea of identifying design points at the level
of paragraphs in developer written discussions, arguing how this
result goes beyond existing work that limits such identification to
the discussions in their entirety.

Moreover, we have identified the kinds of design topics discussed
by developers, which others have not yet considered. We have de-
scribed how this kind of information can aid in the provision of
development tools and sketched a future in which more precise de-
sign information might be extracted. We present these early results to
start a dialogue in the community about how to best define a design
point and how best to represent and use information that appears in
a design point.
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