
What Design Topics do Developers Discuss?
Giovanni Viviani

University of British Columbia
vivianig@cs.ubc.ca

Calahan Janik-Jones
University of Toronto

cal.janik.jones@mail.utoronto.ca

Michalis Famelis
Université de Montréal

famelis@iro.umontreal.ca

Xin Xia
Monash University

xin.xia@monash.edu

Gail C. Murphy
University of British Columbia

murphy@cs.ubc.ca

ABSTRACT
When contributing code to a software system, developers are often
confronted with the hard task of understanding and adhering to the
system’s design. This task is often made more difficult by the lack
of explicit design information. Often, recorded design information
occurs only embedded in discussions between developers. If this
design information could be identified automatically and put into a
form useful to developers, many development tasks could be eased,
such as directing questions that arise during code review, tracking de-
sign changes that might affect desired system qualities, and helping
developers understand why the code is as it is. In this paper, we take
an initial step towards this goal, considering how design information
appears in pull request discussions and manually categorizing 275
paragraphs from those discussions that contain design information
to learn about what kinds of design topics are discussed.

ACM Reference Format:
Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail
C. Murphy. 2018. What Design Topics do Developers Discuss?. In Pro-
ceedings of ICPC ’18: 26th IEEE/ACM International Confernece on Pro-
gram Comprehension (ICPC ’18). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3196321.3196357

1 INTRODUCTION
When working on a project, developers constantly struggle with
the balance between writing the code required to provide desired
behaviour and respecting the design of a system. This task is made
even harder because, at least in the case of open source systems,
design information is rarely documented explicitly. Instead, it is
scattered across different kinds of artifacts, including discussions
taking place on issue tracker systems and on pull requests. For
instance, Brunet et al. found that a large number of discussions are
about design [2]. The work of Tsay et al. reinforced this finding,
showing how these discussion can often take a leading role on how
the design of a system evolves [16].

Newcomers particularly struggle with determining and adhering
to the current design of the project [3, 12]. If it was possible to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196357

identify where design was being discussed, and then to represent and
make use of such information, many software development tasks
could be eased. For instance, if during a pull request discussion, we
could determine automatically the design topics being examined, we
could invite core project members with appropriate design expertise
to participate. Such invitations might in turn decrease the time and
effort that goes into reviewing a pull request. As another example,
we envision tools to help developers understand why a piece of code
is designed in a particular way, by identifying and extracting design
information from discussions about related past code changes.

Listing 1: Paragraph that contains design information.
1 leaky abstraction in the sense that your abstraction is
saying too much about the implementation -- you’re
declaring to the world that you had to make compromises
on your API to get other outcomes (performance), there
has to be a tradeoff between pure perf and the best
internal implementation and the API we expose to users
and I’m here representing the API and this is that
tradeoff discussion

Listing 2: Paragraph not related to design.
1 Ok. I was pretty keen on getting 1.7.2 within a week or
so with a fix to a shared build. Guessing 2.0 might make
that easier since we’d branch off to master/1.x/2.x?

Written developer discussions captured in issue trackers and pull
requests can contain a wide range of information, not all of which
touches on system design. The discussion snippets in listings 1 and 2
provide a sense of the range of information in such discussions.
On the one hand, the snippet in listing 1 discusses the structure
of a method, and thus considers the implications of the method’s
design. On the other hand, the snippet in listing 2 (part of the same
pull request discussion) considers build and release information; we
therefore do not consider the information in it as part of the system
design.

As a step towards the identification of design information in
discussions, we propose and investigate the concept of a design
point (DP), defined as a piece of a discussion relating to a decision
about a software system’s design that a software development team
needs to make. We investigated the presence of such design points
in pull request discussions (Section 2). These discussions consist of
a sequence of comments made by different individuals where each
comment can consist of a number of paragraphs and code snippets.
We found that paragraphs are a useful level of granularity at which
to localize design points. We annotated the presence of design points
in 10,790 paragraphs from 3 large open source projects, discovering
2,378 paragraphs that contain design points.1

1The dataset is available at https://www.cs.ubc.ca/∼vivianig/icpc18dataset

https://doi.org/10.1145/3196321.3196357
https://doi.org/10.1145/3196321.3196357
https://www.cs.ubc.ca/~vivianig/icpc18dataset

ICPC ’18, May 27–28, 2018, Gothenburg, SwedenGiovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail C. Murphy

We then wondered whether there are certain kinds of design infor-
mation that appear consistently in these discussions. To investigate
this question, we applied an open coding approach on 275 para-
graphs selected from the 2,378 paragraphs identified as containing
design information from the dataset to try to identify design top-
ics (Section 3). The two coders agreed on 8 design topics ranging
from Implementation issues to Performances discussions. This short
paper makes three contributions: (1) it introduces the concept of a
design point to capture where design information appears in written
developer discussions, (2) it provides a dataset of 2,378 paragraphs
from 10,790 pull request discussions where design points have been
identified, and (3) it reports on the categories of design topics found
in 275 paragraphs with design points coded by two individuals.

The two facts that design information occurs within paragraphs
of a pull request discussion and that there are consistently recur-
ring design topics lend credibility to the vision of automatically
identifying design information in written developer discussions and
building tools to usefully build upon this information. In Section 4,
we explore some of the next steps to make the identification and use
of design points reality.

2 DESIGN POINTS
What constitutes design for a software system is not well defined
in the literature. For example, the term design is used to refer to
how to structure aspects of a system, whether at a coarse scale ar-
chitecturally [7] or at a finer grained scale, such as with a design
pattern [5]. Its use is diverse and ranges from the creation of standard-
ized documents [1] to the choice of a particular sorting algorithm [4].
To capture the breadth of design information, we choice a broad
definition for design points: a design point (DP) is a piece of a dis-
cussion relating to a decision about a software system’s design that
a software development team needs to make. This broad definition is
useful as we explore how design occurs in discussions so as not to
prematurely limit the range of design information considered.

We chose to investigate design points in pull request discussions
because pull requests have been shown to include design infor-
mation [2]. To understand what characteristics might indicate the
presence of DPs in discussion, we applied an iterative annotation
process to pull request discussions from three open source systems.
We chose pull requests with lengthy discussions to maximize the
likelihood that design would be discussed, as opposed to a pull re-
quest that might be quickly accepted by a development team with
little discussion. We chose to focus on the Node.js, Rust and
Rails projects because they are large open source projects of dif-
ferent kinds, underlying technologies, and levels of maturity, thus
allowing us a diverse perspective on design.

In an initial phase, two of the authors independently annotated
the same pull request discussion looking for paragraphs containing
DPs. Each one created an annotation guide to document annotations
used, steps taken and assumptions made. This was followed by a
consolidation phase, where the two independently created annotation
guides were merged. During the consolidation phase, we opted to
restrict the search of DPs to paragraphs. On the one hand, working
with entire comments is too coarse, since different paragraphs within
a comment sometimes discuss different topics. On the other hand,

Table 1: Statistics for the annotated pull requests

Pull Request #Paragraphs #DPs % Paragraphs with DPs
Node.js 3,963 985 24%
Rails 3,201 722 22%
Rust 3,626 770 20%

Total 10,790 2,475 22%

working with single sentences is too fine, as a DP can easily span
over multiple sentences.

Following the consolidation phase, two of the authors annotated
four pull requests. We computed the Cohen’s Kappa Coefficient
across the annotations, resulting in a value of 0.52. Given this “mod-
erate agreement” level [8, 9] in the annotations, we then proceeded
to apply the annotation process to more pull requests.

In all, three of the authors annotated a total of 34 pull requests:
14 from Node.js, 10 from Rails and 10 from Rust. Of these
pull requests, 18 were successfully merged into the project; 16 were
rejected by project developers. The annotated pull request data set
consists of 10,790 paragraphs of which 2,378 contained at least
one DP, for a total of 2,475 DPs. We summarize the collected da-
ta in Table 1. For each project, we list the number of paragraphs
(#Paragraphs), the number of DPs (#DPs), and the percentage of
paragraphs containing at least one DP (% Paragraphs with DPs).

Our results match the finding of Brunet et al. that, in a larger study
of 102,122 discussions, found out that roughly 25% of discussions
in a project are about design [2].

3 DESIGN TOPICS
Knowing that a substantial number of paragraphs in pull requests
across three projects include DPs, we then wondered what topics
relevant to design were being discussed.

Initially, from the 2,378 paragraphs identified as containing a
design point in the previous step, we randomly sampled 50 para-
graphs. We then applied open coding [13] to determine the design
topics being discussed. Two of the authors coded the paragraphs
separately, followed by a meeting where the two authors discussed
the differences in their coding. 50 additional paragraphs were then
randomly sampled and coded. We repeated this process three times,
for a total of 150 paragraphs. Between each iteration, the two coders
discussed the difference in topics, until a common set of of topic-
s was determined and no new design topic appeared. Finally, the
two coders, sampled a last set of 75 paragraphs, which they then
coded and for which we measured the inter-rater agreement using
Cohen’s Kappa Coefficient. The inter-rater agreement was 0.64, a
value considered to be “substantial agreement” [8, 9].

Table 2 summarizes topics that were considered during the pro-
cess. The left side of the table (after the double line) list the main
topics that two coders considered over the entire set of 275 para-
graphs. The number of times each coder found each topic is indicated.
For brevity, we do not include topics that appeared less than 5 times.
Although there are similar numbers for some topics, many topics
have a fairly large difference. These differences can be explained by
the fact that Coder #2 tended to differentiate more between design
topics, thus spreading the observations to a larger set of topics. In

What Design Topics do Developers Discuss? ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

other words, Coder #2 tended to have more topics that were used
only once or twice, and therefore not shown in the Table.

The right side of Table 2 shows the final set of design topics
found in the dataset, each with a short description of its meaning.
Specifically, we list the results of the coding of the last 75 paragraphs,
which took place after the two coders had finalized the common set
of topics with significant inter-rater agreement. We show only the
number of occurrences for which both coders agreed. Therefore, the
total number of occurrences is 53, rather than 75. Given the size of
the sample, some of the topics are present only in small numbers,
we observe that in the larger set, on the left side, those topics are
represented in a more significant number of cases. We thus consider
them as relevant. Some of the topics of the left side had been grouped
in single categories, as shown in the Table: for example, Robustness
also includes Safety.

The determination of design topics presented multiple challenges.
First of all, developers rarely explicitly state the topic of a paragraph.
Thus, the coders often had to rely on their own intuition to understand
what topic the paragraph was about. The decision of topic was
made harder by the fact that paragraphs may not always make sense
without the context of paragraphs around them.

The coding process also required a large amount of time. Our
investigation was made possible thanks to the reduced sample size,
but the amount of work that would be required to obtain enough data
to use with an automated tool would make a manual categorization
infeasible. We discuss in Section 4 the possibility to automatize this
process.

4 BUILDING ON DESIGN POINTS
Developers discuss design in written asynchronous communication
channels, such as issues and pull requests. In this paper, we have
identified that a paragraph is a useful granularity of a discussion in
which to identify design. We refer to such a paragraph as having
a design point. We sampled a number of design points from pull
request discussions to consider whether there was any consistency
in the design topics discussed by developers. All of this work relied
on manual annotations. To make our vision of creating tools and
techniques that can make use of design points, the determination
of whether a paragraph is a design point and what kind of design
is discussed at a design point requires automation. We describe the
kinds of automation we envision (Sections 4.1 and 4.2) and sketch,
as one example, how such automated detection could be applied to
help with recommending contributors to a discussion (Section 4.2).
We finally also hypothesize how useful could be investigating more
the relation between design points (Section 4.3).

4.1 Design Point Detection
Previous work has considered how to identify automatically which
discussions are about design. Brunet et al.[2] and Shakiba et al.[11]
used supervised learning techniques to determine whether entire
discussions were about design or not.

We believe that design points provide a way to lower the granulari-
ty and directly identify which paragraphs contain design information.
We are currently working on developing an automatic approach to
detect the presence of design points in paragraphs of discussions
among developers. In comparison to earlier approaches, this method

would enable the more accurate identification of the location of
design information in discussions. The more accurate and granular
the detection method, the more likely it is that meaningful design
information can be extracted, represented and used by other tools.

We are working towards the goal of automated determination by
expanding our annotations to add additional labels to the design
points we have localized in the paragraphs analyzed. For example,
we are labelling if the author of that specific paragraph had previ-
ously been invited to the discussion, since it may be more likely that
he/she is going to make to meaningful comment if invited. Based on
such additional annotations, we will investigate whether a supervised
learning approach can identify which paragraphs contain a design
point.

4.2 Detection of Design Topics
To our knowledge, no existing work attempts to identify design
topics in discussions at the paragraph level.

We believe design-related keywords can be extracted from para-
graphs in discussions automatically, based on techniques such as
TextRank[10]. Those keywords can become associated with manual
annotations about design topics, and a supervised learning approach
can then be used to determine automatically the topic of a paragraph
with a design point.

If the topic of design could be identified automatically, this in-
formation could be used to build tools to help developers. Consider,
for instance, the fact that discussions for pull requests can become
lengthy. For example, pull request #4765 of the Node.js project
has a total of 223 comments. In such discussions, it is not uncommon
for there to be many back-and-forth comments between developers
about a design topic, such as performance. Resolving the design
issue in these cases can require the solicitation of another project
member who is more expert on the topic to weigh in. If the design
topic can be determined automatically as suggested above, a rec-
ommender tool could be provided to automatically introduce the
expert project member. Such a recommender would go beyond ex-
isting work that recommends reviewers only at the beginning of a
pull request based on the source code modifications [6, 14, 15, 17].
The recommender we propose would go beyond this existing work
to include information found in discussions about a code review;
information that we believe has been largely untapped.

4.3 Design Information Extraction
Even more meaningful tools to aid developers might be built if
the design information being discussed could be represented more
specifically. For example, instead of just determining the topic of the
design information, the actual design information could be extracted.
Imagine for listing 1 that in addition to determining the design point
is about API and performance, information from other parts of the
discussion (not shown in the listing) about the particular tradeoffs
with the method design could be determined. Often, such informa-
tion, requires synthesizing multiple arguments and positions raised
by several developers across multiple design points. By using the
structure of the discussion, a synthesis of more precise design infor-
mation could be determined and used to help describe to developers
what tradeoffs were made in the determination of the code as written.

ICPC ’18, May 27–28, 2018, Gothenburg, SwedenGiovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail C. Murphy

5 SUMMARY
To help developers cope with meeting simultaneous goals of adding
and modifying a system to meet desired behaviour and respecting
the system design, new tools are needed that enable a developer to
easily access design information. In this paper, we have taken some
initial steps towards the long-term goal of providing such tools. We
have introduced the new idea of identifying design points at the level
of paragraphs in developer written discussions, arguing how this
result goes beyond existing work that limits such identification to
the discussions in their entirety.

Moreover, we have identified the kinds of design topics discussed
by developers, which others have not yet considered. We have de-
scribed how this kind of information can aid in the provision of
development tools and sketched a future in which more precise de-
sign information might be extracted. We present these early results to
start a dialogue in the community about how to best define a design
point and how best to represent and use information that appears in
a design point.

ACKNOWLEDGMENTS
The authors wish to thank Georgios Gousios for helping us create
the corpus of GitHub discussions. The authors also acknowledge an
NSERC Discovery Grant that was used to fund this research.

REFERENCES
[1] 2009. IEEE Standard for Information Technology–Systems Design–Software

Design Descriptions. IEEE STD 1016-2009 (July 2009), 1–35. https://doi.org/10.
1109/IEEESTD.2009.5167255

[2] J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey. 2014. Do develop-
ers discuss design?. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 340–343.

[3] Susan Elliott Sim and Richard C. Holt. 1998. The Ramp-up Problem in Software
Projects: A Case Study of How Software Immigrants Naturalize. In Proceedings
of the 20th International Conference on Software Engineering (ICSE ’98). IEEE
Computer Society, Washington, DC, USA, 361–370. http://dl.acm.org/citation.
cfm?id=302163.302199

[4] Giorgio G. and Fabio R. 2001. Design of effective neural network ensembles for
image classification purposes. Image and Vision Computing 19, 9 (2001), 699 –
707. https://doi.org/10.1016/S0262-8856(01)00045-2

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[6] H. Kagdi, M. Hammad, and J. I. Maletic. 2008. Who can help me with this source
code change?. In 2008 IEEE International Conference on Software Maintenance.
157–166. https://doi.org/10.1109/ICSM.2008.4658064

[7] P. Kruchten. 1995. Architectural Blueprints — The ”4+1” View Model of Software
Architecture. 12 (11 1995), 42–50.

[8] RJ Landis and GG Koch. 1977. The measurement of observer agreement for
categorical data. biometrics (1977), 159–174.

[9] RJ Landis and GG Koch. 1981. The measurement of interrater agreement. Statis-
tics methods for rates and proportions 2 (1981), 212–236.

[10] R. Mihalcea and P. Tarau. 2004. TextRank: Bringing Order into Texts. In Pro-
ceedings of EMNLP 2004, Dekang Lin and Dekai Wu (Eds.). Association for
Computational Linguistics, Barcelona, Spain, 404–411.

[11] A. Shakiba, R. Green, and R. Dyer. 2016. FourD: Do Developers Discuss De-
sign? Revisited. In Proceedings of the 2Nd International Workshop on Soft-
ware Analytics (SWAN 2016). ACM, New York, NY, USA, 43–46. https:
//doi.org/10.1145/2989238.2989244

[12] I. Steinmacher, I. Scaliante Wiese, T. Conte, M. A. Gerosa, and D. Redmiles. 2014.
The Hard Life of Open Source Software Project Newcomers. In Proceedings of
the 7th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2014). ACM, New York, NY, USA, 72–78. https://doi.org/
10.1145/2593702.2593704

[13] A. Strauss and J. M. Corbin. 1990. Basics of qualitative research: Grounded
theory procedures and techniques. Sage Publications, Inc.

[14] P. Thongtanunam, R. G. Kula, A. E. Camargo C., N. Yoshida, and H. Iida. 2014.
Improving Code Review Effectiveness Through Reviewer Recommendations.
In Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE 2014). ACM, New York, NY, USA,
119–122. https://doi.org/10.1145/2593702.2593705

[15] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.
i. Matsumoto. 2015. Who should review my code? A file location-based code-
reviewer recommendation approach for Modern Code Review. In 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 141–150. https://doi.org/10.1109/SANER.2015.7081824

[16] J. Tsay, L. Dabbish, and J. Herbsleb. 2014. Let’s talk about it: evaluating contribu-
tions through discussion in GitHub. In Proceedings of the 22nd ACM SIGSOFT
international symposium on foundations of software engineering. 144–154.

[17] M. B. Zanjani, H. Kagdi, and C. Bird. 2016. Automatically Recommending Peer
Reviewers in Modern Code Review. IEEE Transactions on Software Engineering
42, 6 (June 2016), 530–543. https://doi.org/10.1109/TSE.2015.2500238

Table 2: Results of the coding process. Left side of the table contains information on all the 275 paragraphs coded, the right side includes only the 75
paragraphs with the finalized codebook

Category Occurrences Category Occurrences DescriptionCoder #1 Coder#2 Agreed on
code 105 105 code 11 Implementation issues
maintainability 58 38

maintainability 14 Future plans, OS support, code standards...

planning 10 0
plan 6 4
dependencies 7 0
compatibility 7 0
usability 0 3
testing 7 3 testing 1 Tests and testability
robustness 32 36

robustness 13 Robustness, safety, security
safety 0 6
performance 11 11 performance 2 Performance, runtime optimization
configuration 20 14 configuration 4 Configuration files, flags and options
documentation 23 26 documentation 1 Documentation in-code and off-code
clarification 22 29 clarification 7 Generic question

https://doi.org/10.1109/IEEESTD.2009.5167255
https://doi.org/10.1109/IEEESTD.2009.5167255
http://dl.acm.org/citation.cfm?id=302163.302199
http://dl.acm.org/citation.cfm?id=302163.302199
https://doi.org/10.1016/S0262-8856(01)00045-2
https://doi.org/10.1109/ICSM.2008.4658064
https://doi.org/10.1145/2989238.2989244
https://doi.org/10.1145/2989238.2989244
https://doi.org/10.1145/2593702.2593704
https://doi.org/10.1145/2593702.2593704
https://doi.org/10.1145/2593702.2593705
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1109/TSE.2015.2500238

	Abstract
	1 Introduction
	2 Design Points
	3 Design Topics
	4 Building on Design Points
	4.1 Design Point Detection
	4.2 Detection of Design Topics
	4.3 Design Information Extraction

	5 Summary
	Acknowledgments
	References

